JP7210949B2 - Moisture-releasing and cooling fiber and fiber structure containing said fiber - Google Patents

Moisture-releasing and cooling fiber and fiber structure containing said fiber Download PDF

Info

Publication number
JP7210949B2
JP7210949B2 JP2018168607A JP2018168607A JP7210949B2 JP 7210949 B2 JP7210949 B2 JP 7210949B2 JP 2018168607 A JP2018168607 A JP 2018168607A JP 2018168607 A JP2018168607 A JP 2018168607A JP 7210949 B2 JP7210949 B2 JP 7210949B2
Authority
JP
Japan
Prior art keywords
fiber
moisture
cooling
temperature
releasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018168607A
Other languages
Japanese (ja)
Other versions
JP2019065446A (en
Inventor
則行 小原
直哉 西崎
克也 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Publication of JP2019065446A publication Critical patent/JP2019065446A/en
Application granted granted Critical
Publication of JP7210949B2 publication Critical patent/JP7210949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06HMARKING, INSPECTING, SEAMING OR SEVERING TEXTILE MATERIALS
    • D06H3/00Inspecting textile materials
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/08Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyacrylonitrile as constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Woven Fabrics (AREA)
  • Knitting Of Fabric (AREA)
  • Multicomponent Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

本発明は放湿冷却性繊維および該繊維を含有する繊維構造物に関する。 The present invention relates to a moisture-releasing cooling fiber and a fiber structure containing the fiber.

放湿冷却とは、物質中に吸着された水分が気化して蒸散する(すなわち、放湿する)際に、その物質から気化熱を奪うことによって、物質の温度が低下する(すなわち、冷却する)現象のことを言う。放湿冷却性を有する繊維を衣服や寝具などの用途に用いた場合、人体に対する冷却効果を期待できる。 Moisture-releasing cooling refers to the process in which the temperature of a substance decreases (i.e., cools down) by depriving the substance of the heat of vaporization when the moisture adsorbed in the substance evaporates and transpires (i.e., releases moisture). ) refers to phenomena. When fibers having moisture-releasing and cooling properties are used for applications such as clothing and bedding, a cooling effect on the human body can be expected.

例えば、特許文献1には、親水性化合物を繊維表面で重合させることにより加工されたポリエステル繊維を含む布帛であって、加工前の繊維を含む布帛に対比して、吸湿発熱による温度上昇が0.5℃以上であり、放湿冷却による温度降下が0.5℃以上である、吸湿発熱性/放湿冷却性布帛が開示されている。 For example, Patent Document 1 discloses a fabric containing a polyester fiber processed by polymerizing a hydrophilic compound on the fiber surface, wherein the temperature rise due to moisture absorption heat generation is 0 compared to the fabric containing the fiber before processing. 0.5° C. or higher, and a moisture-dissipating heat-generating/moisture-dissipating cooling fabric having a temperature drop of 0.5° C. or higher due to moisture-dissipating cooling.

また、特許文献2には、疎水性合成繊維60重量%以上からなる布帛であって、塩型カルボキシル基と架橋構造を有するアクリル系重合体からなる高吸放湿性有機微粒子が繊維表面にグラフト重合により結合されたことを特徴とする吸放湿性布帛が開示されており、該布帛は放湿冷却効果を有することが記載されている。 Further, Patent Document 2 discloses a fabric made of 60% by weight or more of hydrophobic synthetic fibers, in which highly moisture-absorbing and releasing organic fine particles made of an acrylic polymer having a salt-type carboxyl group and a crosslinked structure are graft-polymerized on the fiber surface. Moisture wicking and releasing fabrics are disclosed which are characterized by being bound by a sintering agent, and the fabrics are said to have a moisture releasing and cooling effect.

さらに、特許文献3の図5や特許文献4の[0005]~[0007]段落には、架橋アクリレート系繊維が放湿冷却作用を有することが開示されている。 Furthermore, FIG. 5 of Patent Document 3 and paragraphs [0005] to [0007] of Patent Document 4 disclose that crosslinked acrylate fibers have a moisture releasing and cooling action.

特開2002-88653号公報JP-A-2002-88653 特開2002-38375号公報JP-A-2002-38375 特開平9-59872号公報JP-A-9-59872 特開2004-218111号公報Japanese Patent Application Laid-Open No. 2004-218111

しかし、上述した各文献の技術においては、放湿冷却効果が小さい、あるいは、持続しないため、放湿冷却効果を実感しにくいという問題を有している。本発明は、かかる従来技術の現状に鑑みて創案されたものであり、その目的は、放湿冷却効果が大きく、持続できる繊維および該繊維を含有する繊維構造物を提供することにある。 However, the technique of each of the documents described above has a problem that the moisture-dissipating cooling effect is difficult to feel because the moisture-dissipating cooling effect is small or does not last. The present invention was invented in view of the current state of the prior art, and its object is to provide a fiber having a high moisture-releasing and cooling effect that can be maintained, and a fiber structure containing the fiber.

本発明者らは、上述の目的を達成するために鋭意検討を進めた結果、以下の手段により、放湿冷却効果が大きく、持続できることを見出し、本発明に到達した。 The inventors of the present invention have made intensive studies to achieve the above object, and as a result, have found that the following means can provide a large and sustained moisture-releasing and cooling effect, and have completed the present invention.

(1) 架橋構造とカルボキシル基を有する重合体を主成分とする表層部と、アクリロニトリル系重合体を主成分とする中心部とを有する芯鞘繊維であって、下記式3で示される数値Aが0.050以上0.080未満であり、下記の評価方法により求めた冷却温度(ΔT30)が1.5℃以上であることを特徴とする放湿冷却性繊維。
[式3] A=繊維の有するカルボキシル基量[mmol/g]/繊維断面における「架橋構造とカルボキシル基を有する重合体を主成分とする表層部」の占める面積の割合[%]
(評価方法)
繊維をカードウェブとし、該カードウェブから2.5gを切り取って、16cm×9cmの大きさに折り畳み、測定試料とする。該測定試料を気温35℃、相対湿度90%の雰囲気下で16時間放置する。次いで、測定試料の中央部に電子温度計のセンサーを挿入し、気温20℃、相対湿度45%の雰囲気下に移し、30分経過した時の電子温度計の示す温度(t30[℃])を読み取る。この結果から下記式1によりΔT30を求める。
[式1]ΔT30[℃]=20-t30

(2) 下記の評価方法により求めた冷却温度(ΔT)が1.0℃以上であることを特徴とする(1)に記載の放湿冷却性繊維。
(評価方法)
繊維をカードウェブとし、該カードウェブから2.5gを切り取って、16cm×9cmの大きさに折り畳み、測定試料とする。該測定試料を気温35℃、相対湿度90%の雰囲気下で16時間放置する。次いで、測定試料の中央部に電子温度計のセンサーを挿入し、気温20℃、相対湿度45%の雰囲気下に移し、5分経過した時の電子温度計の示す温度(t[℃])を読み取る。この結果から下記式2によりΔTを求める。
[式2]ΔT[℃]=20-t

