WO2017179379A1 - High volume, long-lasting high heat generation fiber as well as fiber structure, odor-eliminating material and padding containing said fiber - Google Patents

High volume, long-lasting high heat generation fiber as well as fiber structure, odor-eliminating material and padding containing said fiber Download PDF

Info

Publication number
WO2017179379A1
WO2017179379A1 PCT/JP2017/011416 JP2017011416W WO2017179379A1 WO 2017179379 A1 WO2017179379 A1 WO 2017179379A1 JP 2017011416 W JP2017011416 W JP 2017011416W WO 2017179379 A1 WO2017179379 A1 WO 2017179379A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
heat generation
moisture absorption
bulk
carboxyl group
Prior art date
Application number
PCT/JP2017/011416
Other languages
French (fr)
Japanese (ja)
Inventor
中村成明
小見山拓三
Original Assignee
日本エクスラン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本エクスラン工業株式会社 filed Critical 日本エクスラン工業株式会社
Priority to JP2018511946A priority Critical patent/JP6877700B2/en
Publication of WO2017179379A1 publication Critical patent/WO2017179379A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/46Compounds containing quaternary nitrogen atoms
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/267Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of unsaturated carboxylic esters having amino or quaternary ammonium groups

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

In a hygroscopic fiber with a cross-linked structure and 1-10 mmol/g of carboxyl groups, the present invention relates to a high volume, long-lasting high heat generation fiber characterized in that at least a portion of the carboxyl groups is in Mg salt or Ca salt form and an ammonium group-containing compound having one or more of primary - quaternary ammonium groups is attached. Said high volume, long-lasting high heat generation fiber has a combination of loft, high heat generation during initial moisture absorption, long-lasting heat generation, and odor-eliminating properties, and can be used, for example, in padding.

