JP7061292B2 - Batting - Google Patents

Batting Download PDF

Info

Publication number
JP7061292B2
JP7061292B2 JP2019509778A JP2019509778A JP7061292B2 JP 7061292 B2 JP7061292 B2 JP 7061292B2 JP 2019509778 A JP2019509778 A JP 2019509778A JP 2019509778 A JP2019509778 A JP 2019509778A JP 7061292 B2 JP7061292 B2 JP 7061292B2
Authority
JP
Japan
Prior art keywords
fiber
batting
carboxyl group
type
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019509778A
Other languages
Japanese (ja)
Other versions
JPWO2018181138A1 (en
Inventor
宏 小野
佳丘 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Publication of JPWO2018181138A1 publication Critical patent/JPWO2018181138A1/en
Application granted granted Critical
Publication of JP7061292B2 publication Critical patent/JP7061292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43832Composite fibres side-by-side
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/08Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyacrylonitrile as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/02Cotton wool; Wadding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/43Acrylonitrile series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/63Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with hydroxylamine or hydrazine

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Multicomponent Fibers (AREA)

Description

本発明は、軽量嵩高であり、柔軟性に富み、身体に追随しやすい、羽毛の代替として使用可能な中綿に関する。本発明の中綿は、寝装寝具の中綿やダウンジャケット等の衣料の中綿に好適に用いることができるものである。 The present invention relates to a batting that is lightweight, bulky, flexible, easy to follow the body, and can be used as a substitute for feathers. The batting of the present invention can be suitably used for the batting of bedding, the batting of clothing such as down jackets, and the like.

寝具用中綿や衣料用中綿では、軽量で嵩高であり、保温性が高く、身体の動きに追随するような柔らかな風合いが要求される。かかる用途には、羽毛、真綿などの動物性繊維やポリエステルなどの合成繊維が用いられてきた。このうち、特に羽毛は、軽量で圧縮復元性に優れ、羽毛同士が絡み合わないことから、極めて優れた嵩高性を長期間維持できる特徴を有する。また、羽毛は、保温性や柔軟性にも優れるため、寝具や衣料などの中綿としてもっぱら多用されてきた。 Bedding batting and clothing batting are required to be lightweight, bulky, have high heat retention, and have a soft texture that follows the movement of the body. Animal fibers such as feathers and cotton and synthetic fibers such as polyester have been used for such applications. Of these, feathers are particularly lightweight and have excellent compression stability, and since feathers do not entangle with each other, they have the characteristics of being able to maintain extremely excellent bulkiness for a long period of time. In addition, feathers are often used as batting for bedding and clothing because they have excellent heat retention and flexibility.

しかしながら、近年の羽毛の生産量の低下により、羽毛の価格が高騰し、これらの中綿の材料として手頃な価格で提供することが困難になってきている。このため、羽毛の上記性能を有する高機能な代替中綿を開発することが強く要望されている。 However, due to the decrease in the production of feathers in recent years, the price of feathers has risen, and it has become difficult to provide them as a material for batting at an affordable price. Therefore, it is strongly desired to develop a highly functional alternative batting having the above-mentioned performance of feathers.

保温性の向上に関しては、動物性繊維を除く吸湿発熱性繊維に、他の合成繊維を混合して粒綿状にした中綿が提案されている(特許文献1参照)。しかしながら、特許文献1で使用されるような通常の形態で吸湿発熱性繊維を用いた場合、吸湿発熱性と嵩高性を高いレベルで両立して維持することは極めて困難であり、結果として保温性を長期間維持することができないという問題があった。 Regarding the improvement of heat retention, a batting in which other synthetic fibers are mixed with moisture-absorbing heat-generating fibers excluding animal fibers to form a cotton-like batting has been proposed (see Patent Document 1). However, when the hygroscopic heat-generating fiber is used in a normal form as used in Patent Document 1, it is extremely difficult to maintain both the hygroscopic heat-generating property and the bulkiness at a high level, and as a result, the heat retention property is maintained. There was a problem that it could not be maintained for a long period of time.

特開2003-286638号公報Japanese Patent Application Laid-Open No. 2003-286638

本発明は、かかる従来技術の現状に鑑み創案されたものであり、その目的は、軽量で嵩高であり、保温性が高く、身体の動きに沿いやすい柔軟性を有する寝具や衣料用に適した中綿を提供することにある。 The present invention was invented in view of the current state of the prior art, and an object thereof is suitable for bedding and clothing which are lightweight, bulky, have high heat retention, and have flexibility that easily follows the movement of the body. To provide batting.

本発明者は、かかる目的を達成するために、中綿に使用する吸湿発熱性繊維とそれに併用される合成繊維の構成形態について鋭意検討した結果、吸湿発熱性繊維として特定の中心部と表層部からなるサイドバイサイド型構造の複合繊維を使用し、さらに中空ポリエステル繊維を使用して、これらをつぶ綿状に加工することによって、軽量性、嵩高性、保温性、柔軟性を高いレベルで達成した中綿を提供できることを見出した。 As a result of diligent studies on the constitutional form of the hygroscopic heat-generating fiber used for the batting and the synthetic fiber used in combination with the moisture-absorbing heat-generating fiber in order to achieve the above object, the present inventor has determined from a specific central portion and surface layer portion as the hygroscopic heat-generating fiber. By using composite fibers with a side-by-side structure and hollow polyester fibers, which are processed into a cotton-like shape, the batting that achieves a high level of lightness, bulkiness, heat retention, and flexibility is achieved. I found that I could provide it.

具体的には、吸湿発熱性繊維として、嵩高性に寄与するアクリロニトリル含有率が異なる二種類のアクリロニトリル系重合体からなるサイドバイサイド型構造の中心部と、吸湿発熱性に寄与する架橋構造及びNa塩型又はK塩型のカルボキシル基を有する表層部とからなる特定のサイドバイサイド型複合繊維を使用し、さらに軽量で嵩高性に優れる中空ポリエステル繊維を使用し、これらをつぶ綿状の形態に加工することによって、羽毛の性能を併せ持つ中綿を提供できることを見出した。 Specifically, as the hygroscopic heat-generating fiber, the central part of the side-by-side structure composed of two types of acrylonitrile-based polymers having different acrylonitrile contents that contribute to bulkiness, and the crosslinked structure and Na salt type that contribute to the hygroscopic heat generation. Alternatively, by using a specific side-by-side type composite fiber consisting of a surface layer portion having a K-salt type carboxyl group, and by using a hollow polyester fiber that is lightweight and has excellent bulkiness, and processing these into a cotton-like form. , Found that it is possible to provide batting that also has the performance of feathers.

本発明は、かかる知見に基づいて完成されたものであり、以下の(1)~(6)の構成を有するものである。
(1)アクリロニトリル含有率が異なる二種類のアクリロニトリル系重合体からなるサイドバイサイド型構造の中心部と、架橋構造、及びNa塩型又はK塩型のカルボキシル基を有する表層部とからなるサイドバイサイド型複合繊維(A)と、中空ポリエステル繊維(B)とを絡めて混合し、つぶ綿状にしたものを用いたこと、及びサイドバイサイド型複合繊維(A)の横断面における表層部の占める面積が5%以上35%以下であることを特徴とする中綿。
(2)含有されるサイドバイサイド型複合繊維(A)と中空ポリエステル繊維(B)の重量比が10:90~60:40であることを特徴とする(1)に記載の中綿。
(3)サイドバイサイド型複合繊維(A)の全カルボキシル基量が3.5~10mmol/gであることを特徴とする(1)又は(2)に記載の中綿。
(4)サイドバイサイド型複合繊維(A)のNa塩型又はK塩型のカルボキシル基量が3.0~10mmol/gであることを特徴とする(1)~(3)のいずれかに記載の中綿。
(5)サイドバイサイド型複合繊維(A)の単繊維繊度が1~15dtexであり、繊維長が10~50mmであることを特徴とする(1)~(4)のいずれかに記載の中綿。
(6)中空ポリエステル繊維(B)の単繊維繊度が0.5~10dtexであり、繊維長が5~70mmであることを特徴とする(1)~(5)のいずれかに記載の中綿。
The present invention has been completed based on such findings, and has the following configurations (1) to (6).
(1) Side-by-side composite fiber composed of a central portion of a side-by-side structure composed of two types of acrylonitrile-based polymers having different acrylonitrile contents, a crosslinked structure, and a surface layer portion having a Na salt type or K salt type carboxyl group. (A) and hollow polyester fiber (B) were entwined and mixed to form a cotton-like material , and the area occupied by the surface layer portion in the cross section of the side-by-side type composite fiber (A) was 5% or more. Batting characterized by 35% or less .
(2) The batting according to (1), wherein the weight ratio of the side-by-side type composite fiber (A) and the hollow polyester fiber (B) contained is 10:90 to 60:40.
(3) The batting according to (1) or (2), wherein the side-by-side type composite fiber (A) has a total carboxyl group amount of 3.5 to 10 mmol / g.
(4) The description according to any one of (1) to (3), wherein the side-by-side type composite fiber (A) has a Na salt type or K salt type carboxyl group amount of 3.0 to 10 mmol / g. Batting.
(5) The batting according to any one of (1) to (4), wherein the side-by-side type composite fiber (A) has a single fiber fineness of 1 to 15 dtex and a fiber length of 10 to 50 mm.
(6) The batting according to any one of (1) to (5), wherein the hollow polyester fiber (B) has a single fiber fineness of 0.5 to 10 dtex and a fiber length of 5 to 70 mm.