) (1)または)に記載の放湿冷却性繊維を5質量%以上含有することを特徴とする繊維構造物。

(1) A core-sheath fiber having a surface layer portion mainly composed of a polymer having a crosslinked structure and a carboxyl group, and a core portion mainly composed of an acrylonitrile-based polymer, and having a numerical value A represented by the following formula 3: is 0.050 or more and less than 0.080, and the cooling temperature (ΔT 30 ) determined by the following evaluation method is 1.5° C. or more.
[Formula 3] A = Amount of carboxyl groups possessed by the fiber [mmol/g] / Percentage of area occupied by "a surface layer portion mainly composed of a polymer having a crosslinked structure and a carboxyl group" in the cross section of the fiber [%]
(Evaluation method)
A fiber is used as a card web, and 2.5 g is cut from the card web and folded into a size of 16 cm x 9 cm to obtain a measurement sample. The measurement sample is left for 16 hours in an atmosphere of 35° C. and 90% relative humidity. Next, an electronic thermometer sensor is inserted into the center of the measurement sample, transferred to an atmosphere with a temperature of 20 ° C. and a relative humidity of 45%, and the temperature indicated by the electronic thermometer after 30 minutes (t 30 [° C.]) to read. From this result, ΔT 30 is obtained by the following formula 1.
[Formula 1] ΔT 30 [°C] = 20-t 30

(2) The moisture-releasing cooling fiber according to (1), wherein the cooling temperature (ΔT 5 ) determined by the following evaluation method is 1.0°C or higher.
(Evaluation method)
A fiber is used as a card web, and 2.5 g is cut from the card web and folded into a size of 16 cm x 9 cm to obtain a measurement sample. The measurement sample is left for 16 hours in an atmosphere of 35° C. and 90% relative humidity. Next, insert an electronic thermometer sensor into the center of the measurement sample, move it to an atmosphere with a temperature of 20 ° C. and a relative humidity of 45%, and the temperature indicated by the electronic thermometer after 5 minutes (t 5 [° C.]) to read. From this result, ΔT5 is obtained by the following equation 2.
[Formula 2] ΔT 5 [°C] = 20-t 5

( 3 ) A fiber structure characterized by containing 5% by mass or more of the moisture-releasing cooling fiber according to (1) or ( 2 ).

本発明の放湿冷却性繊維は、放湿冷却効果が大きく、かつその効果を持続できるという特性を有するものである。かかる特性を有する本発明の放湿冷却性繊維は、例えば、夏物衣料品(肌着、Tシャツ、帽子など)、あるいは夏物寝具(肌掛け布団の側地や中綿、敷きパッド)などの素材として好適に利用することができる。 The moisture-releasing and cooling fiber of the present invention has a characteristic that the moisture-releasing and cooling effect is large and the effect can be maintained. The moisture-releasing and cooling fiber of the present invention having such properties is suitable as a material for, for example, summer clothing (underwear, T-shirts, hats, etc.), or summer bedding (side material and batting of skin comforter, bed pad). can be used.

以下に本発明を詳細に説明する。本発明の放湿冷却性繊維は、後述する評価方法によって求めた冷却温度ΔT30が1.5℃以上、好ましくは2.0℃以上を示すものである。すなわち、本発明の放湿冷却性繊維は、放湿開始から30分経過後においても、雰囲気温度より1.5℃以上低い温度を保つものである。かかる特性により、本発明の放湿冷却性繊維を用いた繊維構造物は冷却効果の持続性に優れたものにすることができる。さらに、ΔT60が好ましくは1.0℃以上、より好ましくは1.5℃以上を示すものであれば、よりいっそう冷却効果の持続性に優れたものにすることができる。 The present invention will be described in detail below. The moisture-releasing cooling fiber of the present invention exhibits a cooling temperature ΔT30 of 1.5° C. or higher, preferably 2.0° C. or higher, as determined by the evaluation method described later. That is, the moisture-releasing cooling fiber of the present invention maintains a temperature lower than the ambient temperature by 1.5° C. or more even after 30 minutes from the start of moisture releasing. Due to such characteristics, the fiber structure using the moisture-releasing cooling fiber of the present invention can be made excellent in the sustainability of the cooling effect. Furthermore, if the ΔT 60 is preferably 1.0° C. or higher, more preferably 1.5° C. or higher, the cooling effect can be further improved in durability.

また、本発明の放湿冷却性繊維は、後述する評価方法によって求めた冷却温度ΔTが1.0℃以上、好ましくは1.5℃以上を示すものであることが望ましい。冷却温度ΔTが1.0℃以上であることは、放湿開始から5分経過後において、かかる繊維が雰囲気温度より1.0℃以上低い温度までに冷却されることを示している。かかる特性により、かかる繊維を用いた繊維構造物は速やかな冷却効果を得ることができるようになる。 Further, the moisture-releasing cooling fiber of the present invention desirably exhibits a cooling temperature ΔT5 of 1.0° C. or higher, preferably 1.5° C. or higher, as determined by the evaluation method described later. The fact that the cooling temperature ΔT 5 is 1.0° C. or more indicates that the fibers are cooled to a temperature that is 1.0° C. or more lower than the ambient temperature 5 minutes after the start of moisture release. Due to such properties, a fiber structure using such fibers can obtain a rapid cooling effect.

かかる本発明の放湿冷却性繊維としては、架橋構造とカルボキシル基を有する重合体を主成分とする表層部(以下、単に「表層部」ともいう)とアクリロニトリル系重合体を主成分とする中心部(以下、単に「中心部」ともいう)とを有する芯鞘繊維を挙げることができる。ここで、「主成分」との用語は、表層部または中心部のそれぞれにおいて、最多の成分であることを示すものであり、通常の場合であれば、前記の各重合体は、好ましくは90質量%以上、より好ましくは95質量%以上を占めている。ここで、中心部を構成するアクリロニトリル系重合体は、架橋構造を有するものであってもよい。 The moisture-releasing and cooling fiber of the present invention includes a surface layer portion (hereinafter also simply referred to as "surface layer portion") mainly composed of a polymer having a crosslinked structure and a carboxyl group, and a core mainly composed of an acrylonitrile polymer. A core-sheath fiber having a portion (hereinafter also simply referred to as a “core portion”) can be mentioned. Here, the term "main component" indicates that it is the most abundant component in each of the surface layer portion and the central portion, and in normal cases, each polymer preferably contains 90 It accounts for 95% by mass or more, more preferably 95% by mass or more. Here, the acrylonitrile-based polymer that constitutes the central portion may have a crosslinked structure.

