JP7344474B2 - High-speed moisture absorption and desorption polymers, fiber structures containing the polymers, resin moldings, air conditioning elements, sorption heat exchange modules, and adsorption heat cycles - Google Patents

High-speed moisture absorption and desorption polymers, fiber structures containing the polymers, resin moldings, air conditioning elements, sorption heat exchange modules, and adsorption heat cycles Download PDF

Info

Publication number
JP7344474B2
JP7344474B2 JP2020558378A JP2020558378A JP7344474B2 JP 7344474 B2 JP7344474 B2 JP 7344474B2 JP 2020558378 A JP2020558378 A JP 2020558378A JP 2020558378 A JP2020558378 A JP 2020558378A JP 7344474 B2 JP7344474 B2 JP 7344474B2
Authority
JP
Japan
Prior art keywords
moisture absorption
polymer
desorption
moisture
desorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020558378A
Other languages
Japanese (ja)
Other versions
JPWO2020105587A1 (en
Inventor
哲 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Publication of JPWO2020105587A1 publication Critical patent/JPWO2020105587A1/en
Application granted granted Critical
Publication of JP7344474B2 publication Critical patent/JP7344474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/31Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated nitriles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Air Humidification (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、優れた吸放湿性能を短時間で発現することのできる高速吸放湿性重合体、ならびに該重合体を含有する繊維構造物、樹脂成型物、空調用素子、収着式熱交換モジュールおよび吸着式ヒートサイクルに関する。 The present invention relates to a high-speed moisture absorption and desorption polymer that can exhibit excellent moisture absorption and desorption performance in a short period of time, as well as fiber structures, resin molded products, air conditioning elements, and sorption type heat exchangers containing the polymer. Regarding modules and adsorption heat cycles.

従来の水蒸気を含む空気の除湿に用いられる吸湿素子や吸着式ヒートサイクルには、シリカゲル、ゼオライト、活性炭等の無機系吸湿材が用いられてきたが、吸湿量が少ない、再生に高温を要する、吸放湿の繰り返し耐久性に乏しいといった欠点があった。 Conventional moisture absorbing elements and adsorption heat cycles used to dehumidify air containing water vapor have used inorganic moisture absorbing materials such as silica gel, zeolite, and activated carbon. It had the disadvantage of poor durability against repeated moisture absorption and release.

これに対し、塩型カルボキシル基を含有する吸放湿性重合体が提案された。該吸放湿性重合体は、吸湿量が高く、低温再生が可能であり、吸放湿の繰り返し耐久性に優れるといった特徴がある(非特許文献1参照)。しかし、無機系吸湿材と比較して、吸湿速度に優位性が乏しいといった問題点があった。この種の吸放湿性重合体は、例えば、特許文献1に開示されている。 In response to this, a moisture-absorbing and desorbing polymer containing a salt-type carboxyl group has been proposed. The moisture-absorbing and desorbing polymer has a high moisture absorption capacity, can be regenerated at low temperatures, and has excellent durability against repeated moisture absorption and desorption (see Non-Patent Document 1). However, there was a problem in that it lacked superiority in moisture absorption rate compared to inorganic moisture absorbing materials. This type of moisture absorbing and releasing polymer is disclosed in Patent Document 1, for example.

この吸湿速度に対しては、例えば特許文献2では、吸放湿性重合体を特定の大きさの細孔を有する多孔質体とすることにより、吸湿速度に優れる吸湿材とする方法が提案されている。特許文献3では、吸放湿性重合体の含有するカルボキシル基をカリウム塩型として優れた吸湿速度を発現する方法が提案されている。しかし、依然として無機系吸湿材に対して優れた吸湿速度を発現できていないといった問題点がある。 Regarding this moisture absorption rate, for example, Patent Document 2 proposes a method of making a moisture absorbing material with an excellent moisture absorption rate by making a moisture absorbing and desorbing polymer into a porous body having pores of a specific size. There is. Patent Document 3 proposes a method in which the carboxyl group contained in a moisture-absorbing and desorbing polymer is made into a potassium salt type to exhibit an excellent moisture absorption rate. However, there is still a problem in that it has not been able to exhibit a moisture absorption rate superior to that of inorganic moisture absorption materials.

このような問題点から、現状、優れた吸湿量と吸湿速度の発現を両立できる吸湿材は無い。一方、吸着式ヒートサイクルの性能は如何に速く大きな吸湿量を得るか、即ち吸湿量と吸湿速度により決まるため、該吸着式ヒートサイクルの性能に制限がある。現段階での吸着式ヒートサイクルの性能では、装置の小型化が難しく普及が遅れており、とくに設置容積に限りがある車載用吸着式冷凍サイクルにおいては吸着材の性能不足の問題は顕著であり、実用化の妨げになっている。 Due to these problems, there is currently no moisture absorbent material that can exhibit both excellent moisture absorption amount and moisture absorption rate. On the other hand, the performance of the adsorption type heat cycle is determined by how quickly a large amount of moisture can be absorbed, that is, the amount of moisture absorbed and the rate of moisture absorption, so there is a limit to the performance of the adsorption type heat cycle. With the current performance of adsorption heat cycles, it is difficult to miniaturize the equipment, and its widespread use has been delayed.The problem of insufficient performance of the adsorbent is particularly noticeable in on-vehicle adsorption refrigeration cycles, which have limited installation space. , which is an impediment to practical application.

特開平8-225610号公報Japanese Patent Application Publication No. 8-225610 特開2000-017101号公報Japanese Patent Application Publication No. 2000-017101 特開2001-011320号公報Japanese Patent Application Publication No. 2001-011320

齋藤潔、外22名、「デシカント空調システムの基礎理論と最新技術」、第1版、S&T出版、2015年9月、p.75-83.Kiyoshi Saito, 22 others, “Basic theory and latest technology of desiccant air conditioning systems”, 1st edition, S&T Publishing, September 2015, p. 75-83.

本発明の目的は、高い吸放湿性を有し、かつその吸放湿性を短時間で発現することのできる、即ち吸放湿速度にも優れる重合体および該重合体を含有する繊維構造物、樹脂成型物、空調用素子、収着式熱交換モジュールおよび吸着式ヒートサイクルを提供することである。 The object of the present invention is to provide a polymer that has high moisture absorption and desorption properties and can express the moisture absorption and desorption properties in a short time, that is, has an excellent moisture absorption and release rate, and a fibrous structure containing the polymer. The present invention provides resin molded products, air conditioning elements, sorption heat exchange modules, and adsorption heat cycles.

本発明者は、吸放湿材料の吸放湿性能、特に吸放湿速度に焦点を絞り鋭意検討を進めてきた。その結果、カルボキシル基の対カチオンを嵩高く電荷密度の低い低配位性の有機オニウムイオンとすることで、該重合体の吸湿速度が大きく向上するという事実を見出し、本発明を完成するに至った。 The inventors of the present invention have conducted intensive studies focusing on the moisture absorption/desorption performance of moisture absorption/desorption materials, particularly the moisture absorption/desorption rate. As a result, they discovered that by using a bulky, low-charge density, low-coordination organic onium ion as the counter cation of the carboxyl group, the moisture absorption rate of the polymer could be greatly improved, leading to the completion of the present invention. Ta.

即ち、本発明は、以下の手段により達成される。
(1) 対カチオンが有機オニウムイオンであるカルボキシル基を2.0~8.0mmоl/g含有し、かつ架橋構造を有する有機系高分子であって、前記有機オニウムイオンが脂肪族アンモニウムイオン、ピリジニウムイオンおよびイミダゾリウムイオンよりなる群から選ばれる少なくとも1種類であり、前記有機オニウムイオンの含有する全てのアルキル基の炭素数が1~4であり、かつ前記有機オニウムイオンの含有する炭素数が1~20である事を特徴とする高速吸放湿性重合体。
That is, the present invention is achieved by the following means.
(1) An organic polymer containing 2.0 to 8.0 mmol/g of carboxyl groups whose countercation is an organic onium ion and having a crosslinked structure, wherein the organic onium ion is an aliphatic ammonium ion, a pyridinium ion, etc. at least one type selected from the group consisting of ion and imidazolium ion, all the alkyl groups contained in the organic onium ion have 1 to 4 carbon atoms, and the organic onium ion has 1 to 4 carbon atoms. A high-speed moisture absorbing and releasing polymer characterized by a molecular weight of 1 to 20 .

) 重合体の形状が繊維状、粒子状およびフィルム状のいずれかである事を特徴とする(1)に記載の高速吸放湿性重合体。

( 2 ) The high-speed moisture absorption and desorption polymer according to (1), characterized in that the polymer has a fibrous, particulate, or film-like shape.

) (1)または)に記載の高速吸放湿性重合体を含有する繊維構造物。
) (1)または)に記載の高速吸放湿性重合体を含有する樹脂成型物。
( 3 ) A fibrous structure containing the high-speed moisture absorbing and releasing polymer according to (1) or ( 2 ).
( 4 ) A resin molded product containing the high-speed moisture absorbing and desorbing polymer according to (1) or ( 2 ).

) (1)または)に記載の高速吸放湿性重合体を含有し、複数の気体貫通路を有することを特徴とする空調用素子。
) (1)または)に記載の高速吸放湿性重合体を、熱交換モジュールの表面の少なくとも一部に付着させたことを特徴とする収着式熱交換モジュール。
) (1)または)に記載の高速吸放湿性重合体を、吸着コアとして含有することを特徴とする吸着式ヒートサイクル。
( 5 ) An air conditioning element containing the high-speed moisture absorbing and desorbing polymer according to (1) or ( 2 ) and having a plurality of gas passages.
( 6 ) A sorption type heat exchange module, characterized in that the high-speed moisture absorbing and desorbing polymer according to (1) or ( 2 ) is attached to at least a portion of the surface of the heat exchange module.
( 7 ) An adsorption heat cycle characterized by containing the high-speed moisture absorbing and desorbing polymer according to (1) or ( 2 ) as an adsorption core.

本発明の高速吸放湿性重合体は、親水部であるカルボキシル基の対カチオンに嵩高く電子密度が低い低配位性の有機オニウムイオンを用いているため、水蒸気収着時のイオン解離が速く、優れた吸湿速度を発現できる。また、該高速吸放湿性重合体を収着コアとして用いた場合、非常に効率の高い省エネルギータイプの収着式ヒートサイクルを提供可能である。 The fast moisture absorbing and desorbing polymer of the present invention uses a bulky, low-coordination organic onium ion with low electron density as the counter cation of the carboxyl group, which is the hydrophilic part, so that the ion dissociates quickly during water vapor sorption. , can exhibit excellent moisture absorption rate. In addition, when the high-speed moisture absorption and desorption polymer is used as a sorption core, it is possible to provide a highly efficient and energy-saving sorption heat cycle.