本発明の中綿は、吸湿発熱性繊維として、Na塩型またはK塩型のカルボキシル基を有する架橋ポリアクリレート系繊維を使用しているので、吸湿後にすぐに高い温度上昇を示すとともに、特定の複合構造を採用しているので、吸湿時の繊維のへたりの影響が少なく、高い嵩高性をもたらすことができ、結果として高い保温持続性を持つことができる。また、軽量嵩高な中空ポリエステル繊維を併用し、これを前述の吸湿発熱性繊維と混合してつぶ綿状に加工しているので、高い嵩高性、軽量性、柔軟性、保温持続性を併せ持つことができる。 Since the batting of the present invention uses a crosslinked polyacrylate fiber having a Na salt type or K salt type carboxyl group as the hygroscopic heat-generating fiber, it exhibits a high temperature rise immediately after moisture absorption and is a specific composite. Since the structure is adopted, the influence of the sagging of the fiber at the time of moisture absorption is small, a high bulkiness can be brought about, and as a result, a high heat retention sustainability can be obtained. In addition, lightweight and bulky hollow polyester fiber is used together, and this is mixed with the above-mentioned hygroscopic heat-generating fiber and processed into a fluffy shape, so it has high bulkiness, light weight, flexibility, and heat retention durability. Can be done.

ISO18782:2015の測定方法及び条件に準拠して測定したNa塩型またはMg塩型のカルボキシル基を有する架橋ポリアクリレート系繊維の経過時間ごとの温度の推移を示すグラフである。It is a graph which shows the transition of the temperature with respect to the elapsed time of the crosslinked polyacrylate fiber having a carboxyl group of Na salt type or Mg salt type measured according to the measurement method and condition of ISO18782: 2015.

以下、本発明の中綿を詳細に説明する。 Hereinafter, the batting of the present invention will be described in detail.

本発明の中綿は、特定の中心部と表層部とからなるサイドバイサイド型複合繊維(A)と、中空ポリエステル繊維(B)とを絡めて混合し、つぶ綿状にしたものを用いたことを特徴とする。かかる特徴により、迅速に吸湿して発熱性を示す吸湿発熱性と、持続的な保温性をもたらす嵩高性と、軽量、柔軟性とを高いレベルでもたらすことができる。 The batting of the present invention is characterized in that a side-by-side type composite fiber (A) composed of a specific central portion and a surface layer portion and a hollow polyester fiber (B) are entwined and mixed to form a cotton-like material. And. With such a feature, it is possible to provide a high level of hygroscopic heat generation that rapidly absorbs moisture and exhibits heat generation, bulkiness that provides continuous heat retention, light weight, and flexibility.

本発明で使用するサイドバイサイド型複合繊維(A)は、一価金属のNa塩型またはK塩型のカルボキシル基を有する架橋ポリアクリレート系繊維であることが必要である。Mg塩型またはCa塩型の二価金属塩型は、吸湿発熱性を持つが、吸湿発熱時の初期の上昇温度が低いため、早期に暖かさや保温性を実感することを希望する場合には問題がある。また、Zn塩型等の他の二価金属塩型では、そもそも吸湿発熱性に劣り、快適な環境が得られないため、好ましくない。Na塩型またはK塩型の一価の金属塩型は、吸湿発熱時の初期の上昇温度が高いため、早期に暖かさを実感することができる。但し、Na塩型またはK塩型のカルボキシル基を有する架橋ポリアクリレート系繊維は、通常の繊維形態では、嵩高性が不足し、保温性が持続できないため、本発明では後述するような特殊な複合構造をとる。 The side-by-side type composite fiber (A) used in the present invention needs to be a crosslinked polyacrylate-based fiber having a Na salt type or K salt type carboxyl group of a monovalent metal. The Mg salt type or Ca salt type divalent metal salt type has hygroscopic heat generation, but since the initial rising temperature at the time of hygroscopic heat generation is low, if you want to feel warmth and heat retention at an early stage, There's a problem. Further, other divalent metal salt types such as Zn salt type are not preferable because they are inferior in hygroscopic heat generation and a comfortable environment cannot be obtained. The Na salt type or the K salt type monovalent metal salt type has a high initial temperature rise at the time of heat absorption and heat generation, so that the warmth can be felt at an early stage. However, the crosslinked polyacrylate fiber having a Na salt type or K salt type carboxyl group lacks bulkiness in a normal fiber form and cannot maintain heat retention. Therefore, a special composite as described later in the present invention. Take the structure.

本発明で使用するサイドバイサイド型複合繊維(A)は、アクリロニトリル含有率が異なる二種類のアクリロニトリル系重合体からなるサイドバイサイド型構造の中心部と、架橋構造およびNa塩型またはK塩型のカルボキシル基を有する表層部とからなる複合繊維である。本発明のサイドバイサイド型複合繊維(A)は、中心部とその周囲の表層部からなる複合構造を有しており、中心部で硬い構造を形成することにより嵩高性の向上に寄与させ、表層部で架橋構造およびNa塩型またはK塩型のカルボキシル基を存在させることにより高い吸湿発熱性の役割を担うようにしていることが特徴である。サイドバイサイド型複合繊維(A)は、全カルボキシル基量が3.5mmol/g以上であることが好ましく、最大10mmol/g程度、好ましくは最大6.5mmol/gまで可能である。実際には、このカルボキシル基量は、実質的に全量が表層部に存在する。また、サイドバイサイド型複合繊維の全カルボキシル基量のうち約90%以上、好ましくは約95%以上、より好ましくは実質的に全てがNa塩型またはK塩型のカルボキシル基であることが好ましい。具体的には、サイドバイサイド型複合繊維(A)は、Na塩型またはK塩型のカルボキシル基量が3.0mmol/g以上であることが好ましく、最大10mmol/g程度、好ましくは最大6.5mmol/gである。 The side-by-side composite fiber (A) used in the present invention has a central portion of a side-by-side structure composed of two types of acrylonitrile-based polymers having different acrylonitrile contents, a crosslinked structure, and a Na-salt-type or K-salt-type carboxyl group. It is a composite fiber composed of a surface layer portion having. The side-by-side type composite fiber (A) of the present invention has a composite structure consisting of a central portion and a surface layer portion around the central portion, and by forming a hard structure at the central portion, it contributes to improvement of bulkiness and the surface layer portion. It is characterized by having a crosslinked structure and the presence of Na-salt-type or K-salt-type carboxyl groups to play a role of high hygroscopic heat generation. The side-by-side type composite fiber (A) preferably has a total carboxyl group amount of 3.5 mmol / g or more, and can have a maximum of about 10 mmol / g, preferably a maximum of 6.5 mmol / g. In reality, substantially the entire amount of this carboxyl group is present in the surface layer portion. Further, it is preferable that about 90% or more, preferably about 95% or more, more preferably substantially all of the total carboxyl groups of the side-by-side type composite fiber are Na salt type or K salt type carboxyl groups. Specifically, the side-by-side type composite fiber (A) preferably has a Na salt type or K salt type carboxyl group amount of 3.0 mmol / g or more, preferably about 10 mmol / g, and preferably a maximum of 6.5 mmol. / G.

サイドバイサイド型複合繊維(A)は、原料繊維としてアクリロニトリル系繊維を使用し、アクリロニトリル系繊維は、アクリロニトリル系重合体から公知の方法で製造されることができる。アクリロニトリル系重合体は、アクリロニトリルが50重量%以上であることが好ましく、より好ましくは80重量%以上である。アクリロニトリルの含有量が少ない場合は、架橋構造が少なくなり、繊維物性が低下するおそれがある。架橋構造は、アクリロニトリル系重合体のニトリル基とヒドラジン系化合物等の窒素含有化合物を反応させることによって繊維中に導入されることができる。 The side-by-side type composite fiber (A) uses an acrylonitrile-based fiber as a raw material fiber, and the acrylonitrile-based fiber can be produced from an acrylonitrile-based polymer by a known method. The acrylonitrile-based polymer preferably contains 50% by weight or more of acrylonitrile, and more preferably 80% by weight or more. When the content of acrylonitrile is low, the crosslinked structure is reduced, and the physical characteristics of the fiber may be deteriorated. The crosslinked structure can be introduced into the fiber by reacting the nitrile group of the acrylonitrile-based polymer with a nitrogen-containing compound such as a hydrazine-based compound.

サイドバイサイド型複合繊維(A)は、アクリロニトリル含有率が異なる2種のアクリロニトリル系重合体をサイドバイサイドで接合した複合構造を有する。このようにアクリロニトリル含有率に差を持たせた2種のアクリロニトリル重合体をサイドバイサイドで配置することにより加水分解処理時の収縮の度合いに差が発生して捲縮を発現させることができ、捲縮の結果として嵩高性の向上に寄与することができる。なお、嵩高性を十分に向上させるためには、2種のアクリロニトリル系重合体間のアクリロニトリル含有率の差は1~8重量%、さらには1~5重量%であることが好ましく、2種のアクリロニトリル系重合体の複合比率(重量比)は20/80~80/20、さらには30/70~70/30であることが好ましい。 The side-by-side type composite fiber (A) has a composite structure in which two types of acrylonitrile-based polymers having different acrylonitrile contents are bonded side-by-side. By arranging the two types of acrylonitrile polymers having different acrylonitrile contents side by side in this way, a difference in the degree of shrinkage during the hydrolysis treatment can occur, and crimping can be expressed, resulting in crimping. As a result, it can contribute to the improvement of bulkiness. In order to sufficiently improve the bulkiness, the difference in the acrylonitrile content between the two types of acrylonitrile-based polymers is preferably 1 to 8% by weight, more preferably 1 to 5% by weight, and the two types. The composite ratio (weight ratio) of the acrylonitrile-based polymer is preferably 20/80 to 80/20, more preferably 30/70 to 70/30.