Description

高嵩高発熱持続性繊維、並びに該繊維を含有する繊維構造物、消臭素材及び中綿High-bulk and high-heat generation sustained fiber, and fiber structure, deodorant material and batting containing the fiber
本発明は高嵩高発熱持続性繊維、並びに該繊維を含有する繊維構造物、消臭素材及び中綿に関する。 The present invention relates to a high-bulk, high-heat-sustaining fiber, and a fiber structure, a deodorizing material, and a batting containing the fiber.
布団は人が睡眠する際に、広く用いられている寝具である。つまり布団は快適な睡眠を得るための道具であり、このため、体温が下がらないように保温性などの特性が求められる。このような観点から、従来の布団の中綿としては、高い嵩高性を有し空気を多く含むことで高い保温性を発現するポリエステルや羽毛が用いられてきた。 Futon is a bedding widely used when people sleep. In other words, the futon is a tool for obtaining a comfortable sleep. For this reason, characteristics such as heat retention are required so that the body temperature does not decrease. From this point of view, polyesters and feathers that have high bulkiness and exhibit high heat retention properties by containing a large amount of air have been used as the batting of conventional futons.
一方で、近年、より快適な布団が求められていることから、汗臭等の悪臭の消臭性を付与した布団(特許文献1及び特許文献2参照)や、より高い暖かさを求めポリエステルや羽毛にレーヨン(特許文献3参照)やMg塩型の吸湿繊維(特許文献4参照)などの吸湿発熱繊維を混綿した布団など様々な機能を付与した布団が提案されている。 On the other hand, since a more comfortable futon has been demanded in recent years, a futon imparted with a deodorant property such as sweat odor (see Patent Document 1 and Patent Document 2), polyester for seeking higher warmth, and the like A futon having various functions such as a futon made by blending feathers with moisture-absorbing exothermic fibers such as rayon (see Patent Document 3) and Mg salt-type moisture-absorbing fibers (see Patent Document 4) has been proposed.
しかし、特許文献1及び特許文献2の繊維では発熱持続性や嵩高性が不足している。また、レーヨンでは吸湿初期の発熱温度は高いものの発熱の持続性がなく、Mg塩型及びCa塩型の吸湿繊維では発熱の持続性は有するものの吸湿初期の発熱温度が低いという問題を有している。さらにこれらの繊維は消臭性を期待できるものでもない。このため、布団の快適さの向上についてはさらなる改善が望まれている。一方で、このような布団に対する改善を実現可能な消臭性、嵩高性、吸湿初期の高い発熱性及び発熱の持続性の全てを併せ持つ繊維は報告されていない。 However, the fibers of Patent Document 1 and Patent Document 2 lack heat generation sustainability and bulkiness. In addition, although rayon has a high exothermic temperature at the initial stage of moisture absorption, it has no sustainability of heat generation, and Mg salt type and Ca salt type hygroscopic fibers have a problem of low exotherm temperature at the initial stage of moisture absorption although it has sustained heat generation. Yes. Furthermore, these fibers are not expected to have deodorant properties. For this reason, the further improvement is desired about the improvement of the comfort of a futon. On the other hand, a fiber having all of deodorant property, bulkiness, high exothermic property at the initial stage of moisture absorption, and sustainability of exotherm that can realize improvement on such a futon has not been reported.
特開2013-204207号公報JP 2013-204207 A 国際公開第2013/069659号公報International Publication No. 2013/069659 特開2001-181961号公報JP 2001-181961 A 特許5242861号公報Japanese Patent No. 5242861
本発明は、かかる従来技術の現状に鑑みて創案されたものであり、その目的は消臭性、嵩高性、吸湿初期の高い発熱、発熱の持続性等の機能を併せ持つ繊維、並びに該繊維を含有する繊維構造物、消臭素材及び中綿を提供することにある。 The present invention was invented in view of the current state of the prior art, and the purpose thereof is a fiber having functions such as deodorizing property, bulkiness, high heat generation at the initial stage of moisture absorption, sustainability of heat generation, and the like. The object is to provide a fiber structure, a deodorizing material, and a batting.
本発明者らは、上述の目的を達成するために鋭意検討を進めた結果、Mg塩型の吸湿繊維にアンモニウム基含有化合物を付与することにより、消臭性、嵩高性、吸湿初期の高い発熱、発熱の持続性の機能のすべてを発現できることを見出し、本発明を達成した。 As a result of diligent investigations to achieve the above-mentioned object, the present inventors have provided an ammonium group-containing compound to the Mg salt-type moisture-absorbing fiber, thereby providing a deodorizing property, bulkiness, and high heat generation at the beginning of moisture absorption. The present invention has been achieved by finding that all the functions of sustaining fever can be expressed.
即ち、本発明は以下の手段により達成される。
(1) 架橋構造および1~10mmol/gのカルボキシル基を有する吸湿繊維において、カルボキシル基の少なくとも一部がMg塩、又は、Ca塩型であって、かつ、1~4級アンモニウム基のうちの1種類以上を有するアンモニウム基含有化合物が付着していることを特徴とする高嵩高発熱持続性繊維。
(2) アンモニウム基の含有量がカルボキシル基に対して1~100mol%であることを特徴とする(1)に記載の高嵩高発熱持続性繊維。
(3) アンモニウム基含有化合物が1分子中に複数のアンモニウム基を有するものであることを特徴とする(1)または(2)に記載の高嵩高発熱持続性繊維。
(4) (1)~(3)のいずれかに記載の高嵩高発熱持続性繊維を含む繊維構造物。
(5) (1)~(3)のいずれかに記載の高嵩高発熱持続性繊維を含む消臭素材。
(6) (1)~(3)のいずれかに記載の高嵩高発熱持続性繊維を含む中綿。
That is, the present invention is achieved by the following means.
(1) In the hygroscopic fiber having a crosslinked structure and a carboxyl group of 1 to 10 mmol / g, at least a part of the carboxyl group is an Mg salt or Ca salt type, and is one of the primary to quaternary ammonium groups A high-bulk and highly exothermic continuous fiber, characterized in that an ammonium group-containing compound having one or more types is adhered thereto.
(2) The highly bulky exothermic continuous fiber according to (1), wherein the ammonium group content is 1 to 100 mol% with respect to the carboxyl group.
(3) The high-bulk / heat-generating sustained fiber according to (1) or (2), wherein the ammonium group-containing compound has a plurality of ammonium groups in one molecule.
(4) A fiber structure comprising the high-bulk / heat-generating sustained fiber according to any one of (1) to (3).
(5) A deodorizing material comprising the highly bulky and heat-generating persistent fiber according to any one of (1) to (3).
(6) A batting comprising the high-bulk / heat-generating persistent fiber according to any one of (1) to (3).
本発明の高嵩高発熱持続性繊維は、嵩高性、吸湿初期の高い発熱、発熱の持続性、消臭性を併せ持つものである。かかる性能を有する本発明の高嵩高発熱持続性繊維は、例えば中綿などで利用することができる。 The high-bulk and high-heat generation sustainable fiber of the present invention has both high bulkiness, high heat generation at the initial stage of moisture absorption, sustained heat generation, and deodorizing property. The bulky heat-generating continuous fiber of the present invention having such performance can be used, for example, in batting.
実施例1、実施例2、実施例5および比較例1において得られた繊維の吸湿曲線を示す図である。It is a figure which shows the moisture absorption curve of the fiber obtained in Example 1, Example 2, Example 5, and Comparative Example 1. FIG. 実施例1、比較例1および比較例2において得られた繊維の吸湿発熱曲線を示す図である。It is a figure which shows the moisture absorption exothermic curve of the fiber obtained in Example 1, the comparative example 1, and the comparative example 2. FIG.
本発明に採用する吸湿繊維は、架橋構造とカルボキシル基を有することが必要である。かかる吸湿繊維としては、カルボキシル基又はそのアルカリ金属塩基などの親水性基含有モノマーと、カルボキシル基と反応してエステル架橋構造を形成できるヒドロキシル基含有モノマーなどとが共重合され、かつエステル架橋結合が導入されてなるポリアクリル酸系架橋体繊維、無水マレイン酸系架橋体繊維、アルギン酸系架橋体繊維などや、アクリロニトリル系繊維に架橋剤により架橋構造を導入した後、加水分解することによりカルボキシル基を導入した架橋アクリレート系繊維などが挙げられる。このうち、架橋アクリレート系繊維は、架橋剤による架橋条件、加水分解条件をコントロールすることにより、吸湿性に優れた繊維が得られるため、本発明に採用する吸湿繊維として好ましい。以下、かかる架橋アクリレート系繊維を例にとり、本発明の高嵩高発熱持続性繊維について詳述する。 The hygroscopic fiber employed in the present invention needs to have a crosslinked structure and a carboxyl group. As such a moisture absorbing fiber, a hydrophilic group-containing monomer such as a carboxyl group or an alkali metal base thereof is copolymerized with a hydroxyl group-containing monomer that can react with the carboxyl group to form an ester cross-linked structure, and has an ester cross-linking bond. After introducing a crosslinked structure into the introduced polyacrylic acid-based crosslinked fiber, maleic anhydride-based crosslinked fiber, alginic acid-based crosslinked fiber, etc. or acrylonitrile-based fiber with a crosslinking agent, the carboxyl group is obtained by hydrolysis. Introduced cross-linked acrylate fiber and the like. Among these, the cross-linked acrylate fiber is preferable as the hygroscopic fiber employed in the present invention because a fiber excellent in hygroscopicity can be obtained by controlling the cross-linking conditions and hydrolysis conditions with the cross-linking agent. Hereinafter, taking such a crosslinked acrylate fiber as an example, the high-bulk and heat-generating sustained fiber of the present invention will be described in detail.
架橋アクリレート系繊維の原料繊維であるアクリロニトリル系繊維は、アクリロニトリル系重合体から公知の方法に準じて製造される。該重合体の組成としては、アクリロニトリルが40重量%以上であることが好ましく、より好ましくは50重量%以上、さらに好ましくは80重量%以上である。後述するように、アクリロニトリル系繊維を形成するアクリロニトリル系共重合体のニトリル基とヒドラジン系化合物等の窒素含有化合物を反応させることで、繊維中に架橋構造が導入される。架橋構造は繊維物性に大きく影響する。アクリロニトリルの共重合組成が少なすぎる場合には、架橋構造が少なくならざるを得なくなり、繊維物性が不十分となる可能性があるが、アクリロニトリルの共重合組成を上記範囲とすることで良好な結果を得られやすくなる。 Acrylonitrile fiber, which is a raw material fiber for crosslinked acrylate fiber, is produced from an acrylonitrile polymer according to a known method. The composition of the polymer is preferably 40% by weight or more of acrylonitrile, more preferably 50% by weight or more, and still more preferably 80% by weight or more. As will be described later, a crosslinked structure is introduced into the fiber by reacting the nitrile group of the acrylonitrile copolymer forming the acrylonitrile fiber with a nitrogen-containing compound such as a hydrazine compound. The cross-linked structure greatly affects the fiber properties. When the copolymerization composition of acrylonitrile is too small, the cross-linked structure is inevitably reduced, and the fiber physical properties may be insufficient, but good results can be obtained by setting the copolymerization composition of acrylonitrile within the above range. It becomes easy to obtain.
