WO2018061369A1 - Batting - Google Patents

Batting Download PDF

Info

Publication number
WO2018061369A1
WO2018061369A1 PCT/JP2017/024130 JP2017024130W WO2018061369A1 WO 2018061369 A1 WO2018061369 A1 WO 2018061369A1 JP 2017024130 W JP2017024130 W JP 2017024130W WO 2018061369 A1 WO2018061369 A1 WO 2018061369A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
salt type
batting
cross
weight
Prior art date
Application number
PCT/JP2017/024130
Other languages
French (fr)
Japanese (ja)
Inventor
宏 小野
成明 中村
正雄 家野
Original Assignee
東洋紡株式会社
日本エクスラン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社, 日本エクスラン工業株式会社 filed Critical 東洋紡株式会社
Priority to JP2017551729A priority Critical patent/JP6247801B1/en
Publication of WO2018061369A1 publication Critical patent/WO2018061369A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43832Composite fibres side-by-side
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/08Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyacrylonitrile as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/02Cotton wool; Wadding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/43Acrylonitrile series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/63Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with hydroxylamine or hydrazine

Definitions

  • the present invention relates to a batting suitable for bedding and clothing, which has a high level of moisture absorption exothermicity that brings about warm air with low humidity and bulkiness that brings about heat retention, and can realize a warm environment at an early stage.
  • ⁇ Filling is generally used in a futon, cushion or clothing that comes in contact with the skin.
  • a futon it is important to obtain a comfortable bed temperature of a comfortable temperature and humidity.
  • general-purpose fibers such as polyester, and those using cross-linked acrylic moisture-absorbing and releasing fibers (see Patent Document 1) have been proposed.
  • batting using general-purpose fibers such as polyester is sufficiently high in bulkiness and can maintain high heat retention by containing a lot of air, but it absorbs the moisture in the captured air and converts it to comfortable air There was a problem that could not be done.
  • the batting using the conventional Na salt type cross-linked acrylic moisture-absorbing / releasing fiber can be changed to air comfortable for the human body by absorbing moisture from the air contained in the batting and generating heat, Due to the low bulkiness, there was a problem with the sustainability of the heat retention effect.
  • the applicant has proposed a batting that further contains Mg salt type and / or Ca salt type cross-linked polyacrylate fibers in the batting containing polyester fibers (see Patent Document 2).
  • This batting has moisture absorption exothermic property and bulkiness at a high level, and can be comfortably used for bedding and clothing.
  • Mg salt type and / or Ca salt type cross-linked polyacrylate fibers have a problem that the user cannot immediately feel the warmth because the moisture absorption exothermic property does not rise to a high temperature in a short time. There was room for further improvements in materials.
  • the present invention was devised in order to solve the problems of the prior art including Patent Document 2, and has an initial temperature rising speed with respect to moisture exothermicity, and also has a high level of bulkiness.
  • An object of the present invention is to provide a batting suitable for bedding and clothing, which can realize a warm environment comfortable to the human body at an early stage.
  • the present inventor further increases the initial temperature rise due to hygroscopic heat generation while maintaining the bulkiness of the Mg salt-type and Ca salt-type crosslinked polyacrylate fibers of Patent Document 2.
  • Na salt type or K salt type is adopted as the cross-linked polyacrylate fiber to increase the initial temperature rise due to hygroscopic heat generation, and the bulkiness which is a drawback of Na salt type or K salt type
  • the graph which shows transition of the temperature for every elapsed time of 100% filling of Na salt type or Mg salt type cross-linked polyacrylate fiber measured according to the measurement method and conditions of ISO18782: 2015 is shown in FIG.
  • the Na salt type is superior to the Mg salt type in terms of initial rise temperature based on hygroscopic heat generation.
  • the batting of the present invention can not be achieved with conventional batting using general-purpose fibers such as polyester or cross-linked polyacrylate fibers such as Mg salt type and Ca salt type. Has the effect of achieving both at a high level. Such an effect is brought about not only by the bulkiness of the polyester fiber, but also by the high bulkiness of the specific composite structure of the Na salt type or K salt type cross-linked polyacrylate fiber and the hygroscopic exothermic property that exhibits a high temperature at an early stage.
  • the batting of the present invention can quickly change a large amount of moist air taken in due to its high bulkiness to warm air with low humidity due to quick moisture absorption and heat generation, so that the bedding batting, autumn / winter outdoor When used as a cotton pad for clothing, the wearer can feel warmth and heat retention at an extremely fast stage.
  • the batting of the present invention contains moist air at a low humidity at an early stage by containing polyester fiber and a specific composite structure of Na salt type and / or K salt type cross-linked polyacrylate fiber in a specific ratio. It is characterized by a high level of moisture absorption exothermicity that converts to warm air and bulkiness that provides sustained heat retention.
  • polyester fiber used in the present invention a polyester polymer usually used for cotton can be used, but polyethylene terephthalate fiber is preferable.
  • the form include regular products that are not specially processed, conjugate products, hollow products, conjugate hollow products, etc., in order to obtain high bulkiness as a batting containing a crosslinked polyacrylate fiber having hygroscopicity. Regular products that are not specially processed are preferred.
  • the polyester fiber preferably has a single fiber fineness of 5 to 18 dtex, more preferably 5 to 14 dtex.
  • the fiber length is preferably 40 to 100 mm, and more preferably 50 to 80 mm.
  • the single fiber elastic modulus of the polyester fiber is preferably 28 cN / dtex or more, and more preferably 30 cN / dtex or more for high bulkiness of the batting.
  • the upper limit of the single fiber elastic modulus of the polyester fiber is not limited, but is practically about 100 cN / dtex.
  • a polyester fiber having a high single fiber elastic modulus can be obtained by using, for example, polyethylene terephthalate or polyethylene naphthalate.
  • the polyester fiber content in the batting of the present invention is 40 to 90% by weight, preferably 45 to 85% by weight, more preferably 50 to 80% by weight.
  • the polyester fiber content in the batting of the present invention is 40 to 90% by weight, preferably 45 to 85% by weight, more preferably 50 to 80% by weight.
  • the cross-linked polyacrylate fiber used in the present invention needs to be a monovalent metal Na salt type and / or K salt type.
  • Each of the Na salt type and the K salt type may be used alone, or both types may be used in combination.
  • Mg salt type or Ca salt type divalent metal salt type has high moisture absorption exothermic property and moderately high bulkiness, but since the initial rise temperature during moisture absorption exotherm is low, warmth and heat retention can be achieved early. There is a problem if you want to feel it.
  • other divalent metal salt types such as a Zn salt type are not preferable because they are inferior in hygroscopic heat generation and a comfortable environment cannot be obtained.
  • the monovalent metal salt type of the Na salt type or the K salt type has a high initial temperature rise during the hygroscopic heat generation, and thus can feel warmth at an early stage.
  • the Na salt type or the K salt type has a special composite structure as described later in the present invention because the bulkiness is insufficient in the normal fiber form and the heat retention cannot be maintained.
  • the Na salt type and / or K salt type cross-linked polyacrylate fiber used in the present invention has two types of cross-linking structure and a surface layer portion having a Na salt type and / or K salt type carboxyl group, and different acrylonitrile contents. It is a composite fiber composed of a central part of a side-by-side structure composed of an acrylonitrile-based polymer, and the area occupied by the surface layer part in the cross section of the composite fiber needs to be 5% or more and less than 20%.
  • the cross-linked polyacrylate fiber of the present invention has a composite structure consisting of a central portion and a surface layer portion around the center portion, and contributes to an improvement in bulkiness by creating a hard and elastic structure in the central portion.
  • the crosslinked polyacrylate fiber of the present invention can have 3.5 mmol / g or more with respect to the total amount of carboxyl groups, and can be up to about 10 mmol / g. Moreover, regarding the moisture absorption rate prescribed
  • the crosslinked polyacrylate fiber of the present invention uses an acrylonitrile fiber as a raw fiber, and the acrylonitrile fiber can be produced from an acrylonitrile polymer by a known method.
  • the acrylonitrile polymer preferably has an acrylonitrile content of 50% by weight or more, more preferably 80% by weight or more.
  • the crosslinked structure can be introduced into the fiber by reacting the nitrile group of the acrylonitrile polymer with a nitrogen-containing compound such as a hydrazine compound.
  • the crosslinked polyacrylate fiber of the present invention has a composite structure in which two acrylonitrile polymers having different acrylonitrile contents are joined side by side.
  • the difference in acrylonitrile content between the two acrylonitrile polymers is preferably 1 to 5% by weight
  • the composite ratio of the two acrylonitrile polymers is It is preferably 30/70 to 70/30 (weight ratio).
  • a cross-linked structure is introduced into the surface layer of the fiber having a composite structure as described above.
  • a crosslinking agent such as a nitrogen-containing compound.
  • the nitrogen-containing compound it is preferable to use an amino compound or a hydrazine compound having two or more primary amino groups.
  • a hydrolysis treatment with an alkali metal compound is performed to convert the nitrile group in the surface layer portion into a carboxyl group.
  • carboxyl groups include Na salt type or K salt type salt type carboxyl groups and H type carboxyl groups, and it is preferable to increase the number of salt type carboxyl groups.
  • the hydrolysis treatment is performed under a milder condition of an alkali metal compound having a lower concentration than before, and the subsequent acid treatment is performed under severer conditions at a higher temperature than in the past.
  • the crosslinked polyacrylate fiber of the present invention can have a structure in which more carboxyl groups are present in the narrow surface layer than in the past and the acrylonitrile polymer is preserved in the center.
  • the area occupied by the surface layer in the cross section is 5% or more and less than 20%, preferably 10% or more and less than 20%.
  • the area of the surface layer part is measured by the method described in Examples described later.
  • the area occupied by the surface layer portion of the fiber of the present invention is very small, and the area of the central portion where almost no carboxyl group is present occupies a large area. Therefore, the bulk of the fiber due to moisture absorption and the adoption of Na salt type or K salt type High bulkiness can be achieved without the effect of lowering the properties.
  • the Na salt-type or K-salt type cross-linked polyacrylate fiber has a high moisture absorption exothermic property (particularly, an initial rise temperature) as compared with a divalent metal salt such as an Mg salt type.
  • a divalent metal salt such as an Mg salt type.
  • the content of the Na salt type or K salt type cross-linked polyacrylate fiber in the batting of the present invention is 10 to 60% by weight, preferably 15 to 55% by weight, more preferably 20 to 50% by weight.
  • the Na salt type or K salt type cross-linked polyacrylate fiber preferably has a single fiber fineness of 5 to 20 dtex, more preferably 5 to 15 dtex.
  • the fiber length is preferably 20 to 100 mm, more preferably 30 to 80 mm. Since the Na salt type or K salt type cross-linked polyacrylate fiber adopts the above-mentioned special structure, the area of the center portion of the hard elasticity is increased as much as possible especially in the cross-sectional shape, and moisture absorption is performed. Since the structure that reduces the area of the surface layer as much as possible is adopted, the bulkiness is quite high. Therefore, the Na salt type or K salt type cross-linked polyacrylate fiber can have a high bulkiness equivalent to or higher than that of conventionally used Mg salt type or Ca salt type.
  • the batting of the present invention contains a specific amount or more of the above-mentioned specially-structured Na salt type and / or K salt type cross-linked polyacrylate fiber together with the polyester fiber as described above. Moisture absorption in the range of 6.0 to 40% can easily be achieved within 5% under the RH environment. In particular, the batting of the present invention can realize the moisture absorption exothermic effect (high temperature rise) by the crosslinked polyacrylate fiber within the first 5 minutes when the human skin comes into contact.
  • the batting of the present invention contains a specific amount or more of the above-mentioned specially-structured Na salt type and / or K salt type cross-linked polyacrylate fiber together with the polyester fiber as described above, it is bulky.
  • a specific volume in the range of 50-100 cm 3 / g can be achieved as an index.
  • Such a high bulkiness is brought about by the high bulkiness of both the Na salt type or K salt type crosslinked polyacrylate fiber and polyester fiber having a special composite structure.
  • the specific volume is less than 50 cm 3 / g, heat retention may be insufficient because sufficient air is not taken in. If the specific volume is larger than 100 cm 3 / g, the shape may be easily lost by applying a small amount of force, and the shape retention may be insufficient.
  • the batting of the present invention contains a specific amount or more of the Na salt type and / or K salt type cross-linked polyacrylate fiber having the above-mentioned special structure together with the polyester fiber as described above.
  • the bed temperature measured at an early stage 5 minutes after the start of sweating after 10 minutes under conditions of 15 ° C. and 50% RH is 30 ° C. or higher (the upper limit is not limited, but in reality 36 ° C. or lower) )
  • the bed humidity can be set to 70% or less (the lower limit is not limited, but in reality it is 20% or more).
  • the method for producing the batting of the present invention is not particularly limited, and a conventionally known method for producing batting can be applied.
  • a method for producing batting it is possible to apply a method in which raw cotton is preliminarily defibrated and mixed with a defibrator and then processed into a web shape with a card machine.
  • a process of entanglement of fibers such as a needle punch or a water punch, and an interfiber bonding process using a heat sealing resin may be added.
  • the batting of the present invention that has been described above has a comfort of an early low-humidity warmth that has not been heretofore, because it has both moisture-absorbing exothermic properties that can be felt early and high bulkiness. For this reason, bedding products (comforters, mattresses, pillows, etc.) or outer garments for autumn / winter using the batting of the present invention quickly become warm by adsorbing moisture released from the human body and generating heat at a high temperature at an early stage, Further, it is possible to continuously feel the warmth by the heat retention due to the high bulkiness.
  • the sweating simulation device includes a heat-producing sweating mechanism comprising a substrate having a sweating hole and a heat-producing body, a water-feeding mechanism for supplying water to the sweating hole, a heat-producing control mechanism for controlling the temperature of the heat-producing body, and temperature and humidity.
  • the substrate is made of brass, has an area of 120 cm 2 , is provided with six sweat holes, and is controlled at a constant temperature by a heat-producing body composed of a planar heater.
  • the water supply mechanism uses a tube pump, and sends out a constant amount of water to the sweat holes of the substrate.
  • Simulated skin made of a polyester multifilament woven fabric having a thickness of 0.1 mm is affixed to the surface of the base, whereby water discharged from the perspiration holes is spread on the surface of the base and a sweating state is created.
  • An outer frame having a height of 0.5 cm is provided around the substrate, and the sample can be set at a position 0.5 cm away from the substrate.
  • the temperature / humidity sensor is installed in the space between the substrate and the sample (a futon with a padding), and measures the temperature and humidity of the “space surrounded by the substrate, the sample and the outer frame” when the substrate is sweating. .
  • the futon which put the batting was made using woven fabric of 100% polyester as a side fabric and quilting.
  • the sample fiber is placed in a dyeing bath containing 2.5% cationic dye (Nichilon Black G 200) and 2% acetic acid with respect to the fiber weight, and the bath ratio is 1:80. After being soaked and boiled for 30 minutes, it is washed with water, dehydrated and dried. The obtained dyed fiber is sliced thinly perpendicular to the fiber axis, and the fiber cross section is observed with an optical microscope. At this time, the central portion made of the acrylonitrile-based polymer is dyed black, and the surface layer portion having many carboxyl groups becomes green because the dye is not sufficiently fixed.
  • the fiber diameter (D1) and the diameter (D2) of the center dyed black with the part starting to change from green to black as the boundary are measured, and the surface layer area ratio is calculated by the following formula To do.
  • the average value of the surface layer part area ratio of 10 samples be the surface layer part area ratio of a sample fiber.
  • Surface portion area ratio (%) [ ⁇ (( D1) / 2) 2 ⁇ - ((D2) / 2) 2 ⁇ / ((D1) / 2) 2 ⁇ ] ⁇ 100
  • the raw fiber was subjected to crosslinking introduction treatment and hydrolysis treatment simultaneously in an aqueous solution containing 0.5% by weight of hydrazine hydrate and 1.4% by weight of sodium hydroxide at 100 ° C. for 2 hours to obtain 8% by weight nitric acid.
  • the solution was treated with an aqueous solution at 120 ° C. for 3 hours and washed with water.
  • the obtained fiber is immersed in water, adjusted to pH 9 by adding sodium hydroxide, washed with water, and dried to form a Na salt type crosslinked polyacrylate fiber having a Na salt type carboxyl group (surface layer area 13%) )
  • the details of the obtained cross-linked polyacrylate fiber are shown in Table 1.
  • Na salt type cross-linked polyacrylate fiber (single fiber fineness 5.0 dtex, fiber length 48 mm) and polyester fiber (polyethylene terephthalate fiber, single fiber fineness 7.8 dtex, fiber length 64 mm, single fiber elasticity obtained as described above.
  • a rate of 32 cN / dtex, product number 201-7.8Tx64 of Toray Industries, Inc. was defibrated and mixed to a weight ratio of 30/70 with a preliminary defibrator, and then a batting was made with a card machine. Table 1 shows the composition of the batting and the evaluation results.
  • Example 2 A batting was produced in the same manner as in Example 1 except that the weight ratio of the Na salt type crosslinked polyacrylate fiber and the polyester fiber was changed to 12/88. Table 1 shows the composition of the batting and the evaluation results.
  • Example 3 A batting was produced in the same manner as in Example 1 except that the weight ratio of the Na salt-type crosslinked polyacrylate fiber and the polyester fiber was changed to 20/80. Table 1 shows the composition of the batting and the evaluation results.
  • Example 4 A batting was produced in the same manner as in Example 1 except that the weight ratio of the Na salt-type crosslinked polyacrylate fiber and the polyester fiber was changed to 40/60. Table 1 shows the composition of the batting and the evaluation results.
  • Example 5 A batting was produced in the same manner as in Example 1 except that the weight ratio of the Na salt-type crosslinked polyacrylate fiber and the polyester fiber was changed to 50/50. Table 1 shows the composition of the batting and the evaluation results.
  • Example 6 A K salt type crosslinked polyacrylate fiber (surface area 13%) was obtained by the same method except that potassium hydroxide was used instead of sodium hydroxide added to adjust to pH 9 in Example 1.
  • a batting was produced in the same manner as in Example 1 using this K salt type cross-linked polyacrylate type fiber (single fiber fineness 5.0 dtex, fiber length 48 mm) instead of the Na salt type cross-linked polyacrylate type fiber. Table 1 shows the composition of the batting and the evaluation results.
  • Example 7 In the same manner as in Example 1 except that the concentration of sodium hydroxide used for the crosslinking introduction / hydrolysis treatment was changed from 1.4% by weight to 1.6% by weight, the Na salt-type crosslinked polyacrylate fiber (surface layer area 18 %) was obtained, and batting was made. Table 1 shows the composition of the batting and the evaluation results.
  • Example 8 In the same manner as in Example 1 except that the concentration of sodium hydroxide used for the cross-linking introduction / hydrolysis treatment was changed from 1.4% by weight to 1.2% by weight, Na salt-type cross-linked polyacrylate fiber (surface layer area 8) %) was obtained, and batting was made. Table 1 shows the composition of the batting and the evaluation results.
  • Example 9 A batting was prepared in the same manner as in Example 1 except that the composition of the acrylonitrile polymer Ap was changed to 92% by weight of acrylonitrile and 8% by weight of acrylic acid methyl ester. Table 1 shows the composition of the batting and the evaluation results.
  • Example 10 A batting was produced in the same manner except that the composite ratio (weight ratio) of Ap / Bp was changed from 50/50 to 40/60 in Example 1. Table 1 shows the composition of the batting and the evaluation results.
  • Example 11 Instead of using Na salt type crosslinked polyacrylate fiber and polyester fiber in a weight ratio of 40/60 in Example 4, the same Na salt type crosslinked polyacrylate fiber as in Example 4 and the same polyester fiber and acrylic as in Example 4 were used. Filling was made in the same manner except that fibers (single fiber fineness 4.8 dtex, fiber length 50 mm, single fiber elastic modulus 10 cN / dtex) were used at a weight ratio of 30/60/10. The composition and evaluation results of this batting are shown in Table 1.
  • Example 12 Instead of using Na salt type crosslinked polyacrylate fiber and polyester fiber in a weight ratio of 30/70 in Example 1, the same Na salt type crosslinked polyacrylate fiber as in Example 1 and the same K salt type crosslinked as in Example 6 Filling was made in the same manner except that the polyacrylate fiber and the same polyester fiber as in Example 1 were used in a weight ratio of 15/15/70. The composition and evaluation results of this batting are shown in Table 1.
  • Example 1 A batting was produced in the same manner as in Example 1 except that the weight ratio of the Na salt-type crosslinked polyacrylate fiber and the polyester fiber was changed to 5/95. The composition and evaluation results of this batting are shown in Table 1.
  • Example 2 In the same manner as in Example 1 except that the concentration of sodium hydroxide used for the cross-linking introduction / hydrolysis treatment was changed from 1.4% by weight to 1.8% by weight, Na salt-type cross-linked polyacrylate fiber (surface layer area 25) %) And batting. Table 1 shows the composition of the batting and the evaluation results.
  • the raw fiber was subjected to crosslinking introduction treatment and hydrolysis treatment simultaneously in an aqueous solution containing 0.5% by weight of hydrazine hydrate and 1.4% by weight of sodium hydroxide at 100 ° C. for 2 hours to obtain 8% by weight nitric acid.
  • the solution was treated with an aqueous solution at 120 ° C. for 3 hours and washed with water.
  • the obtained fiber is immersed in water, adjusted to pH 9 by adding sodium hydroxide, and then immersed in an aqueous solution in which magnesium nitrate corresponding to twice the amount of carboxyl groups contained in the fiber is dissolved at 50 ° C. for 1 hour.
  • Example 5 A batting was produced in the same manner as in Example 1 except that 100% by weight of the same polyester fiber as in Example 1 was used. The composition and evaluation results of this batting are shown in Table 1.
  • Example 6 A batting was produced in the same manner as in Example 1 except that 100% by weight of the same acrylic fiber as in Example 11 was used. The composition and evaluation results of this batting are shown in Table 1.
  • the batting of Examples 1 to 12 realizes a high bed temperature and a low bed humidity at an early stage because both high hygroscopicity and high bulkiness (specific volume) are compatible. Can be used very comfortably.
  • Comparative Example 1 with few Na salt-type crosslinked polyacrylate fibers is inferior in hygroscopicity
  • Comparative Example 2 with a large surface layer area of Na salt type crosslinked polyacrylate fibers is inferior in bulkiness
  • Mg salt type Comparative Examples 3 and 4 using a crosslinked polyacrylate fiber had a problem of poor hygroscopicity.
  • the comparative example 5 which uses only a polyester fiber has inferior hygroscopicity
  • the comparative example 6 which uses only an acrylic fiber had a problem in hygroscopicity and bulkiness.
  • the comparative examples having problems in either hygroscopicity and bulkiness cannot be said to be comfortable for humans because none of the comparative examples can create a good environment in the temperature and humidity in the bed.
  • the batting of the present invention has a high moisture absorption exothermic property that can be realized at an early stage and a high bulkiness that brings about heat retention, so that it can be comfortably used in bedding and clothing that touch human skin.