上記のような複合構造の繊維に対して表層部に架橋構造が導入される。架橋構造の導入には、従来公知の架橋剤を使用してもよいが、架橋構造の導入効率の点から窒素含有化合物を使用することが好ましい。窒素含有化合物としては、2個以上の1級アミノ基を有するアミノ化合物やヒドラジン系化合物を使用することが好ましい。2個以上の1級アミノ基を有するアミノ化合物としては、エチレンジアミン、ヘキサメチレンジアミンなどのジアミン系化合物、ジエチレントリアミン、3,3’-イミノビス(プロピルアミン)、N-メチル-3,3’-イミノビス(プロピルアミン)などのトリアミン系化合物、トリエチレンテトラミン、N,N’-ビス(3-アミノプロピル)-1,3-プロピレンジアミン、N,N’-ビス(3-アミノプロピル)-1,4-ブチレンジアミンなどのテトラミン系化合物、ポリビニルアミン、ポリアリルアミンなどであって2個以上の1級アミノ基を有するポリアミン系化合物などが例示される。また、ヒドラジン系化合物としては、水加ヒドラジン、硫酸ヒドラジン、塩酸ヒドラジン、臭化水素酸ヒドラジン、ヒドラジンカーボネートなどが例示される。なお、1分子中の窒素原子の数の上限は特に限定されないが、12個以下であることが好ましく、さらに好ましくは6個以下であり、特に好ましくは4個以下である。1分子中の窒素原子の数が上記上限を超えると、架橋剤分子が大きくなり、繊維内に架橋構造を導入しにくくなる場合がある。架橋構造を導入する条件としては、特に限定されるものではなく、採用する架橋剤とアクリロニトリル系繊維との反応性や架橋構造の量などを勘案し、適宜選定することができる。例えば、架橋剤としてヒドラジン系化合物を用いる場合は、ヒドラジン濃度として0.1~10重量%となるように上記のヒドラジン系化合物を添加した水溶液に、上述したアクリロニトリル系繊維を浸漬し、80~150℃、2~10時間で処理する方法などが挙げられる。 A crosslinked structure is introduced into the surface layer portion of the fiber having the composite structure as described above. A conventionally known cross-linking agent may be used for introducing the cross-linked structure, but it is preferable to use a nitrogen-containing compound from the viewpoint of the introduction efficiency of the cross-linked structure. As the nitrogen-containing compound, it is preferable to use an amino compound having two or more primary amino groups or a hydrazine-based compound. Examples of the amino compound having two or more primary amino groups include diamine compounds such as ethylenediamine and hexamethylenediamine, diethylenetriamine, 3,3'-iminobis (propylamine), and N-methyl-3,3'-iminobis ( Triamine compounds such as propylamine), triethylenetetramine, N, N'-bis (3-aminopropyl) -1,3-propylene diamine, N, N'-bis (3-aminopropyl) -1,4- Examples thereof include tetramine-based compounds such as butylene diamine, polyamine-based compounds having two or more primary amino groups such as polyvinylamine and polyallylamine. Examples of the hydrazine-based compound include hydrated hydrazine, hydrazine sulfate, hydrazine hydrochloride, hydrazine hydrobromide, and hydrazine carbonate. The upper limit of the number of nitrogen atoms in one molecule is not particularly limited, but is preferably 12 or less, more preferably 6 or less, and particularly preferably 4 or less. When the number of nitrogen atoms in one molecule exceeds the above upper limit, the cross-linking agent molecule becomes large, and it may be difficult to introduce a cross-linking structure into the fiber. The conditions for introducing the crosslinked structure are not particularly limited, and can be appropriately selected in consideration of the reactivity between the crosslinked agent to be adopted and the acrylonitrile-based fiber, the amount of the crosslinked structure, and the like. For example, when a hydrazine-based compound is used as a cross-linking agent, the above-mentioned acrylonitrile-based fiber is immersed in an aqueous solution to which the above-mentioned hydrazine-based compound is added so that the hydrazine concentration is 0.1 to 10% by weight, and 80 to 150 is used. Examples thereof include a method of processing at ° C. for 2 to 10 hours.

架橋構造が導入された後は、アルカリ性金属化合物による加水分解処理が施され、繊維の表層部に存在しているニトリル基が加水分解され、カルボキシル基が形成される。具体的な処理条件としては、上述したカルボキシル基量などを勘案し、処理薬剤の濃度、反応温度、反応時間等の諸条件を適宜設定すればよいが、好ましくは0.5~10重量%、さらに好ましくは1~5重量%の処理薬剤水溶液中、温度80~150℃で2~10時間処理する手段が工業的、繊維物性的にも好ましい。本発明においては、上述の架橋導入処理および加水分解処理は、上述のように順に行なうより、それぞれの処理薬剤を混合した水溶液を用いて、一括して同時処理することが好ましい。さらに、本発明では、この同時処理において、従来より低濃度のアルカリ金属化合物の緩い条件で行い、その後の酸処理を従来より高温での厳しい条件で行なうことが好ましい。このようにすることにより、本発明のサイドバイサイド型複合繊維(A)は、表層部に従来より多くのカルボキシル基が存在し、中心部に比較的硬いアクリロニトリル系重合体が温存された構造をとることができる。 After the crosslinked structure is introduced, a hydrolysis treatment with an alkaline metal compound is performed, and the nitrile group existing on the surface layer portion of the fiber is hydrolyzed to form a carboxyl group. As specific treatment conditions, various conditions such as the concentration of the treatment agent, the reaction temperature, and the reaction time may be appropriately set in consideration of the above-mentioned amount of carboxyl group and the like, but preferably 0.5 to 10% by weight. More preferably, a means for treating at a temperature of 80 to 150 ° C. for 2 to 10 hours in a 1 to 5% by weight aqueous solution of a treatment agent is industrially and fibrous. In the present invention, it is preferable that the above-mentioned cross-linking introduction treatment and hydrolysis treatment are collectively and simultaneously treated using an aqueous solution in which each treatment agent is mixed, rather than being carried out in order as described above. Further, in the present invention, it is preferable to carry out this simultaneous treatment under mild conditions of the alkali metal compound having a lower concentration than before, and then to carry out the acid treatment under severe conditions at a higher temperature than before. By doing so, the side-by-side type composite fiber (A) of the present invention has a structure in which more carboxyl groups are present in the surface layer portion and a relatively hard acrylonitrile-based polymer is preserved in the central portion. Can be done.

形成されたカルボキシル基には、そのカウンターイオンが水素イオン以外の陽イオンである塩型カルボキシル基と、そのカウンターイオンが水素イオンであるH型カルボキシル基がある。本発明では、高い吸湿率を得るためにH型カルボキシル基を塩型カルボキシル基に変換して、約90%以上、好ましくは約95%以上、より好ましくは実質的に全てのカルボキシル基を塩型カルボキシル基とすることが望ましい。塩型カルボキシル基を構成する陽イオンは、ナトリウムまたはカリウムのアルカリ金属である。多価の金属イオンであるマグネシウム、カルシウム、亜鉛などを採用した場合には、嵩高性が高いが、吸湿による初期の上昇温度が低いため、好ましくない。例えば、本発明のサイドバイサイド型複合繊維(A)は、アクリロニトリル含有率が異なる二種類のアクリロニトリル系重合体をサイド・バイ・サイドに接合したアクリロニトリル系繊維に対して、上述したような特有の条件で架橋導入、加水分解を施して、カルボキシル基を形成し、カウンターイオンにナトリウムまたはカリウムを選択すると得られる。 The formed carboxyl group includes a salt-type carboxyl group whose counter ion is a cation other than a hydrogen ion and an H-type carboxyl group whose counter ion is a hydrogen ion. In the present invention, the H-type carboxyl group is converted into a salt-type carboxyl group in order to obtain a high hygroscopicity, and about 90% or more, preferably about 95% or more, more preferably substantially all the carboxyl groups are salt-type. It is desirable to use a carboxyl group. The cations constituting the salt-type carboxyl group are alkali metals of sodium or potassium. When magnesium, calcium, zinc or the like, which are polyvalent metal ions, are used, they are bulky, but they are not preferable because the initial temperature rise due to moisture absorption is low. For example, the side-by-side composite fiber (A) of the present invention is a side-by-side bonded acrylonitrile-based polymer having two types of acrylonitrile-based polymers having different acrylonitrile contents under the specific conditions as described above. It is obtained by cross-linking introduction and hydrolysis to form a carboxyl group and selecting sodium or potassium as the counter ion.