かかる芯鞘繊維では、親水性の高いカルボキシル基によって繊維に吸湿された水分が放湿されるが、かかるカルボキシル基が表層部に存在することにより、効率的に放湿することができ、放湿冷却効果を得られやすくなる。逆に、中心部にまでカルボキシル基が存在していても、中心部に吸湿された水分は繊維表面までの長い距離を移動しなければ放湿できないため、放湿冷却効果に寄与しづらい。 In such a core-sheath fiber, moisture absorbed by the fiber is released by the highly hydrophilic carboxyl group. Makes it easier to get the cooling effect. Conversely, even if carboxyl groups are present in the central part, the moisture absorbed in the central part cannot be released unless it moves a long distance to the fiber surface, so it is difficult to contribute to the cooling effect.

また、中心部をアクリロニトリル系重合体で構成することにより、繊維物性が低くなりすぎず、紡績加工を行いやすく、また、使用時の耐久性も向上させることができる。このため、かかる芯鞘繊維においては、繊維構造物への含有割合をより多くすることができ、より優れた放湿冷却効果を発現させることが可能となる。 In addition, by forming the central portion of the acrylonitrile-based polymer, the physical properties of the fibers do not become too low, making it easier to perform spinning processing and improving the durability during use. For this reason, in such a core-sheath fiber, it is possible to increase the content ratio in the fiber structure, and it is possible to exhibit a more excellent moisture-releasing and cooling effect.

さらに、上述の芯鞘繊維においては、下記式3で示される数値Aが好ましくは0.050以上0.080未満であり、より好ましくは0.055以上0.070未満であることが望ましい。
[式3] A=カルボキシル基量[mmol/g]/繊維断面における表層部の占める面積の割合[%]
Furthermore, in the core-sheath fiber described above, the numerical value A represented by the following formula 3 is preferably 0.050 or more and less than 0.080, and more preferably 0.055 or more and less than 0.070.
[Formula 3] A = amount of carboxyl groups [mmol/g] / ratio of area occupied by the surface layer in the cross section of the fiber [%]

ここで、数値Aは、繊維表層部中のカルボキシル基の濃度に相関する数値であり、この数値が大きいほど極性を有する官能基であるカルボキシル基が繊維表面上に高い濃度で存在することになる。従って、数値Aが大きいほど、繊維表層部により多くの水分を含有できるようになり、かかる水分をより速く放湿することができるようになる。 Here, the numerical value A is a numerical value that correlates with the concentration of carboxyl groups in the surface layer of the fiber. . Therefore, the larger the numerical value A, the more moisture can be contained in the surface layer of the fiber, and the faster the moisture can be released.

かかる効果を得るためには、数値Aが0.050以上であることが好ましく、より好ましくは0.055以上である。しかし、数値Aが0.080以上の場合には吸湿により繊維表層部が粘着性を帯び、繊維同士が固着しやすくなりやすいため、紡績加工においてトラブルとなったり、洗濯などで風合いが悪化したりする場合がある。 In order to obtain such effects, the numerical value A is preferably 0.050 or more, more preferably 0.055 or more. However, if the numerical value A is 0.080 or more, the surface layer of the fiber becomes tacky due to moisture absorption, and the fibers tend to stick to each other. sometimes.

また、本発明の放湿冷却性繊維は、気温35℃、相対湿度90%の雰囲気下での飽和吸湿率と、前記雰囲気下で飽和させ、気温20℃、相対湿度45%の雰囲気下に移動させた30分後の吸湿率の差が好ましくは10パーセントポイント以上、より好ましくは12パーセントポイント以上、さらに好ましくは14パーセントポイント以上有するものであることが望ましい。かかる吸湿率の差が大きいほど放湿速度が大きいことを示しており、10パーセントポイントに満たない場合には、上述した冷却温度を十分に得られない場合がある。 In addition, the moisture-releasing cooling fiber of the present invention has a saturated moisture absorption rate in an atmosphere of 35°C and 90% relative humidity, and is saturated in the above atmosphere and moved to an atmosphere of 20°C and 45% relative humidity. The difference in moisture absorption after 30 minutes of exposure is preferably 10 percentage points or more, more preferably 12 percentage points or more, and still more preferably 14 percentage points or more. The larger the difference in moisture absorption rate, the higher the moisture release rate. If the difference is less than 10 percentage points, the cooling temperature described above may not be obtained sufficiently.

また、架橋構造及びカルボキシル基を有する重合体におけるカルボキシル基のカウンターイオンとしては、水素イオンだけに限らず、リチウム、ナトリウム、カリウムなどのアルカリ金属の陽イオン、マグネシウム、カルシウムなどのアルカリ土類金属の陽イオン、マンガン、銅、亜鉛、銀などのその他の金属の陽イオン、アンモニウムイオンなどから1種あるいは複数種を必要な特性に応じて選択することができる。このような水素イオン以外のカウンターイオンを有するカルボキシル基(以下、塩型カルボキシル基という)が存在する場合、上述の飽和吸湿率差がより大きくなり、かつ、放湿速度がより大きくなるので、より大きな冷却効果が期待できる。かかる塩型カルボキシル基の量は、全カルボキシル基量に対して、好ましくは40%以上、より好ましくは50%以上、さらに好ましくは60%以上である。一方、あまりに塩型カルボキシル基量が多くなると、吸湿時に繊維が粘着性を帯びたり、脆化したりしやすくなるため、全カルボキシル基量に対して、好ましくは90%以下、より好ましくは80%以下とすることが望ましい。また、カウンターイオンとして、ナトリウムイオンやカリウムイオンを選択した場合には冷却効果をさらに大きくすることができる。 In addition, the counter ion of the carboxyl group in the polymer having a crosslinked structure and a carboxyl group is not limited to hydrogen ions, but also the cations of alkali metals such as lithium, sodium and potassium, and the cations of alkaline earth metals such as magnesium and calcium. One or more of cations, cations of other metals such as manganese, copper, zinc and silver, ammonium ions, etc. can be selected according to the required properties. When such a carboxyl group having a counter ion other than a hydrogen ion (hereinafter referred to as a salt-type carboxyl group) is present, the above-mentioned saturated moisture absorption difference becomes larger and the moisture release rate becomes larger. A large cooling effect can be expected. The amount of such salt-type carboxyl groups is preferably 40% or more, more preferably 50% or more, still more preferably 60% or more, based on the total amount of carboxyl groups. On the other hand, if the amount of salt-type carboxyl groups is too large, the fiber tends to become tacky or brittle when absorbing moisture. It is desirable to Further, when sodium ions or potassium ions are selected as counter ions, the cooling effect can be further enhanced.