Abstract

The purpose of the present invention is to provide a batting, suitable for bedding or clothing, that, with regard to moisture absorbance and heat generation, has a high rate of initial temperature rise, has a high level of loft, and allows a human body to quickly sense a comfortable, warm environment. Provided is a batting containing 40-90% by weight of a polyester fiber and 10-60% by weight of a cross-linked polyacrylate-based fiber of the sodium salt type and/or the potassium salt type, wherein the batting is characterized in that: the cross-linked polyacrylate-based fiber of the sodium salt type and/or the potassium salt type is a composite fiber comprising a surface layer section with a cross-linked structure and sodium salt and/or potassium salt carboxyl groups and a central section with a side-by-side structure comprising acrylonitrile-based polymers of two types with different acrylonitrile content ratios; and the area of a cross-sectional surface of the composite fiber accounted for by the surface layer section is at least 5% and less than 20%.

Description

中綿Batting
 本発明は、低湿度の暖かい空気をもたらす吸湿発熱性と、保温性をもたらす嵩高性を高いレベルで併せ持ち、暖かい環境を早期に実感することができる、寝装品や衣料品などに好適な中綿に関する。 The present invention relates to a batting suitable for bedding and clothing, which has a high level of moisture absorption exothermicity that brings about warm air with low humidity and bulkiness that brings about heat retention, and can realize a warm environment at an early stage.
 中綿は、一般に肌と接触される布団や座布団や衣料品などの中に封入されて使用される。例えば布団では、快適な温度と湿度の寝床内気候が得られることが重要であり、そのためには持続的な保温性と吸湿発熱性が得られることが好ましい。従来の中綿としては、ポリエステル等の汎用繊維を使用したものや架橋アクリル系吸放湿性繊維を使用したもの(特許文献1参照)などが多数提案されている。 中 Filling is generally used in a futon, cushion or clothing that comes in contact with the skin. For example, in a futon, it is important to obtain a comfortable bed temperature of a comfortable temperature and humidity. For this purpose, it is preferable to obtain sustained heat retention and moisture absorption heat generation. As conventional batting, many things using general-purpose fibers, such as polyester, and those using cross-linked acrylic moisture-absorbing and releasing fibers (see Patent Document 1) have been proposed.
 しかし、ポリエステル等の汎用繊維を使用した中綿は、嵩高性については十分高く、空気を多く含むことで高い保温性を維持できるが、この取り込んだ空気中の湿気を吸着して快適な空気に変換することができない問題があった。また、従来のNa塩型の架橋アクリル系吸放湿性繊維を使用した中綿は、中綿に含んだ空気から湿気を吸着し発熱することで人体にとって快適な空気に変化させることは可能であるが、嵩高性が低いために保温性の効果の持続性に問題があった。 However, batting using general-purpose fibers such as polyester is sufficiently high in bulkiness and can maintain high heat retention by containing a lot of air, but it absorbs the moisture in the captured air and converts it to comfortable air There was a problem that could not be done. In addition, the batting using the conventional Na salt type cross-linked acrylic moisture-absorbing / releasing fiber can be changed to air comfortable for the human body by absorbing moisture from the air contained in the batting and generating heat, Due to the low bulkiness, there was a problem with the sustainability of the heat retention effect.
 かかる問題に対して、出願人は、ポリエステル繊維を含有する中綿においてMg塩型および/またはCa塩型の架橋ポリアクリレート系繊維をさらに含有する中綿を提案した(特許文献2参照)。この中綿は、吸湿発熱性と嵩高性を高いレベルで併せ持ち、寝装品や衣料品などに快適に使用することができる。 In response to such a problem, the applicant has proposed a batting that further contains Mg salt type and / or Ca salt type cross-linked polyacrylate fibers in the batting containing polyester fibers (see Patent Document 2). This batting has moisture absorption exothermic property and bulkiness at a high level, and can be comfortably used for bedding and clothing.
 しかし、Mg塩型および/またはCa塩型の架橋ポリアクリレート系繊維は、吸湿発熱性に関して短時間で高い温度に上昇しないため使用者が暖かさをすぐに実感できないという問題があり、中綿の使用材料に関してさらなる改善の余地があった。 However, Mg salt type and / or Ca salt type cross-linked polyacrylate fibers have a problem that the user cannot immediately feel the warmth because the moisture absorption exothermic property does not rise to a high temperature in a short time. There was room for further improvements in materials.
特開平10-313995号公報Japanese Patent Laid-Open No. 10-313995 特許第5242861号公報Japanese Patent No. 5242661
 本発明は、かかる特許文献2を含む従来技術の問題を解消するために創案されたものであり、吸湿発熱性に関して初期の温度の立ち上がりの速さを有し、しかも高いレベルの嵩高性を有する、人体に対して快適な暖かい環境を早期に実感することができる、寝装品や衣料品に好適な中綿を提供することを目的とする。 The present invention was devised in order to solve the problems of the prior art including Patent Document 2, and has an initial temperature rising speed with respect to moisture exothermicity, and also has a high level of bulkiness. An object of the present invention is to provide a batting suitable for bedding and clothing, which can realize a warm environment comfortable to the human body at an early stage.
 本発明者は、上記の目的を達成するために特許文献2のMg塩型およびCa塩型の架橋ポリアクリレート系繊維の持つ嵩高性を維持しながら吸湿発熱性による初期の上昇温度をさらに高くするための手段について鋭意検討した結果、架橋ポリアクリレート系繊維としてNa塩型またはK塩型を採用して吸湿発熱性による初期の上昇温度を高めるとともに、Na塩型またはK塩型の欠点である嵩高性の低さを特定の複合構造を採用して補うことにより、嵩高性を犠牲にせずに吸湿発熱性による初期の高い上昇温度に基づく暖かさを早期に実感できることを見出し、本発明の完成に至った。 In order to achieve the above object, the present inventor further increases the initial temperature rise due to hygroscopic heat generation while maintaining the bulkiness of the Mg salt-type and Ca salt-type crosslinked polyacrylate fibers of Patent Document 2. As a result of intensive studies on the means for achieving this, Na salt type or K salt type is adopted as the cross-linked polyacrylate fiber to increase the initial temperature rise due to hygroscopic heat generation, and the bulkiness which is a drawback of Na salt type or K salt type By using a specific composite structure to compensate for the low nature, it was found that warmth based on the initial high temperature rise due to hygroscopic exotherm can be realized at an early stage without sacrificing bulkiness, and the completion of the present invention It came.
 なお、ISO18782:2015の測定方法及び条件に準拠して測定したNa塩型またはMg塩型の架橋ポリアクリレート系繊維100%の中綿の経過時間ごとの温度の推移を示すグラフを図1に示す。図1からわかるように、架橋ポリアクリレート系繊維100%の中綿では、Na塩型がMg塩型より吸湿発熱性に基づく初期の立ち上がり温度に関して優れていることがわかる。 In addition, the graph which shows transition of the temperature for every elapsed time of 100% filling of Na salt type or Mg salt type cross-linked polyacrylate fiber measured according to the measurement method and conditions of ISO18782: 2015 is shown in FIG. As can be seen from FIG. 1, with 100% cross-linked polyacrylate fiber, the Na salt type is superior to the Mg salt type in terms of initial rise temperature based on hygroscopic heat generation.
 即ち、本発明は、上記の知見に基づいて完成したものであり、以下の(1)~(4)の構成を有するものである。
(1)ポリエステル繊維を40~90重量%含有し、かつNa塩型および/またはK塩型の架橋ポリアクリレート系繊維を10~60重量%含有する中綿であって、Na塩型および/またはK塩型の架橋ポリアクリレート系繊維が、架橋構造およびNa塩型および/またはK塩型のカルボキシル基を有する表層部と、アクリロニトリル含有率が異なる二種類のアクリロニトリル系重合体からなるサイドバイサイド型構造の中心部とからなる複合繊維であり、複合繊維の横断面における表層部の占める面積が5%以上20%未満であることを特徴とする中綿。
(2)架橋ポリアクリレート系繊維がNa塩型であることを特徴とする(1)に記載の中綿。
(3)15℃、50%RHの条件下で10分後に発汗を開始して5分後に測定した寝床内温度が30℃以上であり、かつ寝床内湿度が70%以下であることを特徴とする(1)または(2)に記載の中綿。
(4)比容積が50~100cm/gであることを特徴とする(1)~(3)のいずれかに記載の中綿。
That is, the present invention has been completed based on the above findings and has the following configurations (1) to (4).
(1) A batting containing 40 to 90% by weight of polyester fiber and 10 to 60% by weight of Na salt type and / or K salt type cross-linked polyacrylate fiber, wherein Na salt type and / or K The center of the side-by-side structure in which the salt-type cross-linked polyacrylate fiber is composed of a cross-linked structure and a surface layer portion having a Na salt type and / or K salt type carboxyl group, and two types of acrylonitrile-based polymers having different acrylonitrile contents. A batting characterized in that the area occupied by the surface layer portion in the cross section of the composite fiber is 5% or more and less than 20%.
(2) The batting according to (1), wherein the crosslinked polyacrylate fiber is a Na salt type.
(3) The bed temperature measured after 5 minutes after starting sweating 10 minutes under conditions of 15 ° C. and 50% RH is 30 ° C. or more, and the bed humidity is 70% or less. The batting described in (1) or (2).
(4) The batting according to any one of (1) to (3), wherein the specific volume is 50 to 100 cm 3 / g.
 本発明の中綿は、従来のポリエステル等の汎用繊維あるいはMg塩型およびCa塩型等の架橋ポリアクリレート系繊維を使用した中綿では達成できなかった、吸湿発熱性による初期の高い上昇温度と嵩高性を高レベルで両立するという効果を有する。かかる効果は、ポリエステル繊維が持つ嵩高性だけでなく、Na塩型またはK塩型の架橋ポリアクリレート系繊維の特定の複合構造が持つ高い嵩高性と早期に高い上昇温度を示す吸湿発熱性からもたらされるものである。本発明の中綿は、その高い嵩高性により取り込んでいる大量の湿った空気を、迅速な吸湿発熱性によりすぐに低湿度の暖かい空気に変化させることが可能であるため、寝装品の中綿、秋冬アウトドア衣料の中綿として使用されると装着者は極めて速い段階で暖かさと保温性を実感することができる。 The batting of the present invention can not be achieved with conventional batting using general-purpose fibers such as polyester or cross-linked polyacrylate fibers such as Mg salt type and Ca salt type. Has the effect of achieving both at a high level. Such an effect is brought about not only by the bulkiness of the polyester fiber, but also by the high bulkiness of the specific composite structure of the Na salt type or K salt type cross-linked polyacrylate fiber and the hygroscopic exothermic property that exhibits a high temperature at an early stage. It is what The batting of the present invention can quickly change a large amount of moist air taken in due to its high bulkiness to warm air with low humidity due to quick moisture absorption and heat generation, so that the bedding batting, autumn / winter outdoor When used as a cotton pad for clothing, the wearer can feel warmth and heat retention at an extremely fast stage.
ISO18782:2015の測定方法及び条件に準拠して測定したNa塩型またはMg塩型の架橋ポリアクリレート系繊維100%の中綿の経過時間ごとの温度の推移を示すグラフである。It is a graph which shows transition of the temperature for every elapsed time of 100% filling of Na salt type or Mg salt type cross-linked polyacrylate fiber measured according to the measurement method and conditions of ISO18782: 2015.
 以下に本発明の中綿を詳細に説明する。 Hereinafter, the batting of the present invention will be described in detail.
 本発明の中綿は、ポリエステル繊維と、特定の複合構造のNa塩型および/またはK塩型の架橋ポリアクリレート系繊維をそれぞれ特定の割合で含有することにより、湿った空気を早期に低湿度の暖かい空気に変換する吸湿発熱性と、持続的な保温性をもたらす嵩高性を高いレベルで両立したことを特徴とする。 The batting of the present invention contains moist air at a low humidity at an early stage by containing polyester fiber and a specific composite structure of Na salt type and / or K salt type cross-linked polyacrylate fiber in a specific ratio. It is characterized by a high level of moisture absorption exothermicity that converts to warm air and bulkiness that provides sustained heat retention.