アクリロニトリル系重合体におけるアクリロニトリル以外の共重合成分としては、アクリロニトリルと共重合可能な単量体であれば特に限定されず、具体的にはメタリルスルホン酸、p-スチレンスルホン酸等のスルホン酸基含有単量体及びその塩、(メタ)アクリル酸、イタコン酸等のカルボン酸基含有単量体及びその塩、スチレン、酢酸ビニル、(メタ)アクリル酸エステル、(メタ)アクリルアミド等の単量体などが挙げられる。 The copolymer component other than acrylonitrile in the acrylonitrile-based polymer is not particularly limited as long as it is a monomer copolymerizable with acrylonitrile, and specifically, sulfonic acid groups such as methallyl sulfonic acid and p-styrene sulfonic acid. -Containing monomers and salts thereof, carboxylic acid group-containing monomers such as (meth) acrylic acid and itaconic acid and salts thereof, monomers such as styrene, vinyl acetate, (meth) acrylic acid esters and (meth) acrylamides Etc.
また、本発明に採用するアクリロニトリル系繊維の形態としては、短繊維、トウ、糸、編織物、不織布等いずれの形態のものでもよく、また、製造工程中途品、廃繊維などでも採用できる。 The form of the acrylonitrile fiber employed in the present invention may be any form such as short fiber, tow, yarn, knitted fabric, and non-woven fabric, and may be employed as an intermediate product in the manufacturing process, waste fiber, or the like.
アクリロニトリル系繊維に架橋構造を導入するための架橋剤としては、従来公知のいずれの架橋剤も使用することができるが、窒素含有化合物を使用することが架橋反応の効率及び取扱いの容易さの点から好ましい。この窒素含有化合物は1分子中に2個以上の窒素原子を有することが必要である。1分子中の窒素原子の数が2個未満であると、架橋反応が生じないからである。かかる窒素含有化合物の具体例としては、架橋構造を形成しうるものであれば特に限定されないが、2個以上の1級アミノ基を有するアミノ化合物やヒドラジン系化合物が好ましい。2個以上の1級アミノ基を有するアミノ化合物としては、エチレンジアミン、ヘキサメチレンジアミンなどのジアミン系化合物、ジエチレントリアミン、3,3’-イミノビス(プロピルアミン)、N-メチル-3,3’-イミノビス(プロピルアミン)などのトリアミン系化合物、トリエチレンテトラミン、N,N’-ビス(3-アミノプロピル)-1,3-プロピレンジアミン、N,N’-ビス(3-アミノプロピル)-1,4-ブチレンジアミンなどのテトラミン系化合物、ポリビニルアミン、ポリアリルアミンなどであって2個以上の1級アミノ基を有するポリアミン系化合物などが例示される。また、ヒドラジン系化合物としては、水加ヒドラジン、硫酸ヒドラジン、塩酸ヒドラジン、臭素酸ヒドラジン、ヒドラジンカーボネートなどが例示される。なお、1分子中の窒素原子の数の上限は特に限定されないが、12個以下であることが好ましく、さらに好ましくは6個以下であり、特に好ましくは4個以下である。1分子中の窒素原子の数が上記上限を超えると、架橋剤分子が大きくなり、繊維内に架橋を導入しにくくなる場合がある。 As a cross-linking agent for introducing a cross-linked structure into acrylonitrile fiber, any conventionally known cross-linking agent can be used, but the use of a nitrogen-containing compound is effective in the cross-linking reaction and ease of handling. To preferred. This nitrogen-containing compound needs to have two or more nitrogen atoms in one molecule. This is because a crosslinking reaction does not occur when the number of nitrogen atoms in one molecule is less than two. Specific examples of such nitrogen-containing compounds are not particularly limited as long as they can form a crosslinked structure, but amino compounds and hydrazine compounds having two or more primary amino groups are preferable. Examples of amino compounds having two or more primary amino groups include diamine compounds such as ethylenediamine and hexamethylenediamine, diethylenetriamine, 3,3′-iminobis (propylamine), N-methyl-3,3′-iminobis ( Triamine compounds such as propylamine), triethylenetetramine, N, N′-bis (3-aminopropyl) -1,3-propylenediamine, N, N′-bis (3-aminopropyl) -1,4- Examples include tetramine compounds such as butylenediamine, polyvinylamine, polyallylamine, and the like, and polyamine compounds having two or more primary amino groups. Examples of the hydrazine-based compound include hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine bromate, and hydrazine carbonate. The upper limit of the number of nitrogen atoms in one molecule is not particularly limited, but is preferably 12 or less, more preferably 6 or less, and particularly preferably 4 or less. When the number of nitrogen atoms in one molecule exceeds the above upper limit, the cross-linking agent molecule becomes large and it may be difficult to introduce cross-linking into the fiber.
架橋構造を導入する条件としては、特に限定されるものではなく、採用する架橋剤とアクリロニトリル系繊維との反応性や架橋構造の量、吸湿率、飽和吸湿率差、繊維物性などを勘案し、適宜選定することができる。例えば、架橋剤としてヒドラジン系化合物を用いる場合は、ヒドラジン濃度として3~40重量%となるように上記のヒドラジン系化合物を添加した水溶液に、上述したアクリロニトリル系繊維を浸漬し、50~120℃、5時間以内で処理する方法などが挙げられる。 The conditions for introducing the crosslinked structure are not particularly limited, taking into account the reactivity between the crosslinking agent and the acrylonitrile fiber employed, the amount of the crosslinked structure, the moisture absorption rate, the saturated moisture absorption difference, the physical properties of the fiber, etc. It can be selected as appropriate. For example, when a hydrazine compound is used as the crosslinking agent, the above acrylonitrile fiber is immersed in an aqueous solution to which the hydrazine compound is added so that the hydrazine concentration is 3 to 40% by weight, The method of processing within 5 hours is mentioned.
架橋構造が導入された繊維には、アルカリ性金属化合物による加水分解処理が施される。該処理により、繊維中に存在しているニトリル基やアミド基が加水分解され、カルボキシル基が形成される。カルボキシル基は、吸湿繊維において吸放湿性、吸湿発熱性、消臭性、後述するアンモニウム基含有化合物とのイオン結合性などの特性を発現させる要因であり、一般的には全カルボキシル基量として好ましくは1~10mmol/g、さらに好ましくは3~9.5mmol/gのカルボキシル基を形成することが望ましい。形成されるカルボキシル基の量は、加水分解処理条件によって調整することができる。 The fiber into which the crosslinked structure has been introduced is subjected to a hydrolysis treatment with an alkaline metal compound. By this treatment, the nitrile group or amide group present in the fiber is hydrolyzed to form a carboxyl group. The carboxyl group is a factor that causes the hygroscopic fiber to exhibit characteristics such as moisture absorption / release properties, moisture absorption exothermic property, deodorization, and ion binding with an ammonium group-containing compound described later, and is generally preferable as the total amount of carboxyl groups. It is desirable to form a carboxyl group of 1 to 10 mmol / g, more preferably 3 to 9.5 mmol / g. The amount of the carboxyl group formed can be adjusted according to the hydrolysis treatment conditions.
ここで、カルボキシル基には、そのカウンターイオンが水素イオン以外の陽イオンである塩型カルボキシル基と、そのカウンターイオンが水素イオンであるH型カルボキシル基がある。その比率は任意に調整することが可能であるが、塩型カルボキシル基とH型カルボキシル基の比率を好ましくは40:60~100:0、より好ましくは50:50~95:5、さらに好ましくは70:30~95:5の範囲内に調整することが望ましい。塩型カルボキシル基は、より温和な条件でアンモニウム基含有化合物とイオン結合することができ、H型カルボキシル基は、酸性を有する官能基であり、汗臭、加齢臭に共通して存在するアンモニアなどの塩基性物質を吸着消臭する部位であることから、上記比率に調整することが好ましい。なお、H型カルボキシル基の比率が0の場合であっても、アンモニア等は、繊維に吸湿された水分に溶け込むことで、ある程度消臭される。 Here, the carboxyl group includes a salt-type carboxyl group whose counter ion is a cation other than a hydrogen ion, and an H-type carboxyl group whose counter ion is a hydrogen ion. The ratio can be arbitrarily adjusted, but the ratio of the salt-type carboxyl group to the H-type carboxyl group is preferably 40:60 to 100: 0, more preferably 50:50 to 95: 5, still more preferably It is desirable to adjust within the range of 70:30 to 95: 5. The salt-type carboxyl group can ionically bond with the ammonium group-containing compound under milder conditions, and the H-type carboxyl group is a functional group having acidity, and is an ammonia that is commonly present in sweat odor and aging odor. Therefore, it is preferable to adjust the ratio to the above-mentioned ratio. Even when the ratio of the H-type carboxyl group is 0, ammonia or the like is deodorized to some extent by being dissolved in the moisture absorbed by the fiber.
塩型カルボキシル基を構成する陽イオンの種類としては、金属の陽イオンが代表的なものであり、低湿度の暖かい空気をもたらす吸湿発熱性と、持続的な保温性をもたらす嵩高性を高いレベルで両立する観点から、マグネシウム、又は、カルシウムが必須であり、その他にマンガン、銅、銀、ナトリウム、カリウム、アルミニウムなどから1種あるいは複数種を必要な特性に応じて共存させることができる。 The metal cation is a typical cation composing the salt-type carboxyl group, and it has a high level of moisture absorption exothermicity that provides warm air with low humidity and bulkiness that provides sustained heat retention. From the standpoint of compatibility, magnesium or calcium is essential, and one or more of manganese, copper, silver, sodium, potassium, aluminum, etc. can coexist depending on the required properties.
塩型カルボキシル基とH型カルボキシル基との比率を上記の範囲に調整する方法としては、硝酸塩、硫酸塩、塩酸塩などの金属塩によるイオン交換処理、硝酸、硫酸、塩酸、蟻酸などによる酸処理、あるいは、アルカリ性金属化合物などによるpH調整処理などを施す方法が挙げられる。 Methods for adjusting the ratio of salt-type carboxyl groups to H-type carboxyl groups within the above range include ion exchange treatment with metal salts such as nitrates, sulfates and hydrochlorides, and acid treatments with nitric acid, sulfuric acid, hydrochloric acid, formic acid, etc. Alternatively, a method of performing pH adjustment treatment with an alkaline metal compound or the like can be mentioned.
このようにして得られた架橋アクリレート系繊維や上述したその他の吸湿繊維は次に、アンモニウム基含有化合物の付着処理を施される。ここで、1~4級アンモニウム基とは、1つの窒素原子にそれぞれ1~4つの炭素原子が結合して陽イオンになったものをいう。ただし、複数の炭素原子は必ずしも異なる炭素原子である必要はなく、同一の炭素原子である場合を含む。本発明に採用するアンモニウム基含有化合物においては、水溶性であることが好ましく、1~4級アンモニウム基から1種あるいは複数種を必要な特性に応じて選択することができる。特に、4級アンモニウム基含有化合物は、熱的安定性が高いことから、好適である。 The cross-linked acrylate fiber thus obtained and the other hygroscopic fibers described above are then subjected to an adhesion treatment of the ammonium group-containing compound. Here, the primary to quaternary ammonium group means a cation formed by bonding 1 to 4 carbon atoms to one nitrogen atom. However, the plurality of carbon atoms are not necessarily different carbon atoms, and includes the case where they are the same carbon atom. The ammonium group-containing compound employed in the present invention is preferably water-soluble, and one or more of the primary to quaternary ammonium groups can be selected according to the required characteristics. In particular, a quaternary ammonium group-containing compound is preferable because of its high thermal stability.