次に、本発明の放湿冷却性繊維の代表的な製造方法としては、アクリロニトリル系繊維の表層部に架橋導入処理と加水分解処理を施す方法を採用することができる。なお、架橋導入処理については表層部にとどまらず、中心部にまで施されてもよい。原料となるアクリロニトリル系繊維は、アクリロニトリル系重合体から公知の方法で製造することができる。アクリロニトリル系重合体は、アクリロニトリルが50質量%以上であることが好ましく、より好ましくは80質量%以上、さらに好ましくは85質量%以上である。後述するように、架橋構造はアクリロニトリル系重合体のニトリル基と架橋剤の反応によって形成されるため、アクリロニトリル系重合体中のアクリロニトリルの含有量が少ない場合は、架橋構造を導入できる量が少なくなり、加工や実用面において繊維強度が不足するおそれがある。 Next, as a representative method for producing the moisture-releasing cooling fiber of the present invention, a method of subjecting the surface layer portion of the acrylonitrile-based fiber to a cross-linking introduction treatment and a hydrolysis treatment can be employed. The cross-linking introduction treatment may be applied not only to the surface layer portion but also to the central portion. The acrylonitrile-based fiber as a raw material can be produced from an acrylonitrile-based polymer by a known method. The acrylonitrile polymer preferably contains 50% by mass or more of acrylonitrile, more preferably 80% by mass or more, and even more preferably 85% by mass or more. As will be described later, the crosslinked structure is formed by the reaction between the nitrile groups of the acrylonitrile-based polymer and the cross-linking agent. Therefore, when the acrylonitrile content in the acrylonitrile-based polymer is small, the amount of the crosslinked structure that can be introduced decreases. , the fiber strength may be insufficient in terms of processing and practical use.

上記のようなアクリロニトリル系繊維に対して架橋構造が導入される。架橋構造の導入には、従来公知の架橋剤を使用してもよいが、架橋構造の導入効率の点から窒素含有化合物を使用することが好ましい。窒素含有化合物としては、2個以上の1級アミノ基を有するアミノ化合物やヒドラジン系化合物を使用することが好ましい。2個以上の1級アミノ基を有するアミノ化合物としては、エチレンジアミン、ヘキサメチレンジアミンなどのジアミン系化合物、ジエチレントリアミン、3,3’-イミノビス(プロピルアミン)、N-メチル-3,3’-イミノビス(プロピルアミン)などのトリアミン系化合物、トリエチレンテトラミン、N,N’-ビス(3-アミノプロピル)-1,3-プロピレンジアミン、N,N’-ビス(3-アミノプロピル)-1,4-ブチレンジアミンなどのテトラミン系化合物、ポリビニルアミン、ポリアリルアミンなどであって2個以上の1級アミノ基を有するポリアミン系化合物などが例示される。また、ヒドラジン系化合物としては、水加ヒドラジン、硫酸ヒドラジン、塩酸ヒドラジン、臭化水素酸ヒドラジン、ヒドラジンカーボネートなどが例示される。なお、1分子中の窒素原子の数の上限は特に限定されないが、12個以下であることが好ましく、さらに好ましくは6個以下であり、特に好ましくは4個以下である。1分子中の窒素原子の数が上記上限を超えると、架橋剤分子が大きくなり、繊維内に架橋構造を導入しにくくなる場合がある。架橋構造を導入する条件としては、特に限定されるものではなく、採用する架橋剤とアクリロニトリル系繊維との反応性や架橋構造の量などを勘案し、適宜選定することができる。例えば、架橋剤としてヒドラジン系化合物を用いる場合は、ヒドラジン濃度として0.1~10質量%となるように上記のヒドラジン系化合物を添加した水溶液に、上述したアクリロニトリル系繊維を浸漬し、80~150℃、2~10時間で処理する方法などが挙げられる。 A crosslinked structure is introduced into the acrylonitrile-based fiber as described above. Although a conventionally known cross-linking agent may be used for introducing the cross-linked structure, it is preferable to use a nitrogen-containing compound from the viewpoint of the efficiency of introducing the cross-linked structure. As the nitrogen-containing compound, it is preferable to use an amino compound having two or more primary amino groups or a hydrazine-based compound. Examples of amino compounds having two or more primary amino groups include diamine compounds such as ethylenediamine and hexamethylenediamine, diethylenetriamine, 3,3'-iminobis (propylamine), N-methyl-3,3'-iminobis ( propylamine), triamine compounds such as triethylenetetramine, N,N'-bis(3-aminopropyl)-1,3-propylenediamine, N,N'-bis(3-aminopropyl)-1,4- Tetramine-based compounds such as butylenediamine, polyamine-based compounds having two or more primary amino groups such as polyvinylamine and polyallylamine are exemplified. Examples of hydrazine-based compounds include hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine hydrobromide, and hydrazine carbonate. Although the upper limit of the number of nitrogen atoms in one molecule is not particularly limited, it is preferably 12 or less, more preferably 6 or less, and particularly preferably 4 or less. When the number of nitrogen atoms in one molecule exceeds the above upper limit, the size of the cross-linking agent molecule becomes large, which may make it difficult to introduce a cross-linked structure into the fiber. The conditions for introducing the crosslinked structure are not particularly limited, and can be appropriately selected in consideration of the reactivity between the crosslinker used and the acrylonitrile-based fiber, the amount of the crosslinked structure, and the like. For example, when a hydrazine-based compound is used as a cross-linking agent, the above-mentioned acrylonitrile-based fiber is immersed in an aqueous solution to which the hydrazine-based compound is added so that the hydrazine concentration is 0.1 to 10% by mass. ℃ for 2 to 10 hours.

架橋構造が導入された後は、アルカリ性金属化合物による加水分解処理が施され、繊維の表層部に存在しているニトリル基が加水分解され、カルボキシル基が形成される。具体的な処理条件としては、上述したカルボキシル基濃度などを勘案し、処理薬剤の濃度、反応温度、反応時間等の諸条件を適宜設定すればよいが、好ましくは0.5~10質量%、さらに好ましくは1~5質量%の処理薬剤水溶液中、温度80~150℃で2~10時間処理する手段が工業的、繊維物性的にも好ましい。ここで、上述の架橋導入処理および加水分解処理は、上述のように順に行うより、それぞれの処理薬剤を混合した水溶液を用いて、一括して同時処理することが好ましい。さらに、この同時処理においては、従来より低濃度のアルカリ金属化合物の緩い条件で行い、その後の酸処理を従来より高温での厳しい条件で行うことが好ましい。このようにして得られる放湿冷却性繊維は、表層部に従来より多くのカルボキシル基が存在し、中心部に比較的硬いアクリロニトリル系重合体が温存された構造をとることができる。 After the introduction of the crosslinked structure, hydrolysis treatment with an alkaline metal compound is applied to hydrolyze the nitrile groups present in the surface layer of the fiber to form carboxyl groups. As specific treatment conditions, various conditions such as the concentration of the treatment agent, reaction temperature, and reaction time may be appropriately set in consideration of the above-described carboxyl group concentration. More preferably, the treatment is carried out in an aqueous solution of 1 to 5% by weight of the treatment agent at a temperature of 80 to 150° C. for 2 to 10 hours, which is industrially preferable and fiber physical. Here, rather than performing the above-described cross-linking introduction treatment and hydrolysis treatment in order, it is preferable to simultaneously treat them collectively using an aqueous solution in which each treatment agent is mixed. Furthermore, in this simultaneous treatment, it is preferable to perform the acid treatment under milder conditions at a lower concentration of the alkali metal compound than before, and to perform the subsequent acid treatment under more severe conditions at a higher temperature than before. The thus-obtained moisture-releasing and cooling fiber can have a structure in which more carboxyl groups are present in the surface layer portion than before, and the relatively hard acrylonitrile-based polymer is preserved in the central portion.