 本発明において使用するポリエステル繊維としては、通常綿用として使用されているポリエステル系ポリマーを使用することができるが、ポリエチレンテレフタレート繊維が好ましい。形態としては、特別な加工をしていないレギュラー品、コンジュ品、中空品、コンジュ中空品などが挙げられるが、吸湿性を有する架橋ポリアクリレート系繊維を含有させた中綿として高い嵩高性を得るためには特別な加工をしていないレギュラー品が好ましい。 As the polyester fiber used in the present invention, a polyester polymer usually used for cotton can be used, but polyethylene terephthalate fiber is preferable. Examples of the form include regular products that are not specially processed, conjugate products, hollow products, conjugate hollow products, etc., in order to obtain high bulkiness as a batting containing a crosslinked polyacrylate fiber having hygroscopicity. Regular products that are not specially processed are preferred.
 中綿の高い嵩高性を得るためには、ポリエステル繊維は、単繊維繊度が5~18dtexであることが好ましく、さらに好ましくは5~14dtexである。また、繊維長は、40~100mmであることが好ましく、さらに好ましくは50~80mmである。ポリエステル繊維の単繊維弾性率は、中綿の高い嵩高性のためには28cN/dtex以上が好ましく、30cN/dtex以上がより好ましい。ポリエステル繊維の単繊維弾性率の上限は限定されないが、現実的には100cN/dtex程度である。単繊維弾性率の高いポリエステル繊維は、例えばポリエチレンテレフタレートやポリエチレンナフタレートを用いることよって得ることができる。 In order to obtain high bulkiness of the batting, the polyester fiber preferably has a single fiber fineness of 5 to 18 dtex, more preferably 5 to 14 dtex. The fiber length is preferably 40 to 100 mm, and more preferably 50 to 80 mm. The single fiber elastic modulus of the polyester fiber is preferably 28 cN / dtex or more, and more preferably 30 cN / dtex or more for high bulkiness of the batting. The upper limit of the single fiber elastic modulus of the polyester fiber is not limited, but is practically about 100 cN / dtex. A polyester fiber having a high single fiber elastic modulus can be obtained by using, for example, polyethylene terephthalate or polyethylene naphthalate.
 本発明の中綿におけるポリエステル繊維の含有率は、40~90重量%、好ましくは45~85重量%、より好ましくは50~80重量%である。ポリエステル繊維が上記範囲より少ないと、高い嵩高性を達成しにくくなり、中綿中に空気を多く含むことができず、高い保温性を維持できないおそれがある。また、ポリエステル繊維が上記範囲より多いと、架橋ポリアクリレート系繊維の含有率が低下するため、架橋ポリアクリレート系繊維の吸湿発熱性の効果を十分に享受できず、低湿度で保温性を維持できないおそれがある。本発明の中綿では、中綿全体の嵩高性に影響を与えない限り、ポリエステル繊維以外の汎用繊維(アクリル、綿などの繊維)も使用することができる。 The polyester fiber content in the batting of the present invention is 40 to 90% by weight, preferably 45 to 85% by weight, more preferably 50 to 80% by weight. When there are few polyester fibers than the said range, it will become difficult to achieve high bulkiness, and there is a possibility that a lot of air cannot be included in batting, and high heat retention cannot be maintained. Further, when the polyester fiber is more than the above range, the content of the crosslinked polyacrylate fiber decreases, so that the moisture absorption exothermic effect of the crosslinked polyacrylate fiber cannot be fully enjoyed, and the heat retention cannot be maintained at low humidity. There is a fear. In the batting of the present invention, general-purpose fibers (fibers such as acrylic and cotton) other than polyester fibers can be used as long as the bulkiness of the entire batting is not affected.
 本発明において使用する架橋ポリアクリレート系繊維は、一価金属のNa塩型および/またはK塩型であることが必要である。Na塩型、K塩型をそれぞれ単独使用してもよいし、両方の型を併用してもよい。Mg塩型またはCa塩型の二価金属塩型は、高い吸湿発熱性を持ちながら、嵩高性も適度に高いが、吸湿発熱時の初期の上昇温度が低いため、早期に暖かさや保温性を実感することを希望する場合には問題がある。また、Zn塩型等の他の二価金属塩型では、そもそも吸湿発熱性に劣り、快適な環境が得られないため、好ましくない。Na塩型またはK塩型の一価の金属塩型は、吸湿発熱時の初期の上昇温度が高いため、早期に暖かさを実感することができる。但し、Na塩型またはK塩型は、通常の繊維形態では、嵩高性が不足し、保温性が持続できないため、本発明では後述するような特殊な複合構造をとる。 The cross-linked polyacrylate fiber used in the present invention needs to be a monovalent metal Na salt type and / or K salt type. Each of the Na salt type and the K salt type may be used alone, or both types may be used in combination. Mg salt type or Ca salt type divalent metal salt type has high moisture absorption exothermic property and moderately high bulkiness, but since the initial rise temperature during moisture absorption exotherm is low, warmth and heat retention can be achieved early. There is a problem if you want to feel it. In addition, other divalent metal salt types such as a Zn salt type are not preferable because they are inferior in hygroscopic heat generation and a comfortable environment cannot be obtained. The monovalent metal salt type of the Na salt type or the K salt type has a high initial temperature rise during the hygroscopic heat generation, and thus can feel warmth at an early stage. However, the Na salt type or the K salt type has a special composite structure as described later in the present invention because the bulkiness is insufficient in the normal fiber form and the heat retention cannot be maintained.
 本発明において使用するNa塩型および/またはK塩型の架橋ポリアクリレート系繊維は、架橋構造およびNa塩型および/またはK塩型のカルボキシル基を有する表層部と、アクリロニトリル含有率が異なる二種類のアクリロニトリル系重合体からなるサイドバイサイド型構造の中心部とからなる複合繊維であり、複合繊維の横断面における表層部の占める面積が5%以上20%未満であることが必要である。本発明の架橋ポリアクリレート系繊維では、中心部とその周囲の表層部からなる複合構造を有しており、中心部で硬い弾力性のある構造を作ることにより嵩高性の向上に寄与させ、表層部で架橋構造およびNa塩型および/またはK塩型のカルボキシル基を存在させることにより高い吸湿発熱性の役割を担うようにしていることが特徴である。本発明では、架橋ポリアクリレート系繊維の横断面における表層部の占める面積を20%未満と極力少なくしているため、高い吸湿発熱性を実現できないように思われるが、後述するような方法で少ない表層部でもカルボキシル基量を増加しているため、高い吸湿発熱性を発現することができる。但し、表層部の占める面積が5%未満では、十分に高い吸湿発熱性を発揮できないため、好ましくない。本発明の架橋ポリアクリレート系繊維は、全カルボキシル基量に関して3.5mmol/g以上有することができ、最大10mmol/g程度まで可能である。また、後述の実施例で規定した吸湿率に関して、20%以上、さらには30%以上を達成することができ、最大70%程度まで可能である。 The Na salt type and / or K salt type cross-linked polyacrylate fiber used in the present invention has two types of cross-linking structure and a surface layer portion having a Na salt type and / or K salt type carboxyl group, and different acrylonitrile contents. It is a composite fiber composed of a central part of a side-by-side structure composed of an acrylonitrile-based polymer, and the area occupied by the surface layer part in the cross section of the composite fiber needs to be 5% or more and less than 20%. The cross-linked polyacrylate fiber of the present invention has a composite structure consisting of a central portion and a surface layer portion around the center portion, and contributes to an improvement in bulkiness by creating a hard and elastic structure in the central portion. It is characterized by having a role of high moisture absorption exothermicity by having a cross-linked structure and a Na salt type and / or K salt type carboxyl group in the part. In the present invention, since the area occupied by the surface layer portion in the cross section of the cross-linked polyacrylate fiber is as small as less than 20%, it seems that high moisture absorption exothermic property cannot be realized, but it is less by the method described later. Since the amount of carboxyl groups is also increased in the surface layer portion, high moisture absorption exothermic properties can be expressed. However, if the area occupied by the surface layer portion is less than 5%, a sufficiently high hygroscopic exothermic property cannot be exhibited. The crosslinked polyacrylate fiber of the present invention can have 3.5 mmol / g or more with respect to the total amount of carboxyl groups, and can be up to about 10 mmol / g. Moreover, regarding the moisture absorption rate prescribed | regulated by the below-mentioned Example, 20% or more, Furthermore, 30% or more can be achieved and it is possible to about 70% at the maximum.
 本発明の架橋ポリアクリレート系繊維は、原料繊維としてアクリロニトリル系繊維を使用し、アクリロニトリル系繊維は、アクリロニトリル系重合体から公知の方法で製造されることができる。アクリロニトリル系重合体は、アクリロニトリルが50重量%以上であることが好ましく、より好ましくは80重量%以上である。架橋構造は、アクリロニトリル系重合体のニトリル基とヒドラジン系化合物等の窒素含有化合物を反応させることによって繊維中に導入されることができる。 The crosslinked polyacrylate fiber of the present invention uses an acrylonitrile fiber as a raw fiber, and the acrylonitrile fiber can be produced from an acrylonitrile polymer by a known method. The acrylonitrile polymer preferably has an acrylonitrile content of 50% by weight or more, more preferably 80% by weight or more. The crosslinked structure can be introduced into the fiber by reacting the nitrile group of the acrylonitrile polymer with a nitrogen-containing compound such as a hydrazine compound.
 本発明の架橋ポリアクリレート系繊維は、アクリロニトリル含有率が異なる2種のアクリロニトリル系重合体をサイドバイサイドで接合した複合構造を有する。このようにアクリロニトリル含有率に差を持たせることによって各重合体の領域に架橋構造の導入量の差をもたらすことができ、それにより加水分解処理時に収縮時による捲縮を発現させることができ、結果として嵩高性の向上に寄与することができる。なお、嵩高性を十分に向上させるためには、2種のアクリロニトリル系重合体間のアクリロニトリル含有率の差は1~5重量%であることが好ましく、2種のアクリロニトリル系重合体の複合比率は30/70~70/30(重量比)であることが好ましい。 The crosslinked polyacrylate fiber of the present invention has a composite structure in which two acrylonitrile polymers having different acrylonitrile contents are joined side by side. By giving a difference in the acrylonitrile content in this way, it is possible to bring about a difference in the amount of cross-linked structure introduced into each polymer region, thereby allowing crimps due to shrinkage to be expressed during the hydrolysis treatment, As a result, it can contribute to the improvement of bulkiness. In order to sufficiently improve the bulkiness, the difference in acrylonitrile content between the two acrylonitrile polymers is preferably 1 to 5% by weight, and the composite ratio of the two acrylonitrile polymers is It is preferably 30/70 to 70/30 (weight ratio).
 上記のような複合構造の繊維に対して表層部に架橋構造が導入される。架橋構造の導入には、窒素含有化合物等の架橋剤が使用されることが好ましい。窒素含有化合物としては、2個以上の1級アミノ基を有するアミノ化合物やヒドラジン系化合物を使用することが好ましい。架橋構造が導入された後は、アルカリ金属化合物による加水分解処理が施され、表層部のニトリル基がカルボキシル基に変換される。このカルボキシル基にはNa塩型またはK塩型の塩型カルボキシル基とH型カルボキシル基があり、塩型カルボキシル基を多くすることが好ましい。実際には、アクリロニトリル含有率が異なる二種のアクリロニトリル系重合体をサイドバイサイド構造で接合した繊維に対して架橋構造導入・加水分解を施してカルボキシル基を形成し、カウンターイオンにNaおよび/またはKを選択して所望の架橋ポリアクリレート系繊維を得る。但し、本発明では、加水分解処理は、従来より低濃度のアルカリ金属化合物の緩い条件で行い、その後の酸処理を従来より高温での厳しい条件で行なう。このようにすることにより、本発明の架橋ポリアクリレート系繊維は、狭い表層部に従来より多くのカルボキシル基が存在し、中心部にアクリロニトリル系重合体が温存された構造をとることができる。 A cross-linked structure is introduced into the surface layer of the fiber having a composite structure as described above. For the introduction of the crosslinked structure, it is preferable to use a crosslinking agent such as a nitrogen-containing compound. As the nitrogen-containing compound, it is preferable to use an amino compound or a hydrazine compound having two or more primary amino groups. After the cross-linked structure is introduced, a hydrolysis treatment with an alkali metal compound is performed to convert the nitrile group in the surface layer portion into a carboxyl group. These carboxyl groups include Na salt type or K salt type salt type carboxyl groups and H type carboxyl groups, and it is preferable to increase the number of salt type carboxyl groups. In practice, two types of acrylonitrile polymers with different acrylonitrile contents are joined with a side-by-side structure to introduce a cross-linked structure and hydrolyze to form carboxyl groups, and Na and / or K are added to the counter ions. Select to obtain the desired cross-linked polyacrylate fiber. However, in the present invention, the hydrolysis treatment is performed under a milder condition of an alkali metal compound having a lower concentration than before, and the subsequent acid treatment is performed under severer conditions at a higher temperature than in the past. By doing so, the crosslinked polyacrylate fiber of the present invention can have a structure in which more carboxyl groups are present in the narrow surface layer than in the past and the acrylonitrile polymer is preserved in the center.