吸放湿シートをコルゲート状に加工した片段シートの一例を示す図である。FIG. 2 is a diagram showing an example of a single-tiered sheet obtained by processing a moisture absorbing and releasing sheet into a corrugated shape. 吸放湿シートをハニカム状に加工した収着エレメントの一例を示す図である。It is a figure which shows an example of the sorption element which processed the moisture absorption/release sheet into a honeycomb shape. 吸放湿シートを加工しローター形状とした吸放湿素子の一例を示す図である。It is a figure which shows an example of the moisture absorption and release element which processed the moisture absorption and desorption sheet|seat and made it into the shape of a rotor. 図3に示すローター素子を用いたデシカント空調システムの一例を示す図である。4 is a diagram showing an example of a desiccant air conditioning system using the rotor element shown in FIG. 3. FIG. 図1に示す片段シートを通気方向が同方向になるように積層した吸放湿性ブロック素子の一例を示す図である。FIG. 2 is a diagram showing an example of a moisture absorbing and desorbing block element in which the single-tiered sheets shown in FIG. 1 are stacked so that the ventilation directions are in the same direction. 図1に示す片段シートを通気方向が異方向になるように交互積層した吸放湿性ブロック素子の一例を示す図である。FIG. 2 is a diagram showing an example of a moisture absorbing and desorbing block element in which the single-tiered sheets shown in FIG. 1 are alternately laminated so that the ventilation directions are in different directions. 図5に示すブロック素子を用いたバッチ切替式の調湿システムの一例を示す図である。FIG. 6 is a diagram showing an example of a batch switching type humidity control system using the block elements shown in FIG. 5. FIG. 高速吸放湿性重合体を用いた収着式熱交換モジュールの一例を示す図である。FIG. 2 is a diagram showing an example of a sorption heat exchange module using a high-speed moisture absorption and desorption polymer. 図8に示す収着式熱交換モジュールを用いた吸着式ヒートポンプシステムの一例を示す図である。9 is a diagram showing an example of an adsorption heat pump system using the adsorption heat exchange module shown in FIG. 8. FIG.

以下に本発明を詳細に説明する。まず本発明における高速吸放湿性重合体は、架橋構造を有し、かつ含有する全てのアルキル基の炭素数が1~4である有機オニウムイオンを対カチオンとするカルボキシル基(以下、有機オニウム塩型カルボキシル基という)を2.0~8.0mmol/g含有する重合体からなることが必要である。本発明では、有機オニウム塩型カルボキシル基とすることで、イオン対の解離速度と高分子鎖の柔軟性を高め、従来の高吸放湿性重合体と比較して吸湿速度を飛躍的に向上させたことを特徴としている。 The present invention will be explained in detail below. First, the fast moisture absorbing and desorbing polymer of the present invention has a crosslinked structure and has a carboxyl group (hereinafter referred to as organic onium salt It is necessary that the polymer contains 2.0 to 8.0 mmol/g of 2.0 to 8.0 mmol/g of carboxyl groups. In the present invention, by using an organic onium salt type carboxyl group, the dissociation rate of ion pairs and the flexibility of the polymer chain are increased, and the moisture absorption rate is dramatically improved compared to conventional highly moisture absorbing and desorbing polymers. It is characterized by

本発明にかかる高速吸放湿性重合体中の有機オニウム塩型カルボキシル基の量は、2.0~8.0mmol/g、好ましくは3.0~8.0mmol/g、より好ましくは3.0~6.0mmol/gである。有機オニウム塩型カルボキシル基の量が2.0mmol/g未満の場合には、十分な吸放湿性能が得られないことがあり、また、8.0mmol/gを超える場合には、吸湿時の膨潤が激しくなり高速吸放湿性重合体の寸法安定性が不十分となる、あるいは吸放湿性能が頭打ちとなる一方で、製造時の加水分解の反応時間が長くなるなどの問題を起こすことがある。 The amount of organic onium salt type carboxyl group in the fast moisture absorbing and releasing polymer according to the present invention is 2.0 to 8.0 mmol/g, preferably 3.0 to 8.0 mmol/g, more preferably 3.0 mmol/g. ~6.0 mmol/g. If the amount of organic onium salt type carboxyl group is less than 2.0 mmol/g, sufficient moisture absorption and desorption performance may not be obtained, and if it exceeds 8.0 mmol/g, the This may cause problems such as severe swelling and insufficient dimensional stability of the high-speed moisture absorption/desorption polymer, or moisture absorption/desorption performance reaching a plateau while the reaction time for hydrolysis during production becomes longer. be.

また、前記有機オニウムイオンの含有する全てのアルキル基の炭素数は1~4である。オニウムイオンに炭素が含まれない場合には、配位性が高くなり十分な吸湿速度を得ることができない、あるいは対カチオンの安定性が乏しく容易に気化蒸散するといった問題がある。また、オニウムイオンの含有するアルキル基の炭素数が4を超える場合には、疎水性が高くなり十分な吸湿性能を得ることができないといった問題を起こすことがある。 Further, all the alkyl groups contained in the organic onium ion have 1 to 4 carbon atoms. If the onium ion does not contain carbon, there is a problem that the coordinating property becomes high and a sufficient moisture absorption rate cannot be obtained, or the stability of the counter cation is poor and it easily evaporates and transpires. Furthermore, if the number of carbon atoms in the alkyl group contained in the onium ion exceeds 4, the hydrophobicity may become high and a problem may arise in that sufficient moisture absorption performance cannot be obtained.

また、有機オニウムイオンの含有炭素数は好ましくは1~20、より好ましくは2~10、さらに好ましくは4~8である。オニウムイオンに炭素が含まれない場合には、配位性が高くなり十分な吸湿速度を得ることができない、あるいは対カチオンの安定性が乏しく容易に気化蒸散するといった問題がある。また、有機オニウムイオンの含有炭素数が20を超える場合には、疎水性が高くなり十分な吸湿性能を得ることができないといった問題を起こすことがある。 Further, the number of carbon atoms contained in the organic onium ion is preferably 1 to 20, more preferably 2 to 10, and even more preferably 4 to 8. If the onium ion does not contain carbon, there is a problem that the coordinating property becomes high and a sufficient moisture absorption rate cannot be obtained, or the stability of the counter cation is poor and it easily evaporates and transpires. Furthermore, if the number of carbon atoms contained in the organic onium ion exceeds 20, the hydrophobicity may become high and a problem may arise in that sufficient moisture absorption performance cannot be obtained.

前述した有機オニウムイオンの結合量は、十分な吸湿性能を得るためには、総量で2mmol/g以上であることが望ましい。すなわち、ジメチルイミダゾリウムイオンおよびテトラブチルアンモニウムイオンの2種類の有機オニウムイオンが結合している場合であれば、ジメチルイミダゾリウムイオンおよびテトラブチルアンモニウムイオンの合計量が2mmol/g以上であることが望ましい。なお、結合量の上限については、高速吸放湿性重合体中のカルボキシル基に結合できる最大量である。 It is desirable that the total amount of organic onium ions bound is 2 mmol/g or more in order to obtain sufficient moisture absorption performance. That is, if two types of organic onium ions, dimethylimidazolium ion and tetrabutylammonium ion, are combined, it is desirable that the total amount of dimethylimidazolium ion and tetrabutylammonium ion is 2 mmol/g or more. . Note that the upper limit of the amount of bonding is the maximum amount that can be bonded to the carboxyl group in the high-speed moisture absorbing and desorbing polymer.

なお、本発明の高速吸放湿性重合体中のカルボキシル基が2mmol/gよりも多量にある場合でも、上述したように有機オニウムイオンが2mmol/g結合していれば吸放湿性能が得られる。しかし、有機オニウムイオンが結合していないカルボキシル基は、その潜在的な吸放湿性能を有効に利用できないまま存在するだけで、多量のカルボキシル基を有することの吸放湿に対する利点が現れない。この利点を顕在させるにはカルボキシル基全体の少なくとも50mol%以上、好ましくは70mol%以上に有機オニウムイオンが結合していることが望ましい。 Note that even if the amount of carboxyl groups in the fast moisture absorption/desorption polymer of the present invention is more than 2 mmol/g, moisture absorption/desorption performance can be obtained as long as 2 mmol/g of organic onium ions are bonded as described above. . However, carboxyl groups to which organic onium ions are not bonded simply exist without being able to effectively utilize their potential moisture absorption and desorption properties, and the advantages of having a large amount of carboxyl groups in terms of moisture absorption and desorption do not appear. In order to realize this advantage, it is desirable that organic onium ions are bonded to at least 50 mol% or more, preferably 70 mol% or more of the entire carboxyl group.

また、本発明の高速吸放湿性重合体中のカルボキシル基の塩型として、前述してきた有機オニウムイオン以外のカチオンも含有することができる。例えば、Li,Na,K,Rb,Csといったアルカリ金属のカチオン、Be,Mg,Ca,Sr,Baといったアルカリ土類金属のカチオン、NH 、PH といった無機系オニウムイオン類などを挙げることができる。In addition, cations other than the above-mentioned organic onium ions can also be contained as salts of carboxyl groups in the high-speed moisture absorbing and desorbing polymer of the present invention. Examples include cations of alkali metals such as Li, Na, K, Rb, and Cs, cations of alkaline earth metals such as Be, Mg, Ca, Sr, and Ba, and inorganic onium ions such as NH 4 + and PH 4 + . be able to.

本発明に採用する有機オニウムイオンとしては、第1~4級アンモニウムイオン、第1~4級ホスホニウムイオン、第1~3級オキソニウムイオン、第1~3級スルホニウムイオン等が挙げられる。これらのうち、好ましくは第1~4級アンモニウムイオン、より好ましくは第4級アンモニウムイオンである。 Examples of the organic onium ions employed in the present invention include primary to quaternary ammonium ions, primary to quaternary phosphonium ions, primary to tertiary oxonium ions, primary to tertiary sulfonium ions, and the like. Among these, primary to quaternary ammonium ions are preferred, and quaternary ammonium ions are more preferred.

第4級アンモニウムイオンとしては、例えば、脂肪族アンモニウムイオン、ピロリジウムイオン、ピペリジニウムイオン、モルホリニウムイオン、ピロリウムイオン、オキサゾリウムイオン、チアゾリウムイオン、イミダゾリウムイオン、ピラゾリウムイオン、1,2,3-トリアゾリウムイオン、1,2,4-トリアゾリウムイオン、ピリジニウムイオン、キノリニウムイオン、カルバゾリウムイオン等が挙げられる。具体的には、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、ベンジルトリメチルアンモニウム、1,3-ジメチルイミダゾリウム、1-エチル-3-メチルイミダゾリウム、1-メチル-3-プロピルイミダゾリウム、1-ブチル-3-メチルイミダゾリウム、1-ベンジル-3-メチルイミダゾリウム、1-メチルピリジニウム、1-エチルピリジニウム、1-プロピルピリジニウム、1-ブチルピリジニウム等が挙げられる。 Examples of the quaternary ammonium ion include aliphatic ammonium ion, pyrrolidium ion, piperidinium ion, morpholinium ion, pyrolium ion, oxazolium ion, thiazolium ion, imidazolium ion, pyrazolium ion, 1,2 , 3-triazolium ion, 1,2,4-triazolium ion, pyridinium ion, quinolinium ion, carbazolium ion and the like. Specifically, tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, benzyltrimethylammonium, 1,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium, 1-methyl-3-propylimidazo 1-butyl-3-methylimidazolium, 1-benzyl-3-methylimidazolium, 1-methylpyridinium, 1-ethylpyridinium, 1-propylpyridinium, 1-butylpyridinium, and the like.