形成されたカルボキシル基のカウンターイオンとしては上述したようなものが挙げられる。所望のカウンターイオンに調整する方法としては、硝酸塩、硫酸塩、塩酸塩などの金属塩によるイオン交換処理、硝酸、硫酸、塩酸、蟻酸などによる酸処理、あるいは、アルカリ性金属化合物などによるpH調整処理などを施す方法が挙げられる。 Counter ions of the formed carboxyl group include those described above. Methods for adjusting the desired counter ion include ion exchange treatment with metal salts such as nitrates, sulfates, and hydrochlorides, acid treatment with nitric acid, sulfuric acid, hydrochloric acid, formic acid, etc., or pH adjustment treatment with alkaline metal compounds, etc. There is a method of applying.

本発明の放湿冷却性繊維を含有する繊維構造物は、本発明の放湿冷却性繊維単独で、または他の繊維を組み合わせて形成することができる。他の繊維と組み合わせる場合、本発明の放湿冷却性繊維は、効果発現の点で5質量%以上使用することが好ましく、より好ましくは10質量%以上である。5質量%未満の使用率では均一な混合が難しくなる場合がある。また、組み合わせることのできる他の繊維としては、例えば、羽毛、羊毛、獣毛、絹、綿、ポリエステル繊維、ポリプロピレン繊維、ポリエチレン繊維、ポリアミド繊維、ポリウレタン繊維、アクリル繊維、セルロース系繊維を挙げることができる。 A fiber structure containing the moisture-releasing cooling fibers of the present invention can be formed using the moisture-releasing cooling fibers of the present invention alone or in combination with other fibers. When combined with other fibers, the moisture-releasing cooling fiber of the present invention is preferably used in an amount of 5% by mass or more, more preferably 10% by mass or more, from the viewpoint of effect expression. If the usage rate is less than 5% by mass, uniform mixing may become difficult. Other fibers that can be combined include, for example, feathers, wool, animal hair, silk, cotton, polyester fibers, polypropylene fibers, polyethylene fibers, polyamide fibers, polyurethane fibers, acrylic fibers, and cellulosic fibers. can.

本発明の繊維構造物の形態としては、中綿、糸、編地、織物、パイル布帛、不織布等が挙げられる。さらに具体的には、インナーウェア、パンツ、シャツ、ユニフォーム、カットソー、デニム、パジャマ、バスローブ、レギンス、ソックス、ストッキング、サポーター、腹巻き、手袋、ハンカチ、タオル、スカーフ、ストール、マフラー、マスク、フェイスマスク、帽子、枕、枕カバー、シーツ、タオルケット、敷きパッド、マット、ラグ、カーペットなどを挙げることができる。本発明の繊維構造物中の放湿冷却性繊維の含有形態は、実質的に均一に分布させる場合や、特定の場所に集中的に存在させる場合や、場所ごとに特定比率で分布させる場合などが考えられる。 The form of the fiber structure of the present invention includes batting, thread, knitted fabric, woven fabric, pile fabric, non-woven fabric, and the like. More specifically, innerwear, pants, shirts, uniforms, cut and sewn denim, pajamas, bathrobes, leggings, socks, stockings, supporters, stomach wraps, gloves, handkerchiefs, towels, scarves, stoles, mufflers, masks, face masks, Hats, pillows, pillowcases, sheets, towel blankets, bed pads, mats, rugs, carpets and the like can be mentioned. The content form of the moisture-releasing and cooling fibers in the fiber structure of the present invention is, for example, the case of being distributed substantially uniformly, the case of being concentrated in a specific place, or the case of being distributed at a specific ratio for each place. can be considered.

以下に本発明の理解を容易にするために実施例を示すが、これらはあくまで例示的なものであり、本発明の要旨はこれらにより限定されるものではない。 EXAMPLES Examples are shown below to facilitate understanding of the present invention, but these are merely illustrative and the gist of the present invention is not limited by these.

<冷却温度の評価方法>
試料繊維をカードウェブとし、該カードウェブから2.5gを切り取って、16cm×9cmの大きさに折り畳み、測定試料とする。該測定試料を気温35℃、相対湿度90%の雰囲気下で16時間放置する。次いで、測定試料の中央部に電子温度計のセンサーを挿入し、気温20℃、相対湿度45%の雰囲気下に移し、一定時間(n[分])経過した時の電子温度計の示す温度(t[℃])を読み取る。この結果から下記式によりΔTを求める。
ΔT[℃]=20-t
<Method for evaluating cooling temperature>
A card web is used as a sample fiber, and 2.5 g is cut from the card web and folded into a size of 16 cm×9 cm to obtain a measurement sample. The measurement sample is left for 16 hours in an atmosphere of 35° C. and 90% relative humidity. Next, insert an electronic thermometer sensor into the center of the measurement sample, move it to an atmosphere with a temperature of 20 ° C. and a relative humidity of 45%, and after a certain period of time (n [minutes]), the temperature indicated by the electronic thermometer ( t n [°C]). From this result, ΔTn is obtained by the following formula.
ΔTn [°C] = 20-tn

<数値Aの算出>
1.繊維断面における表層部断面積の割合
試料繊維を、繊維質量に対して2.5%のカチオン染料(Nichilon Black G 200)および2%の酢酸を含有する染色浴に、浴比1:80となるように浸漬し、30分間煮沸処理した後に、水洗、脱水、乾燥する。得られた染色済みの繊維を、繊維軸に垂直に薄くスライスし、繊維断面を光学顕微鏡で観察する。このとき、アクリロニトリル系重合体からなる中心部は黒く染色され、カルボキシル基が多く有する表層部は染料が十分に固定されず緑色になる。繊維断面における、繊維の直径(L1)、および、緑色から黒色へ変色し始める部分を境界として黒く染色されている中心部の直径(L2)を測定し、以下の式により表層部断面積の繊維断面積に占める割合を算出する。なお、10サンプルの平均値をとる。
繊維断面における表層部断面積の割合[%]=[1-{(L2/2)π/(L1/2)π}]×100
<Calculation of numerical value A>
1. Percentage of cross-sectional area of the surface layer in the cross-section of the fiber The sample fiber is placed in a dyeing bath containing 2.5% cationic dye (Nichilon Black G 200) and 2% acetic acid with respect to the fiber mass, and the bath ratio is 1:80. and boiled for 30 minutes, then washed with water, dehydrated and dried. The obtained dyed fiber is thinly sliced perpendicular to the fiber axis, and the cross section of the fiber is observed with an optical microscope. At this time, the central portion made of the acrylonitrile-based polymer is dyed black, and the surface layer portion having many carboxyl groups is green because the dye is not sufficiently fixed. In the fiber cross section, measure the diameter (L1) of the fiber and the diameter (L2) of the central part dyed black bordering on the part where the color starts to change from green to black, and use the following formula to calculate the surface layer cross-sectional area of the fiber Calculate the ratio to the cross-sectional area. An average value of 10 samples is taken.
Percentage of surface layer cross-sectional area in fiber cross section [%] = [1-{(L2/2) 2 π/(L1/2) 2 π}] × 100