 本発明の架橋ポリアクリレート系繊維は、横断面における表層部の占める面積が5%以上20%未満、好ましくは10%以上20%未満である。表層部の面積は、後述の実施例に記載の方法で測定される。本発明の繊維の表層部の占める面積は極めて少なく、カルボキシル基がほとんど存在しない中心部の面積が多くを占めるため、吸湿による繊維のへたりやNa塩型やK塩型を採用したことによる嵩高性の低下の影響がなく、高い嵩高性を達成することができる。また、Na塩型またはK塩型の架橋ポリアクリレート系繊維は、図1に示すようにMg塩型等の二価の金属塩と比べて高い吸湿発熱性(特に初期の上昇温度)の特徴を有しており、本発明では、その特徴をそのまま享受することができる。 In the cross-linked polyacrylate fiber of the present invention, the area occupied by the surface layer in the cross section is 5% or more and less than 20%, preferably 10% or more and less than 20%. The area of the surface layer part is measured by the method described in Examples described later. The area occupied by the surface layer portion of the fiber of the present invention is very small, and the area of the central portion where almost no carboxyl group is present occupies a large area. Therefore, the bulk of the fiber due to moisture absorption and the adoption of Na salt type or K salt type High bulkiness can be achieved without the effect of lowering the properties. In addition, as shown in FIG. 1, the Na salt-type or K-salt type cross-linked polyacrylate fiber has a high moisture absorption exothermic property (particularly, an initial rise temperature) as compared with a divalent metal salt such as an Mg salt type. In the present invention, the features can be enjoyed as they are.
 本発明の中綿におけるNa塩型またはK塩型の架橋ポリアクリレート系繊維の含有率は、10~60重量%、好ましくは15~55重量%、より好ましくは20~50重量%である。含有率が上記範囲未満では、吸湿発熱性が十分に発揮されず、取り込んだ湿った空気を低湿度の暖かい空気に十分に変化させることができない。上記範囲を超えると、高価な架橋ポリアクリレート系繊維を多く使って経済的に不利な割に効果の向上が認められなくなる。Na塩型またはK塩型の架橋ポリアクリレート系繊維は、単繊維繊度が5~20dtexが好ましく、さらに好ましくは5~15dtexである。また、繊維長は、20~100mmであることが好ましく、さらに好ましくは30~80mmである。Na塩型またはK塩型の架橋ポリアクリレート系繊維は、上述の特殊な構造を採用しているので、特にその横断面形状において硬い弾力性の中心部の面積を極力増加し、吸湿してへたる表層部の面積を極力減少する構造を採用しているので、嵩高性はかなり高い。従って、Na塩型またはK塩型の架橋ポリアクリレート系繊維は、従来使用されているMg塩型またはCa塩型と同等以上の高い嵩高性を持つことができる。 The content of the Na salt type or K salt type cross-linked polyacrylate fiber in the batting of the present invention is 10 to 60% by weight, preferably 15 to 55% by weight, more preferably 20 to 50% by weight. When the content is less than the above range, the hygroscopic exothermic property is not sufficiently exhibited, and the captured moist air cannot be sufficiently changed to warm air with low humidity. When the above range is exceeded, the use of a large amount of expensive cross-linked polyacrylate-based fibers makes it impossible to improve the effect, which is economically disadvantageous. The Na salt type or K salt type cross-linked polyacrylate fiber preferably has a single fiber fineness of 5 to 20 dtex, more preferably 5 to 15 dtex. The fiber length is preferably 20 to 100 mm, more preferably 30 to 80 mm. Since the Na salt type or K salt type cross-linked polyacrylate fiber adopts the above-mentioned special structure, the area of the center portion of the hard elasticity is increased as much as possible especially in the cross-sectional shape, and moisture absorption is performed. Since the structure that reduces the area of the surface layer as much as possible is adopted, the bulkiness is quite high. Therefore, the Na salt type or K salt type cross-linked polyacrylate fiber can have a high bulkiness equivalent to or higher than that of conventionally used Mg salt type or Ca salt type.
 本発明の中綿は、上記のようにポリエステル繊維とともに、上述の特殊な構造のNa塩型および/またはK塩型の架橋ポリアクリレート系繊維を特定量以上含有しているので、20℃×65%RHの環境下で5%以内に6.0~40%の範囲の吸湿率を容易に達成することができる。特に、本発明の中綿は、人間の肌が接触したときの最初の5分以内に架橋ポリアクリレート系繊維による吸湿発熱効果(高い上昇温度)を実感することができる。 The batting of the present invention contains a specific amount or more of the above-mentioned specially-structured Na salt type and / or K salt type cross-linked polyacrylate fiber together with the polyester fiber as described above. Moisture absorption in the range of 6.0 to 40% can easily be achieved within 5% under the RH environment. In particular, the batting of the present invention can realize the moisture absorption exothermic effect (high temperature rise) by the crosslinked polyacrylate fiber within the first 5 minutes when the human skin comes into contact.
 また、本発明の中綿は、上記のようにポリエステル繊維とともに、上述の特殊な構造のNa塩型および/またはK塩型の架橋ポリアクリレート系繊維を特定量以上含有しているので、嵩高性の指標として50~100cm/gの範囲の比容積を達成することができる。このような高い嵩高性は、特殊な複合構造のNa塩型またはK塩型の架橋ポリアクリレート系繊維とポリエステル繊維の両者が持つ高い嵩高性によってもたらされる。比容積が50cm/g未満の場合、十分な空気を取り込んでいないために保温性が不十分となるおそれがある。比容積が100cm/gより大きい場合、少しの力を加えただけで簡単に型崩れを起こしてしまい、保形性が不足するおそれがある。 Moreover, since the batting of the present invention contains a specific amount or more of the above-mentioned specially-structured Na salt type and / or K salt type cross-linked polyacrylate fiber together with the polyester fiber as described above, it is bulky. A specific volume in the range of 50-100 cm 3 / g can be achieved as an index. Such a high bulkiness is brought about by the high bulkiness of both the Na salt type or K salt type crosslinked polyacrylate fiber and polyester fiber having a special composite structure. When the specific volume is less than 50 cm 3 / g, heat retention may be insufficient because sufficient air is not taken in. If the specific volume is larger than 100 cm 3 / g, the shape may be easily lost by applying a small amount of force, and the shape retention may be insufficient.
 さらに、本発明の中綿は、上記のようにポリエステル繊維とともに、上述の特殊な構造のNa塩型および/またはK塩型の架橋ポリアクリレート系繊維を特定量以上含有しているので、実施例の測定方法に従って15℃、50%RHの条件下で10分後に発汗を開始してから5分後の早期に測定した寝床内温度を30℃以上(上限は限定されないが現実的には36℃以下)にし、かつ寝床内湿度を70%以下(下限は限定されないが現実的には20%以上)にすることができる。これは、特殊な複合構造のNa塩型またはK塩型の架橋ポリアクリレート系繊維が持つ高い吸湿性と嵩高性、およびポリエステル繊維が持つ高い嵩高性によってもたらされる。寝床内温度および湿度がこの範囲にある場合、人間の肌が接触したときに低湿度の快適な暖かさを実感することができる。 Further, the batting of the present invention contains a specific amount or more of the Na salt type and / or K salt type cross-linked polyacrylate fiber having the above-mentioned special structure together with the polyester fiber as described above. According to the measurement method, the bed temperature measured at an early stage 5 minutes after the start of sweating after 10 minutes under conditions of 15 ° C. and 50% RH is 30 ° C. or higher (the upper limit is not limited, but in reality 36 ° C. or lower) ) And the bed humidity can be set to 70% or less (the lower limit is not limited, but in reality it is 20% or more). This is brought about by the high hygroscopicity and bulkiness of the special composite structure Na salt type or K salt type cross-linked polyacrylate fiber, and the high bulkiness of the polyester fiber. When the temperature and humidity in the bed are in this range, a comfortable warmth with low humidity can be realized when human skin comes into contact.
 本発明の中綿の製造方法は、特に限定されるものではなく、従来公知の一般的な中綿の製造法を適用することができる。例えば、原料綿を解繊機で予備解繊・混合した後、カード機にてウェブ状に加工する方法を適用することができる。また、形態安定性を付与する目的でニードルパンチあるいはウォーターパンチ等の繊維を絡める工程、熱融着樹脂を使用した繊維間接着工程を追加してもよい。 The method for producing the batting of the present invention is not particularly limited, and a conventionally known method for producing batting can be applied. For example, it is possible to apply a method in which raw cotton is preliminarily defibrated and mixed with a defibrator and then processed into a web shape with a card machine. In addition, for the purpose of imparting form stability, a process of entanglement of fibers such as a needle punch or a water punch, and an interfiber bonding process using a heat sealing resin may be added.
 以上説明してきた本発明の中綿は、早期に実感できる吸湿発熱性と高い嵩高性を併せ持つために従来にない早期の低湿度の暖かさという快適性を有している。このため、本発明の中綿を使用した寝装品(掛け布団、敷き布団、枕など)あるいは秋冬用アウター衣料は、人体から放出される水分を吸着して早期に高い温度で発熱することですぐに暖かくなり、またこの暖かさを高い嵩高性による保温性により持続して実感することが可能である。 The batting of the present invention that has been described above has a comfort of an early low-humidity warmth that has not been heretofore, because it has both moisture-absorbing exothermic properties that can be felt early and high bulkiness. For this reason, bedding products (comforters, mattresses, pillows, etc.) or outer garments for autumn / winter using the batting of the present invention quickly become warm by adsorbing moisture released from the human body and generating heat at a high temperature at an early stage, Further, it is possible to continuously feel the warmth by the heat retention due to the high bulkiness.
 以下の実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例中の比率は断りのない限り重量基準で示す。実施例中の特性の評価方法は以下の通りである。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited thereto. In addition, the ratio in an Example is shown on a weight basis unless there is a notice. The evaluation method of characteristics in the examples is as follows.
(1)吸湿率
 試料約2.5gを熱風乾燥機で105℃、16時間乾燥して重量を測定する(W1[g])。次に該試料を20℃×65%RHに調整した恒温恒湿器に5分間入れておく。このようにして吸湿させた試料の重量を測定する(W2[g])。これらの測定結果から、吸湿率を次式によって算出した。
 吸湿率[%]={(W2-W1)/W1}×100
(1) Moisture absorption About 2.5 g of the sample is dried with a hot air dryer at 105 ° C. for 16 hours and the weight is measured (W1 [g]). Next, the sample is placed in a thermo-hygrostat adjusted to 20 ° C. × 65% RH for 5 minutes. The weight of the sample thus absorbed is measured (W2 [g]). From these measurement results, the moisture absorption rate was calculated by the following equation.
Moisture absorption [%] = {(W2-W1) / W1} × 100
(2)比容積
 試料50gを軽く開繊してから、カード機で開繊し、積層する。試験片を10cm×10cmの大きさになるように6個切り出し、バットに入れて恒温恒湿機内に24hr以上放置する。恒温恒湿機から取出し、質量が10.0g~10.5gになるように積み重ね、作られた試験片を正確に秤量する。試験片に10cm×10cmのアクリル板を載せ、おもり500gを30秒間載せ、次にこのおもりを除き、30秒間放置する。この操作を3回繰り返し、おもり500gを除いて30秒間放置した後、四すみの高さを測定して平均値を求め、次式により比容積を算出する。
 比容積(cm/g)=10×10×試料の四すみの高さの測定平均値(mm)/10/試験片の質量(g)
