WO2018029737A1 - Nonwoven fabric structure and padding and cushion material containing said structure - Google Patents

Nonwoven fabric structure and padding and cushion material containing said structure Download PDF

Info

Publication number
WO2018029737A1
WO2018029737A1 PCT/JP2016/073236 JP2016073236W WO2018029737A1 WO 2018029737 A1 WO2018029737 A1 WO 2018029737A1 JP 2016073236 W JP2016073236 W JP 2016073236W WO 2018029737 A1 WO2018029737 A1 WO 2018029737A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
fibers
fiber
fabric structure
absorbing
Prior art date
Application number
PCT/JP2016/073236
Other languages
French (fr)
Japanese (ja)
Inventor
西崎直哉
Original Assignee
日本エクスラン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本エクスラン工業株式会社 filed Critical 日本エクスラン工業株式会社
Priority to JP2018533303A priority Critical patent/JP6792828B2/en
Priority to PCT/JP2016/073236 priority patent/WO2018029737A1/en
Publication of WO2018029737A1 publication Critical patent/WO2018029737A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06JPLEATING, KILTING OR GOFFERING TEXTILE FABRICS OR WEARING APPAREL
    • D06J1/00Pleating, kilting or goffering textile fabrics or wearing apparel
    • D06J1/10Pleating, kilting or goffering textile fabrics or wearing apparel continuously and longitudinally to the direction of feed

Definitions

  • the present invention relates to a nonwoven fabric structure in which a nonwoven fabric layer is formed by folding a nonwoven fabric containing hygroscopic fibers in a zigzag manner, and a batting and cushioning material containing the structure.
  • Patent Document 1 Conventionally, it has been proposed to use moisture-absorbing / releasing fibers for clothing and bedding (Patent Document 1).
  • the batting using moisture-absorbing / releasing fibers is expected to have functions such as humidity control by moisture-absorbing / releasing properties and heat retention using heat generated by moisture absorption.
  • moisture-absorbing / releasing fibers have low bulkiness and resilience, and are a major issue in developing into batting.
  • Patent Document 2 discloses a technique for improving bulkiness by modifying a moisture absorbing / releasing fiber. Moreover, in patent document 3, the technique which improves bulkiness by raising the crimp of a moisture absorption / release fiber is disclosed. In these techniques, although the initial bulkiness can be ensured, the bulkiness tends to decrease with repeated use and aging.
  • Patent Document 4 discloses a fiber structure in which the fiber orientation is aligned in the thickness direction by folding a nonwoven fabric made of acrylic moisture absorbing / releasing fibers and heat-adhesive composite short fibers into an accordion shape.
  • the fibrous structure is excellent in bulkiness and maintaining bulkiness, it is hard, and therefore it cannot be said that the texture is good in applications such as batting for clothing and bedding.
  • the present invention was devised in view of the above-mentioned present situation, and its purpose is to provide a nonwoven fabric structure that has hygroscopicity and bulkiness, has a soft texture, and can be suitably used as a batting for clothing or bedding. It is to provide.
  • the present inventor folded each zigzag nonwoven fabric containing hygroscopic fibers and heat-adhesive fibers into a state of being laminated by being folded.
  • the present invention by finding that the nonwoven fabric layer is not upright but bent or curved in the same direction, so that a non-woven fabric structure having a hygroscopic property with a soft texture and good bulkiness can be obtained. did.
  • a nonwoven fabric structure in which a nonwoven fabric layer is formed by folding a nonwoven fabric containing moisture absorbing / releasing fibers and heat-adhesive fibers in a zigzag manner, and the nonwoven fabric layers are bonded to each other.
  • the nonwoven fabric structure is characterized in that each nonwoven fabric layer is bent or curved in the same direction on the surface where the zigzag shape of the structure can be seen.
  • the bending length in the direction perpendicular to the bending line when the surface with the bending line is the upper and lower surfaces, measured by JIS L 1913, 6.7.3 a method, is 7 cm or less.
  • the content of moisture absorbing / releasing fibers in the nonwoven fabric is 20 to 80% by mass, and the content of thermal adhesive fibers is 20 to 80% by mass, according to (1) to (3)
  • the nonwoven fabric structure of the present invention has hygroscopicity, high bulkiness, and a soft texture
  • it is a material suitable as a batting for clothing and bedding.
  • it can be suitably used for applications such as padding for clothing such as coats, vests and bra cups, padding for bedding such as comforters and mattresses, cushion materials used for chairs, sofas, cushions and the like.
  • moisture-absorbing and releasing fibers used in the present invention include cotton, rayon, hemp, wool, animal hair, silk, acetate, nylon, vinylon, and polyester, polyethylene, polypropylene, etc. that have been modified to increase moisture absorption and desorption. be able to.
  • a fiber having a crosslinked structure and a carboxyl group is suitable.
  • a hydrophilic group-containing monomer such as a carboxyl group or an alkali metal base thereof is copolymerized with a hydroxyl group-containing monomer that can react with the carboxyl group to form an ester crosslinked structure, and an ester crosslinked bond is introduced.
  • a cross-linked structure into the polyacrylic acid-based cross-linked fiber, maleic anhydride-based cross-linked fiber, alginic acid-based cross-linked fiber, etc. and acrylonitrile-based fiber with a cross-linking agent, a carboxyl group is introduced by hydrolysis.
  • Cross-linked acrylate fibers and the like are preferable as a fiber having a crosslinked structure and a carboxyl group employed in the present invention because a fiber having excellent hygroscopicity can be obtained by controlling the crosslinking conditions and hydrolysis conditions with a crosslinking agent. .
  • the amount of carboxyl groups in the fiber having such a crosslinked structure and carboxyl group is preferably 1 to 10 mmol / g, more preferably 3 to 9 mmol / g, and further preferably 3 to 8 mmol / g. Most preferably, it is 3 to 6 mmol / g.
  • the carboxyl group is less than 1 mmol / g, the resulting nonwoven fabric structure may not exhibit sufficient hygroscopicity. If the carboxyl group exceeds 10 mmol / g, the water swellability of the fiber becomes too high, and if it contains water, the fiber physical properties become too low, making it difficult to process or use.
  • the amount of carboxyl groups can be adjusted by the copolymerization amount of the monomer having a carboxyl group, the treatment conditions for hydrolysis, and the like.
  • moisture absorption / release performance such as moisture absorption / release rate and saturated moisture absorption of the nonwoven fabric structure of the present invention can be adjusted, and in addition to moisture absorption / release performance, moisture absorption heat generation performance, deodorization performance
  • Various known performances attributable to carboxyl groups such as antibacterial performance, antiviral performance, antiallergen performance, and flame retardancy performance can be imparted to the nonwoven fabric structure of the present invention.
  • a fiber having a crosslinked structure and a carboxyl group is subjected to an ion exchange treatment with a metal salt such as nitrate, sulfate or hydrochloride, and an acid such as nitric acid, sulfuric acid, hydrochloric acid or formic acid.
  • a metal salt such as nitrate, sulfate or hydrochloride
  • an acid such as nitric acid, sulfuric acid, hydrochloric acid or formic acid.
  • the method include a treatment or a pH adjustment treatment with an alkaline metal compound.
  • Preferable examples of the fiber having a crosslinked structure and a carboxyl group described above include a crosslinked acrylate fiber.
  • a crosslinked acrylate fiber can be obtained by a conventionally known method.