2.カルボキシル基量
繊維試料約1gを、50mlの1mol/l塩酸水溶液に30分間浸漬する。次いで、繊維試料を、浴比1:500で水に浸漬する。15分後、浴pHが4以上であることを確認したら、乾燥させる(浴pHが4未満の場合は、再度水洗する)。次に、十分乾燥させた繊維試料約0.2gを精秤し(W1[g])、100mlの水を加え、さらに、15mlの0.1mol/l水酸化ナトリウム水溶液、0.4gの塩化ナトリウムおよびフェノールフタレインを添加して撹拌する。15分後、濾過によって試料繊維と濾液に分離し、引き続き試料繊維を、フェノールフタレインの呈色がなくなるまで水洗する。このときの水洗水と濾液をあわせたものを、フェノールフタレインの呈色がなくなるまで0.1mol/l塩酸水溶液で滴定し、塩酸水溶液消費量(V1[ml])を求める。得られた測定値から、次式によって全カルボキシル基量を算出する。
カルボキシル基量[mmol/g]=(0.1×15-0.1×V1)/W1
2. About 1 g of a carboxyl group fiber sample is immersed in 50 ml of a 1 mol/l hydrochloric acid aqueous solution for 30 minutes. The fiber sample is then immersed in water at a bath ratio of 1:500. After 15 minutes, when it is confirmed that the bath pH is 4 or more, it is dried (if the bath pH is less than 4, it is washed with water again). Next, about 0.2 g of the sufficiently dried fiber sample was precisely weighed (W1 [g]), 100 ml of water was added, and 15 ml of 0.1 mol/l sodium hydroxide aqueous solution and 0.4 g of sodium chloride were added. and phenolphthalein are added and stirred. After 15 minutes, the sample fibers and the filtrate are separated by filtration, and the sample fibers are then washed with water until the color of phenolphthalein disappears. A mixture of the washing water and the filtrate at this time is titrated with a 0.1 mol/l aqueous solution of hydrochloric acid until the color of phenolphthalein disappears, and the consumption of the aqueous solution of hydrochloric acid (V1 [ml]) is obtained. From the measured values obtained, the total carboxyl group content is calculated according to the following formula.
Carboxyl group amount [mmol / g] = (0.1 × 15-0.1 × V1) / W1

3.数値A
上記で求めた数値を用いて下記式により算出する。
数値A=カルボキシル基量[mmol/g]/繊維断面における表層部の占める面積の割合[%]
3. Number A
It is calculated by the following formula using the numerical values obtained above.
Numeric value A = amount of carboxyl groups [mmol/g] / ratio of area occupied by the surface layer in the cross section of the fiber [%]

<吸湿率差(放湿のしやすさ)>
充分乾燥した繊維試料約5gを精秤する(W1[g])。該試料を、気温35℃、相対湿度90%下で16時間静置し、吸湿した試料の質量を測定する(W2[g])。同試料を再度、相対湿度90%下で16時間静置し、直ちに気温20℃、相対湿度45%の雰囲気下に移動させ、30分経過後に、試料の質量を測定する(W3[g])。以上の測定結果から、下記の式により各吸湿率を算出する。
気温35℃、相対湿度90%下での飽和吸湿率[%]=(W2-W1)/W1×100
気温20℃、相対湿度45%下に移動させた30分後の吸湿率[%]=(W3-W1)/W1×100
以上のようにして求めた各吸湿率から吸湿率差を算出する。
<Moisture absorption rate difference (ease of moisture release)>
About 5 g of a sufficiently dried fiber sample is precisely weighed (W1 [g]). The sample is allowed to stand at a temperature of 35° C. and a relative humidity of 90% for 16 hours, and the mass of the sample that absorbs moisture is measured (W2 [g]). The same sample is again allowed to stand under a relative humidity of 90% for 16 hours, immediately moved to an atmosphere with a temperature of 20 ° C. and a relative humidity of 45%, and after 30 minutes, the mass of the sample is measured (W3 [g]). . From the above measurement results, each moisture absorption rate is calculated by the following formula.
Saturated moisture absorption rate [%] at temperature of 35°C and relative humidity of 90% = (W2-W1)/W1 x 100
Moisture absorption rate [%] after 30 minutes of moving to a temperature of 20 ° C and a relative humidity of 45% = (W3 - W1) / W1 x 100
A difference in moisture absorption rate is calculated from each moisture absorption rate obtained as described above.

<塩型カルボキシル基の割合>
上述のカルボキシル基量の測定方法において、最初の1mol/l塩酸水溶液への浸漬およびそれに続く水への浸漬(水洗)を実施しないこと以外は同様にして、H型カルボキシル基量を算出する。かかるH型カルボキシル基量を上述のカルボキシル基量から差し引くことで、塩型カルボキシル基量を求め、上述のカルボキシル基量に対する割合を算出する。
<Proportion of salt-type carboxyl groups>
The amount of H-type carboxyl groups is calculated in the same manner as described above for measuring the amount of carboxyl groups, except that the initial immersion in a 1 mol/l hydrochloric acid aqueous solution and the subsequent immersion in water (water washing) are not performed. By subtracting the amount of H-type carboxyl groups from the amount of carboxyl groups described above, the amount of salt-type carboxyl groups is obtained, and the ratio to the amount of carboxyl groups described above is calculated.

[実施例1]
アクリロニトリル90質量%、アクリル酸メチルエステル10質量%のアクリロニトリル系重合体(30℃ジメチルホルムアミド中での極限粘度[η]=1.5)を48質量%のロダンソーダ水溶液で溶解して、紡糸原液を調製した。該紡糸原液を常法に従って紡糸、水洗、延伸、捲縮、熱処理をして、単繊維繊度1.7dtexのアクリル繊維を得た。
[Example 1]
An acrylonitrile-based polymer containing 90% by mass of acrylonitrile and 10% by mass of methyl acrylate (limiting viscosity [η] in dimethylformamide at 30°C = 1.5) was dissolved in 48% by mass of an aqueous solution of rhodan soda to obtain a spinning dope. prepared. The spinning stock solution was subjected to spinning, washing, drawing, crimping and heat treatment according to the usual methods to obtain an acrylic fiber having a single fiber fineness of 1.7 dtex.