本発明に特に好ましい有機オニウムイオンとしては、例えば、テトラメチルアンモニウム、エチルトリメチルアンモニウム、ジエチルジメチルアンモニウム、プロピルトリメチルアンモニウム、1,3-ジメチルイミダゾリウム、1-エチル-3-メチルイミダゾリウム、1-メチルピリジニウム、1-エチルピリジニウム等を例示することができる。 Particularly preferred organic onium ions for the present invention include, for example, tetramethylammonium, ethyltrimethylammonium, diethyldimethylammonium, propyltrimethylammonium, 1,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium, 1-methyl Examples include pyridinium and 1-ethylpyridinium.

また、本発明の高速吸放湿性重合体は、高い吸放湿性能を発現させるため、および吸湿時の形状安定性を維持するため、架橋構造を有することが必須である。この架橋構造は、本発明の目的とする吸放湿性能および該性能を生かした製品の性能に影響を及ぼさない限りにおいては特に限定はなく、共有結合による架橋、イオン架橋、ポリマー分子間相互作用または結晶構造による架橋等いずれの構造のものでもよい。 Further, the high-speed moisture absorption/desorption polymer of the present invention must have a crosslinked structure in order to exhibit high moisture absorption/desorption performance and maintain shape stability during moisture absorption. This crosslinked structure is not particularly limited as long as it does not affect the moisture absorption and desorption performance that is the objective of the present invention and the performance of products that take advantage of this performance. Alternatively, it may have any structure such as a crosslinked crystal structure.

また、本発明における高速吸放湿性重合体の形態としては特に制限はなく、粒子状、繊維状、フィルム状など適宜選択することができる。粒子の場合、脱水乾燥した粉末状だけでなく、水に分散させたエマルジョン状であってもよく、各種用途に応じてその形態を選択でき、かつ、各種成形体の添加剤として使用することができるため、その適用範囲が広く有用である。また、これら粒子の大きさとしては、用途に応じて適宜選定することができ、特に制限はないが、平均粒子径が1000μm以下、好ましくは100μm以下の場合、各種添加剤としての適用範囲が広がるため、実用的価値の大きなものとなる。 Further, the form of the high-speed moisture absorbing and desorbing polymer in the present invention is not particularly limited, and may be appropriately selected from particulate, fibrous, film, and the like. In the case of particles, they may not only be in the form of dehydrated and dried powders, but also in the form of emulsions dispersed in water, and the form can be selected according to various uses, and they can be used as additives in various molded bodies. Therefore, it has a wide range of applications and is useful. In addition, the size of these particles can be appropriately selected depending on the application and is not particularly limited, but if the average particle size is 1000 μm or less, preferably 100 μm or less, the range of application as various additives will expand. Therefore, it has great practical value.

高速吸放湿性重合体の形態が繊維状である場合、紙、不織布、織物、編み物、繊維成形体などへの各種加工が容易に行え、使用できる用途がひろがり有用である。また、フィルム状の場合、直接コルゲートなどの加工に供することができ、フィルターなどの用途に有用である。 When the high-speed moisture absorbing and desorbing polymer has a fibrous form, it can be easily processed into paper, nonwoven fabrics, woven fabrics, knitted fabrics, fiber molded articles, etc., and is useful because it can be used for a wide variety of applications. Furthermore, in the case of a film, it can be directly subjected to processing such as corrugation, and is useful for applications such as filters.

上述してきた本発明における高速吸放湿性重合体は、高い吸放湿速度と飽和吸湿率を有している。吸放湿速度と飽和吸湿率との間で完全な正比例の関係は成り立たないが、本発明の高速吸放湿性重合体の目的である優れた吸放湿速度、吸放湿性能を達成するためには、少なくとも飽和吸湿率が20℃、65%RH(相対湿度)および20℃、90%RHにおいてそれぞれ20重量%以上、40重量%以上であることが望ましい。この飽和吸湿率の値がそれぞれの相対湿度で20重量%および40重量%に満たない場合、基本的性能として吸湿性能が低いものとなり、またその結果放湿性能も劣ったものとなり、本目的を達成することができない場合がある。 The high-speed moisture absorption/desorption polymer according to the present invention described above has a high moisture absorption/desorption rate and a saturated moisture absorption rate. Although a perfectly directly proportional relationship does not hold between the moisture absorption and desorption rate and the saturated moisture absorption rate, in order to achieve the excellent moisture absorption and desorption rate and moisture absorption and desorption performance that are the objectives of the high-speed moisture absorption and desorption polymer of the present invention. It is desirable that the saturated moisture absorption rate be at least 20% by weight or more and 40% by weight or more at 20° C., 65% RH (relative humidity) and 20° C., 90% RH, respectively. If the value of this saturated moisture absorption rate is less than 20% by weight or 40% by weight at each relative humidity, the basic moisture absorption performance will be low, and as a result, the moisture release performance will also be poor, and this purpose will not be met. It may not be possible to achieve this.

次に、本発明の高速吸放湿性重合体の製造方法について述べる。本発明の高速吸放湿性重合体は、主に、単量体の重合工程、架橋構造の導入工程、カルボキシル基の導入工程および有機オニウムイオンの導入工程の各工程を経ることによって製造することができる。ここで、各工程の順序は、それぞれの工程で採用する手法の特徴を踏まえて設定すればよく、複数の工程を同時に実施するなどしてもよい。以下に各工程について詳述する。 Next, a method for producing the high-speed moisture absorbing and releasing polymer of the present invention will be described. The fast moisture absorbing and desorbing polymer of the present invention can be produced mainly through the following steps: monomer polymerization step, crosslinked structure introduction step, carboxyl group introduction step, and organic onium ion introduction step. can. Here, the order of each step may be set based on the characteristics of the method employed in each step, and a plurality of steps may be performed simultaneously. Each step will be explained in detail below.

まず、カルボキシル基の導入方法としては、特に限定は無く、例えば、カルボキシル基を有する単量体を単独重合または共重合可能な他の単量体と共重合することによって重合体を得る方法(第1法)、カルボキシル基に誘導することが可能である官能基を有した単量体を重合し、得られた重合体の該官能基を化学変性によりカルボキシル基に変換する方法(第2法)、あるいはグラフト重合により前記2法を実施する方法が挙げられる。 First, there is no particular limitation on the method of introducing a carboxyl group. For example, a method of obtaining a polymer by homopolymerizing or copolymerizing a monomer having a carboxyl group with another monomer that can be copolymerized ( Method 1), a method of polymerizing a monomer having a functional group that can be induced into a carboxyl group, and converting the functional group of the obtained polymer into a carboxyl group by chemical modification (method 2) Alternatively, the above two methods may be carried out by graft polymerization.

上記第1法のカルボキシル基を有する単量体を重合する方法としては、例えば、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、ビニルプロピオン酸等のカルボキシル基を含有する単量体を単独で、またはこれらの単量体の2種以上を、あるいは単量体と共重合可能な他の単量体との共重合による方法が挙げられる。 As a method of polymerizing a monomer having a carboxyl group in the above first method, for example, a monomer having a carboxyl group such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, vinylpropionic acid, etc., alone, Alternatively, a method may be mentioned in which two or more of these monomers are copolymerized, or the monomer is copolymerized with another copolymerizable monomer.

第2法の化学変性法によりカルボキシル基を導入する方法としては、例えば化学変性処理によりカルボキシル基に変性可能な官能基を有する単量体の単独重合体、あるいは2種以上からなる共重合体、または、共重合可能な他の単量体との共重合体を重合し、得られた重合体を加水分解によってカルボキシル基に変性し、変性により得られたカルボキシル基が所期の塩型でない場合には、さらに、上記の塩型に変換する方法が適用される。 The second method for introducing carboxyl groups by the chemical modification method includes, for example, a homopolymer of monomers having a functional group that can be modified into a carboxyl group by chemical modification treatment, or a copolymer of two or more monomers, Or, when a copolymer with other copolymerizable monomers is polymerized and the resulting polymer is modified into carboxyl groups by hydrolysis, and the carboxyl groups obtained by modification are not in the expected salt form. Furthermore, the above method for converting into the salt form is applied.

このような方法をとることのできる単量体としてはアクリロニトリル、メタクリロニトリル等のニトリル基を有する単量体、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、ビニルプロピオン酸等のカルボン酸基を有する単量体の無水物、エステル誘導体、アミド誘導体、架橋性を有するエステル誘導体等を挙げることができる。 Monomers that can be used in this way include monomers with nitrile groups such as acrylonitrile and methacrylonitrile, and monomers with carboxylic acid groups such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, and vinylpropionic acid. Examples include anhydrides, ester derivatives, amide derivatives, and ester derivatives having crosslinking properties.

上記の無水物としては、無水マレイン酸、無水フタル酸、無水アクリル酸、無水メタクリル酸等を挙げることができる。エステル誘導体としては、メチル、エチル、プロピル等のアルキルエステル誘導体;メトキシエチレングリコール等のアルキルエーテルエステル誘導体;シクロヘキシル、ベンジル等の環状化合物エステル誘導体;ヒドロキシエチル、ヒドロキシプロピル等のヒドロキシアルキルエステル誘導体;(メタ)アクリロイロキシエチルコハク酸等のカルボン酸アルキルエステル誘導体;エチレングリコール(メタ)アクリレート等の架橋性アルキルエステル類を挙げることができる。アミド誘導体としては、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド等のアミド化合物等が例示できる。 Examples of the above-mentioned anhydrides include maleic anhydride, phthalic anhydride, acrylic anhydride, methacrylic anhydride, and the like. Examples of ester derivatives include alkyl ester derivatives such as methyl, ethyl, and propyl; alkyl ether ester derivatives such as methoxyethylene glycol; cyclic compound ester derivatives such as cyclohexyl and benzyl; hydroxyalkyl ester derivatives such as hydroxyethyl and hydroxypropyl; ) Carboxylic acid alkyl ester derivatives such as acryloyloxyethylsuccinic acid; crosslinkable alkyl esters such as ethylene glycol (meth)acrylate. Examples of the amide derivative include amide compounds such as (meth)acrylamide and dimethyl (meth)acrylamide.

また、化学変性によりカルボキシル基を導入する他の方法として、アルケン、ハロゲン化アルキル、アルコール、アルデヒド等の酸化等も挙げることができる。 Other methods for introducing carboxyl groups through chemical modification include oxidation of alkenes, halogenated alkyls, alcohols, aldehydes, and the like.

上記第2法における重合体の加水分解反応によりカルボキシル基を導入する方法についても特に限定はなく、既知の加水分解条件を利用することができる。例えば、上記単量体を重合し架橋された重合体にアルカリ金属水酸化物、例えば水酸化ナトリウム、水酸化リチウム、水酸化カリウムやアンモニア、水酸化アンモニウム等の塩基性水溶液を用いカルボキシル基を導入する方法、あるいは、硝酸、硫酸、塩酸等の強酸、または蟻酸、酢酸等の有機酸と反応させ、カルボキシル基を導入する方法が挙げられる。なお、該カルボキシル基が2.0~8.0mmol/gとなる条件については、反応の温度、濃度、時間等の反応因子と導入されるカルボキシル基量の関係を実験で明らかにすることにより、決定することができる。 There is no particular limitation on the method of introducing carboxyl groups by the hydrolysis reaction of the polymer in the second method, and known hydrolysis conditions can be used. For example, a carboxyl group is introduced into a crosslinked polymer obtained by polymerizing the above monomers using a basic aqueous solution of an alkali metal hydroxide, such as sodium hydroxide, lithium hydroxide, potassium hydroxide, ammonia, or ammonium hydroxide. or a method of reacting with a strong acid such as nitric acid, sulfuric acid, or hydrochloric acid, or an organic acid such as formic acid or acetic acid to introduce a carboxyl group. The conditions under which the carboxyl group is 2.0 to 8.0 mmol/g can be determined by experimentally clarifying the relationship between reaction factors such as reaction temperature, concentration, and time and the amount of carboxyl group introduced. can be determined.