(2) Specific volume After lightly opening 50 g of the sample, it is opened and stacked by a card machine. Six test specimens are cut out so as to have a size of 10 cm × 10 cm, put into a bat and left in a thermo-hygrostat for 24 hours or more. Take out from the thermo-hygrostat, stack it so that the mass is 10.0g to 10.5g, and accurately weigh the test piece made. A 10 cm × 10 cm acrylic plate is placed on the test piece, a weight of 500 g is placed for 30 seconds, then the weight is removed and left for 30 seconds. This operation is repeated three times. After leaving the weight of 500 g and leaving for 30 seconds, the height of the four corners is measured to obtain an average value, and the specific volume is calculated by the following formula.
Specific volume (cm 3 / g) = 10 × 10 × measured average value of height of four corners of sample (mm) / 10 / mass of test piece (g)
(3)寝床内温度および寝床内湿度
 発汗シミュレーション測定装置を用い、水供給量(発汗量):100g/m・h、熱板温度:37℃、試料-熱板距離:0.5cm、環境温湿度:15℃×50%RHの条件で試験開始より10分後に発汗を開始し、それから5分後の熱板と試料の間の空間の温度と湿度の変化を測定した。
 なお、発汗シミュレーション装置は、発汗孔を有する基体および産熱体からなる産熱発汗機構、発汗孔に水を供給するための送水機構、産熱体の温度を制御する産熱制御機構、温湿度センサーから構成されている。基体は黄銅製で面積120cmであり、発汗孔が6個設けられており、面状ヒーターからなる産熱体により一定温度に制御される。送水機構はチューブポンプを用いており、一定水量を基体の発汗孔に送り出す。基体表面には、厚み0.1mmのポリエステルマルチフィラメント織物からなる模擬皮膚が貼り付けられており、これにより発汗孔から吐出された水が基体表面に広げられ、発汗状態が作り出される。基体の周囲には高さ0.5cmの外枠が設けられており、試料を基体から0.5cm離れた位置にセットできる。温湿度センサーは基体と試料(中綿を入れた布団)との間の空間に設置され、基体が発汗状態の時の「基体と試料と外枠で囲まれた空間」の温度と湿度を測定する。なお、中綿を入れた布団は、側地としてポリエステル100%の織物を使用し、キルティングを施して作成した。
(3) Bed temperature and bed humidity Using a sweating simulation measurement device, water supply amount (sweat amount): 100 g / m 2 · h, hot plate temperature: 37 ° C., sample-hot plate distance: 0.5 cm, environment Temperature and humidity: Sweating was started 10 minutes after the start of the test under the condition of 15 ° C. × 50% RH, and changes in the temperature and humidity of the space between the hot plate and the sample after 5 minutes were measured.
The sweating simulation device includes a heat-producing sweating mechanism comprising a substrate having a sweating hole and a heat-producing body, a water-feeding mechanism for supplying water to the sweating hole, a heat-producing control mechanism for controlling the temperature of the heat-producing body, and temperature and humidity. It consists of sensors. The substrate is made of brass, has an area of 120 cm 2 , is provided with six sweat holes, and is controlled at a constant temperature by a heat-producing body composed of a planar heater. The water supply mechanism uses a tube pump, and sends out a constant amount of water to the sweat holes of the substrate. Simulated skin made of a polyester multifilament woven fabric having a thickness of 0.1 mm is affixed to the surface of the base, whereby water discharged from the perspiration holes is spread on the surface of the base and a sweating state is created. An outer frame having a height of 0.5 cm is provided around the substrate, and the sample can be set at a position 0.5 cm away from the substrate. The temperature / humidity sensor is installed in the space between the substrate and the sample (a futon with a padding), and measures the temperature and humidity of the “space surrounded by the substrate, the sample and the outer frame” when the substrate is sweating. . In addition, the futon which put the batting was made using woven fabric of 100% polyester as a side fabric and quilting.
(4)表層部の占める面積割合
 試料繊維を、繊維重量に対して2.5%のカチオン染料(Nichilon Black G 200)および2%の酢酸を含有する染色浴に、浴比1:80となるように浸漬し、30分間煮沸処理した後に、水洗、脱水、乾燥する。得られた染色済みの繊維を、繊維軸に垂直に薄くスライスし、繊維断面を光学顕微鏡で観察する。このとき、アクリロニトリル系重合体からなる中心部は黒く染色され、カルボキシル基が多く有する表層部は染料が十分に固定されず緑色になる。繊維断面における、繊維の直径(D1)、および、緑色から黒色へ変色し始める部分を境界として黒く染色されている中心部の直径(D2)を測定し、以下の式により表層部面積割合を算出する。なお、10サンプルの表層部面積割合の平均値をもって、試料繊維の表層部面積割合とする。
表層部面積割合(%)=[{((D1)/2)π-((D2)/2)π}/((D1)/2)π]×100
(4) Area ratio occupied by the surface layer portion The sample fiber is placed in a dyeing bath containing 2.5% cationic dye (Nichilon Black G 200) and 2% acetic acid with respect to the fiber weight, and the bath ratio is 1:80. After being soaked and boiled for 30 minutes, it is washed with water, dehydrated and dried. The obtained dyed fiber is sliced thinly perpendicular to the fiber axis, and the fiber cross section is observed with an optical microscope. At this time, the central portion made of the acrylonitrile-based polymer is dyed black, and the surface layer portion having many carboxyl groups becomes green because the dye is not sufficiently fixed. In the fiber cross section, the fiber diameter (D1) and the diameter (D2) of the center dyed black with the part starting to change from green to black as the boundary are measured, and the surface layer area ratio is calculated by the following formula To do. In addition, let the average value of the surface layer part area ratio of 10 samples be the surface layer part area ratio of a sample fiber.
Surface portion area ratio (%) = [{(( D1) / 2) 2 π - ((D2) / 2) 2 π} / ((D1) / 2) 2 π] × 100
[実施例1]
 アクリロニトリル90重量%、アクリル酸メチルエステル10重量%のアクリロニトリル系重合体Ap(30℃ジメチルホルムアミド中での極限粘度[η]=1.5)、アクリロニトリル88重量%、酢酸ビニル12重量%のアクリロニトリル系重合体Bp([η]=1.5)をそれぞれ48重量%のロダンソーダ水溶液で溶解して、紡糸原液を調製した。特公昭39-24301号による複合紡糸装置にAp/Bpの複合比率(重量比)が50/50となるようにそれぞれの紡糸原液を導き、常法に従って紡糸、水洗、延伸、捲縮、熱処理をして、単繊維繊度3.3dtexの重合体ApとBpを複合させたサイド・バイ・サイド型原料繊維を得た。
[Example 1]
Acrylonitrile polymer Ap (90% by weight of acrylonitrile, 10% by weight of acrylic acid methyl ester (Intrinsic viscosity [η] = 1.5) in dimethylformamide at 30 ° C.), 88% by weight of acrylonitrile, 12% by weight of vinyl acetate Polymer Bp ([η] = 1.5) was dissolved in a 48% by weight aqueous rhodium soda solution to prepare a spinning dope. Each spinning undiluted solution is introduced into a compound spinning device according to Japanese Patent Publication No. 39-24301 so that the composite ratio (weight ratio) of Ap / Bp is 50/50, and spinning, washing, drawing, crimping and heat treatment are carried out according to conventional methods. Thus, a side-by-side raw material fiber in which the polymers Ap and Bp having a single fiber fineness of 3.3 dtex were combined was obtained.
 該原料繊維に、水加ヒドラジン0.5重量%および水酸化ナトリウム1.4重量%を含有する水溶液中で、100℃×2時間、架橋導入処理および加水分解処理を同時に行い、8重量%硝酸水溶液で、120℃×3時間処理し、水洗した。得られた繊維を水に浸漬し、水酸化ナトリウムを添加してpH9に調整し、水洗、乾燥することにより、Na塩型カルボキシル基を有するNa塩型架橋ポリアクリレート系繊維(表層部面積13%)を得た。得られた架橋ポリアクリレート系繊維の詳細を表1に示す。 The raw fiber was subjected to crosslinking introduction treatment and hydrolysis treatment simultaneously in an aqueous solution containing 0.5% by weight of hydrazine hydrate and 1.4% by weight of sodium hydroxide at 100 ° C. for 2 hours to obtain 8% by weight nitric acid. The solution was treated with an aqueous solution at 120 ° C. for 3 hours and washed with water. The obtained fiber is immersed in water, adjusted to pH 9 by adding sodium hydroxide, washed with water, and dried to form a Na salt type crosslinked polyacrylate fiber having a Na salt type carboxyl group (surface layer area 13%) ) The details of the obtained cross-linked polyacrylate fiber are shown in Table 1.
 上記のようにして得られたNa塩型架橋ポリアクリレート系繊維(単繊維繊度5.0dtex、繊維長48mm)とポリエステル繊維(ポリエチレンテレフタレート繊維、単繊維繊度7.8dtex、繊維長64mm、単繊維弾性率32cN/dtex、東レ株式会社の製品番201-7.8Tx64)を予備解繊機で30/70の重量比率となるよう解繊・混合してからカード機にて中綿を作成した。この中綿の構成および評価結果を表1に示す。 Na salt type cross-linked polyacrylate fiber (single fiber fineness 5.0 dtex, fiber length 48 mm) and polyester fiber (polyethylene terephthalate fiber, single fiber fineness 7.8 dtex, fiber length 64 mm, single fiber elasticity obtained as described above. A rate of 32 cN / dtex, product number 201-7.8Tx64 of Toray Industries, Inc. was defibrated and mixed to a weight ratio of 30/70 with a preliminary defibrator, and then a batting was made with a card machine. Table 1 shows the composition of the batting and the evaluation results.
[実施例2]
 実施例1においてNa塩型架橋ポリアクリレート系繊維とポリエステル繊維の重量比率を12/88に変更した以外は同じ方法で中綿を作成した。この中綿の構成および評価結果を表1に示す。
[Example 2]
A batting was produced in the same manner as in Example 1 except that the weight ratio of the Na salt type crosslinked polyacrylate fiber and the polyester fiber was changed to 12/88. Table 1 shows the composition of the batting and the evaluation results.
[実施例3]
 実施例1においてNa塩型架橋ポリアクリレート系繊維とポリエステル繊維の重量比率を20/80に変更した以外は同じ方法で中綿を作成した。この中綿の構成および評価結果を表1に示す。
[Example 3]
A batting was produced in the same manner as in Example 1 except that the weight ratio of the Na salt-type crosslinked polyacrylate fiber and the polyester fiber was changed to 20/80. Table 1 shows the composition of the batting and the evaluation results.
[実施例4]
 実施例1においてNa塩型架橋ポリアクリレート系繊維とポリエステル繊維の重量比率を40/60に変更した以外は同じ方法で中綿を作成した。この中綿の構成および評価結果を表1に示す。
[Example 4]
A batting was produced in the same manner as in Example 1 except that the weight ratio of the Na salt-type crosslinked polyacrylate fiber and the polyester fiber was changed to 40/60. Table 1 shows the composition of the batting and the evaluation results.
[実施例5]
 実施例1においてNa塩型架橋ポリアクリレート系繊維とポリエステル繊維の重量比率を50/50に変更した以外は同じ方法で中綿を作成した。この中綿の構成および評価結果を表1に示す。
[Example 5]
A batting was produced in the same manner as in Example 1 except that the weight ratio of the Na salt-type crosslinked polyacrylate fiber and the polyester fiber was changed to 50/50. Table 1 shows the composition of the batting and the evaluation results.
[実施例6]
 実施例1においてpH9に調整するために添加される水酸化ナトリウムの代わりに水酸化カリウムを使用した以外は同じ方法でK塩型架橋ポリアクリレート系繊維(表層部面積13%)を得た。Na塩型架橋ポリアクリレート系繊維の代わりにこのK塩型架橋ポリアクリレート系繊維(単繊維繊度5.0dtex、繊維長48mm)を使用して実施例1と同様にして中綿を作成した。この中綿の構成および評価結果を表1に示す。
[Example 6]
A K salt type crosslinked polyacrylate fiber (surface area 13%) was obtained by the same method except that potassium hydroxide was used instead of sodium hydroxide added to adjust to pH 9 in Example 1. A batting was produced in the same manner as in Example 1 using this K salt type cross-linked polyacrylate type fiber (single fiber fineness 5.0 dtex, fiber length 48 mm) instead of the Na salt type cross-linked polyacrylate type fiber. Table 1 shows the composition of the batting and the evaluation results.
[実施例7]
 実施例1において架橋導入・加水分解処理に用いる水酸化ナトリウムの濃度を1.4重量%から1.6重量%に変更した以外は同じ方法でNa塩型架橋ポリアクリレート系繊維(表層部面積18%)を得た後、中綿を作成した。この中綿の構成および評価結果を表1に示す。
[Example 7]
In the same manner as in Example 1 except that the concentration of sodium hydroxide used for the crosslinking introduction / hydrolysis treatment was changed from 1.4% by weight to 1.6% by weight, the Na salt-type crosslinked polyacrylate fiber (surface layer area 18 %) Was obtained, and batting was made. Table 1 shows the composition of the batting and the evaluation results.