得られたアクリル繊維に、水加ヒドラジン0.5質量%および水酸化ナトリウム2.0質量%を含有する水溶液中で、100℃×2時間、架橋導入処理および加水分解処理を同時に行い、8質量%硝酸水溶液で、100℃×3時間処理し、水洗した。得られた繊維を水に浸漬し、水酸化ナトリウムを添加してカルボキシル基の一部を塩型に調整し、水洗、乾燥することにより、繊度3.0dtexの放湿冷却性繊維Aを得た。得られた繊維の評価結果を表1に示す。なお、かかる繊維の赤外線吸収測定においては、ニトリル基に由来する2250cm-1付近に吸収があり、繊維表層部においてはニトリル基の加水分解が進行しているが、繊維中心部においてはニトリル基が残存していることが確認された。 The resulting acrylic fiber was simultaneously subjected to cross-linking treatment and hydrolysis treatment at 100° C. for 2 hours in an aqueous solution containing 0.5% by mass of hydrazine hydrate and 2.0% by mass of sodium hydroxide. % nitric acid aqueous solution at 100° C. for 3 hours and washed with water. The resulting fiber was immersed in water, sodium hydroxide was added to adjust part of the carboxyl groups to a salt form, washed with water and dried to obtain moisture-releasing and cooling fiber A with a fineness of 3.0 dtex. . Table 1 shows the evaluation results of the obtained fibers. In the infrared absorption measurement of such fibers, there is absorption around 2250 cm −1 derived from nitrile groups, and hydrolysis of nitrile groups is progressing in the surface layer of the fiber, but nitrile groups are not present in the center of the fiber. confirmed to remain.

[実施例2]
実施例1において、水酸化ナトリウムの濃度を1.5質量%とすること以外は同様にして、繊度2.5dtexの放湿冷却性繊維Bを得た。得られた繊維の評価結果を表1に示す。
[Example 2]
A moisture-releasing cooling fiber B having a fineness of 2.5 dtex was obtained in the same manner as in Example 1, except that the concentration of sodium hydroxide was changed to 1.5% by mass. Table 1 shows the evaluation results of the obtained fibers.

[実施例3]
実施例1において、水酸化ナトリウムの濃度を2.5質量%とすること以外は同様にして、繊度3.5dtexの放湿冷却性繊維Cを得た。得られた繊維の評価結果を表1に示す。
[Example 3]
A moisture-releasing cooling fiber C having a fineness of 3.5 dtex was obtained in the same manner as in Example 1, except that the concentration of sodium hydroxide was changed to 2.5% by mass. Table 1 shows the evaluation results of the obtained fibers.

[比較例1]
実施例1において、水酸化ナトリウムの濃度を3.5質量%とすること以外は同様にして、繊度4.2dtexの繊維Dを得た。得られた繊維の評価結果を表1に示す。
[Comparative Example 1]
A fiber D having a fineness of 4.2 dtex was obtained in the same manner as in Example 1, except that the concentration of sodium hydroxide was changed to 3.5% by mass. Table 1 shows the evaluation results of the obtained fibers.

[比較例2、3]
繊度1.4dtexのレーヨンおよび繊度1.4dtexのポリエステルについての評価結果を表1に示す。
[Comparative Examples 2 and 3]
Table 1 shows the evaluation results for rayon with a fineness of 1.4 dtex and polyester with a fineness of 1.4 dtex.

Figure 0007210949000001
Figure 0007210949000001

表1から分かるように、実施例1~3の繊維は、放湿開始から30分経過後においても、雰囲気温度より1.5℃以上低い温度を保つものであり、さらに、放湿開始から5分経過後の時点で、雰囲気温度より1.0℃以上低い温度にまでに冷却されるものであって、速やかな冷却性と持続的な冷却性を併せ持つものである。これに対して、比較例1の繊維は、冷却性が劣るものであった。 As can be seen from Table 1, the fibers of Examples 1 to 3 maintain a temperature lower than the ambient temperature by 1.5°C or more even after 30 minutes from the start of moisture release. It is cooled to a temperature 1.0° C. or more lower than the ambient temperature after a minute has elapsed, and has both rapid and sustained cooling properties. In contrast, the fiber of Comparative Example 1 was inferior in cooling properties.

[実施例4]
放湿冷却性繊維Aとポリエステル繊維を30/70の割合とし、綿番手45/1の紡績糸を作成した。また、綿のみで綿番手40/1の紡績糸を作成した。次いで、これらの紡績糸を用いて天竺編みの編地を作成した。上述した冷却温度の測定方法におけるカードウェブに代えて、該編地を用い、冷却温度を測定した結果と編地における各繊維の混率を表2に示す。
[Example 4]
A spun yarn having a cotton count of 45/1 was prepared by mixing moisture-releasing cooling fiber A and polyester fiber at a ratio of 30/70. Also, a spun yarn with a cotton count of 40/1 was produced only from cotton. Next, using these spun yarns, a knitted fabric of tenjiku knitting was produced. Table 2 shows the result of measuring the cooling temperature using the knitted fabric in place of the card web in the method of measuring the cooling temperature described above and the blend ratio of each fiber in the knitted fabric.

[比較例4]
実施例4で作成した綿の紡績糸のみを用いて、天竺編みの編地を作成し、該編地を用いて冷却温度を測定した結果を表2に示す。
[Comparative Example 4]
Using only the cotton spun yarn produced in Example 4, a cotton sheeting knitted fabric was produced, and the cooling temperature was measured using the knitted fabric. Table 2 shows the results.

Figure 0007210949000002
Figure 0007210949000002

実施例4の本発明の冷却放湿性繊維を使用した繊維構造物においては、比較例4の綿100%の繊維構造物に比べて、冷却特性の優れたものであった。 The fiber structure of Example 4 using the cooling and moisture-releasing fibers of the present invention was superior in cooling properties to the fiber structure of Comparative Example 4, which was made of 100% cotton.

Claims (3)