上述のようにしてカルボキシル基を導入された重合体においてカルボキシル基の対カチオンが所期の有機オニウムイオンでない場合は、続いて該重合体を有機オニウムイオンの水酸化物やハロゲン化物などの溶液と混合させることでイオン交換により対カチオンのうち少なくとも一部を所期の有機オニウムイオンに変換する。 If the counter cation of the carboxyl group in the polymer into which a carboxyl group has been introduced as described above is not the desired organic onium ion, the polymer is then treated with a solution of an organic onium ion hydroxide, halide, etc. By mixing, at least a portion of the countercation is converted into the desired organic onium ion by ion exchange.

処理条件としては、重合体中のカルボキシル基量に対して有機オニウムイオンが1~5当量、好ましくは1.5~3当量含有される溶液に重合体を浸漬し、20~80℃で30~240分間処理するといった例を挙げることができる。 The treatment conditions include immersing the polymer in a solution containing 1 to 5 equivalents, preferably 1.5 to 3 equivalents, of organic onium ions based on the amount of carboxyl groups in the polymer, and heating at 20 to 80°C for 30 to 30 minutes. An example may be processing for 240 minutes.

また、架橋を導入する方法においても特に限定はなく、前述したカルボキシル基の導入方法における単量体の重合の段階において、架橋性単量体を共重合させることによる架橋導入方法、あるいは単量体をまず重合し、その後、化学的反応による、あるいは物理的なエネルギーによる架橋構造の導入といった後架橋法等を挙げることができる。中でも特に、単量体の重合段階で架橋性単量体を用いる方法、あるいは重合体を得たあとの化学的後架橋による方法では、共有結合による強固な架橋を導入することが可能であり、吸放湿に伴う物理的、化学的変性を受け難いという点で好ましい。 Furthermore, there are no particular limitations on the method of introducing crosslinks, such as a method of introducing crosslinks by copolymerizing a crosslinkable monomer in the monomer polymerization step of the above-mentioned method for introducing a carboxyl group, or a method of introducing crosslinks by copolymerizing a crosslinkable monomer, or Examples include a post-crosslinking method in which a crosslinking structure is first polymerized and then a crosslinked structure is introduced by a chemical reaction or by physical energy. In particular, it is possible to introduce strong crosslinking through covalent bonds by using a crosslinking monomer in the monomer polymerization step or by chemical post-crosslinking after obtaining the polymer. It is preferable in that it is less susceptible to physical and chemical deterioration due to moisture absorption and release.

単量体の重合段階で架橋性単量体を用いる方法では、架橋性ビニル化合物を用い、カルボキシル基を有する、あるいはカルボキシル基に変性できる単量体と共重合することにより共有結合に基づく架橋構造を有する架橋重合体を得ることができる。しかし、この場合、単量体であるアクリル酸などが示す酸性条件、あるいは重合体でのカルボキシル基への変性を行う際の化学的な影響(例えば加水分解など)を受けない、あるいは受けにくい架橋性単量体である必要がある。 In the method of using a crosslinkable monomer in the monomer polymerization step, a crosslinkable vinyl compound is used and copolymerized with a monomer that has a carboxyl group or can be modified into a carboxyl group to create a crosslinked structure based on covalent bonds. It is possible to obtain a crosslinked polymer having the following. However, in this case, crosslinking that is not or is not susceptible to the acidic conditions exhibited by monomers such as acrylic acid, or chemical influences (such as hydrolysis) when modifying carboxyl groups in polymers. It must be a sexual monomer.

単量体の重合段階で架橋性単量体を用いる方法に使用できる架橋性単量体としては、グリシジルメタクリレート、N-メチロールアクリルアミド、トリアリルイソシアヌレート、トリアリルシアヌレート、ジビニルベンゼン、ヒドロキシエチルメタクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、メチレンビスアクリルアミド等の架橋性ビニル化合物を挙げることができ、なかでもトリアリルイソシアヌレート、トリアリルシアヌレート、ジビニルベンゼン、メチレンビスアクリルアミドによる架橋構造は、それらを含有してなる架橋重合体に施すカルボキシル基を導入するための加水分解等の際にも化学的に安定であるので望ましい。 Examples of crosslinkable monomers that can be used in the method using a crosslinkable monomer in the monomer polymerization step include glycidyl methacrylate, N-methylolacrylamide, triallyl isocyanurate, triallyl cyanurate, divinylbenzene, and hydroxyethyl methacrylate. , diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, methylenebisacrylamide, etc. Among them, triallyl isocyanurate, triallyl A crosslinked structure using lucyanurate, divinylbenzene, or methylenebisacrylamide is desirable because it is chemically stable even during hydrolysis to introduce a carboxyl group to a crosslinked polymer containing them.

また、後架橋による方法としても特に限定はなく、例えば、ニトリル基を有するビニルモノマーの含有量が50重量%以上よりなるニトリル系重合体の含有するニトリル基と、ヒドラジン系化合物またはホルムアルデヒドを反応させる後架橋法を挙げることができる。なかでもヒドラジン系化合物による方法は、酸、アルカリに対しても安定で、しかも形成される架橋構造自体が親水性であるので吸湿性の向上に寄与でき、また、重合体に付与した多孔質等の形態を保持することができる強固な架橋を導入できるといった点で極めて優れている。なお、該反応により得られる架橋構造に関しては、その詳細は同定されていないが、トリアゾール環あるいはテトラゾール環構造に基づくものと推測されている。 There is also no particular limitation on the method of post-crosslinking; for example, a nitrile group contained in a nitrile polymer containing 50% by weight or more of a vinyl monomer having a nitrile group is reacted with a hydrazine compound or formaldehyde. A post-crosslinking method can be mentioned. Among these, the method using hydrazine compounds is stable against acids and alkalis, and the crosslinked structure itself that is formed is hydrophilic, so it can contribute to improving hygroscopicity. It is extremely superior in that it can introduce strong crosslinks that can maintain the shape of the material. Although the details of the crosslinked structure obtained by this reaction have not been identified, it is presumed to be based on a triazole ring or tetrazole ring structure.

ここでいうニトリル基を有するビニルモノマーとしては、ニトリル基を有する限りにおいては特に限定はなく、具体的には、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、α-クロロアクリロニトリル、α-フルオロアクリロニトリル、シアン化ビニリデン等が挙げられる。なかでも、コスト的に有利であり、また、単位重量あたりのニトリル基量が多いアクリロニトリルが最も好ましい。 The vinyl monomer having a nitrile group is not particularly limited as long as it has a nitrile group, and specifically, acrylonitrile, methacrylonitrile, ethacrylonitrile, α-chloroacrylonitrile, α-fluoroacrylonitrile, cyanogen Examples include vinylidene chloride. Among these, acrylonitrile is most preferred because it is cost-effective and has a large amount of nitrile groups per unit weight.

ヒドラジン系化合物との反応により架橋を導入する方法としては、目的とする架橋構造が得られる限りにおいては特に制限はなく、反応時のアクリロニトリル系重合体とヒドラジン系化合物の濃度、使用する溶媒、反応時間、反応温度など必要に応じて適宜選択することができる。このうち反応温度については、あまりに低温である場合は反応速度が遅くなり反応時間が長くなりすぎること、また、あまりに高温である場合は原料アクリロニトリル系重合体の可塑化が起り、重合体の形態が破壊されるという問題点が生じる場合がある。従って、好ましい反応温度としては、50~150℃、さらに好ましくは80~120℃である。また、ヒドラジン系化合物と反応させるアクリロニトリル系重合体の部分についても特に限定はなく、その用途、該重合体の形態に応じて適宜選択することができる。具体的には、該重合体の表面のみに反応させる、または、全体にわたり芯部まで反応させる、特定の部分を限定して反応させる等適宜選択できる。なお、ここに使用するヒドラジン系化合物としては、水加ヒドラジン、硫酸ヒドラジン、塩酸ヒドラジン、硝酸ヒドラジン、臭素酸ヒドラジン、ヒドラジンカーボネイト等のヒドラジンの塩類、およびエチレンジアミン、硫酸グアニジン、塩酸グアニジン、硝酸グアニジン、リン酸グアニジン、メラミン等のヒドラジン誘導体である。 There are no particular restrictions on the method of introducing crosslinks by reaction with a hydrazine compound, as long as the desired crosslinked structure can be obtained, and the method includes the concentration of the acrylonitrile polymer and hydrazine compound during the reaction, the solvent used, and the reaction. The time, reaction temperature, etc. can be appropriately selected as necessary. Regarding the reaction temperature, if it is too low, the reaction rate will be slow and the reaction time will be too long, and if it is too high, the raw material acrylonitrile polymer will plasticize and the shape of the polymer will change. The problem of destruction may occur. Therefore, the preferred reaction temperature is 50 to 150°C, more preferably 80 to 120°C. Furthermore, there is no particular limitation on the part of the acrylonitrile polymer to be reacted with the hydrazine compound, and it can be appropriately selected depending on the intended use and the form of the polymer. Specifically, it can be selected as appropriate, such as reacting only on the surface of the polymer, reacting the entire polymer up to its core, or reacting in a limited manner. The hydrazine compounds used here include hydrazine salts such as hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine nitrate, hydrazine bromate, and hydrazine carbonate, as well as ethylenediamine, guanidine sulfate, guanidine hydrochloride, guanidine nitrate, and phosphorus. Hydrazine derivatives such as acid guanidine and melamine.

以上に述べてきた本発明の高速吸放湿性重合体は、これを含有した繊維構造物や樹脂成型体などの成形体とすることにより、よりその用途が広範になる。特に、紙、不織布、織物、編み物、シート、塗膜、発泡体などの成形体に使用した場合、気体との接触面積が大きく、かつ、形態保持性が優れていることにより、吸放湿性の素材として有用である。これらを構成する方法としては、本発明の高速吸放湿性重合体を使用する限りにおいては特に限定はなく、具体的には繊維状の該重合体により形態を構成するもの、あるいは粒子状の該重合体を担持させたものなどのいずれの方法でもよい。ただ、加工が簡単で、コストが安い点より、粒子状の高速吸放湿性重合体を担持させたものの場合、より良い結果を得ることができる。 The above-described high-speed moisture absorption and desorption polymer of the present invention can be used in a wider range of applications by forming molded articles such as fiber structures and resin molded articles containing the polymer. In particular, when used in molded products such as paper, nonwoven fabrics, woven fabrics, knitted fabrics, sheets, coatings, and foams, the contact area with gas is large and the shape retention property is excellent, resulting in excellent moisture absorption and desorption properties. Useful as a material. The method of constructing these is not particularly limited as long as the fast moisture absorbing and desorbing polymer of the present invention is used. Any method such as one in which a polymer is supported may be used. However, since it is easy to process and inexpensive, better results can be obtained if it is supported by particulate high-speed moisture absorption and desorption polymers.