H型カルボキシル基を塩型カルボキシル基に変換する方法としては、硝酸塩、硫酸塩、塩酸塩などの金属塩によるイオン交換処理、硝酸、硫酸、塩酸、蟻酸などによる酸処理、あるいは、アルカリ性金属化合物などによるpH調整処理などを施す方法が挙げられる。 As a method for converting an H-type carboxyl group into a salt-type carboxyl group, ion exchange treatment with a metal salt such as nitrate, sulfate or hydrochloride, acid treatment with nitric acid, sulfate, hydrochloric acid, formic acid or the like, or an alkaline metal compound or the like, etc. A method of performing a pH adjustment treatment or the like according to the above can be mentioned.

サイドバイサイド型複合繊維(A)は、横断面における表層部の占める面積が好ましくは5%以上35%以下、より好ましくは10%以上30%以下、さらに好ましくは10%以上20%以下である。表層部の面積が上記範囲未満であると、繊維中にカルボキシル基を十分に存在させることができず、高い吸湿発熱性を発揮することができない可能性がある。また、上記範囲を超えると、吸湿で繊維がへたりやすくなり、嵩高性に問題を生じる可能性がある。本発明のサイドバイサイド型複合繊維(A)は、カルボキシル基が実質的に存在しない中心部を多く存在させることによって、吸湿による繊維のへたりによる嵩高性の低下の影響が小さく、高い嵩高性を達成することができる。また、Na塩型またはK塩型のカルボキシル基を有する架橋ポリアクリレート系繊維は、図1に示すようにMg塩型等の二価の金属塩と比べて高い吸湿発熱性(特に初期の上昇温度)の特徴を有しており、本発明では、その特徴をそのまま享受することができる。 The area occupied by the surface layer portion in the cross section of the side-by-side type composite fiber (A) is preferably 5% or more and 35% or less, more preferably 10% or more and 30% or less, and further preferably 10% or more and 20% or less. If the area of the surface layer portion is less than the above range, the carboxyl group cannot be sufficiently present in the fiber, and it may not be possible to exhibit high hygroscopic heat generation. On the other hand, if it exceeds the above range, the fibers tend to be worn out due to moisture absorption, which may cause a problem in bulkiness. The side-by-side type composite fiber (A) of the present invention achieves high bulkiness by allowing a large number of central portions in which carboxyl groups are substantially absent, so that the influence of the decrease in bulkiness due to the sagging of the fiber due to moisture absorption is small. can do. Further, as shown in FIG. 1, the crosslinked polyacrylate fiber having a Na salt type or K salt type carboxyl group has higher hygroscopic heat generation (particularly the initial rising temperature) than the divalent metal salt such as the Mg salt type. ), And in the present invention, the characteristics can be enjoyed as they are.

本発明のサイドバイサイド型複合繊維(A)は、上述の特殊な複合構造のNa塩型またはK塩型のカルボキシル基を有する架橋ポリアクリレート系繊維からなるので、20℃×65%RHの環境下で5分以内に6.0~40%の範囲の吸湿率を容易に達成することができる。特に、本発明の吸湿発熱性繊維は、人間の肌が接触したときの最初の5分以内に高い吸湿発熱効果(高い上昇温度)を実感することができる。 Since the side-by-side type composite fiber (A) of the present invention is a crosslinked polyacrylate-based fiber having a Na salt type or K salt type carboxyl group having the above-mentioned special composite structure, it is in an environment of 20 ° C. × 65% RH. Moisture absorption in the range of 6.0-40% can be easily achieved within 5 minutes. In particular, the hygroscopic heat-generating fiber of the present invention can realize a high hygroscopic heat-generating effect (high rising temperature) within the first 5 minutes when it comes into contact with human skin.

また、本発明のサイドバイサイド型複合繊維(A)は、上述の特殊な複合構造のNa塩型またはK塩型のカルボキシル基を有する架橋ポリアクリレート系繊維からなるので、10~100cm/gの範囲の比容積を達成することができる。このような高い嵩高性は、特殊な複合構造のNa塩型またはK塩型のカルボキシル基を有する架橋ポリアクリレート系繊維が持つ高い嵩高性によってもたらされる。比容積が上記範囲未満であると、十分な空気を取り込んでいないために保温性が不十分となるおそれがある。比容積が上記範囲を超えると、少しの力を加えただけで簡単に型崩れを起こしてしまい、保形性が不足するおそれがある。Further, the side-by-side type composite fiber (A) of the present invention is composed of a crosslinked polyacrylate-based fiber having a Na salt type or K salt type carboxyl group having the above-mentioned special composite structure, and therefore has a range of 10 to 100 cm 3 / g. Specific volume can be achieved. Such high bulkiness is brought about by the high bulkiness of the crosslinked polyacrylate-based fiber having a Na salt type or K salt type carboxyl group having a special composite structure. If the specific volume is less than the above range, the heat retention may be insufficient because sufficient air is not taken in. If the specific volume exceeds the above range, the shape may be easily lost even if a small amount of force is applied, and the shape retention may be insufficient.

本発明で使用する中空ポリエステル繊維(B)は、内部に空洞または空隙を有するポリエステル繊維であり、断面に中空部が存在する限り、従来公知の詰綿用に適したポリエステル繊維を使用して製造されることができる。ポリエステル繊維としては、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート等が例示され、単独重合体だけでなく複数種のポリマーブレンドからなる共重合体の繊維を使用することができる。中空の形態のポリエステル繊維は、従来公知の方法で適宜得ることができるが、例えばポリエステルレジンペレットを溶融し、高温でC型ノズルから吐出し、巻取りローラーにて巻き取ることによって未延伸糸を得、次いで適切な延伸倍率で60~90℃の温度で延伸したり、弛緩熱処理を施すことによって得ることができる。中空ポリエステル繊維(B)の中空率は、特に限定されないが、軽量性、嵩高性、保温性などを考慮すると10%~60%が好ましい。 The hollow polyester fiber (B) used in the present invention is a polyester fiber having a cavity or a void inside, and is manufactured by using a conventionally known polyester fiber suitable for cotton padding as long as a hollow portion is present in the cross section. Can be done. Examples of the polyester fiber include polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate and the like, and not only homopolymers but also copolymer fibers composed of a plurality of polymer blends can be used. The hollow polyester fiber can be appropriately obtained by a conventionally known method. For example, the undrawn yarn is obtained by melting the polyester resin pellet, discharging it from a C-shaped nozzle at a high temperature, and winding it with a take-up roller. It can be obtained by stretching at a temperature of 60 to 90 ° C. at an appropriate stretching ratio, or by subjecting it to a relaxation heat treatment. The hollow ratio of the hollow polyester fiber (B) is not particularly limited, but is preferably 10% to 60% in consideration of lightness, bulkiness, heat retention and the like.

本発明で使用するサイドバイサイド型複合繊維(A)の単繊維繊度は1~15dtexであり、繊維長は10~50mmであることが好ましい。また、本発明で使用する中空ポリエステル繊維(B)の単繊維繊度は0.5~10dtexであり、繊維長は5~70mmであることが好ましい。単繊維繊度が上記範囲未満では、高い嵩高性や圧縮回復性が得られない可能性があり、上記範囲を越えると、風合いが硬くなり、寝具用などの中綿として適さない可能性がある。また、繊維長が上記範囲を逸脱すると、各繊維を混合してつぶ綿状に加工することが難しくなる可能性がある。 The single fiber fineness of the side-by-side type composite fiber (A) used in the present invention is preferably 1 to 15 dtex, and the fiber length is preferably 10 to 50 mm. Further, the single fiber fineness of the hollow polyester fiber (B) used in the present invention is preferably 0.5 to 10 dtex, and the fiber length is preferably 5 to 70 mm. If the single fiber fineness is less than the above range, high bulkiness and compression recovery may not be obtained, and if it exceeds the above range, the texture becomes hard and may not be suitable as batting for bedding or the like. Further, if the fiber length deviates from the above range, it may be difficult to mix the fibers and process them into a cotton-like shape.

本発明の中綿では、サイドバイサイド型複合繊維(A)と中空ポリエステル繊維(B)以外に中綿の全重量の30重量%以下の割合で他の従来公知の合成繊維(中空でないポリエステル繊維、ポリアミド繊維、ポリオレフィン繊維、ポリフェニレンサルファイド繊維等)を混合して使用することができる。本発明の中綿に含有されるサイドバイサイド型複合繊維(A)と中空ポリエステル繊維(B)の重量比は、好ましくは10:90~60:40、より好ましくは15:85~50:50である。サイドバイサイド型複合繊維(A)が上記範囲未満では、十分な吸湿発熱性が発揮できない可能性があり、また、上記範囲を越えると、コストが増加し、柔軟性も低下する可能性がある。 In the batting of the present invention, in addition to the side-by-side type composite fiber (A) and the hollow polyester fiber (B), other conventionally known synthetic fibers (non-hollow polyester fiber, polyamide fiber, etc.) at a ratio of 30% by weight or less of the total weight of the batting. Polyester fiber, polyphenylene sulfide fiber, etc.) can be mixed and used. The weight ratio of the side-by-side type composite fiber (A) and the hollow polyester fiber (B) contained in the batting of the present invention is preferably 10:90 to 60:40, more preferably 15:85 to 50:50. If the side-by-side type composite fiber (A) is less than the above range, sufficient hygroscopic heat generation may not be exhibited, and if it exceeds the above range, the cost may increase and the flexibility may decrease.