架橋構造とカルボキシル基を有する重合体を主成分とする表層部と、アクリロニトリル系重合体を主成分とする中心部とを有する芯鞘繊維であって、下記式3で示される数値Aが0.050以上0.080未満であり、下記の評価方法により求めた冷却温度(ΔT30)が1.5℃以上であることを特徴とする放湿冷却性繊維。
[式3] A=繊維の有するカルボキシル基量[mmol/g]/繊維断面における「架橋構造とカルボキシル基を有する重合体を主成分とする表層部」の占める面積の割合[%]
(評価方法)
繊維をカードウェブとし、該カードウェブから2.5gを切り取って、16cm×9cmの大きさに折り畳み、測定試料とする。該測定試料を気温35℃、相対湿度90%の雰囲気下で16時間放置する。次いで、測定試料の中央部に電子温度計のセンサーを挿入し、気温20℃、相対湿度45%の雰囲気下に移し、30分経過した時の電子温度計の示す温度(t30[℃])を読み取る。この結果から下記式1によりΔT30を求める。
[式1]ΔT30[℃]=20-t30
A core-sheath fiber having a surface layer portion mainly composed of a polymer having a crosslinked structure and a carboxyl group, and a core portion mainly composed of an acrylonitrile-based polymer, wherein the numerical value A represented by the following formula 3 is 0.00. 050 or more and less than 0.080, and a cooling temperature (ΔT 30 ) determined by the following evaluation method is 1.5°C or more.
[Formula 3] A = Amount of carboxyl groups possessed by the fiber [mmol/g] / Percentage of area occupied by "a surface layer portion mainly composed of a polymer having a crosslinked structure and a carboxyl group" in the cross section of the fiber [%]
(Evaluation method)
A fiber is used as a card web, and 2.5 g is cut from the card web and folded into a size of 16 cm x 9 cm to obtain a measurement sample. The measurement sample is left for 16 hours in an atmosphere of 35° C. and 90% relative humidity. Next, an electronic thermometer sensor is inserted into the center of the measurement sample, transferred to an atmosphere with a temperature of 20 ° C. and a relative humidity of 45%, and the temperature indicated by the electronic thermometer after 30 minutes (t 30 [° C.]) to read. From this result, ΔT 30 is obtained by the following formula 1.
[Formula 1] ΔT 30 [°C] = 20-t 30
下記の評価方法により求めた冷却温度(ΔT)が1.0℃以上であることを特徴とする請求項1に記載の放湿冷却性繊維。
(評価方法)
繊維をカードウェブとし、該カードウェブから2.5gを切り取って、16cm×9cmの大きさに折り畳み、測定試料とする。該測定試料を気温35℃、相対湿度90%の雰囲気下で16時間放置する。次いで、測定試料の中央部に電子温度計のセンサーを挿入し、気温20℃、相対湿度45%の雰囲気下に移し、5分経過した時の電子温度計の示す温度(t[℃])を読み取る。この結果から下記式2によりΔTを求める。
[式2]ΔT[℃]=20-t
2. The moisture-releasing cooling fiber according to claim 1, wherein the cooling temperature (ΔT 5 ) determined by the following evaluation method is 1.0° C. or higher.
(Evaluation method)
A fiber is used as a card web, and 2.5 g is cut from the card web and folded into a size of 16 cm x 9 cm to obtain a measurement sample. The measurement sample is left for 16 hours in an atmosphere of 35° C. and 90% relative humidity. Next, insert an electronic thermometer sensor into the center of the measurement sample, move it to an atmosphere with a temperature of 20 ° C. and a relative humidity of 45%, and the temperature indicated by the electronic thermometer after 5 minutes (t 5 [° C.]) to read. From this result, ΔT5 is obtained by the following equation 2.
[Formula 2] ΔT 5 [°C] = 20-t 5
請求項1または2に記載の放湿冷却性繊維を5質量%以上含有することを特徴とする繊維構造物。
A fiber structure containing 5% by mass or more of the moisture-releasing cooling fiber according to claim 1 or 2 .
JP2018168607A 2017-09-28 2018-09-10 Moisture-releasing and cooling fiber and fiber structure containing said fiber Active JP7210949B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017187734 2017-09-28
JP2017187734 2017-09-28

Publications (2)

Publication Number Publication Date
JP2019065446A JP2019065446A (en) 2019-04-25
JP7210949B2 true JP7210949B2 (en) 2023-01-24

Family

ID=65919800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018168607A Active JP7210949B2 (en) 2017-09-28 2018-09-10 Moisture-releasing and cooling fiber and fiber structure containing said fiber

Country Status (4)

Country Link
JP (1) JP7210949B2 (en)
KR (1) KR102490200B1 (en)
CN (1) CN109580705B (en)
TW (1) TW201930662A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114481346B (en) * 2022-02-11 2023-12-01 杭州宏图锦纶有限公司 Spinning drying protection system based on internet of things technology

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167574A (en) 2008-01-18 2009-07-30 Japan Exlan Co Ltd Hygroscopic conjugate fiber

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3248401B2 (en) 1995-06-05 2002-01-21 日本エクスラン工業株式会社 Hygroscopic cross-linked acrylic fiber and fiber structure using the fiber
JP2002038375A (en) 2000-05-16 2002-02-06 Toyobo Co Ltd Moisture-absorbing/releasing fabric and method for producing the same
JP3807914B2 (en) 2000-09-12 2006-08-09 小松精練株式会社 Moisture absorption exothermic / moisture release cooling fabric
JP2004157086A (en) * 2002-11-08 2004-06-03 Japan Synthetic Textile Inspection Inst Foundation Measuring equipment and method for moisture absorption and releasing property
JP4114057B2 (en) 2003-01-10 2008-07-09 東洋紡績株式会社 Hygroscopic fiber
JP2009131486A (en) * 2007-11-30 2009-06-18 Ooshin Mlp:Kk Sheet for cooling or heating
CN104023575B (en) * 2012-01-10 2016-04-13 日曜发明画廊股份有限公司 Wear clothing
CN102747441B (en) * 2012-05-14 2014-12-17 毛盈军 Fibers with characteristics of temperature reducing and cooling, preparation method and textile thereof
TWM476787U (en) * 2013-09-06 2014-04-21 Far Eastern New Century Corp Cooling fabric

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167574A (en) 2008-01-18 2009-07-30 Japan Exlan Co Ltd Hygroscopic conjugate fiber

Also Published As

Publication number Publication date
TW201930662A (en) 2019-08-01
JP2019065446A (en) 2019-04-25
CN109580705B (en) 2022-12-13
KR102490200B1 (en) 2023-01-20
CN109580705A (en) 2019-04-05
KR20190037101A (en) 2019-04-05

Similar Documents

Publication Publication Date Title
JP6455680B2 (en) Cross-linked acrylate fiber and fiber structure containing the fiber
JP6819686B2 (en) Modified acrylonitrile fiber, manufacturing method of the fiber, and fiber structure containing the fiber
JP4674429B2 (en) Black high moisture absorbing / releasing fiber
CN105297279B (en) Cotton wool and bedding and clothing containing the cotton wool
JP7210949B2 (en) Moisture-releasing and cooling fiber and fiber structure containing said fiber
JP2009133036A (en) Knitted fabric having excellent heat-retaining property
JP2020070514A (en) Long and short composite spun yarn excellent in moisture absorbing and releasing property and abrasion resistance, and woven or knitted fabric
KR102334183B1 (en) Hygroscopic exothermic fiber
JP7253907B2 (en) Spun yarns and woven and knitted fabrics with excellent spinnability and moisture absorption and desorption properties
JP7177986B2 (en) Shrinkable, moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP7061292B2 (en) Batting
JP6399378B1 (en) Hygroscopic granular cotton and batting containing the granular cotton
TWI707996B (en) Hygroscopic heating fiber
WO2017179379A1 (en) High volume, long-lasting high heat generation fiber as well as fiber structure, odor-eliminating material and padding containing said fiber
JP2022132133A (en) Hydrophobized cross-linked hygroscopic fiber and fiber structure thereof
JP7177988B2 (en) Water-repellent and moisture-absorbing acrylonitrile-based fiber, method for producing said fiber, and fiber structure containing said fiber
JP7177987B2 (en) Easily de-crimpable and moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221226

R150 Certificate of patent or registration of utility model

Ref document number: 7210949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150