処理条件としては、アンモニウム基含有化合物の濃度が0.1~10重量%、好ましくは0.2~5重量%の水溶液に繊維を浸漬し、20~80℃で30~240分処理するといった例を挙げることができる。アンモニウム基含有化合物の付着量としては、吸湿繊維由来の嵩高性、アンモニウム基含有化合物由来の吸湿速度を両立するために、繊維に付着したアンモニウム基量がカルボキシル基に対して1~100mol%、好ましくは2~25mol%であることが望ましい。100mol%を超える場合、吸湿繊維由来のMg塩又はCa塩が脱落しやすくなるので望ましくない。また、1mol%に満たない場合、アンモニウム基含有化合物に由来する効果が得られないことがある。 Examples of the treatment conditions include immersing the fibers in an aqueous solution having an ammonium group-containing compound concentration of 0.1 to 10% by weight, preferably 0.2 to 5% by weight, and treating at 20 to 80 ° C. for 30 to 240 minutes. Can be mentioned. The adhesion amount of the ammonium group-containing compound is 1 to 100 mol% with respect to the carboxyl group, preferably 1 to 100 mol% of the ammonium group attached to the fiber in order to achieve both the bulkiness derived from the moisture-absorbing fiber and the moisture absorption rate derived from the ammonium group-containing compound. Is preferably 2 to 25 mol%. When it exceeds 100 mol%, the Mg salt or Ca salt derived from the moisture-absorbing fiber is likely to fall off, which is not desirable. Moreover, when less than 1 mol%, the effect derived from an ammonium group containing compound may not be acquired.
アンモニウム基含有化合物の構造としては、テトラブチルアンモニウム、ステアリルトリメチルアンモニウム、ベンジルトリメチルアンモニウムなどの1分子中に1つのアンモニウム基を有するアンモニウム基含有化合物、ポリ(ジアリルジメチルアンモニウム)、ポリ(ジメチルアミノエチルメタクリレート塩)、ポリ(アリルアミン塩)、キトサン塩などのポリマーに代表される1分子中に複数のアンモニウム基を有するアンモニウム基含有化合物などから1種あるいは複数種を必要な特性に応じて選択することができる。ここで、アンモニウム基のカウンターイオンとしては特に限定されないが、ハロゲン化物イオンであるフッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、その他に水酸化物イオン、硫酸イオン、メチル硫酸イオン、酢酸イオン、リン酸イオン、クエン酸イオンなどを挙げることができる。 Examples of the structure of the ammonium group-containing compound include ammonium group-containing compounds having one ammonium group in one molecule such as tetrabutylammonium, stearyltrimethylammonium, and benzyltrimethylammonium, poly (diallyldimethylammonium), and poly (dimethylaminoethyl methacrylate). Salt), poly (allylamine salt), chitosan salt, and the like, one or more selected from ammonium group-containing compounds having a plurality of ammonium groups in one molecule, depending on the required properties it can. Here, the counter ions of the ammonium group are not particularly limited, but fluoride ions, chloride ions, bromide ions, iodide ions, which are halide ions, hydroxide ions, sulfate ions, methyl sulfate ions, acetic acid. And ions, phosphate ions, citrate ions, and the like.
特に、1分子中に複数のアンモニウム基を有するアンモニウム基含有化合物は、吸湿繊維の複数のカルボキシル基とイオン結合することから、洗濯時のアンモニウム基含有化合物の脱落に対する耐久性が向上するため、好適である。1分子中に複数のアンモニウム基を有するアンモニウム基含有化合物の分子量としては、吸湿繊維への付与の容易さから、平均分子量10000~300000、好ましくは平均分子量10000~50000であることが望ましい。 In particular, an ammonium group-containing compound having a plurality of ammonium groups in one molecule is ionically bonded to a plurality of carboxyl groups of the moisture-absorbing fiber, so that durability against dropping off of the ammonium group-containing compound during washing is improved. It is. The molecular weight of the ammonium group-containing compound having a plurality of ammonium groups in one molecule is desirably an average molecular weight of 10,000 to 300,000, and preferably an average molecular weight of 10,000 to 50,000, from the viewpoint of easy application to moisture-absorbing fibers.
上述のようにして得られる本発明の高嵩高発熱持続性繊維は、嵩高性、吸湿初期の高い発熱、発熱の持続性を並立するだけでなく、汗臭等の悪臭に対して即効性があり、繰り返して洗濯した後も消臭性能を維持できるものである。かかる性能は、アンモニウム基含有化合物をイオン結合させることにより発現されるものと考えられる。この理由は定かでないが、アンモニウム基含有化合物が、弱塩基の塩であり、弱酸性物質に対する消臭性能を有すること、また、潮解性を有することが、吸湿繊維と組み合わされることによって、消臭性や吸湿速度を相乗的に高めるのではないかと考えられる。 The high bulky exothermic sustaining fiber of the present invention obtained as described above has not only high bulkiness, high heat generation at the beginning of moisture absorption, and sustainability of heat generation, but also has an immediate effect on bad odor such as sweat odor. The deodorant performance can be maintained even after repeated washing. Such performance is considered to be expressed by ionic bonding of the ammonium group-containing compound. The reason for this is not clear, but the ammonium group-containing compound is a salt of a weak base, has a deodorizing performance against weakly acidic substances, and has a deliquescent property when combined with moisture absorbing fibers. It is thought that the property and moisture absorption rate may be increased synergistically.
本発明の高嵩高発熱持続性繊維は、単独で、あるいは、他の素材と組み合わせて繊維構造物を形成させることで、より有用なものとなる。かかる繊維構造物の外観形態としては、綿、糸、編地、織物、不織布、パイル布帛、中綿、紙状物等がある。該構造物内における本発明の高嵩高発熱持続性繊維の含有形態としては、他素材との混合により、実質的に均一に分布させたものや、複数の層を有する構造の場合には、いずれかの層(単数でも複数でも良い)に本発明の高嵩高発熱持続性繊維を集中して存在させたものや、夫々の層に本発明の高嵩高発熱持続性繊維を特定比率で分布させたもの等がある。高嵩高発熱持続性繊維の吸湿発熱特性を発現するためには、繊維構造物に対して好ましくは10重量%以上、より好ましくは30重量%以上含有させることが望ましい。 The bulky and heat-generating persistent fiber of the present invention becomes more useful by forming a fiber structure alone or in combination with other materials. Appearance forms of such a fiber structure include cotton, yarn, knitted fabric, woven fabric, non-woven fabric, pile fabric, batting, paper-like material, and the like. As the inclusion form of the high-bulk and heat-generating sustained fiber of the present invention in the structure, in the case of a structure that is substantially uniformly distributed by mixing with other materials or a structure having a plurality of layers, In such a layer (single or plural), the high-bulk and high-heat generation sustained fibers of the present invention are concentrated and present, and the high-bulk and high-heat generation continuous fibers of the present invention are distributed in a specific ratio in each layer. There are things. In order to express the hygroscopic heat generation characteristics of the high bulk and heat generation sustained fiber, the fiber structure is preferably contained in an amount of 10% by weight or more, more preferably 30% by weight or more.
また、本発明の高嵩高発熱持続性繊維は、汗臭等の悪臭に対して即効性があり、洗濯後も消臭性を維持できることから、該繊維や該繊維を含有する繊維構造物は消臭素材として利用することができる。本発明の高嵩高発熱持続性繊維を含有する繊維構造物を消臭素材として利用する場合、高嵩高発熱持続性繊維を好ましくは10重量%以上、より好ましくは30重量%以上含有させることが望ましい。 In addition, since the high-bulk / high-heat-sustained fiber of the present invention has an immediate effect against bad odors such as sweat odor and can maintain the deodorizing property even after washing, the fiber and the fiber structure containing the fiber are not dissipated. Can be used as odor material. When the fiber structure containing the high-bulk, high-heat generation-sustained fiber of the present invention is used as a deodorizing material, the high-bulk, high-heat generation-sustainable fiber is preferably contained at 10% by weight or more, more preferably 30% by weight or more. .
本発明の繊維構造物は、上記に例示した外観形態及び含有形態の組合せとして、無数のものが存在する。いかなる構造物とするかは、最終製品の使用態様(例えばシーズン性、運動性や内衣か中衣か外衣か、フィルター、カーテンやカーペット、布団や枕、クッション、インソール等としての利用の仕方など)、要求される機能、かかる機能を発現することへの高嵩高発熱持続性繊維の寄与の仕方等を勘案して適宜決定される。 The fiber structure of the present invention has innumerable combinations of appearance forms and inclusion forms exemplified above. What kind of structure is used depends on how the final product is used (for example, seasonality, mobility, inner / inner / outer clothing, filter, curtain / carpet, futon / pillow, cushion, insole, etc.) It is determined as appropriate in consideration of the required function, the manner in which the high-bulk / high-heat-sustaining fiber contributes to exhibiting such a function, and the like.
特に本発明の繊維構造物を中綿として利用した布団は、嵩高性、吸湿初期の高い発熱、発熱の持続性、汗臭等の悪臭に対して即効性と持続性のある消臭性を並立しており、高嵩高発熱持続性繊維の特徴を最大限生かすことが可能である。 In particular, the futon using the fiber structure of the present invention as a batting has both high bulkiness, high heat generation at the initial stage of moisture absorption, long-lasting heat generation, and immediate effect and long-lasting deodorizing property against bad odor such as sweat odor. Therefore, it is possible to make the most of the characteristics of the high-bulk and high-heat generation sustained fiber.
本発明の繊維構造物において併用しうる他素材としては、特に制限はなく、公用されている天然繊維、有機繊維、半合成繊維、合成繊維が用いられ、さらには無機繊維、ガラス繊維等も用途によっては採用し得る。具体的な例としては、綿、麻、絹、羊毛、ナイロン、レーヨン、ポリエステル、アクリル繊維などを挙げることができる。 Other materials that can be used in combination in the fiber structure of the present invention are not particularly limited, and publicly used natural fibers, organic fibers, semi-synthetic fibers, synthetic fibers are used, and inorganic fibers and glass fibers are also used. Some can be adopted. Specific examples include cotton, hemp, silk, wool, nylon, rayon, polyester, acrylic fiber, and the like.
以下、実施例により本発明を具体的に説明する。実施例中の部及び百分率は、断りのない限り重量基準で示す。なお、カルボキシル基量、塩型カルボキシル基とH型カルボキシル基の比率、アンモニウム基含有量、吸湿率、初期の吸湿発熱性、発熱持続性、嵩高性、消臭性は、以下の方法によって求めた。 Hereinafter, the present invention will be described specifically by way of examples. Parts and percentages in the examples are on a weight basis unless otherwise indicated. The amount of carboxyl groups, the ratio of salt-type carboxyl groups to H-type carboxyl groups, ammonium group content, moisture absorption, initial moisture absorption exothermic property, exothermic sustainability, bulkiness, and deodorizing properties were determined by the following methods. .
(1)カルボキシル基量
繊維試料約1gを、50mlの1mol/l塩酸水溶液に30分間浸漬する。次いで、繊維試料を、浴比1:500で水に浸漬する。15分後、浴pHが4以上であることを確認したら、乾燥させる(浴pHが4未満の場合は、再度水洗する)。次に、十分乾燥させた繊維試料約0.2gを精秤し(W1[g])、100mlの水を加え、さらに、15mlの0.1mol/l水酸化ナトリウム水溶液、0.4gの塩化ナトリウムおよびフェノールフタレインを添加して撹拌する。15分後、濾過によって試料繊維と濾液に分離し、引き続き試料繊維を、フェノールフタレインの呈色がなくなるまで水洗する。このときの水洗水と濾液をあわせたものを、フェノールフタレインの呈色がなくなるまで0.1mol/l塩酸水溶液で滴定し、塩酸水溶液消費量(V1[ml])を求める。得られた測定値から、次式によって全カルボキシル基量を算出する。