本発明の中綿は、上述のサイドバイサイド型複合繊維(A)と中空ポリエステル繊維(B)を必須成分として絡めて混合し、これをつぶ綿状に加工したものを使用することを特徴とする。つぶ綿状に加工する方法としては、従来公知の方法を採用することができるが、例えば各使用繊維を高速気流下で攪拌する方法、各使用繊維を攪拌機に入れて混合、攪拌する方法、各使用繊維を複数本引き揃えて集束処理を行なった後切断し、その後、繊維の融点未満の温度で熱処理して捲縮を発現させてファイバーボール状にする方法などを採用することができる。本発明の中綿を構成するつぶ綿は、それぞれが略球状であり、一つのつぶ綿の直径は、例えば5~50mm程度であることができる。 The batting of the present invention is characterized in that the above-mentioned side-by-side type composite fiber (A) and hollow polyester fiber (B) are entwined and mixed as essential components, and the batting is processed into a cotton-like shape. As a method for processing into a cotton-like shape, a conventionally known method can be adopted. For example, a method of stirring each used fiber under a high-speed air flow, a method of putting each used fiber in a stirrer, mixing and stirring, and each method. It is possible to adopt a method in which a plurality of fibers to be used are aligned, subjected to a focusing treatment, then cut, and then heat-treated at a temperature lower than the melting point of the fibers to develop crimping and form a fiber ball. Each of the crushed cottons constituting the batting of the present invention is substantially spherical, and the diameter of one crushed cotton can be, for example, about 5 to 50 mm.

本発明の中綿は、単独で使用するだけでなく、従来使用されている羽毛、綿、麻、羊毛、ナイロン、レーヨン、ポリエステル、アクリルなどの繊維とともに使用することができる。本発明の中綿は、上述のように軽量で嵩高性を有し、保温持続性、柔軟性を持つので、寝装寝具(掛け布団、敷き布団、枕など)の中綿あるいは秋冬用アウター衣料などの詰物としての中綿として極めて好適である。 The batting of the present invention can be used not only alone but also with conventionally used fibers such as feather, cotton, linen, wool, nylon, rayon, polyester and acrylic. As described above, the batting of the present invention is lightweight, bulky, heat-retaining, and flexible, so that it can be used as a batting for bedding (comforters, mattresses, pillows, etc.) or as a padding for outer clothing for autumn and winter. Very suitable as batting.

以下の実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例中の比率は断りのない限り重量基準で示す。実施例中の特性の評価方法は以下の通りである。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited thereto. The ratios in the examples are shown on a weight basis unless otherwise specified. The method for evaluating the characteristics in the examples is as follows.

(1)サイドバイサイド型複合繊維(A)のカルボキシル基量
(i)全カルボキシル基量
繊維試料約1gを、50mlの1mol/l塩酸水溶液に30分間浸漬する。次いで、繊維試料を、浴比1:500で水に浸漬する。15分後、浴pHが4以上であることを確認したら、乾燥させる(浴pHが4未満の場合は、再度水洗する)。次に、十分乾燥させた繊維試料約0.2gを精秤し(W1[g])、100mlの水を加え、さらに、15mlの0.1mol/l水酸化ナトリウム水溶液、0.4gの塩化ナトリウムおよびフェノールフタレインを添加して撹拌する。15分後、濾過によって試料繊維と濾液に分離し、引き続き試料繊維を、フェノールフタレインの呈色がなくなるまで水洗する。このときの水洗水と濾液をあわせたものを、フェノールフタレインの呈色がなくなるまで0.1mol/l塩酸水溶液で滴定し、塩酸水溶液消費量(V1[ml])を求める。得られた測定値から、次式によって全カルボキシル基量を算出する。
全カルボキシル基量[mmol/g]=(0.1×15-0.1×V1)/W1
(ii)塩型カルボキシル基量
上記の全カルボキシル基量の測定方法において、最初の1mol/l塩酸水溶液への浸漬およびそれに続く水洗を実施しないこと以外は同様にして、H型カルボキシル基量を算出する。かかるH型カルボキシル基量を上記の全カルボキシル基量から差し引くことで、塩型カルボキシル基量を算出する。
(1) Carboxyl group amount of side-by-side type composite fiber (A) (i) Total carboxyl group amount About 1 g of the fiber sample is immersed in 50 ml of a 1 mol / l hydrochloric acid aqueous solution for 30 minutes. The fiber sample is then immersed in water at a bath ratio of 1: 500. After 15 minutes, when it is confirmed that the bath pH is 4 or more, it is dried (if the bath pH is less than 4, wash again with water). Next, about 0.2 g of a sufficiently dried fiber sample is precisely weighed (W1 [g]), 100 ml of water is added, and 15 ml of a 0.1 mol / l sodium hydroxide aqueous solution and 0.4 g of sodium chloride are added. And phenolphthalein are added and stirred. After 15 minutes, the sample fibers and the filtrate are separated by filtration, and the sample fibers are subsequently washed with water until the coloration of phenolphthalein disappears. The sum of the water-washed water and the filtrate at this time is titrated with a 0.1 mol / l hydrochloric acid aqueous solution until the coloration of phenolphthalein disappears, and the hydrochloric acid aqueous solution consumption (V1 [ml]) is determined. From the obtained measured values, the total amount of carboxyl groups is calculated by the following formula.
Total carboxyl group amount [mmol / g] = (0.1 × 15-0.1 × V1) / W1
(Ii) Salt-type carboxyl group amount In the above-mentioned method for measuring the total carboxyl group amount, the H-type carboxyl group amount is calculated in the same manner except that the first immersion in a 1 mol / l hydrochloric acid aqueous solution and the subsequent washing with water are not performed. do. The salt-type carboxyl group amount is calculated by subtracting the H-type carboxyl group amount from the total carboxyl group amount described above.

(2)サイドバイサイド型複合繊維(A)の20℃×65%RH吸湿率
繊維試料約2.5gを、熱風乾燥器で105℃、16時間乾燥して重量を測定する(W2[g])。次に、該繊維試料を、温度20℃、65%RHに調節した恒温恒湿器に5分間入れておく。このようにして吸湿した繊維試料の重量を測定する(W3[g])。これらの測定結果から、次式によって20℃×65%RH吸湿率を算出する。
20℃×65%RH吸湿率[%]=(W3-W2)/W2×100
(2) 20 ° C. × 65% RH moisture absorption rate of the side-by-side type composite fiber (A) About 2.5 g of the fiber sample is dried at 105 ° C. for 16 hours in a hot air dryer and weighed (W2 [g]). Next, the fiber sample is placed in a constant temperature and humidity chamber adjusted to a temperature of 20 ° C. and 65% RH for 5 minutes. The weight of the fiber sample absorbed in this way is measured (W3 [g]). From these measurement results, the 20 ° C. × 65% RH hygroscopicity is calculated by the following formula.
20 ° C x 65% RH hygroscopicity [%] = (W3-W2) / W2 x 100

(3)サイドバイサイド型複合繊維(A)の比容積
繊維試料50gを軽く開繊してから、カード機で開繊し、積層する。試験片を10cm×10cmの大きさになるように6個切り出し、バットに入れて恒温恒湿機内に24hr以上放置する。恒温恒湿機から取出し、質量が10.0g~10.5gになるように積み重ね、作られた試験片を正確に秤量する。試験片に10cm×10cmのアクリル板を載せ、おもり500gを30秒間載せ、次にこのおもりを除き、30秒間放置する。この操作を3回繰り返し、おもり500gを除いて30秒間放置した後、四すみの高さを測定して平均値を求め、次式により比容積を算出する。
比容積(cm/g)=10×10×試料の四すみの高さの測定平均値(mm)/10/試験片の質量(g)
(3) Specific volume of side-by-side type composite fiber (A) 50 g of fiber sample is lightly opened, then opened with a card machine and laminated. Cut out 6 test pieces to a size of 10 cm × 10 cm, put them in a vat, and leave them in a constant temperature and humidity chamber for 24 hours or more. Take out from a constant temperature and humidity chamber, stack them so that the mass is 10.0 g to 10.5 g, and weigh the prepared test pieces accurately. A 10 cm × 10 cm acrylic plate is placed on the test piece, a weight of 500 g is placed on the test piece for 30 seconds, then the weight is removed and the weight is left for 30 seconds. This operation is repeated 3 times, and after leaving it for 30 seconds excluding the weight of 500 g, the height of the four corners is measured to obtain the average value, and the specific volume is calculated by the following formula.
Specific volume (cm 3 / g) = 10 × 10 × Measured average value of the height of the four corners of the sample (mm) / 10 / Mass of the test piece (g)

(4)サイドバイサイド型複合繊維(A)の上昇温度
ISO18782:2015に準拠して試料繊維の上昇温度を測定した。
(4) Increased temperature of side-by-side type composite fiber (A) The increased temperature of the sample fiber was measured according to ISO18782: 2015.

(5)中綿の比容積
上記(3)サイドバイサイド型複合繊維(A)の比容積と同じ方法で中綿の比容積を算出する。
(5) Specific volume of batting The specific volume of batting is calculated by the same method as the specific volume of (3) side-by-side type composite fiber (A) described above.