  • an increase in the nitrogen content introduced by a crosslinking treatment with a hydrazine compound on an acrylic fiber having an acrylonitrile content of 85 to 95% by weight is 1.0
  • An example is a moisture absorbing / releasing fiber in which the difference in moisture absorption between the% RH condition and the 20 ° C. ⁇ 95% RH condition is 50 wt% or more and 150 wt% or less.
  • the fineness of the hygroscopic fibers employed in the present invention is preferably 0.9 to 9 dtex, more preferably 2 to 7 dtex. When the fineness is less than 0.9 dtex, it may be difficult to obtain a card web, and when the fineness exceeds 9 dtex, the texture of the resulting nonwoven fabric structure may be too hard.
  • the fiber length of the fiber is preferably 20 to 80 mm.
  • the heat-adhesive fiber employed in the present invention maintains the folded structure and overall shape of the nonwoven fabric structure by adhering the moisture-absorbing / releasing fibers described above and bonding between the nonwoven fabric layers in the nonwoven fabric structure of the present invention. It is.
  • Such heat-adhesive fibers can be used as long as they have heat-adhesive properties.
  • heat-fusible polyester fibers, polyethylene-polypropylene, polyethylene-polyester, polyester-polyester, etc. low melting point-high melting point
  • the composite fiber which consists of a component is mentioned.
  • the melting point of such a heat-bonding fiber is any temperature that does not adversely affect the physical properties of the hygroscopic fiber. Usually, it may be 100 to 190 ° C.
  • the fineness of the heat-adhesive fiber employed in the present invention is preferably 0.9 to 6.6 dtex, more preferably 1.5 to 6.0 dtex. When the fineness is less than 0.9 dtex, it may be difficult to obtain a card web, and when the fineness exceeds 6.6 dtex, the texture of the resulting nonwoven fabric structure may be too hard.
  • the fiber length of the fiber is preferably 20 to 80 mm.
  • the nonwoven fabric employed in the present invention contains the above-described moisture-absorbing / releasing fibers and thermal adhesive fibers.
  • the content of hygroscopic fibers in such a nonwoven fabric is preferably 20 to 80% by mass, more preferably 25 to 75% by mass, and further preferably 30 to 70% by mass with respect to the total mass of the nonwoven fabric. It is. Further, the content of the heat-adhesive fiber is preferably 20 to 80% by mass, more preferably 25 to 75% by mass, and further preferably 30 to 70% by mass with respect to the total mass of the nonwoven fabric. is there.
  • adhesion points are formed between the fibers by fusing the heat-adhesive fibers.
  • the bonding point includes a bonding point between the heat-bonding fibers and a bonding point between the moisture-absorbing / releasing fiber and the heat-bonding fiber.
  • the former has stronger bonding force than the latter.
  • Thermal adhesive fibers tend to be harder than hygroscopic fibers. For this reason, in the nonwoven fabric employed in the present invention, when the moisture-absorbing / releasing fiber content is less than 20% by mass, or when the thermal adhesive fiber content exceeds 80% by mass, the nonwoven fabric is soft.
  • the thermal bonding point in the nonwoven fabric is reduced. In some cases, the strength may be insufficient or it may be difficult to maintain the shape of the nonwoven fabric.
  • nonwoven fabric examples include those obtained by a needle punch method, a chemical bond method, a thermal bond method, a water flow entanglement method, etc., but when using a heat treatment machine described later for folding, a card web is adopted. be able to.
  • the nonwoven fabric structure of the present invention is formed by folding the nonwoven fabric containing the moisture absorbing / releasing fibers and the heat-adhesive fibers in a zigzag manner and bonding the laminated nonwoven fabric layers.
  • the forming method is not particularly limited, and a conventionally known method may be arbitrarily adopted.
  • a web obtained by blending hygroscopic and thermal adhesive fibers and passing a roller card is used as a roller. In the same direction as when the card is passed (that is, in the direction in which the fibers are oriented), heat treatment is performed while folding in a zigzag through a heat treatment machine having a mechanism as shown in FIG.
  • a method for forming a thermal bonding point is preferably exemplified.
  • Examples of such a heat treatment machine include an apparatus disclosed in Japanese Patent Application Publication No. 2002-516932, a Strut equipment manufactured by Struto Corporation, and the like.
  • the nonwoven fabric structure of the present invention has a structure in which each nonwoven fabric layer is bent or curved in the same direction on a surface where a zigzag shape formed by folding the nonwoven fabric can be seen.
  • a structure is, for example, a structure as shown in FIG.
  • each nonwoven fabric layer is usually upright, for example, by adjusting the ratio of moisture absorbing / releasing fibers and thermal adhesive fibers used in the nonwoven fabric to the above-described range. A structure that is bent or curved in the direction can be obtained.
  • the nonwoven fabric structure of the present invention having such a structure bent or curved in the same direction is higher in volume than a normal nonwoven fabric that is not folded, and has a small decrease in bulk due to aging or pressure. Moreover, the nonwoven fabric structure of this invention is equipped with the characteristic that a texture is soft compared with the conventional folding-type nonwoven fabric structure in which the nonwoven fabric layer stands upright.
  • the above-mentioned bending or bending may be present at a plurality of locations in each nonwoven fabric layer, a sufficiently soft texture can be obtained at only one location.
  • the bending or bending refers to the vertical height of the bent or curved nonwoven fabric layer, that is, the height of the nonwoven fabric structure is 90 with respect to the length of the nonwoven fabric layer measured along the bending or bending. % Or less, more preferably 80% or less, and still more preferably 70% or less.
  • Such a nonwoven fabric structure of the present invention preferably has a bending length in a direction perpendicular to the fold line when the surface with the fold line is taken as the upper and lower surfaces as measured by JIS L 1913 6.7.3 a method. It is desirable that it is 7 cm or less, more preferably 6 cm or less, and still more preferably 5 cm or less. When the bending length is preferably more than 7 cm, a soft texture may not be obtained.
  • the fold line refers to the top of the curved surface where the non-woven fabric is bent, and is the portion indicated by the dotted line in FIG.
  • the basis weight of the nonwoven fabric structure of the present invention is preferably 120 to 2000 g / m 2 , more preferably 140 to 1000 g / m 2 .
  • the thickness is preferably 4 to 40 mm, more preferably 10 to 30 mm. If the basis weight is less than 120 g / m 2 or the thickness is less than 4 mm, the nonwoven fabric structure becomes too soft and the bulkiness becomes insufficient, or it is difficult to maintain the bulkiness in actual use. It may become.
  • the thickness of the nonwoven fabric structure corresponds to the height when the folding lines are taken as the upper and lower surfaces.
  • a nonwoven fabric structure may become rigid.
  • the thickness of a nonwoven fabric structure exceeds 40 mm, the folding process mentioned later may become difficult.
  • the nonwoven fabric structure of the present invention described above has a hygroscopic property, has a high bulkiness, is excellent in heat retaining properties, and has a soft texture, and is therefore a material suitable as a batting for clothing and bedding. Specifically, it can be suitably used for applications such as padding for clothing such as coats, vests and bra cups, padding for bedding such as comforters and mattresses, cushion materials used for chairs, sofas, cushions and the like.
  • the nonwoven fabric structure of the present invention may be used in combination with other materials as necessary even when used for batting for clothing, batting for bedding or a cushioning material.