カルボキシル基量[mmol/g]=(0.1×15-0.1×V1)/W1
(1) About 1 g of a carboxyl group fiber sample is immersed in 50 ml of a 1 mol / l hydrochloric acid aqueous solution for 30 minutes. The fiber sample is then immersed in water at a bath ratio of 1: 500. When it is confirmed that the bath pH is 4 or more after 15 minutes, the bath is dried (if the bath pH is less than 4, it is washed again with water). Next, about 0.2 g of a sufficiently dried fiber sample is precisely weighed (W1 [g]), 100 ml of water is added, and 15 ml of a 0.1 mol / l sodium hydroxide aqueous solution and 0.4 g of sodium chloride are added. And add phenolphthalein and stir. After 15 minutes, the sample fibers and filtrate are separated by filtration, and the sample fibers are subsequently washed with water until there is no coloration of phenolphthalein. The combined washing water and filtrate at this time are titrated with 0.1 mol / l hydrochloric acid aqueous solution until the phenolphthalein is no longer colored, and the aqueous hydrochloric acid consumption (V1 [ml]) is determined. From the obtained measured value, the total carboxyl group amount is calculated by the following formula.
Amount of carboxyl group [mmol / g] = (0.1 × 15−0.1 × V1) / W1
(2)塩型カルボキシル基とH型カルボキシル基の比率   
上記のカルボキシル基量の測定方法において、最初の1mol/l塩酸水溶液への浸漬およびそれに続く水洗を実施しないこと以外は同様にして、H型カルボキシル基量を算出する。かかるH型カルボキシル基量を上記の全カルボキシル基量から差し引くことで、塩型カルボキシル基量を算出し、塩型カルボキシル基とH型カルボキシル基の比率を求める。
(2) Ratio of salt-type carboxyl group and H-type carboxyl group
In the above method for measuring the amount of carboxyl groups, the amount of H-type carboxyl groups is calculated in the same manner except that the first immersion in 1 mol / l hydrochloric acid aqueous solution and subsequent water washing are not performed. By subtracting the amount of H-type carboxyl groups from the total amount of carboxyl groups, the amount of salt-type carboxyl groups is calculated, and the ratio of salt-type carboxyl groups to H-type carboxyl groups is determined.
(3)アンモニウム基含有量
繊維試料(W2[g])をアンモニウム基含有化合物で処理した後、水洗し、熱風乾燥器で105℃、16時間乾燥して重量を測定する(W3[g])。処理前の繊維試料中のカルボキシル基のカウンターイオンの価数C、カウンターイオンの式量(M1[g/mol]、繊維試料の全カルボキシル基量(A[mmol/g])、アンモニウム基含有化合物の分子量(アンモニウム基含有化合物がポリマーの際はそのポリマーを構成する単量体の分子量)(M2[g/mol])を用いて、次式によって全カルボキシル基に対するアンモニウム基含有量を算出する。
アンモニウム基含有量[mol%]
  =[(W3-W2)/{M2-(M1/C)}]×1000/(A×W2)×100
(3) Ammonium group-containing fiber sample (W2 [g]) was treated with an ammonium group-containing compound, washed with water, dried in a hot air dryer at 105 ° C. for 16 hours, and weighed (W3 [g]). . The valence C of the counter ion of the carboxyl group in the fiber sample before the treatment, the formula amount of the counter ion (M1 [g / mol], the total amount of carboxyl groups of the fiber sample (A [mmol / g]), the ammonium group-containing compound (M2 [g / mol]) is used to calculate the ammonium group content with respect to all carboxyl groups using the following formula (M2 [g / mol]).
Ammonium group content [mol%]
= [(W3-W2) / {M2- (M1 / C)}] × 1000 / (A × W2) × 100
(4)吸湿率
繊維試料約5.0gを、熱風乾燥器で105℃、16時間乾燥して重量を測定する(W4[g])。次に、該繊維試料を、温度20℃、65%RHに調節した恒温恒湿器に24時間入れる。このようにして吸湿した繊維試料の重量を測定する(W5[g])。以上の測定結果から、次式によって20℃×65%RH吸湿率(飽和吸湿率)を算出する。
20℃×65%RH吸湿率[%]=(W5-W4)/W4×100
(4) About 5.0 g of moisture absorption fiber sample is dried with a hot air drier at 105 ° C. for 16 hours, and the weight is measured (W4 [g]). Next, the fiber sample is placed in a thermo-hygrostat adjusted to a temperature of 20 ° C. and 65% RH for 24 hours. The weight of the fiber sample absorbed in this way is measured (W5 [g]). From the above measurement results, the 20 ° C. × 65% RH moisture absorption rate (saturated moisture absorption rate) is calculated by the following equation.
20 ° C. × 65% RH moisture absorption [%] = (W5−W4) / W4 × 100
(5)初期の吸湿発熱性
試料約2.5gを熱風乾燥機で105℃、16時間乾燥して重量を測定する(W6[g])。続いて試料を円筒状メッシュカゴ(直径7.5cm、高さ9.8cm)に入れ、カゴごとすぐに20℃×65%RHに調節した恒温恒湿器に入れる。恒温恒湿器に入れた時点を吸湿開始時点として、10分毎に吸湿した試料の重量を測定する(W7[g])。以上の測定結果から、次式によって各測定時点での吸湿率を算出し、吸湿曲線を求めた。
吸湿率(%)=(W7-W6)/W6×100
なお、吸湿曲線における吸湿速度は、初期の吸湿発熱性と相関があり、吸湿速度をもって初期の吸湿発熱性を評価する。
(5) About 2.5 g of the initial hygroscopic exothermic sample is dried with a hot air dryer at 105 ° C. for 16 hours, and the weight is measured (W6 [g]). Subsequently, the sample is put into a cylindrical mesh basket (diameter 7.5 cm, height 9.8 cm), and the whole basket is immediately put into a constant temperature and humidity chamber adjusted to 20 ° C. × 65% RH. The weight of the sample that has absorbed moisture is measured every 10 minutes (W7 [g]). From the above measurement results, the moisture absorption rate at each measurement point was calculated by the following equation to obtain a moisture absorption curve.
Moisture absorption rate (%) = (W7−W6) / W6 × 100
The moisture absorption rate in the moisture absorption curve has a correlation with the initial moisture absorption exothermic property, and the initial moisture absorption exothermic property is evaluated based on the moisture absorption rate.
(6)発熱持続性
試料約7.0gを熱風乾燥機で105℃、16時間乾燥する。続いて試料をメッシュ袋(横7.0cm、縦9.5cm)に入れ、このメッシュ袋ごと20℃×40%RHに調節した恒温恒湿器に24時間入れる。その後、試料の入ったメッシュ袋を20℃×90%RHに調節した恒温恒湿器に入れる。20℃×90%RHの恒温恒湿器に入れた時点を吸湿開始時点として、各時間の試料の温度を、温度センサーを用いて測定する。以上の測定結果から、吸湿発熱曲線を求めた。なお、吸湿発熱曲線をもって発熱持続性を評価する。
(6) About 7.0 g of the heat generation sustaining sample is dried with a hot air dryer at 105 ° C. for 16 hours. Subsequently, the sample is put in a mesh bag (width: 7.0 cm, length: 9.5 cm), and the whole mesh bag is placed in a thermo-hygrostat adjusted to 20 ° C. × 40% RH for 24 hours. Thereafter, the mesh bag containing the sample is placed in a thermo-hygrostat adjusted to 20 ° C. × 90% RH. The temperature of the sample at each time is measured using a temperature sensor, with the time when the sample was placed in a constant temperature and humidity chamber of 20 ° C. × 90% RH as the start of moisture absorption. From the above measurement results, a hygroscopic exothermic curve was obtained. In addition, exothermic persistence is evaluated with a hygroscopic exothermic curve.
(7)嵩高性
試料50gを軽く開繊してから、カード機で開繊し、積層する。試験片は10cm×10cmの大きさになるように6個切り出し、バットに入れて恒温恒湿機内に24hr以上放置する。恒温恒湿機から取出し、質量が10.0g~10.5gになるように積み重ね、作られた試験片を正確に秤量する。試験片に10cm×10cmのアクリル板を載せ、おもり500gを30秒間載せ、次にこのおもりを除き、30秒間放置する。この操作を3回繰り返し、おもり500gを除いて30秒間放置した後、四すみの高さを測定して平均値を求め、次式により嵩高性を算出する。
嵩高性[cm/g]=10×10×試料の四すみの高さの平均値[mm]/10/試験片の質量[g]
(7) The bulky sample 50g is lightly opened, then opened with a card machine and laminated. Six test pieces are cut out so as to have a size of 10 cm × 10 cm, put in a bat, and left in a thermo-hygrostat for 24 hours or more. Take out from the thermo-hygrostat, stack it so that the mass is 10.0g to 10.5g, and accurately weigh the test piece made. A 10 cm × 10 cm acrylic plate is placed on the test piece, a weight of 500 g is placed for 30 seconds, then the weight is removed and left for 30 seconds. This operation is repeated three times, after removing the weight of 500 g and leaving it for 30 seconds, the height of the four corners is measured to obtain an average value, and the bulkiness is calculated by the following formula.
Mass bulkiness [cm 3 / g] = 10 × 10 × mean value of the four corners of the height of the sample [mm] / 10 / specimen [g]
(8)消臭性
繊維試料0.5gをテドラーバッグに入れ密封し、空気を1.5l注入する。次に、規定濃度(アンモニアの場合は100ppm、酢酸の場合は50ppm、イソ吉草酸の場合は40ppm、アセトアルデヒドの場合は14ppm)の臭気になるように、テドラーバッグ内に臭気を注入し、室温で120分放置後にテドラーバッグ内の臭気濃度(P1)を測定する。なお、測定は、イソ吉草酸およびノネナールについてはガスクロマトグラフを用いて、それ以外の臭気については北川式検知管を用いて実施する。また、試料を入れないブランクも同濃度で作成し、120分後に臭気濃度(P2)を測定し、空試験とする。以上の結果から、次式に従って、消臭率を算出する。
消臭率[%]=(P2-P1)/P2×100
なお、一般社団法人繊維評価技術協議会の認証基準によれば、アンモニア除去率70%以上、酢酸除去率80%以上、イソ吉草酸除去率85%以上をすべて満たす場合に、汗臭消臭効果を有すると認定される。
(8) 0.5 g of deodorant fiber sample is put in a Tedlar bag and sealed, and 1.5 l of air is injected. Next, an odor is injected into the Tedlar bag so as to have an odor of a specified concentration (100 ppm for ammonia, 50 ppm for acetic acid, 40 ppm for isovaleric acid, 14 ppm for acetaldehyde), and 120 ° C. at room temperature. The odor concentration (P1) in the Tedlar bag is measured after standing for minutes. The measurement is carried out using a gas chromatograph for isovaleric acid and nonenal, and a Kitagawa type detector tube for other odors. Moreover, the blank which does not put a sample is also made with the same density | concentration, and after 120 minutes, an odor density | concentration (P2) is measured and it is set as a blank test. From the above results, the deodorization rate is calculated according to the following equation.
Deodorization rate [%] = (P2-P1) / P2 × 100
According to the certification standards of the Japan Textile Evaluation Technology Council, when the ammonia removal rate is 70% or more, the acetic acid removal rate is 80% or more, and the isovaleric acid removal rate is 85% or more, the sweat odor deodorizing effect is satisfied. Certified as having
(9)洗濯を10回した後の消臭性
JIS-L-0213の103法(家庭用洗濯機用)に従って10回洗濯した繊維試料を用いて、上記の消臭性測定と同様の測定を行い、洗濯を10回した後の消臭性を求める。