[実施例8]
 実施例1において架橋導入・加水分解処理に用いる水酸化ナトリウムの濃度を1.4重量%から1.2重量%に変更した以外は同じ方法でNa塩型架橋ポリアクリレート系繊維(表層部面積8%)を得た後、中綿を作成した。この中綿の構成および評価結果を表1に示す。
[Example 8]
In the same manner as in Example 1 except that the concentration of sodium hydroxide used for the cross-linking introduction / hydrolysis treatment was changed from 1.4% by weight to 1.2% by weight, Na salt-type cross-linked polyacrylate fiber (surface layer area 8) %) Was obtained, and batting was made. Table 1 shows the composition of the batting and the evaluation results.
[実施例9]
 実施例1においてアクリロニトリル系重合体Apの組成をアクリロニトリル92重量%、アクリル酸メチルエステル8重量%に変更した以外は同じ方法で中綿を作成した。この中綿の構成および評価結果を表1に示す。
[Example 9]
A batting was prepared in the same manner as in Example 1 except that the composition of the acrylonitrile polymer Ap was changed to 92% by weight of acrylonitrile and 8% by weight of acrylic acid methyl ester. Table 1 shows the composition of the batting and the evaluation results.
[実施例10]
 実施例1においてAp/Bpの複合比率(重量比)を50/50から40/60に変更した以外は同じ方法で中綿を作成した。この中綿の構成および評価結果を表1に示す。
[Example 10]
A batting was produced in the same manner except that the composite ratio (weight ratio) of Ap / Bp was changed from 50/50 to 40/60 in Example 1. Table 1 shows the composition of the batting and the evaluation results.
[実施例11]
 実施例4においてNa塩型架橋ポリアクリレート系繊維とポリエステル繊維を40/60の重量比率で使用する代わりに実施例4と同じNa塩型架橋ポリアクリレート系繊維と実施例4と同じポリエステル繊維とアクリル繊維(単繊維繊度4.8dtex、繊維長50mm、単繊維弾性率10cN/dtex)を30/60/10の重量比率で使用した以外は同じ方法で中綿を作成した。この中綿の構成及び評価結果を表1に示す。
[Example 11]
Instead of using Na salt type crosslinked polyacrylate fiber and polyester fiber in a weight ratio of 40/60 in Example 4, the same Na salt type crosslinked polyacrylate fiber as in Example 4 and the same polyester fiber and acrylic as in Example 4 were used. Filling was made in the same manner except that fibers (single fiber fineness 4.8 dtex, fiber length 50 mm, single fiber elastic modulus 10 cN / dtex) were used at a weight ratio of 30/60/10. The composition and evaluation results of this batting are shown in Table 1.
[実施例12]
 実施例1においてNa塩型架橋ポリアクリレート系繊維とポリエステル繊維を30/70の重量比率で使用する代わりに実施例1と同じNa塩型架橋ポリアクリレート系繊維と実施例6と同じK塩型架橋ポリアクリレート繊維と実施例1と同じポリエステル繊維を15/15/70の重量比率で使用した以外は同じ方法で中綿を作成した。この中綿の構成及び評価結果を表1に示す。
[Example 12]
Instead of using Na salt type crosslinked polyacrylate fiber and polyester fiber in a weight ratio of 30/70 in Example 1, the same Na salt type crosslinked polyacrylate fiber as in Example 1 and the same K salt type crosslinked as in Example 6 Filling was made in the same manner except that the polyacrylate fiber and the same polyester fiber as in Example 1 were used in a weight ratio of 15/15/70. The composition and evaluation results of this batting are shown in Table 1.
[比較例1]
 実施例1においてNa塩型架橋ポリアクリレート系繊維とポリエステル繊維の重量比率を5/95に変更した以外は同じ方法で中綿を作成した。この中綿の構成及び評価結果を表1に示す。
[Comparative Example 1]
A batting was produced in the same manner as in Example 1 except that the weight ratio of the Na salt-type crosslinked polyacrylate fiber and the polyester fiber was changed to 5/95. The composition and evaluation results of this batting are shown in Table 1.
[比較例2]
 実施例1において架橋導入・加水分解処理に用いる水酸化ナトリウムの濃度を1.4重量%から1.8重量%に変更した以外は同じ方法でNa塩型架橋ポリアクリレート系繊維(表層部面積25%)及び中綿を作成した。この中綿の構成および評価結果を表1に示す。
[Comparative Example 2]
In the same manner as in Example 1 except that the concentration of sodium hydroxide used for the cross-linking introduction / hydrolysis treatment was changed from 1.4% by weight to 1.8% by weight, Na salt-type cross-linked polyacrylate fiber (surface layer area 25) %) And batting. Table 1 shows the composition of the batting and the evaluation results.
[比較例3]
 アクリロニトリル90重量%、アクリル酸メチルエステル10重量%のアクリロニトリル系重合体Ap(30℃ジメチルホルムアミド中での極限粘度[η]=1.5)、アクリロニトリル88重量%、酢酸ビニル12重量%のアクリロニトリル系重合体Bp([η]=1.5)をそれぞれ48重量%のロダンソーダ水溶液で溶解して、紡糸原液を調製した。特公昭39-24301号による複合紡糸装置にAp/Bpの複合比率が50/50となるようにそれぞれの紡糸原液を導き、常法に従って紡糸、水洗、延伸、捲縮、熱処理をして、単繊維繊度3.3dtexの重合体ApとBpを複合させたサイド・バイ・サイド型原料繊維を得た。
[Comparative Example 3]
Acrylonitrile polymer Ap (90% by weight of acrylonitrile, 10% by weight of acrylic acid methyl ester (Intrinsic viscosity [η] = 1.5) in dimethylformamide at 30 ° C.), 88% by weight of acrylonitrile, 12% by weight of vinyl acetate Polymer Bp ([η] = 1.5) was dissolved in a 48% by weight aqueous rhodium soda solution to prepare a spinning dope. Each spinning dope is introduced into a compound spinning device according to Japanese Examined Patent Publication No. 39-24301 so that the composite ratio of Ap / Bp is 50/50, followed by spinning, washing, drawing, crimping, and heat treatment according to conventional methods. A side-by-side raw material fiber in which the polymers Ap and Bp having a fiber fineness of 3.3 dtex were combined was obtained.
 該原料繊維に、水加ヒドラジン0.5重量%および水酸化ナトリウム1.4重量%を含有する水溶液中で、100℃×2時間、架橋導入処理および加水分解処理を同時に行い、8重量%硝酸水溶液で、120℃×3時間処理し、水洗した。得られた繊維を水に浸漬し、水酸化ナトリウムを添加してpH9に調整した後、繊維に含まれるカルボキシル基量の2倍に相当する硝酸マグネシウムを溶解させた水溶液に50℃×1時間浸漬することによりイオン交換処理を実施し、水洗、乾燥することによりMg塩型カルボキシル基を有するMg塩型架橋ポリアクリレート系繊維(表層部面積13%)を得た。Na塩型架橋ポリアクリレート系繊維の代わりにこのMg塩型架橋ポリアクリレート系繊維(単繊維繊度5.0dtex、繊維長48mm)を使用して実施例1と同様にして中綿を作成した。この中綿の構成および評価結果を表1に示す。 The raw fiber was subjected to crosslinking introduction treatment and hydrolysis treatment simultaneously in an aqueous solution containing 0.5% by weight of hydrazine hydrate and 1.4% by weight of sodium hydroxide at 100 ° C. for 2 hours to obtain 8% by weight nitric acid. The solution was treated with an aqueous solution at 120 ° C. for 3 hours and washed with water. The obtained fiber is immersed in water, adjusted to pH 9 by adding sodium hydroxide, and then immersed in an aqueous solution in which magnesium nitrate corresponding to twice the amount of carboxyl groups contained in the fiber is dissolved at 50 ° C. for 1 hour. As a result, an ion exchange treatment was carried out, followed by washing with water and drying to obtain an Mg salt-type crosslinked polyacrylate fiber having an Mg salt-type carboxyl group (surface layer area 13%). Using this Mg salt type cross-linked polyacrylate fiber (single fiber fineness 5.0 dtex, fiber length 48 mm) instead of the Na salt type cross-linked polyacrylate fiber, a batting was produced in the same manner as in Example 1. Table 1 shows the composition of the batting and the evaluation results.
[比較例4]
 実施例1において得られたサイド・バイ・サイド型原料繊維に、水加ヒドラジン0.5重量%および水酸化ナトリウム2.0重量%を含有する水溶液中で、100℃×1時間、架橋導入処理及び加水分解処理を同時に行い、さらに100℃×1時間、8重量%硝酸水溶液で処理し、水洗した。得られた繊維を水に浸漬し、水酸化ナトリウムを添加してpH9に調整した後、繊維に含まれるカルボキシル基量の2倍に相当する硝酸マグネシウムを溶解させた水溶液に50℃×1時間浸漬することによりイオン交換処理を実施し、水洗、乾燥することにより、Mg塩型カルボキシル基を有するMg塩型架橋ポリアクリレート系繊維(表層部面積35%)を得た。Na塩型架橋ポリアクリレート系繊維の代わりにこのMg塩型架橋ポリアクリレート系繊維(単繊維繊度5.0dtex、繊維長48mm)を使用して実施例1と同様にして中綿を作成した。この中綿の構成および評価結果を表1に示す。
[Comparative Example 4]
In the aqueous solution containing 0.5% by weight of hydrazine hydrate and 2.0% by weight of sodium hydroxide to the side-by-side type raw material fiber obtained in Example 1, 100 ° C. × 1 hour, crosslinking introduction treatment Then, the hydrolysis treatment was performed at the same time, and the mixture was further treated with an 8 wt% aqueous nitric acid solution at 100 ° C. for 1 hour and washed with water. The obtained fiber is immersed in water, adjusted to pH 9 by adding sodium hydroxide, and then immersed in an aqueous solution in which magnesium nitrate corresponding to twice the amount of carboxyl groups contained in the fiber is dissolved at 50 ° C. for 1 hour. As a result, an ion exchange treatment was carried out, followed by washing with water and drying to obtain a Mg salt-type crosslinked polyacrylate fiber (surface area 35%) having an Mg salt-type carboxyl group. Using this Mg salt type cross-linked polyacrylate fiber (single fiber fineness 5.0 dtex, fiber length 48 mm) instead of the Na salt type cross-linked polyacrylate fiber, a batting was produced in the same manner as in Example 1. Table 1 shows the composition of the batting and the evaluation results.
[比較例5]
 実施例1と同じポリエステル繊維を100重量%使用した以外は実施例1と同じ方法で中綿を作成した。この中綿の構成及び評価結果を表1に示す。
[Comparative Example 5]
A batting was produced in the same manner as in Example 1 except that 100% by weight of the same polyester fiber as in Example 1 was used. The composition and evaluation results of this batting are shown in Table 1.
[比較例6]
 実施例11と同じアクリル繊維を100重量%使用した以外は実施例1と同じ方法で中綿を作成した。この中綿の構成及び評価結果を表1に示す。
[Comparative Example 6]
A batting was produced in the same manner as in Example 1 except that 100% by weight of the same acrylic fiber as in Example 11 was used. The composition and evaluation results of this batting are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、実施例1~12の中綿は、初期の高い吸湿性と高い嵩高性(比容積)を両立しているので、早期に高い寝床内温度と低い寝床内湿度を実感することができ、極めて快適に使用可能である。これに対して、Na塩型架橋ポリアクリレート系繊維が少ない比較例1は吸湿性に劣り、Na塩型架橋ポリアクリレート系繊維の表層部面積が多い比較例2は嵩高性に劣り、Mg塩型架橋ポリアクリレート系繊維を使用する比較例3,4は吸湿性に劣る問題があった。また、ポリエステル繊維のみを使用する比較例5は吸湿性に劣り、アクリル繊維のみを使用する比較例6は吸湿性及び嵩高性に問題があった。吸湿性及び嵩高性のいずれかに問題がある比較例は、いずれも寝床内温度、湿度において良好な環境を作ることができず、人間にとって快適とは言えないものであった。 As can be seen from Table 1, the batting of Examples 1 to 12 realizes a high bed temperature and a low bed humidity at an early stage because both high hygroscopicity and high bulkiness (specific volume) are compatible. Can be used very comfortably. On the other hand, Comparative Example 1 with few Na salt-type crosslinked polyacrylate fibers is inferior in hygroscopicity, Comparative Example 2 with a large surface layer area of Na salt type crosslinked polyacrylate fibers is inferior in bulkiness, and Mg salt type Comparative Examples 3 and 4 using a crosslinked polyacrylate fiber had a problem of poor hygroscopicity. Moreover, the comparative example 5 which uses only a polyester fiber has inferior hygroscopicity, and the comparative example 6 which uses only an acrylic fiber had a problem in hygroscopicity and bulkiness. The comparative examples having problems in either hygroscopicity and bulkiness cannot be said to be comfortable for humans because none of the comparative examples can create a good environment in the temperature and humidity in the bed.
 本発明の中綿は、早期に実感できる高い吸湿発熱性と保温性をもたらす高い嵩高性を併せ持つので、人肌に触れる寝装品や衣料品等で快適に使用することができる。 The batting of the present invention has a high moisture absorption exothermic property that can be realized at an early stage and a high bulkiness that brings about heat retention, so that it can be comfortably used in bedding and clothing that touch human skin.