本発明の高速吸放湿性重合体の担持方法としては、特に限定はなく、素材を構成するマトリックスに混入、含浸させたり、バインダーを用いて塗布あるいは包含させたりするなどさまざまな方法を採用することができる。また、本発明の高速吸放湿性重合体はマトリックス内部に存在させてもよいし、マトリックス表面に存在させてもよい。たとえば、紙、不織布、織物、編み物、シート、発泡体等の製造過程で該重合体を混入する方法、あるいはこれらに該重合体のスラリーを含浸させる方法、あるいはバインダーを利用し塗布させる方法などを採用することができる。 There are no particular limitations on the method for supporting the high-speed moisture absorbing and desorbing polymer of the present invention, and various methods may be employed, such as mixing or impregnating it into the matrix that constitutes the material, or coating or incorporating it using a binder. I can do it. Further, the high-speed moisture absorbing and desorbing polymer of the present invention may be present inside the matrix or on the surface of the matrix. For example, methods include mixing the polymer in the manufacturing process of paper, nonwoven fabric, woven fabric, knitted fabric, sheet, foam, etc., impregnating these with a slurry of the polymer, or coating them using a binder. Can be adopted.

本発明の高速吸放湿性重合体の利用方法として、特に好適なものとして、紙、フィルム、シート等の適当な基材に定着させた吸放湿性シートとして使用する方法やアルミなどの金属製の基材に定着させて収着式熱交換モジュールとして使用する方法を挙げることができる。吸放湿性シートや収着式熱交換モジュールにおいては、吸放湿のための成形体としての表面積を大きくすることができるので、吸放湿の速度をさらに速めることに有効である。 Particularly preferred methods of using the high-speed moisture absorbing and desorbing polymer of the present invention include using it as a moisture absorbing and desorbing sheet fixed on a suitable base material such as paper, film, or sheet, and using it as a moisture absorbing and desorbing sheet fixed on a suitable base material such as paper, film, or sheet. Examples include a method of fixing it on a base material and using it as a sorption type heat exchange module. In moisture absorbing and desorbing sheets and sorption type heat exchange modules, the surface area of the molded body for moisture absorption and desorption can be increased, which is effective in further increasing the rate of moisture absorption and desorption.

ここでいう「定着」とは、基材上に高速吸放湿性重合体が固定されている状態を言い、その固定の強さ、固定の方式は特に限定がなく、物理的に固定化された状態であってもよいし、あるいは化学的結合により固定化された状態であってもよい。中でも、本発明の高速吸放湿性重合体が直接基材と、あるいはバインダー等のなんらかの化合物を介して基材と化学的に結合した状態の場合、耐久性の点で優れており好ましい結果を与える。 "Fixing" here refers to the state in which the high-speed moisture absorbing and desorbing polymer is fixed on the base material, and there are no particular limitations on the strength or method of fixing. It may be in a fixed state, or it may be in a state where it is immobilized by chemical bonding. In particular, when the fast moisture absorbing and desorbing polymer of the present invention is chemically bonded to the substrate directly or through some compound such as a binder, it is excellent in terms of durability and gives favorable results. .

また、基材に定着させる高速吸放湿性重合体の量については特に制限はなく、使用される用途に応じた量を適宜選定して定着させることができる。ただ、基材の量に対して定着量があまりに多すぎると、紙などの基材では強度的に耐えられない場合があり、あるいは吸湿層が厚くなり、吸湿層深部の高速吸放湿性重合体を有効に使用できず効率が落ちる場合がある。また。あまりに定着量が少なすぎると本来の目的である吸放湿性能が十分に得られない場合がある。このような観点から好ましい定着量の目安としては、5~300g/mである。Further, there is no particular restriction on the amount of the high-speed moisture absorbing/releasing polymer to be fixed on the substrate, and the amount can be appropriately selected and fixed depending on the intended use. However, if the amount of fixing is too large for the amount of base material, the base material such as paper may not be able to withstand the strength, or the moisture absorbing layer becomes thick, and the fast moisture absorbing and desorbing polymer deep in the moisture absorbing layer may not be used effectively and efficiency may drop. Also. If the amount of fixation is too small, the intended moisture absorption and release performance may not be obtained sufficiently. From this point of view, the preferred fixing amount is 5 to 300 g/m 2 .

また、定着の部分における、基材以外のものに対する高速吸放湿性重合体の割合についても特に限定はないが、吸放湿性能をできるだけ高める観点から、その割合も可能な限り高くするほうが好ましい。ただ本発明の高速吸放湿性重合体は親水性が高いため、基材に高速吸放湿性重合体を単独で定着させた場合には、用途によっては耐水性が不十分になる場合がある。そこで、必要に応じ後述の方法などを用いることにより、より強固に定着させることもできる。そのような場合においても、本発明の高速吸放湿性重合体の機能を十分に発現させる観点から、定着の部分に占める割合を好ましくは50重量%、より好ましくは70重量%を超えるようにすることが望ましい。 Further, there is no particular limitation on the ratio of the high-speed moisture absorbing and desorbing polymer to materials other than the base material in the fixing part, but from the viewpoint of increasing the moisture absorbing and desorbing performance as much as possible, it is preferable to make the ratio as high as possible. However, since the fast moisture absorbing and desorbing polymer of the present invention has high hydrophilicity, when the fast moisture absorbing and releasing polymer is solely fixed to a substrate, water resistance may be insufficient depending on the application. Therefore, it is possible to fix the adhesive more firmly by using the method described below as necessary. Even in such a case, from the viewpoint of fully expressing the function of the high-speed moisture absorbing and desorbing polymer of the present invention, the proportion of the fixing portion should preferably exceed 50% by weight, and more preferably exceed 70% by weight. This is desirable.

また、吸放湿性シートにおいては、その基材としては特に限定はなく、使用される用途に応じて適宜選択し用いることができる。例えば、紙、不織布、織物、編み物、繊維成形体、樹脂成形体、フィルム、シート、金属板などの形態を有するものを挙げることができ、またこれらの基材を構成する素材としても有機物、無機物あるいは金属等、特に限定はない。中でも紙、不織布あるいは多孔質のシート等の形態は、適度に空隙を有し、さらには表面の凹凸があることにより、高速吸放湿性重合体を容易に定着することができ、さらに単位容積あたりの定着面の表面積を上げることも可能で、吸放湿速度を向上させるのに好適である。 Furthermore, the base material for the moisture absorbing and releasing sheet is not particularly limited, and can be appropriately selected and used depending on the intended use. Examples include paper, nonwoven fabrics, woven fabrics, knitted fabrics, fiber molded bodies, resin molded bodies, films, sheets, metal plates, etc. Materials constituting these base materials include organic and inorganic substances. Or metal, etc., but there is no particular limitation. Among these, forms such as paper, non-woven fabric, or porous sheets have appropriate voids and uneven surfaces, which allow the fast moisture-absorbing and desorbing polymer to be easily fixed. It is also possible to increase the surface area of the fixing surface, which is suitable for improving the rate of moisture absorption and release.

また、収着式熱交換モジュールにおいては、その基材としては、熱交換の効率を上げる観点から熱伝導度に優れる金属であることが望ましく、熱伝導度が50W/m・K)以上の場合、効率の高い熱交換を行うことができるため好ましい。かかる熱伝導度に優れる金属としては、例えば、銀、銅、金、アルミニウム、スチール等を挙げることができ、中でも、価格の点から実用的には、アルミニウム、アルミニウム合金、銅、銅合金がより好ましい。 In addition, in a sorption type heat exchange module, the base material is preferably a metal with excellent thermal conductivity from the viewpoint of increasing heat exchange efficiency, and if the thermal conductivity is 50 W/m・K or more, , is preferable because it allows highly efficient heat exchange. Examples of such metals with excellent thermal conductivity include silver, copper, gold, aluminum, steel, etc. Among them, aluminum, aluminum alloys, copper, and copper alloys are more preferred from a practical point of view of price. preferable.

本発明の高速吸放湿性重合体を基材へ定着させる方法についても特に限定はなく、一般に用いられる方法を適宜使用することができる。一般には、高速吸放湿性重合体を含む分散液を基材に付着あるいは浸漬させ、その後乾燥等により分散媒を取り除く方法がとられる。ここで、前記分散媒としては、水、あるいは有機溶媒を挙げることができ、これらの混合物も使用することができる。かかる分散液を付着させる方法としても限定はなく、一般にコーティング方法を活用することができる。中でも、一度に基材の両面と中心部に確実に付着できることから、含浸による塗工法が優れている。 There is no particular limitation on the method for fixing the high-speed moisture absorbing and releasing polymer of the present invention to a substrate, and commonly used methods can be used as appropriate. Generally, a method is used in which a dispersion containing a high-speed moisture absorbing and desorbing polymer is attached to or immersed in a substrate, and then the dispersion medium is removed by drying or the like. Here, examples of the dispersion medium include water and organic solvents, and mixtures thereof can also be used. There are no limitations on the method of applying such a dispersion, and a coating method can generally be used. Among these, the coating method by impregnation is superior because it can reliably adhere to both sides and the center of the substrate at once.

もう一つの定着の方法としては、基材に重合により高速吸放湿性重合体に変換することのできる単量体を含む溶液を塗布または浸漬させ、次に該単量体の重合を行うことにより該基材表面上に高速吸放湿性重合体を定着せしめる方法である。ここで、重合により高速吸放湿性重合体に変換することのできる単量体としては、先にカルボキシル基導入の方法の説明の中に記載した単量体、および既述の架橋剤等を挙げることができる。 Another method of fixing is to coat or soak the substrate with a solution containing a monomer that can be converted into a high-speed hygroscopic polymer by polymerization, and then to polymerize the monomer. This is a method of fixing a high-speed moisture absorbing and releasing polymer on the surface of the substrate. Here, examples of monomers that can be converted into a high-speed moisture absorbing and desorbing polymer through polymerization include the monomers described above in the explanation of the method for introducing carboxyl groups, and the crosslinking agents mentioned above. be able to.

定着の強さとしては特に限定はないが、高速吸放湿性重合体を定着した吸放湿性シートおよび収着式熱交換モジュールの一般的な使用においては、吸放湿を繰り返しながら連続して長時間にわたり使用される場合が多く、また、結露などにより定着された高速吸放湿性重合体が水に曝される場合もあり、これらの使用状況においても、脱離することなく吸放湿性能を発現するものが好ましい。このような点より、高速吸放湿性重合体を単に物理的に定着させただけのものよりも、基材と化学的に結合する、あるいはなんらかの化合物を介して化学的に結合する、さらには高速吸放湿性重合体同士をお互いに結合させる、あるいはこの結合したものを基材に化学的に結合させるもの等が好ましい。 There is no particular limit to the strength of fixing, but in general use of moisture absorbing and desorbing sheets fixed with fast moisture absorbing and desorbing polymers and sorption type heat exchange modules, it is possible to continuously absorb and desorb moisture for a long time. In many cases, the polymer is used for a long period of time, and in some cases, the fixed moisture absorbing and desorbing polymer is exposed to water due to dew condensation. Those that express are preferred. From this point of view, it is better to chemically bond to the base material or chemically bond through some kind of compound than to simply physically fix a high-speed moisture absorbing and desorbing polymer. Preferably, the moisture-absorbing and releasing polymers are bonded to each other, or the bonded product is chemically bonded to the base material.