  • the lower limit of the saturated moisture absorption rate at 20 ° C. and relative humidity of 65% is preferably 9% or more, more preferably 12% or more, More preferably, it is 15% or more.
  • the upper limit of the saturated moisture absorption rate is not particularly limited, even when a crosslinked acrylate fiber that can enhance the hygroscopicity is used, the upper limit is approximately 70%.
  • the folded nonwoven fabric sample is placed on the platform of the cantilever type testing machine so that the surface with the folding line is the upper and lower surfaces, and the longitudinal direction of the platform is perpendicular to the folding line.
  • ⁇ Manufacture example 1 of hygroscopic fiber> A raw material fiber was obtained by spinning, washing, drawing, crimping, and heat-treating a spinning stock solution in which an acrylonitrile-based polymer of 90% acrylonitrile and 10% methyl acrylate was dissolved in a 48% by weight rhodium soda aqueous solution according to a conventional method.
  • the raw fiber was subjected to crosslinking introduction treatment in a 15% hydrazine aqueous solution at 110 ° C. for 3 hours and washed with water. Next, it was acid-treated in an 8% aqueous nitric acid solution at 110 ° C. for 1 hour and washed with water.
  • the fiber had a single fiber fineness of 2.0 dtex, a fiber length of 34 mm, a carboxyl group of 5.0 mmol / g, and a saturated moisture absorption of 35%.
  • Struto equipment manufactured by Struto similar to the apparatus disclosed in JP 2002-516932 A
  • the web is driven in the fiber orientation direction with a roller surface speed of 2.5 m / min.
  • Example 2 a nonwoven fabric structure was obtained in the same manner except that the thickness of the nonwoven fabric structure was reduced. In the obtained nonwoven fabric structure, each nonwoven fabric layer was curved in the same direction. The evaluation results of the nonwoven fabric structure are shown in Table 1.
  • Example 3 A nonwoven fabric structure was obtained in the same manner as in Example 1 except that the proportion of the hygroscopic fibers A was 50 mass% and the proportion of the heat-adhesive fibers a was 50 mass%. In the obtained nonwoven fabric structure, each nonwoven fabric layer was curved in the same direction. The evaluation results of the nonwoven fabric structure are shown in Table 1.
  • Example 4 In Example 1, the nonwoven fabric structure was obtained in the same manner except that the moisture absorbing / releasing fiber A was 50 mass%, the thermal adhesive fiber a was 50 mass%, and the basis weight was increased. In the obtained nonwoven fabric structure, each nonwoven fabric layer was curved in the same direction. The evaluation results of the nonwoven fabric structure are shown in Table 1.
  • Example 5 a nonwoven fabric structure was obtained in the same manner except that rayon was used instead of the hygroscopic fiber A. In the obtained nonwoven fabric structure, each nonwoven fabric layer was curved in the same direction. The evaluation results of the nonwoven fabric structure are shown in Table 1.
  • Example 1 ⁇ Comparative Example 1>
  • the blended fibers were 18% by mass hygroscopic fiber A, 52% by mass thermal adhesive fiber a and 30% by mass polyester fiber b (single fiber fineness 3.3 dtex, fiber length 51 mm, melting point 256.
  • a non-woven fabric structure was obtained in the same manner except that In the obtained nonwoven fabric structure, each nonwoven fabric layer had no bending or bending. The evaluation results of the nonwoven fabric structure are shown in Table 1.
  • Example 2 the fibers to be blended are the same except that 50% by mass of the heat-adhesive fiber a and 50% by mass of the high melting point polyester fiber (single fiber fineness 3.3 dtex, fiber length 51 mm, melting point 256 ° C.). Thus, a nonwoven fabric structure was obtained. In the obtained nonwoven fabric structure, each nonwoven fabric layer had no bending or bending. The evaluation results of the nonwoven fabric structure are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Mattresses And Other Support Structures For Chairs And Beds (AREA)
  • Bedding Items (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

[Problem] When using moisture-absorbing and -releasing fibers in padding for clothing or bedding, improvement of loft is an important problem. With improvement of loft by modification or crimping, reduction of loft due to repeated use or over time has not been improved. Improvement of the persistence of loft of nonwoven fabric containing moisture-absorbing and -releasing fibers by folding in an accordion form has also been proposed but the fabric is hard and the texture cannot be called favorable. The purpose of the present invention is to provide a nonwoven fabric structure, which has moisture-absorbing properties and loft and the texture of which is soft. [Solution] A nonwoven fabric structure, in which a structure of layered nonwoven fabric layers is formed by folding nonwoven fabric containing moisture-absorbing and -releasing fibers and heat-bonding fibers in a zigzag form and in which the nonwoven fabric layers are bonded together, is characterized in that on the face where the zigzag form of the structure can be seen, each nonwoven fabric layer is bent or curved in the same direction.

Description

不織布構造体ならびに該構造体を含有する中綿およびクッション材Non-woven fabric structure and batting and cushioning material containing the structure
本発明は、吸放湿性繊維を含有する不織布がジグザグに折り畳まれることによって、不織布層が積層された構造が形成されている不織布構造体および該構造体を含有する中綿およびクッション材に関する。 The present invention relates to a nonwoven fabric structure in which a nonwoven fabric layer is formed by folding a nonwoven fabric containing hygroscopic fibers in a zigzag manner, and a batting and cushioning material containing the structure.
従来から吸放湿性繊維を衣料用や寝具用の中綿に利用することが提案されている(特許文献1)。吸放湿性繊維を用いた中綿は、吸放湿性による湿度調節や吸湿に伴う発熱を利用した保温などの機能が期待されるものである。しかし、吸放湿性繊維は嵩高性や反発性などが低く、中綿へ展開する上での大きな課題となっている。 Conventionally, it has been proposed to use moisture-absorbing / releasing fibers for clothing and bedding (Patent Document 1). The batting using moisture-absorbing / releasing fibers is expected to have functions such as humidity control by moisture-absorbing / releasing properties and heat retention using heat generated by moisture absorption. However, moisture-absorbing / releasing fibers have low bulkiness and resilience, and are a major issue in developing into batting.
この課題に対して、特許文献2では、吸放湿性繊維を改質することによって、嵩高性を向上させる技術が開示されている。また、特許文献3では、吸放湿性繊維の捲縮を高めることによって、嵩高性を向上させる技術が開示されている。これらの技術においては、初期の嵩高性は確保できるものの、繰り返し使用や経時によって、嵩高性が低下していく傾向がある。 In response to this problem, Patent Document 2 discloses a technique for improving bulkiness by modifying a moisture absorbing / releasing fiber. Moreover, in patent document 3, the technique which improves bulkiness by raising the crimp of a moisture absorption / release fiber is disclosed. In these techniques, although the initial bulkiness can be ensured, the bulkiness tends to decrease with repeated use and aging.
また、特許文献4では、アクリル系吸放湿繊維と熱接着性複合短繊維からなる不織布をアコーディオン状に折り畳むことで繊維の配向を厚さ方向に揃えた繊維構造体が開示されている。該繊維構造体は嵩高性および嵩高性の維持に優れたものであるが、硬いものとなっているため、衣料用や寝具用の中綿などの用途においては、風合いが良好とは言えない。 Further, Patent Document 4 discloses a fiber structure in which the fiber orientation is aligned in the thickness direction by folding a nonwoven fabric made of acrylic moisture absorbing / releasing fibers and heat-adhesive composite short fibers into an accordion shape. Although the fibrous structure is excellent in bulkiness and maintaining bulkiness, it is hard, and therefore it cannot be said that the texture is good in applications such as batting for clothing and bedding.