Claims (4)

  1.  ポリエステル繊維を40~90重量%含有し、かつNa塩型および/またはK塩型の架橋ポリアクリレート系繊維を10~60重量%含有する中綿であって、Na塩型および/またはK塩型の架橋ポリアクリレート系繊維が、架橋構造およびNa塩型および/またはK塩型のカルボキシル基を有する表層部と、アクリロニトリル含有率が異なる二種類のアクリロニトリル系重合体からなるサイドバイサイド型構造の中心部とからなる複合繊維であり、複合繊維の横断面における表層部の占める面積が5%以上20%未満であることを特徴とする中綿。 A filling containing 40 to 90% by weight of polyester fiber and 10 to 60% by weight of Na salt type and / or K salt type cross-linked polyacrylate fiber, wherein Na salt type and / or K salt type The cross-linked polyacrylate fiber has a cross-linked structure and a surface layer portion having a Na salt type and / or K salt type carboxyl group, and a central portion of a side-by-side type structure composed of two kinds of acrylonitrile-based polymers having different acrylonitrile contents. A batting characterized in that the area occupied by the surface layer portion in the cross section of the composite fiber is 5% or more and less than 20%.
  2.  架橋ポリアクリレート系繊維がNa塩型であることを特徴とする請求項1に記載の中綿。 2. The batting according to claim 1, wherein the crosslinked polyacrylate fiber is a Na salt type.
  3.  15℃、50%RHの条件下で10分後に発汗を開始して5分後に測定した寝床内温度が30℃以上であり、かつ寝床内湿度が70%以下であることを特徴とする請求項1または2に記載の中綿。 The bed temperature measured 30 minutes after starting sweating after 10 minutes under conditions of 15 ° C. and 50% RH is 30 ° C. or more, and the bed humidity is 70% or less. The batting according to 1 or 2.
  4.  比容積が50~100cm/gであることを特徴とする請求項1~3のいずれかに記載の中綿。 The batting according to any one of claims 1 to 3, wherein the specific volume is 50 to 100 cm 3 / g.
PCT/JP2017/024130 2016-09-29 2017-06-30 Batting WO2018061369A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017551729A JP6247801B1 (en) 2016-09-29 2017-06-30 Batting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-191465 2016-09-29
JP2016191465 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018061369A1 true WO2018061369A1 (en) 2018-04-05