(9) Deodorization after 10 washings Using a fiber sample washed 10 times in accordance with JIS-L-0213 method 103 (for household washing machines), the same deodorization measurement as described above was performed. And deodorant after 10 washings.
[実施例1]
アクリロニトリル90%及びアクリル酸メチル10%のアクリロニトリル系重合体を48%のロダンソーダ水溶液で溶解して、紡糸原液を調製した。この紡糸原液を、常法に従って紡糸、水洗、延伸、捲縮、熱処理をして、原料繊維を得た。この原料繊維1kgに、30重量%の水加ヒドラジン5kgを加え、115℃で2時間架橋処理した。該架橋繊維を水洗後、更に4.3重量%の水酸化ナトリウム水溶液5kgを加え、95℃で1時間加水分解した。次いで、硝酸水溶液で処理して、カルボキシル基をH型に変換し、水洗後、水酸化ナトリウム水溶液でpHを9.5に調整した。次に硫酸マグネシウム0.8kgを加え、70℃で1時間マグネシウム処理した。得られた吸湿繊維のカルボキシル基量、および塩型カルボキシル基とH型カルボキシル基の比率を表1に示す。次いで、該繊維をポリ(ジアリルジメチルアンモニウムクロライド)(平均分子量30000)の1%水溶液に浸漬して70℃×3時間処理した。その後水洗、乾燥処理を行い、高嵩高発熱持続性繊維を得た。該繊維を評価した結果を表1に示す。
[Example 1]
An spinning stock solution was prepared by dissolving an acrylonitrile polymer of 90% acrylonitrile and 10% methyl acrylate in a 48% aqueous rhodium soda solution. This spinning dope was spun, washed with water, drawn, crimped, and heat-treated according to a conventional method to obtain raw fibers. To 1 kg of this raw fiber, 5 kg of 30% by weight of hydrazine hydrate was added and crosslinked at 115 ° C. for 2 hours. After washing the crosslinked fiber with water, 5 kg of a 4.3 wt% aqueous sodium hydroxide solution was further added and hydrolyzed at 95 ° C. for 1 hour. Subsequently, it was treated with an aqueous nitric acid solution to convert the carboxyl group into an H type, washed with water, and adjusted to pH 9.5 with an aqueous sodium hydroxide solution. Next, 0.8 kg of magnesium sulfate was added and treated with magnesium at 70 ° C. for 1 hour. Table 1 shows the carboxyl group amount of the obtained moisture-absorbing fiber and the ratio of the salt-type carboxyl group and the H-type carboxyl group. Next, the fiber was immersed in a 1% aqueous solution of poly (diallyldimethylammonium chloride) (average molecular weight 30000) and treated at 70 ° C. for 3 hours. Thereafter, it was washed with water and dried to obtain a highly bulky exothermic continuous fiber. The results of evaluating the fibers are shown in Table 1.
[実施例2]
実施例1のポリ(ジアリルジメチルアンモニウムクロライド)(平均分子量30000)の濃度を0.25%水溶液に変更した以外は、実施例1と同じ処理を行い、高嵩高発熱持続性繊維を得た。該繊維を評価した結果を表1に示す。
[Example 2]
Except having changed the density | concentration of the poly (diallyl dimethyl ammonium chloride) (average molecular weight 30000) of Example 1 into the 0.25% aqueous solution, the same process as Example 1 was performed and the bulky exothermic sustainable fiber was obtained. The results of evaluating the fibers are shown in Table 1.
[実施例3]
実施例1のポリ(ジアリルジメチルアンモニウムクロライド)(平均分子量30000)の濃度を3%水溶液に変更した以外は、実施例1と同じ処理を行い、高嵩高発熱持続性繊維を得た。該繊維を評価した結果を表1に示す。
[Example 3]
Except having changed the density | concentration of the poly (diallyl dimethyl ammonium chloride) (average molecular weight 30000) of Example 1 to 3% aqueous solution, the same process as Example 1 was performed and the bulky exothermic sustainable fiber was obtained. The results of evaluating the fibers are shown in Table 1.
[実施例4]
実施例1の硫酸マグネシウムを硫酸カルシウムに変更した以外は、実施例1と同じ処理を行い、高嵩高発熱持続性繊維を得た。該繊維を評価した結果を表1に示す。
[Example 4]
Except for changing the magnesium sulfate of Example 1 to calcium sulfate, the same treatment as in Example 1 was performed to obtain a highly bulky exothermic continuous fiber. The results of evaluating the fibers are shown in Table 1.
[実施例5]
実施例1のポリ(ジアリルジメチルアンモニウムクロライド)(平均分子量30000)をポリ(ジメチルアミノエチルメタクリレートクロライド)(平均分子量30000)に変更した以外は、実施例1と同じ処理を行い、高嵩高発熱持続性繊維を得た。該繊維を評価した結果を表1に示す。
[Example 5]
Except that poly (diallyldimethylammonium chloride) (average molecular weight 30000) in Example 1 was changed to poly (dimethylaminoethyl methacrylate chloride) (average molecular weight 30000), the same treatment as in Example 1 was carried out, and high bulk and exothermic sustainability Fiber was obtained. The results of evaluating the fibers are shown in Table 1.
[実施例6]
実施例1の加水分解時間を4時間に変更した以外は、実施例1と同じ処理を行い、高嵩高発熱持続性繊維を得た。該繊維を評価した結果を表1に示す。
[Example 6]
Except that the hydrolysis time of Example 1 was changed to 4 hours, the same treatment as in Example 1 was performed to obtain a highly bulky exothermic sustainable fiber. The results of evaluating the fibers are shown in Table 1.
[実施例7]
実施例1の加水分解時間を15分に変更した以外は、実施例1と同じ処理を行い、高嵩高発熱持続性繊維を得た。該繊維を評価した結果を表1に示す。
[Example 7]
Except having changed the hydrolysis time of Example 1 into 15 minutes, the same process as Example 1 was performed and the high-bulk and high heat | fever sustainable fiber was obtained. The results of evaluating the fibers are shown in Table 1.
[比較例1]
実施例1においてポリ(ジアリルジメチルアンモニウムクロライド)(平均分子量30000)による処理を実施しなかったこと以外は、実施例1と同じ処理を行い、比較例1の繊維を得た。該繊維を評価した結果を表1に示す。
[Comparative Example 1]
A fiber of Comparative Example 1 was obtained in the same manner as in Example 1 except that the treatment with poly (diallyldimethylammonium chloride) (average molecular weight 30000) was not performed in Example 1. The results of evaluating the fibers are shown in Table 1.
[比較例2]
実施例1において硫酸マグネシウムによる処理を実施しなかったこと以外は、実施例1と同じ処理を行い、比較例2の繊維を得た。該繊維を評価した結果を表1に示す。
[Comparative Example 2]
A fiber of Comparative Example 2 was obtained by performing the same treatment as in Example 1 except that the treatment with magnesium sulfate was not carried out in Example 1. The results of evaluating the fibers are shown in Table 1.
[比較例3]
実施例1のポリ(ジアリルジメチルアンモニウムクロライド)(平均分子量30000)をポリエチレンイミン(平均分子量70000)に変更した以外は、実施例1と同じ処理を行い、比較例3の繊維を得た。該繊維を評価した結果を表1に示す。
[Comparative Example 3]
A fiber of Comparative Example 3 was obtained in the same manner as in Example 1 except that poly (diallyldimethylammonium chloride) (average molecular weight 30000) of Example 1 was changed to polyethyleneimine (average molecular weight 70000). The results of evaluating the fibers are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1の各実施例からわかるように、アンモニウム基含有化合物を付与した吸湿繊維において、高い嵩高性を維持している。また各実施例と比較例2からわかるように、Mg塩型カルボキシル基またはCa塩型カルボキシル基を有する場合においては十分な吸湿率と嵩高性を有するのに対して、Mg塩型カルボキシル基またはCa塩型カルボキシル基を有さず、Na塩型を有する場合では嵩高性が不足している。また比較例3においては、ポリエチレンイミンの処理前後における重量増加がほとんど見られなかったことから、ポリエチレンイミンのようなアミン類は、アンモニウム基含有化合物とは異なり、Mg塩型カルボキシル基を有する吸湿繊維に付与することが難しいと思われる。この理由は定かでないが、アミノ基がMg塩に配位し、吸湿繊維から脱落するためではないかと考えられる。 As can be seen from each example in Table 1, high bulkiness is maintained in the moisture-absorbing fiber provided with the ammonium group-containing compound. Further, as can be seen from each Example and Comparative Example 2, the Mg salt type carboxyl group or the Ca salt type carboxyl group has sufficient moisture absorption and bulkiness, whereas the Mg salt type carboxyl group or Ca In the case where it does not have a salt-type carboxyl group and has a Na salt type, the bulkiness is insufficient. Further, in Comparative Example 3, almost no increase in weight was observed before and after the treatment of polyethyleneimine, so that amines such as polyethyleneimine are different from ammonium group-containing compounds in that they are hygroscopic fibers having Mg salt type carboxyl groups. It seems difficult to give to. The reason for this is not clear, but it is thought that the amino group is coordinated to the Mg salt and falls off the hygroscopic fiber.
また、実施例1、実施例2、実施例5および比較例1の吸湿曲線を図1に示す。図1の実施例1、実施例2、実施例5および比較例1からわかるように、アンモニウム基含有化合物を特定の量で吸湿繊維に付着させることにより、吸湿初期の吸湿率が飛躍的に向上している。これは吸湿初期の段階で十分な吸湿発熱が起こることを意味しており、本発明の高嵩高発熱持続性繊維の初期の吸湿発熱性が高いことがわかる。 Moreover, the moisture absorption curve of Example 1, Example 2, Example 5, and Comparative Example 1 is shown in FIG. As can be seen from Example 1, Example 2, Example 5 and Comparative Example 1 in FIG. 1, the moisture absorption rate at the initial stage of moisture absorption is dramatically improved by adhering the ammonium group-containing compound to the moisture absorbent fiber in a specific amount. is doing. This means that sufficient hygroscopic heat generation occurs at the initial stage of moisture absorption, and it can be seen that the initial moisture absorption exothermic property of the high bulky exothermic continuous fiber of the present invention is high.
また、実施例1、比較例1および比較例2の吸湿発熱曲線を図2に示す。図2の実施例1、比較例1および比較例2からわかるように、初期の吸湿率の低い比較例1では持続性はあるものの、初期の吸湿発熱性が低い、一方で嵩高性の低い比較例2では初期の吸湿発熱性は高いものの、持続性が低くなっている。それに対して、本発明の高嵩高発熱持続性繊維は、高い嵩高性と高い初期の吸湿率を有することから、初期の吸湿発熱性と持続性を両立していることがわかる。 Moreover, the hygroscopic heat_generation | fever curve of Example 1, the comparative example 1, and the comparative example 2 is shown in FIG. As can be seen from Example 1, Comparative Example 1 and Comparative Example 2 in FIG. 2, although Comparative Example 1 having a low initial moisture absorption rate is durable, the initial moisture absorption exothermic property is low, while the bulkiness is low. In Example 2, although the initial moisture absorption exotherm is high, the sustainability is low. On the other hand, since the high bulkiness exothermic sustaining fiber of the present invention has high bulkiness and a high initial moisture absorption rate, it can be seen that both the initial moisture absorption exothermicity and sustainability are compatible.
また、実施例1および比較例1の消臭性と10回洗濯した後の消臭性能保持率を評価した。その結果を表2に示す。 Moreover, the deodorizing property of Example 1 and Comparative Example 1 and the deodorizing performance retention after washing 10 times were evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
表2の実施例1および比較例1からわかるように、洗濯を10回した後においても、各臭気に対して高い消臭率を有しており、本発明の高嵩高発熱持続性繊維は、繰り返し洗濯しても一般社団法人繊維評価技術協議会の認証基準を満たす消臭性能を維持できることが理解できる。
 