特開平10-313995公報Japanese Patent Laid-Open No. 10-313995 国際公開第2013/002367号パンフレットInternational Publication No. 2013/002367 Pamphlet 国際公開第2015/041275号パンフレットInternational Publication No. 2015/041275 Pamphlet 特開2014-080720号公報JP 2014-080720 A
本発明は、上述した現状に鑑みて創案されたものであり、その目的は、吸湿性と嵩高性を有し、風合いがやわらかく、衣料用や寝具用の中綿として好適に利用できる不織布構造体を提供することにある。 The present invention was devised in view of the above-mentioned present situation, and its purpose is to provide a nonwoven fabric structure that has hygroscopicity and bulkiness, has a soft texture, and can be suitably used as a batting for clothing or bedding. It is to provide.
本発明者は、上述の目的を達成するために鋭意検討を進めた結果、吸放湿性繊維と熱接着性繊維を含有する不織布をジグザグに折り畳み、折り畳まれることで積層された状態となった各不織布層を直立状態でなく、同一方向に屈曲または湾曲した状態とすることにより、風合いが柔らかくなるとともに、嵩高性も良好な、吸湿性を有する不織布構造体が得られることを見出し本発明に到達した。 As a result of diligent investigations to achieve the above-mentioned object, the present inventor folded each zigzag nonwoven fabric containing hygroscopic fibers and heat-adhesive fibers into a state of being laminated by being folded. Reached the present invention by finding that the nonwoven fabric layer is not upright but bent or curved in the same direction, so that a non-woven fabric structure having a hygroscopic property with a soft texture and good bulkiness can be obtained. did.
即ち、本発明は以下の手段により達成される。
(1) 吸放湿性繊維と熱接着性繊維を含有する不織布がジグザグに折り畳まれることによって、不織布層が積層された構造が形成されており、かつ、各不織布層間が接着されている不織布構造体であって、該構造体のジグザグ形状が見える面において、各不織布層が同一方向に屈曲または湾曲していることを特徴とする不織布構造体。
(2) JIS L 1913の6.7.3 a法により測定した、折り曲げ線のある面を上下面としたときの、折り曲げ線に対する直角の方向の曲げ長さが7cm以下であることを特徴とする(1)に記載の不織布構造体。
(3) 目付けが120~2000g/mであり、厚さが4~40mmであることを特徴とする(1)又は(2)に記載の不織布構造体。
(4) 不織布中の吸放湿性繊維の含有量が20~80質量%であり、熱接着性繊維の含有量が20~80質量%であることを特徴とする(1)~(3)のいずれかに記載の不織布構造体。
(5) 吸放湿性繊維が、架橋構造とカルボキシル基を有する繊維であることを特徴とする(1)~(4)のいずれかに記載の不織布構造体。
(6) (1)~(5)のいずれかに記載の不織布構造体を含有する中綿。
(7) (1)~(5)のいずれかに記載の不織布構造体を含有するクッション材。
That is, the present invention is achieved by the following means.
(1) A nonwoven fabric structure in which a nonwoven fabric layer is formed by folding a nonwoven fabric containing moisture absorbing / releasing fibers and heat-adhesive fibers in a zigzag manner, and the nonwoven fabric layers are bonded to each other. The nonwoven fabric structure is characterized in that each nonwoven fabric layer is bent or curved in the same direction on the surface where the zigzag shape of the structure can be seen.
(2) The bending length in the direction perpendicular to the bending line when the surface with the bending line is the upper and lower surfaces, measured by JIS L 1913, 6.7.3 a method, is 7 cm or less. The nonwoven fabric structure according to (1).
(3) The nonwoven fabric structure according to (1) or (2), wherein the basis weight is 120 to 2000 g / m 2 and the thickness is 4 to 40 mm.
(4) The content of moisture absorbing / releasing fibers in the nonwoven fabric is 20 to 80% by mass, and the content of thermal adhesive fibers is 20 to 80% by mass, according to (1) to (3) The nonwoven fabric structure in any one.
(5) The nonwoven fabric structure according to any one of (1) to (4), wherein the moisture absorbing / releasing fiber is a fiber having a crosslinked structure and a carboxyl group.
(6) A filling containing the nonwoven fabric structure according to any one of (1) to (5).
(7) A cushioning material containing the nonwoven fabric structure according to any one of (1) to (5).
本発明の不織布構造体は、吸湿性を有し、嵩高性が高く、かつ風合いがやわらかいものであるので、衣料用や寝具用の中綿として適した素材である。具体的には、コート、ベスト、ブラカップなどの衣料用中綿、掛け布団、敷き布団などの寝具用中綿、椅子、ソファー、クッションなどに用いるクッション材などの用途に好適に利用することができる。 Since the nonwoven fabric structure of the present invention has hygroscopicity, high bulkiness, and a soft texture, it is a material suitable as a batting for clothing and bedding. Specifically, it can be suitably used for applications such as padding for clothing such as coats, vests and bra cups, padding for bedding such as comforters and mattresses, cushion materials used for chairs, sofas, cushions and the like.
本発明の不織布構造体の一例を示す模式図である。It is a schematic diagram which shows an example of the nonwoven fabric structure of this invention.
本発明に採用する吸放湿性繊維としては、綿、レーヨン、麻、羊毛、獣毛、絹、アセテート、ナイロン、ビニロンや、改質して吸放湿性を高めたポリエステル、ポリエチレン、ポリプロピレンなどを挙げることができる。 Examples of moisture-absorbing and releasing fibers used in the present invention include cotton, rayon, hemp, wool, animal hair, silk, acetate, nylon, vinylon, and polyester, polyethylene, polypropylene, etc. that have been modified to increase moisture absorption and desorption. be able to.
特に、本発明に採用する吸放湿性繊維としては、架橋構造とカルボキシル基を有する繊維が好適である。かかる繊維としては、カルボキシル基又はそのアルカリ金属塩基などの親水性基含有モノマーと、カルボキシル基と反応してエステル架橋構造を形成できるヒドロキシル基含有モノマーなどとが共重合され、かつエステル架橋結合が導入されてなるポリアクリル酸系架橋体繊維、無水マレイン酸系架橋体繊維、アルギン酸系架橋体繊維などや、アクリロニトリル系繊維に架橋剤により架橋構造を導入した後、加水分解することによりカルボキシル基を導入した架橋アクリレート系繊維などが挙げられる。このうち、架橋アクリレート系繊維は、架橋剤による架橋条件、加水分解条件をコントロールすることにより、吸湿性に優れた繊維が得られるため、本発明に採用する架橋構造とカルボキシル基を有する繊維として好ましい。 In particular, as the moisture absorbing / releasing fiber employed in the present invention, a fiber having a crosslinked structure and a carboxyl group is suitable. As such fibers, a hydrophilic group-containing monomer such as a carboxyl group or an alkali metal base thereof is copolymerized with a hydroxyl group-containing monomer that can react with the carboxyl group to form an ester crosslinked structure, and an ester crosslinked bond is introduced. After introducing a cross-linked structure into the polyacrylic acid-based cross-linked fiber, maleic anhydride-based cross-linked fiber, alginic acid-based cross-linked fiber, etc. and acrylonitrile-based fiber with a cross-linking agent, a carboxyl group is introduced by hydrolysis. Cross-linked acrylate fibers and the like. Among these, a crosslinked acrylate fiber is preferable as a fiber having a crosslinked structure and a carboxyl group employed in the present invention because a fiber having excellent hygroscopicity can be obtained by controlling the crosslinking conditions and hydrolysis conditions with a crosslinking agent. .