Family

ID=61759506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024130 WO2018061369A1 (en) 2016-09-29 2017-06-30 Batting

Country Status (2)

Country Link
TW (1) TW201817347A (en)
WO (1) WO2018061369A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181138A1 (en) * 2017-03-31 2018-10-04 東洋紡株式会社 Wadding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116024816A (en) * 2023-01-09 2023-04-28 深圳市如砥科技有限公司 Humidification heating fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536360A (en) * 1978-09-05 1980-03-13 Japan Exlan Co Ltd Novel water-swelling fiber and its production
WO2013002367A1 (en) * 2011-06-30 2013-01-03 東洋紡株式会社 Batting
WO2015041275A1 (en) * 2013-09-20 2015-03-26 日本エクスラン工業株式会社 Cross-linked acrylate fiber and fiber structure containing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536360A (en) * 1978-09-05 1980-03-13 Japan Exlan Co Ltd Novel water-swelling fiber and its production
WO2013002367A1 (en) * 2011-06-30 2013-01-03 東洋紡株式会社 Batting
WO2015041275A1 (en) * 2013-09-20 2015-03-26 日本エクスラン工業株式会社 Cross-linked acrylate fiber and fiber structure containing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181138A1 (en) * 2017-03-31 2018-10-04 東洋紡株式会社 Wadding
JPWO2018181138A1 (en) * 2017-03-31 2020-04-09 東洋紡株式会社 Batting
JP7061292B2 (en) 2017-03-31 2022-04-28 東洋紡株式会社 Batting

Also Published As

Publication number Publication date
TW201817347A (en) 2018-05-16

Similar Documents

Publication Publication Date Title
JP5242861B1 (en) Batting
WO2015041275A1 (en) Cross-linked acrylate fiber and fiber structure containing same
JP2010281002A (en) Knit having excellent contact cool feeling and underwear with contact cool feeling, obtained by using the knit
WO2018061369A1 (en) Batting
CN103930611A (en) Moisture-absorbing deodorizing fibers, method for producing fibers, and fiber structure comprising fibers
JP6247801B1 (en) Batting
JP6247800B1 (en) Hygroscopic exothermic fiber
JP2004300584A (en) Heat insulating article
CN109642349B (en) Moisture-absorbing heat-generating fiber
JP3889652B2 (en) Hygroscopic exothermic composite fiber
JP2020070514A (en) Long and short composite spun yarn excellent in moisture absorbing and releasing property and abrasion resistance, and woven or knitted fabric
JP7061292B2 (en) Batting
CN110129990B (en) Unidirectional moisture-conducting heating fiber quilt core and preparation method thereof
JP7177986B2 (en) Shrinkable, moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP7210949B2 (en) Moisture-releasing and cooling fiber and fiber structure containing said fiber
JP2019085688A (en) Hygroscopic acrylonitrile-based fiber, method for producing the same and fiber structure containing the same
JP7177988B2 (en) Water-repellent and moisture-absorbing acrylonitrile-based fiber, method for producing said fiber, and fiber structure containing said fiber
JP2000328457A (en) Highly moisture absorbing and desorbing hygroscopic and exothermic fiber mass
KR102378343B1 (en) Hygroscopic granular cotton and batting containing the granular cotton
JP7177987B2 (en) Easily de-crimpable and moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JPH10229934A (en) Synthetic resin-made bedding
KR101186820B1 (en) Method for High Performance Heat-generating Finishing of Textile Products
JP2003010019A (en) Quilt
JP4888830B2 (en) Acrylic fiber containing amino acid derivative, method for producing the same, and fiber structure containing the fiber
JP2002146677A (en) High hygroscopic warmth-keeping cloth

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017551729

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855328

Country of ref document: EP

Kind code of ref document: A1