(6)中綿の上昇温度
ISO18782:2015に準拠して中綿試料の上昇温度を測定した。
(6) Ascending temperature of batting The ascending temperature of the batting sample was measured according to ISO18782: 2015.

(7)中綿の肌沿い性
中綿試料150gを30cm×30cmに縫製した布団側生地に均一に詰めてミニ布団を作成する。次に、直径5cm長さ30cmの木製の棒を準備し、台の上に寝かせておく。中綿試料を詰めたミニ布団を10cmの高さから木製棒の上に落とす。木製棒の接地点からミニ布団接地点までの距離を測定する。接地点間の距離が短ければ肌沿い性が良い。
(7) Skin-friendly batting A mini futon is prepared by uniformly packing 150 g of a batting sample into a futon-side fabric sewn to a size of 30 cm × 30 cm. Next, prepare a wooden stick with a diameter of 5 cm and a length of 30 cm and lay it on a table. Drop a mini duvet filled with batting samples from a height of 10 cm onto a wooden stick. Measure the distance from the grounding point of the wooden rod to the grounding point of the mini futon. The shorter the distance between the grounding points, the better the skin-likeness.

(8)中綿の軽量性
中綿試料を1000mlメスシリンダーに詰める。次にアクリル樹脂製天板5gを乗せ、容積が1000mlとなっているか確認する。そのときの中綿試料重量を測定する。
(8) Lightness of batting Fill a 1000 ml graduated cylinder with a batting sample. Next, place 5 g of the acrylic resin top plate and check if the volume is 1000 ml. The weight of the batting sample at that time is measured.

サイドバイサイド型複合繊維(A1)の作成
アクリロニトリル90重量%、アクリル酸メチルエステル10重量%のアクリロニトリル系重合体Ap(30℃ジメチルホルムアミド中での極限粘度[η]=1.5)、アクリロニトリル88重量%、酢酸ビニル12重量%のアクリロニトリル系重合体Bp([η]=1.5)をそれぞれ48重量%のロダンソーダ水溶液で溶解して、紡糸原液を調製した。特公昭39-24301号による複合紡糸装置にAp/Bpの複合比率(重量比)が50/50となるようにそれぞれの紡糸原液を導き、常法に従って紡糸、水洗、延伸、捲縮、熱処理をして、単繊維繊度3.3dtexの重合体ApとBpを複合させたサイド・バイ・サイド型原料繊維を得た。
Preparation of side-by-side composite fiber (A1) 90% by weight of acrylonitrile, 10% by weight of acrylic acid methyl ester Acrylonitrile-based polymer Ap (extreme viscosity in dimethylformamide at 30 ° C. [η] = 1.5), 88% by weight of acrylonitrile , 12% by weight of vinyl acetate, acrylonitrile-based polymer Bp ([η] = 1.5) was dissolved in 48% by weight of Rodin soda aqueous solution to prepare a spinning stock solution. Each spinning stock solution is guided to the composite spinning apparatus according to Tokusho No. 39-24301 so that the composite ratio (weight ratio) of Ap / Bp is 50/50, and spinning, washing with water, stretching, crimping, and heat treatment are performed according to a conventional method. Then, a side-by-side type raw material fiber in which a polymer Ap and Bp having a single fiber fineness of 3.3 dtex was combined was obtained.

該原料繊維に、水加ヒドラジン0.5重量%および水酸化ナトリウム1.6重量%を含有する水溶液中で、100℃×2時間、架橋導入処理および加水分解処理を同時に行い、8重量%硝酸水溶液で、120℃×3時間処理し、水洗した。得られた繊維を水に浸漬し、水酸化ナトリウムを添加してpH9に調整し、水洗、乾燥することにより、Na塩型カルボキシル基を有するNa塩型架橋ポリアクリレート系繊維(表層部面積18%、Na塩型カルボキシル基量3.8mmol/g)を得た。なお、かかる繊維の赤外線吸収測定においては、ニトリル基に由来する2250cm-1付近に吸収があり、繊維表層部においてはニトリル基の加水分解が進行しているが、繊維中心部においてはニトリル基が残存していることが確認された。In an aqueous solution containing 0.5% by weight of hydrated hydrazine and 1.6% by weight of sodium hydroxide in the raw material fiber, cross-linking introduction treatment and hydrolysis treatment were simultaneously carried out at 100 ° C. for 2 hours to obtain 8% by weight nitric acid. It was treated with an aqueous solution at 120 ° C. for 3 hours and washed with water. The obtained fiber is immersed in water, sodium hydroxide is added to adjust the pH to 9, washed with water, and dried to obtain a Na salt-type crosslinked polyacrylate-based fiber having a Na-salt-type carboxyl group (surface layer area: 18%). , Na salt type carboxyl group amount 3.8 mmol / g) was obtained. In the infrared absorption measurement of the fiber, there was absorption near 2250 cm -1 derived from the nitrile group, and the hydrolysis of the nitrile group was progressing in the fiber surface layer portion, but the nitrile group was present in the fiber center portion. It was confirmed that it remained.

サイドバイサイド型複合繊維(A2)の作成
上記のサイドバイサイド型複合繊維(A1)の作成においてpH9に調整するために添加される水酸化ナトリウムの代わりに水酸化カリウムを使用した以外は同じ方法でK塩型架橋ポリアクリレート系繊維(表層部面積18%、K塩型カルボキシル基量3.9mmol/g)を得た。
Preparation of side-by-side type composite fiber (A2) K-salt type by the same method except that potassium hydroxide was used instead of sodium hydroxide added to adjust the pH in the above-mentioned preparation of side-by-side type composite fiber (A1). Crosslinked polyacrylate fibers (surface layer area 18%, K-salt type carboxyl group amount 3.9 mmol / g) were obtained.

サイドバイサイド型複合繊維(A3)の作成
実施例1においてアクリロニトリル系重合体Apの組成をアクリロニトリル92重量%、アクリル酸メチルエステル8重量%に変更した以外は同じ方法でNa塩型架橋ポリアクリレート系繊維を得た(Na塩型カルボキシル基量3.8mmol/g)。
Preparation of Side-by-Side Composite Fiber (A3) Na salt-type crosslinked polyacrylate fiber was prepared by the same method except that the composition of the acrylonitrile polymer Ap was changed to 92% by weight of acrylonitrile and 8% by weight of acrylate methyl ester in Example 1. Obtained (Na salt type carboxyl group amount 3.8 mmol / g).

サイドバイサイド型複合繊維(A4)の作成
実施例1において架橋導入処理および加水分解処理に使用する水溶液中の水酸化ナトリウムの含有率を1.6重量%から1.8重量%に変更した以外は同じ方法でNa塩型架橋ポリアクリレート系繊維を得た(表層部面積23%、Na塩型カルボキシル基量4.9mmol/g)。
Preparation of Side-by-Side Composite Fiber (A4) Same as in Example 1 except that the content of sodium hydroxide in the aqueous solution used for the cross-linking introduction treatment and the hydrolysis treatment was changed from 1.6% by weight to 1.8% by weight. A Na salt-type crosslinked polyacrylate fiber was obtained by the method (surface layer area 23%, Na salt type carboxyl group amount 4.9 mmol / g).

サイドバイサイド型複合繊維(A5)の作成
アクリロニトリル90重量%、アクリル酸メチルエステル10重量%のアクリロニトリル系重合体Ap(30℃ジメチルホルムアミド中での極限粘度[η]=1.5)、アクリロニトリル88重量%、酢酸ビニル12重量%のアクリロニトリル系重合体Bp([η]=1.5)をそれぞれ48重量%のロダンソーダ水溶液で溶解して、紡糸原液を調製した。特公昭39-24301号による複合紡糸装置にAp/Bpの複合比率が50/50となるようにそれぞれの紡糸原液を導き、常法に従って紡糸、水洗、延伸、捲縮、熱処理をして、単繊維繊度3.3dtexの重合体ApとBpを複合させたサイド・バイ・サイド型原料繊維を得た。
Preparation of side-by-side composite fiber (A5) Acrylonitrile 90% by weight, acrylonitrile methyl ester 10% by weight acrylonitrile polymer Ap (extreme viscosity in dimethylformamide at 30 ° C. [η] = 1.5), acrylonitrile 88% by weight , 12% by weight of vinyl acetate, acrylonitrile-based polymer Bp ([η] = 1.5) was dissolved in 48% by weight of Rodin soda aqueous solution to prepare a spinning stock solution. Each spinning stock solution is guided to the composite spinning apparatus according to Tokusho No. 39-24301 so that the composite ratio of Ap / Bp is 50/50, and spinning, washing with water, stretching, crimping, and heat treatment are performed according to a conventional method. A side-by-side type raw material fiber obtained by combining a polymer Ap and Bp having a fiber fineness of 3.3 dtex was obtained.