また、これらの架橋構造とカルボキシル基を有する繊維におけるカルボキシル基量としては、好ましくは1~10mmol/gであり、より好ましくは3~9mmol/gであり、さらに好ましくは3~8mmol/gであり、もっとも好ましくは3~6mmol/gである。カルボキシル基が1mmol/gに満たない場合は、最終的に得られる不織布構造体において、十分な吸湿性を発現できない場合がある。カルボキシル基が10mmol/gを超える場合には、繊維の水膨潤性が高くなりすぎ、水を含んだ場合に繊維物性が低くなりすぎて、加工や使用が困難となる場合がある。カルボキシル基量は、カルボキシル基を有するモノマーの共重合量や加水分解の処理条件などによって調整することができる。 Further, the amount of carboxyl groups in the fiber having such a crosslinked structure and carboxyl group is preferably 1 to 10 mmol / g, more preferably 3 to 9 mmol / g, and further preferably 3 to 8 mmol / g. Most preferably, it is 3 to 6 mmol / g. When the carboxyl group is less than 1 mmol / g, the resulting nonwoven fabric structure may not exhibit sufficient hygroscopicity. If the carboxyl group exceeds 10 mmol / g, the water swellability of the fiber becomes too high, and if it contains water, the fiber physical properties become too low, making it difficult to process or use. The amount of carboxyl groups can be adjusted by the copolymerization amount of the monomer having a carboxyl group, the treatment conditions for hydrolysis, and the like.
また、カルボキシル基の対イオンとしては、水素、アンモニウム、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム、マンガン、銅、亜鉛、銀などの陽イオンが挙げられ、複数種が混在していてもよい。これらのイオンを適宜選択することにより、本発明の不織布構造体の吸放湿速度や飽和吸湿量といった吸放湿性能を調整できるほか、吸放湿性能に加えて、吸湿発熱性能、消臭性能、抗菌性能、抗ウイルス性能、抗アレルゲン性能、難燃性能など、カルボキシル基に起因する公知の各種性能を本発明の不織布構造体に付与することができる。 Moreover, as a counter ion of a carboxyl group, cations, such as hydrogen, ammonium, sodium, potassium, magnesium, calcium, aluminum, manganese, copper, zinc, silver, are mentioned, and multiple types may be mixed. By appropriately selecting these ions, moisture absorption / release performance such as moisture absorption / release rate and saturated moisture absorption of the nonwoven fabric structure of the present invention can be adjusted, and in addition to moisture absorption / release performance, moisture absorption heat generation performance, deodorization performance Various known performances attributable to carboxyl groups such as antibacterial performance, antiviral performance, antiallergen performance, and flame retardancy performance can be imparted to the nonwoven fabric structure of the present invention.
カルボキシル基の対イオンを調整する方法としては、架橋構造とカルボキシル基を有する繊維に対して、硝酸塩、硫酸塩、塩酸塩などの金属塩によるイオン交換処理、硝酸、硫酸、塩酸、蟻酸などによる酸処理、あるいは、アルカリ性金属化合物などによるpH調整処理などを施す方法が挙げられる。 As a method for adjusting the counter ion of the carboxyl group, a fiber having a crosslinked structure and a carboxyl group is subjected to an ion exchange treatment with a metal salt such as nitrate, sulfate or hydrochloride, and an acid such as nitric acid, sulfuric acid, hydrochloric acid or formic acid. Examples of the method include a treatment or a pH adjustment treatment with an alkaline metal compound.
上述してきた架橋構造とカルボキシル基を有する繊維の好ましい例としては、架橋アクリレート系繊維が挙げられる。かかる架橋アクリレート系繊維は従来公知の方法により得ることができる。例えば、特開2000-314082号公報に記載のように、アクリロニトリル含有率が85~95重量%であるアクリル系繊維に対するヒドラジン系化合物による架橋処理によって導入される窒素含有量の増加が、1.0~5.0重量%である架橋アクリル系繊維であって、残存ニトリル基の一部が3.0~6.0meq/gのアルカリ金属塩型カルボキシル基に変換されており、しかも20℃×50%RH条件と20℃×95%RH条件との吸湿率差が50重量%以上150重量%以下である吸放湿性繊維を挙げることができる。 Preferable examples of the fiber having a crosslinked structure and a carboxyl group described above include a crosslinked acrylate fiber. Such a crosslinked acrylate fiber can be obtained by a conventionally known method. For example, as described in Japanese Patent Application Laid-Open No. 2000-314082, an increase in the nitrogen content introduced by a crosslinking treatment with a hydrazine compound on an acrylic fiber having an acrylonitrile content of 85 to 95% by weight is 1.0 A crosslinked acrylic fiber having a content of ˜5.0% by weight, wherein a part of the remaining nitrile group is converted to an alkali metal salt type carboxyl group of 3.0 to 6.0 meq / g, and 20 ° C. × 50 An example is a moisture absorbing / releasing fiber in which the difference in moisture absorption between the% RH condition and the 20 ° C. × 95% RH condition is 50 wt% or more and 150 wt% or less.
また、架橋アクリレート系繊維としては、市販品を用いてもよい。市販品としては、例えば、東洋紡(株)製のエクス(登録商標)、ディスメル(登録商標)、モイスファイン(登録商標)、モイスケア(登録商標)、東邦テキスタイル(株)製のサンバーナー(登録商標)などを挙げることができる。 Moreover, as a crosslinked acrylate fiber, a commercially available product may be used. Commercially available products include, for example, Toyobo Co., Ltd. Ex (registered trademark), Dismel (registered trademark), Mois Fine (registered trademark), Moiscare (registered trademark), Toho Textile Co., Ltd. Sunburner (registered trademark) ) And the like.
本発明に採用する吸放湿性繊維の繊度としては、好ましくは0.9~9dtex、より好ましくは2~7dtexである。繊度が0.9dtexに満たない場合にはカードウェブを得ることが難しくなることがあり、繊度が9dtexを超える場合には得られる不織布構造体の風合いが硬くなりすぎることがある。また、該繊維の繊維長としては20~80mmであることが好ましい。 The fineness of the hygroscopic fibers employed in the present invention is preferably 0.9 to 9 dtex, more preferably 2 to 7 dtex. When the fineness is less than 0.9 dtex, it may be difficult to obtain a card web, and when the fineness exceeds 9 dtex, the texture of the resulting nonwoven fabric structure may be too hard. The fiber length of the fiber is preferably 20 to 80 mm.
本発明に採用する熱接着性繊維は、本発明の不織布構造体において、上述の吸放湿性繊維の接着および不織布層間の接着を行うことにより、不織布構造体の折り畳み構造および全体形状を維持させるものである。かかる熱接着性繊維としては、熱接着性を備えている限り使用が可能であり、例えば、熱融着性ポリエステル繊維や、ポリエチレン-ポリプロピレン、ポリエチレン-ポリエステル、ポリエステル-ポリエステル等の低融点-高融点成分からなる複合繊維が挙げられる。 The heat-adhesive fiber employed in the present invention maintains the folded structure and overall shape of the nonwoven fabric structure by adhering the moisture-absorbing / releasing fibers described above and bonding between the nonwoven fabric layers in the nonwoven fabric structure of the present invention. It is. Such heat-adhesive fibers can be used as long as they have heat-adhesive properties. For example, heat-fusible polyester fibers, polyethylene-polypropylene, polyethylene-polyester, polyester-polyester, etc., low melting point-high melting point The composite fiber which consists of a component is mentioned.