上述してきた吸放湿性シートの使用される形態としては特に限定はなく、シート形状のままで用いることも、またさらに成型加工を施して使用することもできる。なかでも高速吸放湿性重合体の特徴である、高い吸放湿速度を活かす形態として、空気等の気体を通過させることのできる多数の穴、すなわち気体貫通路を有した状態となるように吸放湿性シートを積層した積層体(例えば、図3、図5、図6など)を挙げることができ、空調用素子などとして好適に用いることができる。このような積層体は、吸放湿に関与する水蒸気との接触面積を広く取ることができ、また圧力損失も低く抑えることができるような成型も可能であり実用的にも有利である。また、かかる積層体を構成する際には、吸放湿性シートのみを重ね合わせてもよいし、途中に吸放湿性シート以外のシート状あるいは成型された材料を挿入してもよい。 There is no particular limitation on the form in which the above-mentioned moisture-absorbing and desorbing sheet is used, and it can be used in its sheet form or after being further molded. In particular, as a form that takes advantage of the high moisture absorption and desorption rate that is a characteristic of high-speed moisture absorption and desorption polymers, it is possible to make use of the high moisture absorption and desorption rate that is characteristic of high-speed moisture absorption and desorption polymers. Examples include laminates in which moisture-releasing sheets are laminated (for example, FIGS. 3, 5, 6, etc.), which can be suitably used as air-conditioning elements and the like. Such a laminate can have a large contact area with water vapor involved in moisture absorption and desorption, and can also be molded in such a way that pressure loss can be suppressed to a low level, which is advantageous from a practical point of view. Further, when constructing such a laminate, only the moisture-absorbing and desorbing sheets may be superimposed, or a sheet-shaped or molded material other than the moisture-absorbing and desorbing sheet may be inserted in the middle.

積層体の具体例としては、図1に例示されるようなコルゲート状(波状)、図2に例示されるようなハニカム状(四角、六角、八角等の蜂の巣状)、ロールコア状(疑円形状)等の形態とすることができる。図1のコルゲート状のものでは、吸放湿性シート1を連続的に折り曲げ、多数の山部と谷部を連続して有するシートを作製し、次に別の平坦なシートの表面に前記の折り曲げたシートの谷部の底部を接着または融着して作製する。この得られた片段シートをさらに積み重ねる、あるいはロール状に巻くなどして多数の穴を有する積層体として用いることができる。なお、上記の折り曲げるシートおよび平坦なシートは両方とも吸放湿性シート1であってもよく、またいずれか片方のみが吸放湿性シート1よりなっていてもよい。 Specific examples of the laminate include a corrugated shape (wavy shape) as illustrated in FIG. 1, a honeycomb shape (square, hexagonal, octagonal, etc.) as illustrated in FIG. ), etc. In the corrugated type shown in Fig. 1, the moisture-absorbing and desorbing sheet 1 is continuously folded to produce a sheet having a large number of continuous peaks and valleys, and then the above-mentioned folding is performed on the surface of another flat sheet. It is manufactured by gluing or fusing the bottom of the troughs of the sheet. The obtained single-tiered sheets can be further stacked or rolled into a roll to be used as a laminate having a large number of holes. Note that both the foldable sheet and the flat sheet may be the moisture absorbing and releasing sheet 1, or only one of them may be the moisture absorbing and releasing sheet 1.

上述した積層体は、その吸湿・放湿の性能を活用した吸放湿性ローターなどの空調用素子として、除湿あるいは加湿のための装置に組み込んで利用することが可能である。このような装置の例としては、図4に示すようなシステムを有する装置を挙げることができる。かかるシステムは、吸放湿性ローター2、これを回転させるモーター3、空気を送風あるいは吸引するためのファン9、再生用の熱源8などからなり、矢印で図示するように空気を通過させることによって、空気の除湿あるいは加湿を行い、所定の場所を一定の湿度に調湿することができるようにするものである。 The above-described laminate can be incorporated into a dehumidifying or humidifying device and used as an air conditioning element such as a moisture absorbing and desorbing rotor that takes advantage of its moisture absorbing and desorbing performance. An example of such a device is a device having a system as shown in FIG. This system consists of a moisture absorbing and desorbing rotor 2, a motor 3 that rotates the rotor, a fan 9 that blows or sucks air, a heat source 8 for regeneration, etc., and by passing air as shown by the arrow, It dehumidifies or humidifies the air, making it possible to control the humidity of a predetermined area to a constant level.

また、別の具体例としては、片段シートを図5に示すように同方向に積層した空調用素子、あるいは図6に示すように異なる方向に積層した空調用素子が挙げられる。前者の空調用素子は、例えば、図7に示すようなバッチ方式で、加湿と除湿を交互に行うことにより加除湿による湿度調整を行う装置に用いることができ、また、後者の空調用素子においては、湿度の異なる気体4および6を、それぞれの孔の異なった方向から通過させることにより、それぞれの気体を隔てている平坦な吸放湿性シート1で吸放湿が起こり、一方の気体から他方の気体への湿度の移動、即ち潜熱交換が生じるので、潜熱交換装置などに用いることができる。 Other specific examples include an air conditioning element in which single-tiered sheets are stacked in the same direction as shown in FIG. 5, or an air conditioning element in which single-tiered sheets are stacked in different directions as shown in FIG. The former air conditioning element can be used, for example, in a device that adjusts humidity by humidification and dehumidification by alternately performing humidification and dehumidification in a batch system as shown in FIG. By passing gases 4 and 6 with different humidity from different directions through each hole, moisture absorption and desorption occurs on the flat moisture absorbing and desorbing sheet 1 that separates each gas, and one gas is released from the other. Since moisture transfer to the gas, that is, latent heat exchange occurs, it can be used in latent heat exchange devices, etc.

また、本発明における収着式熱交換モジュールの形態としては特に限定はなく、シート状、板状、またはプレートフィン型、コルゲートフィン型、スリットフィン型、エロフィンチューブ型など、既存の熱交換器に適用されるものを制限なく使用できる。中でも伝熱効率が高く小型化ができるコルゲートフィン型あるいはエロフィンチューブ型が好ましい。 Furthermore, the form of the sorption heat exchange module in the present invention is not particularly limited, and may be a sheet, a plate, a plate fin type, a corrugated fin type, a slit fin type, an Elofin tube type, or any other existing heat exchanger. Can be used without restriction as applicable. Among these, a corrugated fin type or an erofin tube type is preferable because they have high heat transfer efficiency and can be miniaturized.

かかる本発明の収着式熱交換モジュールは、吸湿の際の発熱、放湿の際の吸熱を活用することにより、吸着式ヒートポンプや吸着式蓄熱システム等として利用することが可能である。例えば、図8に示すような収着式熱交換モジュール(吸着コアともいう)よりなる吸着器13を使用した、図9に示すようなシステムを有する吸着式ヒートポンプを挙げることができる。 The sorption heat exchange module of the present invention can be used as an adsorption heat pump, an adsorption heat storage system, etc. by utilizing heat generation during moisture absorption and heat absorption during moisture release. For example, an adsorption heat pump having a system as shown in FIG. 9 using an adsorber 13 made of an adsorption heat exchange module (also referred to as an adsorption core) as shown in FIG. 8 can be mentioned.

ここで、図9は、吸着材に吸着質(この実施の形態では水蒸気)を吸着する操作、および熱交換器からの温水18の温熱により吸着材から吸着質を脱着する操作を繰り返すと共に、吸着質の吸着操作により発生した吸着熱を冷却水17により冷却するユニットである吸着器13、吸着質の蒸発により得られた冷水20を外部へ取り出すとともに、発生した吸着質の蒸気を吸着器13へ送り出す蒸発器14、吸着器13で脱着された吸着質の蒸気を外部の冷却水19により凝縮させるとともに、凝縮した吸着質を蒸発器14に供給し、かつ、吸着質の凝縮により得られた温熱を冷却水19へ移動させることで外部へ放出する凝縮器15を備えているシステム構成である。 Here, FIG. 9 shows the process of repeating the operation of adsorbing the adsorbate (water vapor in this embodiment) onto the adsorbent and the operation of desorbing the adsorbate from the adsorbent using the heat of the hot water 18 from the heat exchanger. The adsorber 13 is a unit that cools the adsorption heat generated by the adsorbate operation with cooling water 17, and the cold water 20 obtained by evaporation of the adsorbate is taken out to the outside, and the generated adsorbate vapor is sent to the adsorber 13. The adsorbate vapor desorbed by the sending evaporator 14 and adsorber 13 is condensed by external cooling water 19, and the condensed adsorbate is supplied to the evaporator 14, and the warm heat obtained by condensing the adsorbate is This system configuration includes a condenser 15 that transfers the water to the cooling water 19 and discharges it to the outside.

以下の実施例により本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中の部および百分率は、断りのない限り重量基準を示す。まず、各特性の評価方法および評価結果の表記方法について説明する。 The present invention will be specifically explained with reference to the following examples, but the present invention is not limited to the following examples. In addition, parts and percentages in the examples are based on weight unless otherwise specified. First, the evaluation method of each characteristic and the notation method of the evaluation results will be explained.

<飽和吸湿率の測定>
絶乾させた高速吸放湿性重合体を乳鉢で細かく粉砕し、乾燥粉末状としたものを測定試料として用いる。該重合体粉末約0.2gを熱風乾燥機で105℃、30分間乾燥し重量を測定する(Wd(g))。次に試料を温度20℃で相対湿度65%RHまたは90%RHに調製された恒温恒湿器に24時間放置し、吸湿した試料の重量を測定する(Ww(g))。以上の値をもとに、次式により算出したものである。
飽和吸湿率(重量%)={(Ww-Wd)/Wd}×100
<Measurement of saturated moisture absorption rate>
A bone-dried high-speed moisture-absorbing and desorbing polymer is finely ground in a mortar to form a dry powder, which is used as a measurement sample. About 0.2 g of the polymer powder is dried in a hot air dryer at 105° C. for 30 minutes, and the weight is measured (Wd (g)). Next, the sample is left in a constant temperature and humidity chamber adjusted to a temperature of 20° C. and a relative humidity of 65% RH or 90% RH for 24 hours, and the weight of the sample that has absorbed moisture is measured (Ww (g)). Based on the above values, it was calculated using the following formula.
Saturated moisture absorption rate (weight%) = {(Ww-Wd)/Wd}×100

<5分間吸湿初速度の測定>
絶乾させた高速吸放湿性重合体を乳鉢で細かく粉砕、乾燥粉末状としたものを測定試料として用いる。該重合体粉末約0.2gを熱風乾燥機で105℃、30分間乾燥し重量を測定する(Wd1(g))。次に、試料を温度30℃、飽和塩法により75%RHに調製した密閉容器内に5分間静置し、吸湿した試料の重量を測定する(Ww1(g))。以上の結果をもとに、5分間吸湿初速度を次式により算出する。
5分間吸湿初速度((g/g)/s)={(Ww1-Wd1)/Wd1}/300
<Measurement of initial moisture absorption rate for 5 minutes>
A bone-dried high-speed moisture-absorbing and desorbing polymer is finely ground in a mortar to form a dry powder, which is used as a measurement sample. About 0.2 g of the polymer powder is dried in a hot air dryer at 105° C. for 30 minutes, and the weight is measured (Wd1 (g)). Next, the sample is left to stand for 5 minutes in a closed container adjusted to 75% RH at a temperature of 30° C. using the saturated salt method, and the weight of the sample that has absorbed moisture is measured (Ww1 (g)). Based on the above results, the initial moisture absorption rate for 5 minutes is calculated using the following formula.
Initial moisture absorption rate for 5 minutes ((g/g)/s) = {(Ww1-Wd1)/Wd1}/300