該原料繊維に、水加ヒドラジン0.5重量%および水酸化ナトリウム1.6重量%を含有する水溶液中で、100℃×2時間、架橋導入処理および加水分解処理を同時に行い、8重量%硝酸水溶液で、120℃×3時間処理し、水洗した。得られた繊維を水に浸漬し、水酸化ナトリウムを添加してpH9に調整した後、繊維に含まれるカルボキシル基量の2倍に相当する硝酸マグネシウムを溶解させた水溶液に50℃×1時間浸漬することによりイオン交換処理を実施し、水洗、乾燥することによりMg塩型カルボキシル基を有するMg塩型架橋ポリアクリレート系繊維(表層部面積18%、Mg塩型カルボキシル基量3.8mmol/g)を得た。 In an aqueous solution containing 0.5% by weight of hydrated hydrazine and 1.6% by weight of sodium hydroxide in the raw material fiber, cross-linking introduction treatment and hydrolysis treatment were simultaneously carried out at 100 ° C. for 2 hours to obtain 8% by weight nitric acid. It was treated with an aqueous solution at 120 ° C. for 3 hours and washed with water. The obtained fiber is immersed in water, sodium hydroxide is added to adjust the pH to 9, and then the solution is immersed in an aqueous solution containing magnesium nitrate, which is twice the amount of the carboxyl group contained in the fiber, at 50 ° C. for 1 hour. After performing ion exchange treatment, washing with water and drying, the Mg salt-type crosslinked polyacrylate-based fiber having an Mg-salt-type carboxyl group (surface layer area 18%, Mg salt-type carboxyl group amount 3.8 mmol / g) Got

サイドバイサイド型複合繊維(A6)の作成
アクリロニトリル90重量%、アクリル酸メチルエステル10重量%のアクリロニトリル系重合体Ap(30℃ジメチルホルムアミド中での極限粘度[η]=1.5)、アクリロニトリル88重量%、酢酸ビニル12重量%のアクリロニトリル系重合体Bp([η]=1.5)をそれぞれ48重量%のロダンソーダ水溶液で溶解して、紡糸原液を調製した。特公昭39-24301号による複合紡糸装置にAp/Bpの複合比率が50/50となるようにそれぞれの紡糸原液を導き、常法に従って紡糸、水洗、延伸、捲縮、熱処理をして、単繊維繊度3.3dtexの重合体ApとBpを複合させたサイド・バイ・サイド型原料繊維を得た。
Preparation of side-by-side composite fiber (A6) 90% by weight of acrylonitrile, 10% by weight of acrylic acid methyl ester Acrylonitrile-based polymer Ap (extreme viscosity in dimethylformamide at 30 ° C. [η] = 1.5), 88% by weight of acrylonitrile , 12% by weight of vinyl acetate, acrylonitrile-based polymer Bp ([η] = 1.5) was dissolved in 48% by weight of Rodin soda aqueous solution to prepare a spinning stock solution. Each spinning stock solution is guided to the composite spinning apparatus according to Tokusho No. 39-24301 so that the composite ratio of Ap / Bp is 50/50, and spinning, washing with water, stretching, crimping, and heat treatment are performed according to a conventional method. A side-by-side type raw material fiber obtained by combining a polymer Ap and Bp having a fiber fineness of 3.3 dtex was obtained.

該原料繊維に、水加ヒドラジン0.5重量%および水酸化ナトリウム1.6重量%を含有する水溶液中で、100℃×2時間、架橋導入処理および加水分解処理を同時に行い、8重量%硝酸水溶液で、120℃×3時間処理し、水洗した。得られた繊維を水に浸漬し、水酸化ナトリウムを添加してpH9に調整した後、繊維に含まれるカルボキシル基量の2倍に相当する硝酸カルシウムを溶解させた水溶液に50℃×1時間浸漬することによりイオン交換処理を実施し、水洗、乾燥することによりCa塩型カルボキシル基を有するCa塩型架橋ポリアクリレート系繊維(表層部面積18%、Ca塩型カルボキシル基量3.9mmol/g)を得た。 In an aqueous solution containing 0.5% by weight of hydrated hydrazine and 1.6% by weight of sodium hydroxide in the raw material fiber, cross-linking introduction treatment and hydrolysis treatment were simultaneously carried out at 100 ° C. for 2 hours to obtain 8% by weight nitric acid. It was treated with an aqueous solution at 120 ° C. for 3 hours and washed with water. The obtained fiber is immersed in water, sodium hydroxide is added to adjust the pH to 9, and then the solution is immersed in an aqueous solution containing calcium nitrate, which is twice the amount of the carboxyl group contained in the fiber, at 50 ° C. for 1 hour. After performing ion exchange treatment, washing with water and drying, Ca salt-type crosslinked polyacrylate fiber having Ca salt-type carboxyl group (surface layer area 18%, Ca salt-type carboxyl group amount 3.9 mmol / g) Got

サイドバイサイド構造を持たない吸湿発熱性繊維(A7)の作成
アクリロニトリル90重量%、アクリル酸メチルエステル10重量%のアクリロニトリル系重合体Ap(30℃ジメチルホルムアミド中での極限粘度[η]=1.5)を48重量%のロダンソーダ水溶液で溶解して、紡糸原液を調製した。紡糸装置に紡糸原液を導き、常法に従って紡糸、水洗、延伸、捲縮、熱処理をして、単繊維繊度6.6dtexのサイドバイサイド構造を持たない原料繊維を得た。
Preparation of moisture-absorbing heat-generating fiber (A7) having no side-by-side structure Acrylonitrile-based polymer Ap of 90% by weight of acrylonitrile and 10% by weight of acrylate methyl ester Ap (extreme viscosity in dimethylformamide at 30 ° C. [η] = 1.5) Was dissolved in a 48 wt% rodane soda aqueous solution to prepare a spinning stock solution. The undiluted spinning solution was guided to a spinning apparatus and subjected to spinning, washing with water, stretching, crimping, and heat treatment according to a conventional method to obtain a raw material fiber having a single fiber fineness of 6.6 dtex and having no side-by-side structure.

該原料繊維に、水加ヒドラジン0.5重量%および水酸化ナトリウム1.6重量%を含有する水溶液中で、100℃×2時間、架橋導入処理および加水分解処理を同時に行い、8重量%硝酸水溶液で、120℃×3時間処理し、水洗した。得られた繊維を水に浸漬し、水酸化ナトリウムを添加してpH9に調整し、水洗、乾燥することにより、Na塩型カルボキシル基を有するNa塩型架橋ポリアクリレート系繊維を得た。 In an aqueous solution containing 0.5% by weight of hydrated hydrazine and 1.6% by weight of sodium hydroxide in the raw material fiber, cross-linking introduction treatment and hydrolysis treatment were simultaneously carried out at 100 ° C. for 2 hours to obtain 8% by weight nitric acid. It was treated with an aqueous solution at 120 ° C. for 3 hours and washed with water. The obtained fiber was immersed in water, sodium hydroxide was added to adjust the pH to 9, washed with water, and dried to obtain a Na-salt-type crosslinked polyacrylate-based fiber having a Na-salt-type carboxyl group.

中空ポリエステル繊維(B1)の作成
東洋紡(株)製のシュレープを使用した。この製品の太さは2.0dtexであり、繊維長は20mmであり、中空率は30%である。
Preparation of hollow polyester fiber (B1) A shrape manufactured by Toyobo Co., Ltd. was used. The thickness of this product is 2.0 dtex, the fiber length is 20 mm, and the hollow ratio is 30%.

中空でないポリエステル繊維(B2)の作成
ポリエチレンテレフタレートのペレットと平均粒子径0.4μmの炭酸カルシウム粒子3重量%を溶融混練した後、2.0dtexとなるように紡糸、延伸し、繊維長を20mmにカットした中空でないポリエステル繊維(中空率は0%)を作成した。
Preparation of non-hollow polyester fiber (B2) After melt-kneading polyethylene terephthalate pellets and 3% by weight of calcium carbonate particles with an average particle diameter of 0.4 μm, spinning and stretching to 2.0 dtex to make the fiber length 20 mm. A cut non-hollow polyester fiber (hollow ratio is 0%) was prepared.

中綿の作成
表1の記載の材料及び使用割合に従って各吸湿発熱性繊維とポリエステル繊維を混合し、ガーネットワイヤーが表面に設けられた複数のローラが設けられたカードで、開繊を十分に行い、空気の乱流の起きやすい円筒状空間の中で複数のフィンが着いて回転する回転体が設けられた部屋の中に、繊維を吹き込み所定時間乱流撹拌後に取り出せるようにした装置で、実施例1~12及び比較例1~5の中綿を得た。得られた中綿はいずれも、略球状のつぶ綿であり、一つのつぶ綿の直径は、約30mmであった。
Preparation of batting Mix each moisture-absorbing heat-generating fiber and polyester fiber according to the materials and usage ratios shown in Table 1, and sufficiently open the fibers with a card provided with multiple rollers provided with garnet wire on the surface. Example: An apparatus in which fibers are blown into a room provided with a rotating body in which a plurality of fins are attached and rotated in a cylindrical space where turbulent air flow is likely to occur, and the fibers can be taken out after turbulent flow stirring for a predetermined time. The batting of 1 to 12 and Comparative Examples 1 to 5 was obtained. All of the obtained batting were substantially spherical crushed cotton, and the diameter of one crushed cotton was about 30 mm.

表1に実施例1~12及び比較例1~5の中綿に使用した各材料や製造条件の詳細及び評価結果を示す。 Table 1 shows the details and evaluation results of each material and manufacturing conditions used for the batting of Examples 1 to 12 and Comparative Examples 1 to 5.