As can be seen from Example 1 and Comparative Example 1 in Table 2, even after washing 10 times, it has a high deodorization rate for each odor, It can be understood that even after repeated washing, it is possible to maintain the deodorizing performance that satisfies the certification criteria of the Japan Textile Evaluation Technology Council.

Claims (6)

  1. 架橋構造および1~10mmol/gのカルボキシル基を有する吸湿繊維において、カルボキシル基の少なくとも一部がMg塩、又は、Ca塩型であって、かつ、1~4級アンモニウム基のうちの1種類以上を有するアンモニウム基含有化合物が付着していることを特徴とする高嵩高発熱持続性繊維。 In the moisture-absorbing fiber having a crosslinked structure and a carboxyl group of 1 to 10 mmol / g, at least a part of the carboxyl group is Mg salt or Ca salt type, and one or more kinds of 1 to quaternary ammonium groups A highly bulky exothermic continuous fiber, characterized in that an ammonium group-containing compound having the above is adhered.
  2. アンモニウム基の含有量がカルボキシル基に対して1~100mol%であることを特徴とする請求項1に記載の高嵩高発熱持続性繊維。 The high-bulk / heat-generating sustained fiber according to claim 1, wherein the ammonium group content is 1 to 100 mol% with respect to the carboxyl group.
  3. アンモニウム基含有化合物が1分子中に複数のアンモニウム基を有するものであることを特徴とする請求項1または2に記載の高嵩高発熱持続性繊維。 The high-bulk / heat-generating sustained fiber according to claim 1 or 2, wherein the ammonium group-containing compound has a plurality of ammonium groups in one molecule.
  4. 請求項1~3のいずれかに記載の高嵩高発熱持続性繊維を含む繊維構造物。 A fiber structure comprising the high-bulk and high-heat generation-sustaining fiber according to any one of claims 1 to 3.
  5. 請求項1~3のいずれかに記載の高嵩高発熱持続性繊維を含む消臭素材。 A deodorizing material comprising the high-bulk and highly exothermic persistent fiber according to any one of claims 1 to 3.
  6. 請求項1~3のいずれかに記載の高嵩高発熱持続性繊維を含む中綿。
     