かかる熱接着性繊維の融点(低融点-高融点成分からなる熱接着性繊維の場合には、低融点成分の融点)としては、上記吸放湿性繊維の物性に悪影響を与えない温度であればよいが、通常、100~190℃であればよい。 The melting point of such a heat-bonding fiber (in the case of a heat-bonding fiber composed of a low melting point-high melting point component, the melting point of the low melting point component) is any temperature that does not adversely affect the physical properties of the hygroscopic fiber. Usually, it may be 100 to 190 ° C.
また、本発明に採用する熱接着性繊維の繊度としては、好ましくは0.9~6.6dtex、より好ましくは1.5~6.0dtexである。繊度が0.9dtexに満たない場合にはカードウェブを得ることが難しくなることがあり、繊度が6.6dtexを超える場合には得られる不織布構造体の風合いが硬くなりすぎることがある。また、該繊維の繊維長としては20~80mmであることが好ましい。 The fineness of the heat-adhesive fiber employed in the present invention is preferably 0.9 to 6.6 dtex, more preferably 1.5 to 6.0 dtex. When the fineness is less than 0.9 dtex, it may be difficult to obtain a card web, and when the fineness exceeds 6.6 dtex, the texture of the resulting nonwoven fabric structure may be too hard. The fiber length of the fiber is preferably 20 to 80 mm.
本発明に採用する不織布は、上述した吸放湿性繊維と熱接着性繊維を含有するものである。かかる不織布における吸放湿性繊維の含有量としては、不織布の全質量に対して、好ましくは20~80質量%であり、より好ましくは25~75質量%であり、さらに好ましくは30~70質量%である。また、熱接着性繊維の含有量としては、不織布の全質量に対して、好ましくは20~80質量%であり、より好ましくは25~75質量%であり、さらに好ましくは30~70質量%である。 The nonwoven fabric employed in the present invention contains the above-described moisture-absorbing / releasing fibers and thermal adhesive fibers. The content of hygroscopic fibers in such a nonwoven fabric is preferably 20 to 80% by mass, more preferably 25 to 75% by mass, and further preferably 30 to 70% by mass with respect to the total mass of the nonwoven fabric. It is. Further, the content of the heat-adhesive fiber is preferably 20 to 80% by mass, more preferably 25 to 75% by mass, and further preferably 30 to 70% by mass with respect to the total mass of the nonwoven fabric. is there.
かかる不織布を用いて得られる本発明の不織布構造体においては、熱接着性繊維が融着することにより繊維間に接着点が形成されている。この接着点には熱接着性繊維同士の接着点と吸放湿性繊維-熱接着性繊維間の接着点があるが、後者よりも前者のほうが接着力が強い。また、熱接着性繊維は吸放湿性繊維よりも硬い傾向がある。このため、本発明に採用する不織布においては、吸放湿性繊維の含有量が20質量%に満たない場合、あるいは熱接着性繊維の含有量が80質量%を超える場合には、不織布の柔らかさが不十分となり、後述する屈曲または湾曲している構造を得ることが難しくなる。また、吸放湿性繊維の含有量が80質量%を超える場合、あるいは熱接着性繊維の含有量が20質量%に満たない場合には、不織布中の熱接着点が減るため、実使用における不織布強度が不十分となったり、不織布形状の維持が困難となったりする場合がある。 In the nonwoven fabric structure of the present invention obtained using such a nonwoven fabric, adhesion points are formed between the fibers by fusing the heat-adhesive fibers. The bonding point includes a bonding point between the heat-bonding fibers and a bonding point between the moisture-absorbing / releasing fiber and the heat-bonding fiber. The former has stronger bonding force than the latter. Thermal adhesive fibers tend to be harder than hygroscopic fibers. For this reason, in the nonwoven fabric employed in the present invention, when the moisture-absorbing / releasing fiber content is less than 20% by mass, or when the thermal adhesive fiber content exceeds 80% by mass, the nonwoven fabric is soft. Becomes insufficient, and it becomes difficult to obtain a bent or curved structure, which will be described later. Further, when the content of moisture-absorbing / releasing fibers exceeds 80% by mass, or when the content of heat-adhesive fibers is less than 20% by mass, the thermal bonding point in the nonwoven fabric is reduced. In some cases, the strength may be insufficient or it may be difficult to maintain the shape of the nonwoven fabric.
なお、本発明に採用する不織布においては、上述の吸放湿性繊維および熱接着性繊維をそれぞれ複数種使用してもよいし、これらの繊維以外の繊維や添加剤が含まれていてもよい。 In addition, in the nonwoven fabric employ | adopted for this invention, multiple types of the above-mentioned moisture absorption / release fiber and thermal adhesive fiber may be used, respectively, and fibers and additives other than these fibers may be contained.
また、不織布の種類としては、ニードルパンチ法、ケミカルボンド法、サーマルボンド法、水流絡合法などで得られるものが挙げられるが、折り畳みに際して後述する熱処理機を用いる場合には、カードウェブを採用することができる。 Examples of the nonwoven fabric include those obtained by a needle punch method, a chemical bond method, a thermal bond method, a water flow entanglement method, etc., but when using a heat treatment machine described later for folding, a card web is adopted. be able to.
本発明の不織布構造体は、上述した吸放湿性繊維と熱接着性繊維を含有する不織布をジグザグに折り畳み、積層された不織布層間を接着することによって形成される。形成する方法には特に限定はなく、従来公知の方法を任意に採用すれば良いが、例えば吸放湿性繊維と熱接着性繊維とを混綿し、ローラーカードを通すことで得られるウェブを、ローラーカードを通したときと同じ向き(すなわち、繊維の配向している方向)で、特開2007-025044号公報の図1に示すような機構を有する熱処理機を通して、ジグザグに折りたたみながら加熱処理し、熱接着点を形成させる方法などが好ましく例示される。かかる熱処理機としては、例えば特表2002-516932号公報に示された装置やStruto社製Struto設備などを挙げることができる。 The nonwoven fabric structure of the present invention is formed by folding the nonwoven fabric containing the moisture absorbing / releasing fibers and the heat-adhesive fibers in a zigzag manner and bonding the laminated nonwoven fabric layers. The forming method is not particularly limited, and a conventionally known method may be arbitrarily adopted. For example, a web obtained by blending hygroscopic and thermal adhesive fibers and passing a roller card is used as a roller. In the same direction as when the card is passed (that is, in the direction in which the fibers are oriented), heat treatment is performed while folding in a zigzag through a heat treatment machine having a mechanism as shown in FIG. 1 of JP2007-025044, A method for forming a thermal bonding point is preferably exemplified. Examples of such a heat treatment machine include an apparatus disclosed in Japanese Patent Application Publication No. 2002-516932, a Strut equipment manufactured by Struto Corporation, and the like.