Figure 0007061292000001
Figure 0007061292000001

表1の結果から明らかなように、本発明の範囲に属する実施例1~12の中綿は、全ての評価項目において優れた結果を示しているのに対して、サイドバイサイド型複合繊維(A)がMg塩型やCa塩型の比較例1,2やつぶ綿加工をしていない比較例3や中空ポリエステル繊維を使用していない比較例4やサイドバイサイド構造をとらない吸湿発熱性繊維を使用した比較例5は、いずれかの評価項目において明確に劣る結果を示した。 As is clear from the results in Table 1, the battings of Examples 1 to 12 belonging to the scope of the present invention show excellent results in all the evaluation items, whereas the side-by-side type composite fiber (A) shows excellent results. Comparative Examples 1 and 2 of Mg salt type and Ca salt type, Comparative Example 3 not crushed, Comparative Example 4 not using hollow polyester fiber, and comparison using moisture-absorbing heat-generating fiber that does not have a side-by-side structure. Example 5 showed clearly inferior results in any of the endpoints.

本発明によれば、軽量で嵩高であり、保温性が高く、身体の動きに沿いやすい柔軟性を有する寝具や衣料用に適した中綿を提供することができ、特に羽毛代替用途において寄与することが大である。 According to the present invention, it is possible to provide a padding suitable for bedding and clothing which is lightweight, bulky, has high heat retention, and has flexibility that easily follows the movement of the body, and contributes particularly to feather replacement applications. Is big.

Claims (6)

アクリロニトリル含有率が異なる二種類のアクリロニトリル系重合体からなるサイドバイサイド型構造の中心部と、架橋構造、及びNa塩型又はK塩型のカルボキシル基を有する表層部とからなるサイドバイサイド型複合繊維(A)と、中空ポリエステル繊維(B)とを絡めて混合し、つぶ綿状にしたものを用いたこと、及びサイドバイサイド型複合繊維(A)の横断面における表層部の占める面積が5%以上35%以下であることを特徴とする中綿。 Side-by-side composite fiber (A) consisting of a central portion of a side-by-side structure composed of two types of acrylonitrile-based polymers having different acrylonitrile contents, a crosslinked structure, and a surface layer portion having a Na salt type or K salt type carboxyl group. And the hollow polyester fiber (B) were entwined and mixed to form a cotton-like material , and the area occupied by the surface layer portion in the cross section of the side-by-side type composite fiber (A) was 5% or more and 35% or less. Batting characterized by being . 含有されるサイドバイサイド型複合繊維(A)と中空ポリエステル繊維(B)の重量比が10:90~60:40であることを特徴とする請求項1に記載の中綿。 The batting according to claim 1, wherein the weight ratio of the side-by-side type composite fiber (A) to the hollow polyester fiber (B) contained is 10:90 to 60:40. サイドバイサイド型複合繊維(A)の全カルボキシル基量が3.5~10mmol/gであることを特徴とする請求項1又は2に記載の中綿。 The batting according to claim 1 or 2, wherein the side-by-side type composite fiber (A) has a total carboxyl group amount of 3.5 to 10 mmol / g. サイドバイサイド型複合繊維(A)のNa塩型又はK塩型のカルボキシル基量が3.0~10mmol/gであることを特徴とする請求項1~3のいずれかに記載の中綿。 The batting according to any one of claims 1 to 3, wherein the Na salt type or K salt type carboxyl group amount of the side-by-side type composite fiber (A) is 3.0 to 10 mmol / g. サイドバイサイド型複合繊維(A)の単繊維繊度が1~15dtexであり、繊維長が10~50mmであることを特徴とする請求項1~4のいずれかに記載の中綿。 The batting according to any one of claims 1 to 4, wherein the side-by-side type composite fiber (A) has a single fiber fineness of 1 to 15 dtex and a fiber length of 10 to 50 mm. 中空ポリエステル繊維(B)の単繊維繊度が0.5~10dtexであり、繊維長が5~70mmであることを特徴とする請求項1~5のいずれかに記載の中綿。 The batting according to any one of claims 1 to 5, wherein the hollow polyester fiber (B) has a single fiber fineness of 0.5 to 10 dtex and a fiber length of 5 to 70 mm.
JP2019509778A 2017-03-31 2018-03-26 Batting Active JP7061292B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017070673 2017-03-31
JP2017070673 2017-03-31
PCT/JP2018/012053 WO2018181138A1 (en) 2017-03-31 2018-03-26 Wadding

Publications (2)

Publication Number Publication Date
JPWO2018181138A1 JPWO2018181138A1 (en) 2020-04-09
JP7061292B2 true JP7061292B2 (en) 2022-04-28

Family

ID=63675978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019509778A Active JP7061292B2 (en) 2017-03-31 2018-03-26 Batting

Country Status (4)

Country Link
JP (1) JP7061292B2 (en)
KR (1) KR102478354B1 (en)
CN (1) CN110475924B (en)
WO (1) WO2018181138A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116024816A (en) * 2023-01-09 2023-04-28 深圳市如砥科技有限公司 Humidification heating fiber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3096328U (en) 2003-03-07 2003-09-12 東洋紡績株式会社 Bedding mat
JP2003286638A (en) 2002-03-27 2003-10-10 Mizuno Corp Heating material having improved heat retaining property and heat generating property
WO2013002367A1 (en) 2011-06-30 2013-01-03 東洋紡株式会社 Batting
WO2015041275A1 (en) 2013-09-20 2015-03-26 日本エクスラン工業株式会社 Cross-linked acrylate fiber and fiber structure containing same
WO2018061369A1 (en) 2016-09-29 2018-04-05 東洋紡株式会社 Batting

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810509B2 (en) * 1978-09-05 1983-02-25 日本エクスラン工業株式会社 Novel water-swellable fiber and method for producing the same
JPS55132754A (en) * 1979-04-02 1980-10-15 Japan Exlan Co Ltd High water absorbable sheet like fiber product
JPS55148263A (en) * 1979-05-09 1980-11-18 Toray Industries Synthetic fiber padding with excellent bulk restoration
DE4029809A1 (en) 1990-09-20 1992-03-26 Bayer Ag POLYISOCYANATE MIXTURE, A METHOD FOR THE PRODUCTION THEREOF AND ITS USE IN POLYURETHANE PAINTS
CN102772080A (en) * 2011-05-30 2012-11-14 上海水星家用纺织品股份有限公司 Temperature-adjusting warm-keeping quilt core and temperature-adjusting warm-keeping quilt with same
CN102587035A (en) * 2012-02-26 2012-07-18 昆山华阳复合材料科技有限公司 Manufacturing process for heat storage insulation cotton
JP6339861B2 (en) * 2014-05-29 2018-06-06 日本エクスラン工業株式会社 Filling, and futon and garment containing the filling
JP6312115B1 (en) * 2016-09-22 2018-04-18 山岸寛光 Cable, device, and power supply method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286638A (en) 2002-03-27 2003-10-10 Mizuno Corp Heating material having improved heat retaining property and heat generating property
JP3096328U (en) 2003-03-07 2003-09-12 東洋紡績株式会社 Bedding mat
WO2013002367A1 (en) 2011-06-30 2013-01-03 東洋紡株式会社 Batting
WO2015041275A1 (en) 2013-09-20 2015-03-26 日本エクスラン工業株式会社 Cross-linked acrylate fiber and fiber structure containing same
WO2018061369A1 (en) 2016-09-29 2018-04-05 東洋紡株式会社 Batting

Also Published As

Publication number Publication date
JPWO2018181138A1 (en) 2020-04-09
KR102478354B1 (en) 2022-12-15
CN110475924B (en) 2022-08-16
WO2018181138A1 (en) 2018-10-04
CN110475924A (en) 2019-11-19
KR20190133018A (en) 2019-11-29

Similar Documents

Publication Publication Date Title
JP6455680B2 (en) Cross-linked acrylate fiber and fiber structure containing the fiber
WO2015170741A1 (en) Wadding
JP7061292B2 (en) Batting
JP6339861B2 (en) Filling, and futon and garment containing the filling
KR102334183B1 (en) Hygroscopic exothermic fiber
WO2018061369A1 (en) Batting
JP2020070514A (en) Long and short composite spun yarn excellent in moisture absorbing and releasing property and abrasion resistance, and woven or knitted fabric
JP7210949B2 (en) Moisture-releasing and cooling fiber and fiber structure containing said fiber
JP6247801B1 (en) Batting
JP2004169240A (en) Fiber structure
KR102378343B1 (en) Hygroscopic granular cotton and batting containing the granular cotton
TWI707996B (en) Hygroscopic heating fiber
WO2017179379A1 (en) High volume, long-lasting high heat generation fiber as well as fiber structure, odor-eliminating material and padding containing said fiber
JP2016160564A (en) Short fiber for granulated wool and granulated wool, and wadding product using the same
WO2019123147A1 (en) Thermal insulation filling material, preparation method thereof, and thermal insulation article
WO2018029737A1 (en) Nonwoven fabric structure and padding and cushion material containing said structure
KR101186820B1 (en) Method for High Performance Heat-generating Finishing of Textile Products
JP2022132133A (en) Hydrophobized cross-linked hygroscopic fiber and fiber structure thereof
TW201936164A (en) Water-absorbing fiber precursor, water-absorbing nonwoven fabric precursor and water-absorbing nonwoven fabric; as well as facial mask containing the same and face mask having lotion already filled with, and their manufacturing method

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R151 Written notification of patent or utility model registration

Ref document number: 7061292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151