    A batting comprising the high-bulk and high-heat-generating persistent fiber according to any one of claims 1 to 3.
PCT/JP2017/011416 2016-04-14 2017-03-22 High volume, long-lasting high heat generation fiber as well as fiber structure, odor-eliminating material and padding containing said fiber WO2017179379A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018511946A JP6877700B2 (en) 2016-04-14 2017-03-22 High-bulk, high-heat-sustaining fibers, and fiber structures, deodorant materials, and batting containing the fibers.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-080902 2016-04-14
JP2016080902 2016-04-14

Publications (1)

Publication Number Publication Date
WO2017179379A1 true WO2017179379A1 (en) 2017-10-19

Family

ID=60042439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011416 WO2017179379A1 (en) 2016-04-14 2017-03-22 High volume, long-lasting high heat generation fiber as well as fiber structure, odor-eliminating material and padding containing said fiber

Country Status (2)

Country Link
JP (1) JP6877700B2 (en)
WO (1) WO2017179379A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105587A1 (en) * 2018-11-21 2020-05-28 日本エクスラン工業株式会社 High-speed moisture-absorbing/desorbing polymer, fiber structure containing said polymer, resin molded product, air-conditioning element, adsorption-type heat exchange module, and adsorption heat cycle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325940A (en) * 1995-06-05 1996-12-10 Japan Exlan Co Ltd Production of crosslinked acrylic fiber
JPH10251969A (en) * 1997-03-04 1998-09-22 Hiromoto Uejima Fiber generating heat with moisture and its production
JP2003129377A (en) * 2002-09-03 2003-05-08 Toyobo Co Ltd Method for producing moisture-absorbing or releasing fiber
JP2014012915A (en) * 2012-06-08 2014-01-23 Japan Exlan Co Ltd Crosslinked acrylate based super extra fine fiber structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325940A (en) * 1995-06-05 1996-12-10 Japan Exlan Co Ltd Production of crosslinked acrylic fiber
JPH10251969A (en) * 1997-03-04 1998-09-22 Hiromoto Uejima Fiber generating heat with moisture and its production
JP2003129377A (en) * 2002-09-03 2003-05-08 Toyobo Co Ltd Method for producing moisture-absorbing or releasing fiber
JP2014012915A (en) * 2012-06-08 2014-01-23 Japan Exlan Co Ltd Crosslinked acrylate based super extra fine fiber structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105587A1 (en) * 2018-11-21 2020-05-28 日本エクスラン工業株式会社 High-speed moisture-absorbing/desorbing polymer, fiber structure containing said polymer, resin molded product, air-conditioning element, adsorption-type heat exchange module, and adsorption heat cycle
JPWO2020105587A1 (en) * 2018-11-21 2021-10-07 日本エクスラン工業株式会社 High-speed moisture absorption / desorption polymer, fiber structure containing the polymer, resin molding, air conditioning element, sorption heat exchange module and adsorption heat cycle
JP7344474B2 (en) 2018-11-21 2023-09-14 日本エクスラン工業株式会社 High-speed moisture absorption and desorption polymers, fiber structures containing the polymers, resin moldings, air conditioning elements, sorption heat exchange modules, and adsorption heat cycles

Also Published As

Publication number Publication date
JPWO2017179379A1 (en) 2019-02-28
JP6877700B2 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
JP6455680B2 (en) Cross-linked acrylate fiber and fiber structure containing the fiber
JP5962928B2 (en) Hygroscopic deodorant fiber, method for producing the fiber, and fiber structure containing the fiber
WO2017179379A1 (en) High volume, long-lasting high heat generation fiber as well as fiber structure, odor-eliminating material and padding containing said fiber
JP2015224409A (en) Inner cotton, and futon and clothing including the inner cotton
JP6247800B1 (en) Hygroscopic exothermic fiber
WO2018061369A1 (en) Batting
JP4471878B2 (en) Wet exothermic processing method of cellulosic fiber
JPH09228240A (en) Acidic/basic gas absorbing fiber and its structure
KR102490200B1 (en) Fiber with moisture desorbing and cooling characteristics, and fiber structure containing the same
JP6792828B2 (en) Non-woven fabric structure and batting and cushioning material containing the structure
JP6247801B1 (en) Batting
JP7061292B2 (en) Batting
JP2000064175A (en) Fiber absorbing acid or aldehyde, and its structure
CN109642349B (en) Moisture-absorbing heat-generating fiber
KR102378343B1 (en) Hygroscopic granular cotton and batting containing the granular cotton
JP2003129377A (en) Method for producing moisture-absorbing or releasing fiber
KR101186820B1 (en) Method for High Performance Heat-generating Finishing of Textile Products

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018511946

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782197

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782197

Country of ref document: EP

Kind code of ref document: A1