また、本発明の不織布構造体は、不織布が折り畳まれてできるジグザグ形状が見える面において、各不織布層が同一方向に屈曲または湾曲している構造を有している。かかる構造は、例えば、図1に示すような構造である。上述したような熱処理機を用いた場合、通常、各不織布層は直立するところ、例えば、不織布に用いる吸放湿性繊維と熱接着性繊維の割合を上述するような範囲に調整することで、同一方向に屈曲または湾曲している構造を得ることができる。 In addition, the nonwoven fabric structure of the present invention has a structure in which each nonwoven fabric layer is bent or curved in the same direction on a surface where a zigzag shape formed by folding the nonwoven fabric can be seen. Such a structure is, for example, a structure as shown in FIG. When using a heat treatment machine as described above, each nonwoven fabric layer is usually upright, for example, by adjusting the ratio of moisture absorbing / releasing fibers and thermal adhesive fibers used in the nonwoven fabric to the above-described range. A structure that is bent or curved in the direction can be obtained.
かかる同一方向に屈曲または湾曲している構造を有する本発明の不織布構造体は、折り畳まない通常の不織布に比べて、嵩が高く、また、経時や圧力による嵩の低下が小さいものである。また、本発明の不織布構造体は、不織布層が直立している従来の折り畳み型の不織布構造体に比べて、風合いがやわらかいという特徴を備えるものである。 The nonwoven fabric structure of the present invention having such a structure bent or curved in the same direction is higher in volume than a normal nonwoven fabric that is not folded, and has a small decrease in bulk due to aging or pressure. Moreover, the nonwoven fabric structure of this invention is equipped with the characteristic that a texture is soft compared with the conventional folding-type nonwoven fabric structure in which the nonwoven fabric layer stands upright.
上述の屈曲または湾曲は各不織布層に複数個所存在してもよいが、1箇所だけでも十分にやわらかい風合いを得ることができる。また、本発明における屈曲または湾曲とは、屈曲または湾曲した不織布層の垂直方向の高さ、すなわち不織布構造体の高さが、屈曲または湾曲に沿って測定した不織布層の長さに対して90%以下となるものであり、より好ましくは80%以下、さらに好ましくは70%以下であることが望ましい。 Although the above-mentioned bending or bending may be present at a plurality of locations in each nonwoven fabric layer, a sufficiently soft texture can be obtained at only one location. In the present invention, the bending or bending refers to the vertical height of the bent or curved nonwoven fabric layer, that is, the height of the nonwoven fabric structure is 90 with respect to the length of the nonwoven fabric layer measured along the bending or bending. % Or less, more preferably 80% or less, and still more preferably 70% or less.
かかる本発明の不織布構造体は、JIS L 1913の6.7.3 a法により測定した、折り曲げ線のある面を上下面としたときの、折り曲げ線に対する直角の方向の曲げ長さが好ましくは7cm以下、より好ましくは6cm以下、さらに好ましくは5cm以下であることが望ましい。曲げ長さが好ましくは7cmを超える場合には、やわらかい風合いが得られない場合がある。ここで、折り曲げ線とは不織布が折り曲げられている曲面の頂部を指しており、図1において点線で図示している部分のことである。 Such a nonwoven fabric structure of the present invention preferably has a bending length in a direction perpendicular to the fold line when the surface with the fold line is taken as the upper and lower surfaces as measured by JIS L 1913 6.7.3 a method. It is desirable that it is 7 cm or less, more preferably 6 cm or less, and still more preferably 5 cm or less. When the bending length is preferably more than 7 cm, a soft texture may not be obtained. Here, the fold line refers to the top of the curved surface where the non-woven fabric is bent, and is the portion indicated by the dotted line in FIG.
また、本発明の不織布構造体の目付けとしては、好ましくは120~2000g/mであり、より好ましくは140~1000g/mである。また、厚さとしては、好ましくは4~40mmであり、より好ましくは10~30mmである。目付けが120g/mに満たない場合、あるいは厚さが4mmに満たない場合には、不織布構造体が柔らかくなりすぎて、嵩高性が不十分となったり、実使用における嵩高性の維持が困難となったりする場合がある。ここで、不織布構造体の厚さとは、折り曲げ線を上下面としたときの高さに相当する。 Further, the basis weight of the nonwoven fabric structure of the present invention is preferably 120 to 2000 g / m 2 , more preferably 140 to 1000 g / m 2 . The thickness is preferably 4 to 40 mm, more preferably 10 to 30 mm. If the basis weight is less than 120 g / m 2 or the thickness is less than 4 mm, the nonwoven fabric structure becomes too soft and the bulkiness becomes insufficient, or it is difficult to maintain the bulkiness in actual use. It may become. Here, the thickness of the nonwoven fabric structure corresponds to the height when the folding lines are taken as the upper and lower surfaces.
また、不織布構造体の目付けが2000g/mを超える場合には、不織布構造体が剛直となってしまう場合がある。また、不織布構造体の厚さが40mmを超える場合には、後述する折り畳み加工が困難となる場合がある。 Moreover, when the fabric weight of a nonwoven fabric structure exceeds 2000 g / m < 2 >, a nonwoven fabric structure may become rigid. Moreover, when the thickness of a nonwoven fabric structure exceeds 40 mm, the folding process mentioned later may become difficult.
上述してきた本発明の不織布構造体は、吸湿性を有し、嵩高性が高く、保温性に優れ、かつ風合いがやわらかいものであるので、衣料用や寝具用の中綿として適した素材である。具体的には、コート、ベスト、ブラカップなどの衣料用中綿、掛け布団、敷き布団などの寝具用中綿、椅子、ソファー、クッションなどに用いるクッション材などの用途に好適に利用することができる。 The nonwoven fabric structure of the present invention described above has a hygroscopic property, has a high bulkiness, is excellent in heat retaining properties, and has a soft texture, and is therefore a material suitable as a batting for clothing and bedding. Specifically, it can be suitably used for applications such as padding for clothing such as coats, vests and bra cups, padding for bedding such as comforters and mattresses, cushion materials used for chairs, sofas, cushions and the like.
ここで、本発明の不織布構造体を衣料用中綿用途、寝具用中綿用途あるいはクッション材に用いる場合においても、必要に応じて他の素材と併用しても構わないことは言うまでもない。また、かかる用途における本発明の不織布構造体の吸湿性としては、快適性の観点から、20℃、相対湿度65%における飽和吸湿率の下限が好ましくは9%以上、より好ましくは12%以上、さらに好ましくは15%以上であることが望ましい。一方、飽和吸湿率の上限は、特に限定されないものの、最も吸湿性を高められる架橋アクリレート系繊維を用いた場合においても、概ね70%が上限となる。 Here, it is needless to say that the nonwoven fabric structure of the present invention may be used in combination with other materials as necessary even when used for batting for clothing, batting for bedding or a cushioning material. Further, as the hygroscopicity of the nonwoven fabric structure of the present invention in such applications, from the viewpoint of comfort, the lower limit of the saturated moisture absorption rate at 20 ° C. and relative humidity of 65% is preferably 9% or more, more preferably 12% or more, More preferably, it is 15% or more. On the other hand, although the upper limit of the saturated moisture absorption rate is not particularly limited, even when a crosslinked acrylate fiber that can enhance the hygroscopicity is used, the upper limit is approximately 70%.
以下に本発明の理解を容易にするために実施例を示すが、これらはあくまで例示的なものであり、本発明の要旨はこれらにより限定されるものではない。なお、実施例中、部及び百分率は特に断りのない限り質量基準で示す。 Examples are shown below for facilitating the understanding of the present invention. However, these are merely examples, and the gist of the present invention is not limited thereto. In the examples, parts and percentages are shown on a mass basis unless otherwise specified.