<塩型カルボキシル基量の測定>
まず、十分乾燥した試料約1gを精秤し(W2(g))、これに200mlの水を加えた後、50℃に加温しながら1mol/l塩酸水溶液を添加してpH2にし、次いで0.1mol/l水酸化ナトリウム水溶液で常法に従って滴定曲線を求める。該滴定曲線からカルボキシル基に消費された水酸化ナトリウム水溶液消費量(V2(ml))を求め、次式によって全カルボキシル基量(Aa(mmol/g))を算出する。
Aa(mmol/g)=0.1×V2/W2
別途、上述の全カルボキシル基量測定操作中の1mol/l塩酸水溶液添加によるpH2への調製をすることなく同様に滴定曲線を求め、試料中に含まれるH型カルボキシル基(COOH)の量(Ab(mmol/g))を求める。これらの結果から次式により塩型カルボキシル基量を算出する。
塩型カルボキシル基量(mmol/g)=Aa-Ab
<Measurement of salt type carboxyl group amount>
First, approximately 1 g of a sufficiently dried sample was accurately weighed (W2 (g)), 200 ml of water was added to it, and then 1 mol/l hydrochloric acid aqueous solution was added while heating it to 50°C to adjust the pH to 2. . Obtain a titration curve using a 1 mol/l aqueous sodium hydroxide solution according to a conventional method. The amount of sodium hydroxide aqueous solution consumed by carboxyl groups (V2 (ml)) is determined from the titration curve, and the total amount of carboxyl groups (Aa (mmol/g)) is calculated using the following formula.
Aa (mmol/g)=0.1×V2/W2
Separately, a titration curve was obtained in the same manner without adjusting the pH to 2 by adding 1 mol/l aqueous hydrochloric acid solution during the measurement of the total amount of carboxyl groups described above, and the amount of H-type carboxyl groups (COOH) contained in the sample (Ab (mmol/g)). From these results, the amount of salt-type carboxyl groups is calculated using the following formula.
Salt type carboxyl group amount (mmol/g) = Aa - Ab

[実施例1]
重合槽にアクリロニトリル(AN)80部、ジビニルベンゼン20部からなる単量体混合液、および過硫酸アンモニウム4部を水330部に溶解した酸化剤水溶液を添加し、温度を65℃まで昇温して3時間重合させる。得られたポリマー分散液を遠心脱水することで、粉末状アクリロニトリル系重合体を得た。
[Example 1]
A monomer mixture consisting of 80 parts of acrylonitrile (AN) and 20 parts of divinylbenzene and an oxidizing agent aqueous solution prepared by dissolving 4 parts of ammonium persulfate in 330 parts of water were added to a polymerization tank, and the temperature was raised to 65°C. Polymerize for 3 hours. The resulting polymer dispersion was centrifugally dehydrated to obtain a powdery acrylonitrile polymer.

得られた粉末状アクリロニトリル系重合体450部に、450部の水酸化ナトリウムと3600部の水を添加し、95℃で60時間反応を行うことにより、ニトリル基を加水分解しカルボキシル基(加水分解終了時点ではナトリウム塩型)に変換した。加水分解後のポリマー分散液を、75重量%の硫酸水溶液によりpH10に調製し、吸引ろ過により洗浄を行い、遠心脱水することで粉末状吸放湿性重合体を得た。 450 parts of sodium hydroxide and 3,600 parts of water were added to 450 parts of the obtained powdered acrylonitrile polymer, and the reaction was carried out at 95°C for 60 hours to hydrolyze the nitrile groups and form carboxyl groups (hydrolyzed At the time of completion, it was converted to sodium salt form). The hydrolyzed polymer dispersion was adjusted to pH 10 with a 75% by weight aqueous sulfuric acid solution, washed by suction filtration, and centrifugally dehydrated to obtain a powdery hygroscopic polymer.

得られた粉末状吸放湿性重合体を75重量%硫酸水溶液にてpH2に調製し、吸引ろ過後に10重量%水酸化テトラメチルアンモニウム水溶液にて再びpH10まで調製することで、該重合体のカルボキシル基をテトラメチルアンモニウム(TMA)型に変換した。吸引ろ過で脱塩、洗浄後、遠心脱水することで、実施例1の高速吸放湿性重合体を得た。得られた高速吸放湿性重合体の特性は表1に示す通りであり、飽和吸湿率は、20℃×65%RHのとき48%と優れた吸湿性を有していた。また、5分間吸湿初速度も非常に優れた値を示すことが確認された。 The obtained powdered moisture-absorbing and desorbing polymer was adjusted to pH 2 with a 75% by weight aqueous sulfuric acid solution, and after suction filtration, the pH was adjusted again to pH 10 with a 10% by weight aqueous tetramethylammonium hydroxide solution, thereby reducing the carboxyl content of the polymer. The group was converted to the tetramethylammonium (TMA) form. After desalting by suction filtration, washing, and centrifugal dehydration, the high-speed moisture absorbing and desorbing polymer of Example 1 was obtained. The properties of the obtained high-speed moisture absorbing and desorbing polymer are as shown in Table 1, and the saturated moisture absorption rate was 48% at 20° C. x 65% RH, indicating excellent moisture absorption. Further, it was confirmed that the initial moisture absorption rate for 5 minutes also showed a very excellent value.

[実施例2]
実施例1において、水酸化テトラメチルアンモニウムをヨウ化1,3-ジメチルイミダゾリウムに変更したこと以外は同様にして、1,3-ジメチルイミダゾリウム(DMI)塩型カルボキシル基を有する実施例2の高速吸放湿性重合体を得た。該重合体の飽和吸湿率、5分間吸湿初速度はともに実施例1には劣るものの、吸湿性能自体は非常に優れていることが確認できた。これは、実施例1と比較して、単位重量当たりのカルボキシル基量が低下したこと、対カチオンとなる有機オニウムイオンの疎水性が上がったことによるものと考えられる。
[Example 2]
In the same manner as in Example 1, except that tetramethylammonium hydroxide was changed to 1,3-dimethylimidazolium iodide, Example 2 having a 1,3-dimethylimidazolium (DMI) salt type carboxyl group was prepared. A high-speed moisture absorption and desorption polymer was obtained. Although the saturated moisture absorption rate and initial 5-minute moisture absorption rate of the polymer were both inferior to those of Example 1, it was confirmed that the moisture absorption performance itself was very excellent. This is considered to be due to a decrease in the amount of carboxyl groups per unit weight and an increase in the hydrophobicity of the organic onium ion serving as the counter cation, compared to Example 1.

[実施例3]
実施例1において、水酸化テトラメチルアンモニウムを臭化テトラブチルアンモニウムに変更したこと以外は同様にして、テトラブチルアンモニウム(TBA)塩型カルボキシル基を有する実施例3の高速吸放湿性重合体を得た。該重合体の飽和吸湿率、5分間吸湿初速度はともに実施例1にはやや劣るものの、吸湿性能自体は非常に優れていることが確認できた。これは、実施例1と比較して、単位重量当たりのカルボキシル基量が低下したこと、対カチオンとなる有機オニウムイオンの炭素数が多く疎水性が上がったことによるものと考えられる。
[Example 3]
In the same manner as in Example 1, except that tetramethylammonium hydroxide was changed to tetrabutylammonium bromide, the fast moisture absorbing and desorbing polymer of Example 3 having a tetrabutylammonium (TBA) salt type carboxyl group was obtained. Ta. Although both the saturated moisture absorption rate and the initial 5-minute moisture absorption rate of the polymer were slightly inferior to those of Example 1, it was confirmed that the moisture absorption performance itself was very excellent. This is considered to be due to the fact that the amount of carboxyl groups per unit weight was reduced compared to Example 1, and the number of carbon atoms in the organic onium ion serving as the counter cation was increased, resulting in increased hydrophobicity.

[実施例4]
実施例1において、水酸化テトラメチルアンモニウムを臭化1-エチルピリジニウムに変更したこと以外は同様にして、1-エチルピリジニウム(EPY)塩型カルボキシル基を有する実施例4の高速吸放湿性重合体を得た。該重合体の飽和吸湿率、5分間吸湿初速度はともに実施例1にはやや劣るものの、吸湿性能自体は非常に優れていることが確認できた。これは、実施例1と比較して、単位重量当たりのカルボキシル基量が低下したこと、対カチオンとなる有機オニウムイオンの炭素数が多く疎水性が上がったことによるものと考えられる。
[Example 4]
In the same manner as in Example 1, except that tetramethylammonium hydroxide was changed to 1-ethylpyridinium bromide, the fast moisture absorbing and desorbing polymer of Example 4 having a 1-ethylpyridinium (EPY) salt type carboxyl group was produced. I got it. Although both the saturated moisture absorption rate and the initial 5-minute moisture absorption rate of the polymer were slightly inferior to those of Example 1, it was confirmed that the moisture absorption performance itself was very excellent. This is considered to be due to the fact that the amount of carboxyl groups per unit weight was reduced compared to Example 1, and the number of carbon atoms in the organic onium ion serving as the counter cation was increased, resulting in increased hydrophobicity.

[比較例1]
実施例1において、水酸化テトラメチルアンモニウムを塩化1-ドデシルピリジニウムに変更したこと以外は同様にして、1-ドデシルピリジニウム(DPY)塩型カルボキシル基を有する比較例1の吸放湿性重合体を得た。該重合体の飽和吸湿率、5分間吸湿初速度はともに実施例1に大きく劣り、吸湿性能自体も劣っていることが確認できた。これは、実施例1と比較して、単位重量当たりのカルボキシル基量が大きく低下したこと、対カチオンとなる有機オニウムイオンの含有するアルキル鎖の炭素数が10を超えており、疎水性が大きく上昇したことによるものと考えられる。
[Comparative example 1]
A hygroscopic polymer of Comparative Example 1 having a 1-dodecylpyridinium (DPY) salt type carboxyl group was obtained in the same manner as in Example 1 except that tetramethylammonium hydroxide was changed to 1-dodecylpyridinium chloride. Ta. It was confirmed that the saturated moisture absorption rate and initial 5-minute moisture absorption rate of the polymer were both significantly inferior to those of Example 1, and the moisture absorption performance itself was also inferior. This is because the amount of carboxyl groups per unit weight was greatly reduced compared to Example 1, and the number of carbon atoms in the alkyl chain contained in the organic onium ion serving as the counter cation exceeds 10, resulting in a large hydrophobicity. This is thought to be due to the increase in

[比較例2]
実施例1で作製した粉末状吸放湿性重合体について吸湿性能を評価した。該重合体の飽和吸湿率は実施例1を上回るものの、5分間吸湿初速度では大きく劣ることが確認できた。これは、実施例1と比較して単位重量当たりのカルボキシル基量が増加したが、一方で対カチオンとなるナトリウムイオンのイオン半径が小さく、電子密度が高いため、イオン解離が鈍く、吸湿速度が低下したものと考えられる。
[Comparative example 2]
The moisture absorbing performance of the powdered moisture absorbing and releasing polymer produced in Example 1 was evaluated. Although the saturated moisture absorption rate of this polymer exceeded that of Example 1, it was confirmed that the initial moisture absorption rate for 5 minutes was significantly inferior. This is because the amount of carboxyl groups per unit weight increased compared to Example 1, but on the other hand, the ionic radius of the sodium ion serving as the counter cation is small and the electron density is high, so the ion dissociation is slow and the moisture absorption rate is low. It is thought that this has decreased.

[比較例3]
実施例1において、水酸化テトラメチルアンモニウムを水酸化カリウムに変更したこと以外は同様にして、カリウム(K)塩型カルボキシル基を有する比較例3の吸放湿性重合体を得た。該重合体の飽和吸湿率は実施例1とほぼ同等であるものの、5分間吸湿初速度は実施例1には劣るものであった。これは、実施例1と比較して、対カチオンであるカリウムイオンは、有機オニウムイオンよりもイオン半径が小さく、電子密度が高いため、イオン解離が鈍いことによるものと考えられる。
[Comparative example 3]
A hygroscopic polymer of Comparative Example 3 having a potassium (K) salt type carboxyl group was obtained in the same manner as in Example 1, except that potassium hydroxide was used instead of tetramethylammonium hydroxide. Although the saturated moisture absorption rate of the polymer was almost the same as that of Example 1, the initial 5-minute moisture absorption rate was inferior to that of Example 1. This is considered to be because, compared to Example 1, potassium ions, which are counter cations, have a smaller ionic radius and a higher electron density than organic onium ions, and therefore ion dissociation is slower.

[参考例1]
A型シリカゲル(林純薬製)について吸湿性能を評価した。A型シリカゲルの飽和吸湿率、5分間吸湿初速度はともに、実施例1より劣ることが確認できた。
[Reference example 1]
The moisture absorption performance of Type A silica gel (manufactured by Hayashi Junyaku) was evaluated. It was confirmed that both the saturated moisture absorption rate and the initial 5-minute moisture absorption rate of Type A silica gel were inferior to those of Example 1.

Figure 0007344474000001
Figure 0007344474000001

表1からわかるように、本発明の高速吸放湿性重合体は、従来の吸放湿性重合体である比較例2や3と同等の飽和吸湿率を有しつつ、これらよりも優れた5分間吸湿初速度を有するものである。
As can be seen from Table 1, the high-speed moisture absorption and desorption polymer of the present invention has a saturated moisture absorption rate equivalent to that of Comparative Examples 2 and 3, which are conventional moisture absorption and desorption polymers, and a 5-minute It has an initial moisture absorption velocity.

1 吸放湿性シート
2 吸放湿性ローター
3 モーター
4 被除湿高湿度気体
5 除湿後気体
6 被加湿低湿度気体
7 加湿後気体
8 ヒーター等熱源
9 ファン
10 除湿・加湿領域区切りシール
11 吸放湿性素子充填カラム
12 3方バルブ
13 吸着器
14 蒸発器
15 凝縮器
16 流路切り替えバルブ
17 冷却水
18 温水
19 冷却水
20 冷水
1 Moisture absorption and release sheet 2 Moisture absorption and release rotor 3 Motor 4 High humidity gas to be dehumidified 5 Gas after dehumidification 6 Low humidity gas to be humidified 7 Gas after humidification 8 Heat source such as heater 9 Fan 10 Dehumidification/humidification area separation seal 11 Moisture absorption and release element Packed column 12 3-way valve 13 Adsorber 14 Evaporator 15 Condenser 16 Flow path switching valve 17 Cooling water 18 Hot water 19 Cooling water 20 Cold water

Claims (7)

対カチオンが有機オニウムイオンであるカルボキシル基を2.0~8.0mmоl/g含有し、かつ架橋構造を有する有機系高分子であって、前記有機オニウムイオンが脂肪族アンモニウムイオン、ピリジニウムイオンおよびイミダゾリウムイオンよりなる群から選ばれる少なくとも1種類であり、前記有機オニウムイオンの含有する全てのアルキル基の炭素数が1~4であり、かつ前記有機オニウムイオンの含有する炭素数が1~20である事を特徴とする高速吸放湿性重合体。 An organic polymer containing 2.0 to 8.0 mmol/g of carboxyl groups whose countercation is an organic onium ion and having a crosslinked structure, wherein the organic onium ions are aliphatic ammonium ions, pyridinium ions, and imidazo at least one type selected from the group consisting of ion, all alkyl groups contained in the organic onium ion have 1 to 4 carbon atoms, and the organic onium ion contains 1 to 20 carbon atoms. A high-speed moisture absorbing and desorbing polymer. 重合体の形状が繊維状、粒子状およびフィルム状のいずれかである事を特徴とする請求項1に記載の高速吸放湿性重合体。 2. The high-speed moisture absorbing and desorbing polymer according to claim 1, wherein the polymer is in the form of a fiber, particulate, or film. 請求項1または2に記載の高速吸放湿性重合体を含有する繊維構造物。 A fibrous structure containing the high-speed moisture absorption and desorption polymer according to claim 1 or 2 . 請求項1または2に記載の高速吸放湿性重合体を含有する樹脂成型物。 A resin molded article containing the high-speed moisture absorption and desorption polymer according to claim 1 or 2 . 請求項1または2に記載の高速吸放湿性重合体を含有し、複数の気体貫通路を有することを特徴とする空調用素子。 An air conditioning element containing the high-speed moisture absorption and desorption polymer according to claim 1 or 2 , and having a plurality of gas passages. 請求項1または2に記載の高速吸放湿性重合体を、熱交換モジュールの表面に少なくとも一部に付着させたことを特徴とする収着式熱交換モジュール。 A sorption type heat exchange module, characterized in that the high speed moisture absorption and desorption polymer according to claim 1 or 2 is attached to at least a portion of the surface of the heat exchange module. 請求項1または2に記載の高速吸放湿性重合体を、吸着コアとして含有することを特徴とする吸着式ヒートサイクル。

An adsorption heat cycle comprising the high-speed moisture absorption and desorption polymer according to claim 1 or 2 as an adsorption core.

JP2020558378A 2018-11-21 2019-11-18 High-speed moisture absorption and desorption polymers, fiber structures containing the polymers, resin moldings, air conditioning elements, sorption heat exchange modules, and adsorption heat cycles Active JP7344474B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018218582 2018-11-21
JP2018218582 2018-11-21
PCT/JP2019/045091 WO2020105587A1 (en) 2018-11-21 2019-11-18 High-speed moisture-absorbing/desorbing polymer, fiber structure containing said polymer, resin molded product, air-conditioning element, adsorption-type heat exchange module, and adsorption heat cycle

Publications (2)

Publication Number Publication Date
JPWO2020105587A1 JPWO2020105587A1 (en) 2021-10-07
JP7344474B2 true JP7344474B2 (en) 2023-09-14

Family

ID=70774504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020558378A Active JP7344474B2 (en) 2018-11-21 2019-11-18 High-speed moisture absorption and desorption polymers, fiber structures containing the polymers, resin moldings, air conditioning elements, sorption heat exchange modules, and adsorption heat cycles

Country Status (2)

Country Link
JP (1) JP7344474B2 (en)
WO (1) WO2020105587A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181741A1 (en) * 2021-02-26 2022-09-01 シャープ株式会社 Humidifier
JP2023105593A (en) * 2022-01-19 2023-07-31 公益財団法人豊田理化学研究所 Humidity controlling material and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037535A (en) 2008-07-10 2010-02-18 Sanyo Chem Ind Ltd Antistatic self-adhesive
WO2017179379A1 (en) 2016-04-14 2017-10-19 日本エクスラン工業株式会社 High volume, long-lasting high heat generation fiber as well as fiber structure, odor-eliminating material and padding containing said fiber
JP2018076425A (en) 2016-11-09 2018-05-17 凸版印刷株式会社 Composition for molding and molded article

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623771B2 (en) * 1988-09-21 1997-06-25 日本エクスラン工業株式会社 High hygroscopic fiber
JP3486964B2 (en) * 1994-07-26 2004-01-13 東レ株式会社 Wall covering sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037535A (en) 2008-07-10 2010-02-18 Sanyo Chem Ind Ltd Antistatic self-adhesive
WO2017179379A1 (en) 2016-04-14 2017-10-19 日本エクスラン工業株式会社 High volume, long-lasting high heat generation fiber as well as fiber structure, odor-eliminating material and padding containing said fiber
JP2018076425A (en) 2016-11-09 2018-05-17 凸版印刷株式会社 Composition for molding and molded article

Also Published As

Publication number Publication date
JPWO2020105587A1 (en) 2021-10-07
WO2020105587A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
JP6349556B2 (en) Hygroscopic material and dehumidifier using the same
USRE42282E1 (en) Dehumidifying element and manufacturing method for the same
JP4975970B2 (en) Sorptive heat exchange module and method for producing the same
JP4840685B2 (en) Sorptive heat exchange module and method for producing the same
JP5203604B2 (en) Hygroscopic ultrafine particles and products using the ultrafine particles
JP7344474B2 (en) High-speed moisture absorption and desorption polymers, fiber structures containing the polymers, resin moldings, air conditioning elements, sorption heat exchange modules, and adsorption heat cycles
JP3346680B2 (en) Adsorbent for moisture exchange
JP6528687B2 (en) Hygroscopic polymer particles, and sheets, elements and total heat exchangers comprising the particles
JP5962917B2 (en) Photothermal conversion regenerated desiccant sheet, desiccant element and desiccant rotor using the sheet, and air conditioning system using the element or rotor
Lu et al. Advances in harvesting water and energy from ubiquitous atmospheric moisture
JP2001011320A (en) Moisture absorbing and releasing polymer and its molded product
US6143390A (en) Low-temperature regenerative type moisture absorbing element
JP2008281281A (en) Sorption module and its manufacturing method
KR101359698B1 (en) Sorbent coated aluminum band
KR100963116B1 (en) Desiccant, dehumidifying element and manufacturing methods for them
JP2009189900A (en) Total heat exchange element having excellent antibacterial and antifungal property
JP2021031635A (en) Porous moisture absorbing/desorbing polymer particle, production method of the polymer particle, as well as moisture absorbing/desorbing sheet containing the polymer particle, laminate, device for air conditioning, sorption type heat exchange module, and adsorption type heat cycle
KR102640289B1 (en) Organic polimer absorbent, composition of organic polimer absorbent and method of manufacturing thereof
US11602731B2 (en) Dehumidifying element, dehumidifying device including dehumidifying element, and method of manufacturing dehumidifying element
JP7545108B2 (en) Method for manufacturing sorbent-carrying member and sorbent-carrying member
WO2024143408A1 (en) Heat transfer fins on which adsorbent particles are supported, adsorption-type heat exchange module having said heat transfer fins, and methods for manufacturing these
JPH10128040A (en) Corrugate lamination type air filter
Vivekh et al. Experimental performance investigation of superabsorbent polymer and potassium formate coated heat exchangers
JP2011202950A (en) Adsorption type heat exchange module and method of manufacturing the same
JP2001310109A (en) Chemical filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230817

R150 Certificate of patent or registration of utility model

Ref document number: 7344474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150