<曲げ長さの測定>
JIS L 1913の6.7.3 a法(41.5°カンチレバー法)により測定する。なお、測定に際しては、折り畳まれた不織布試料は、カンチレバー形試験機のプラットホーム上に、折り曲げ線のある面を上下面とし、かつ、プラットホームの長手方向と折り曲げ線が直角となるように設置する。
<Measurement of bending length>
Measured according to JIS L 1913 6.7.3 a method (41.5 ° cantilever method). In the measurement, the folded nonwoven fabric sample is placed on the platform of the cantilever type testing machine so that the surface with the folding line is the upper and lower surfaces, and the longitudinal direction of the platform is perpendicular to the folding line.
<カルボキシル基量(mmol/g)の測定>
 十分乾燥した試料約1gを精秤し(Xg)、これに200mLの水を加えた後、次いで0.1mol/L水酸化ナトリウム水溶液で常法に従って滴定曲線を求める。この滴定曲線からカルボキシル基に消費された水酸化ナトリウム水溶液消費量(Ycm)を求め、次式によってカルボキシル基量(mmol/g)を算出する。
カルボキシル基量(mmol/g)=0.1Y/X
<Measurement of carboxyl group amount (mmol / g)>
About 1 g of a sufficiently dried sample is precisely weighed (Xg), 200 mL of water is added thereto, and then a titration curve is obtained with a 0.1 mol / L aqueous sodium hydroxide solution according to a conventional method. From this titration curve, the consumption amount (Ycm 3 ) of an aqueous sodium hydroxide solution consumed by carboxyl groups is determined, and the carboxyl group amount (mmol / g) is calculated by the following formula.
Carboxyl group amount (mmol / g) = 0.1 Y / X
<吸湿率の測定>
試料約5.0gを、熱風乾燥器で105℃、16時間乾燥して重量を測定する(W1[g])。次に、該試料を、温度20℃、65%RHに調節した恒温恒湿器に24時間入れる。このようにして吸湿した試料の重量を測定する(W2[g])。以上の測定結果から、次式によって20℃×65%RH吸湿率(飽和吸湿率)を算出する。
20℃×65%RH吸湿率[%]=(W2-W1)/W1×100
<Measurement of moisture absorption rate>
About 5.0 g of a sample is dried with a hot air dryer at 105 ° C. for 16 hours and weighed (W1 [g]). Next, the sample is placed in a thermo-hygrostat adjusted to a temperature of 20 ° C. and 65% RH for 24 hours. The weight of the sample thus absorbed is measured (W2 [g]). From the above measurement results, the 20 ° C. × 65% RH moisture absorption rate (saturated moisture absorption rate) is calculated by the following equation.
20 ° C. × 65% RH moisture absorption [%] = (W2−W1) / W1 × 100
<屈曲・湾曲の程度の測定>
不織布構造体試料について、不織布構造体の高さ(L1[mm])および屈曲・湾曲に沿った不織布層の長さ(L2[mm])を測定し、次式によって算出する。
屈曲・湾曲の程度[%]=L1/L2×100
<Measurement of the degree of bending / curving>
For the nonwoven fabric structure sample, the height (L1 [mm]) of the nonwoven fabric structure and the length of the nonwoven fabric layer (L2 [mm]) along the bending / curving are measured and calculated by the following formula.
Bending / curving degree [%] = L1 / L2 × 100
<吸放湿性繊維の製造例1>
アクリロニトリル90%及びアクリル酸メチル10%のアクリロニトリル系重合体を48重量%のロダンソーダ水溶液に溶解した紡糸原液を、常法に従って紡糸、水洗、延伸、捲縮、熱処理をして原料繊維を得た。該原料繊維を、15%ヒドラジン水溶液中で110℃×3時間架橋導入処理を行い水洗した。次に、8%硝酸水溶液中で110℃×1時間酸処理を行い水洗した。続いて8%水酸化ナトリウム水溶液中で、90℃×2時間加水分解処理を行った後、pH12に調整し、純水で洗浄し、吸放湿性繊維Aを得た。該繊維は単繊維繊度が2.0dtex、繊維長が34mm、カルボキシル基が5.0mmol/g、飽和吸湿率が35%であった。
<Manufacture example 1 of hygroscopic fiber>
A raw material fiber was obtained by spinning, washing, drawing, crimping, and heat-treating a spinning stock solution in which an acrylonitrile-based polymer of 90% acrylonitrile and 10% methyl acrylate was dissolved in a 48% by weight rhodium soda aqueous solution according to a conventional method. The raw fiber was subjected to crosslinking introduction treatment in a 15% hydrazine aqueous solution at 110 ° C. for 3 hours and washed with water. Next, it was acid-treated in an 8% aqueous nitric acid solution at 110 ° C. for 1 hour and washed with water. Subsequently, after performing a hydrolysis treatment at 90 ° C. for 2 hours in an 8% aqueous sodium hydroxide solution, the pH was adjusted to 12 and washed with pure water to obtain hygroscopic fibers A. The fiber had a single fiber fineness of 2.0 dtex, a fiber length of 34 mm, a carboxyl group of 5.0 mmol / g, and a saturated moisture absorption of 35%.
<実施例1>
70質量%の吸放湿性繊維A及び30質量%の熱接着性繊維a(鞘成分が融点155℃のポリエステル、芯成分が融点256℃のポリエステルの芯鞘構造(芯成分:鞘成分の質量比=30/70)、単繊維繊度3.3dtex、繊維長51mm)を混綿し、通常のカード機でウェブを作製した。次に、Struto社製Struto設備(特表2002-516932号公報に示された装置と同様のもの)を用いて、該ウェブをその繊維配向方向に、ローラ表面速度2.5m/分の駆動ローラにより、熱風サクション式熱処理機(熱処理ゾーンの長さ5m、移動速度1m/分)内へ押し込むことでジグザグに折り畳み、熱風200℃×5分間処理し不織布構造体を得た。得られた不織布構造体は各不織布層が同一方向に湾曲しているものであった。該不織布構造体の評価結果を表1に示す。
<Example 1>
70% by mass hygroscopic fiber A and 30% by mass of thermoadhesive fiber a (sheath component is polyester having a melting point of 155 ° C., core component is a polyester having a melting point of 256 ° C. (core component: mass ratio of sheath component) = 30/70), single fiber fineness 3.3 dtex, fiber length 51 mm), and a web was produced with a normal card machine. Next, using a Struto equipment manufactured by Struto (similar to the apparatus disclosed in JP 2002-516932 A), the web is driven in the fiber orientation direction with a roller surface speed of 2.5 m / min. Were folded into a zigzag by being pushed into a hot air suction heat treatment machine (heat treatment zone length 5 m, moving speed 1 m / min) and treated with hot air 200 ° C. for 5 minutes to obtain a nonwoven fabric structure. In the obtained nonwoven fabric structure, each nonwoven fabric layer was curved in the same direction. The evaluation results of the nonwoven fabric structure are shown in Table 1.
<実施例2>
実施例1において、不織布構造体の厚さを小さくすること以外は同様にして不織布構造体を得た。得られた不織布構造体は各不織布層が同一方向に湾曲しているものであった。該不織布構造体の評価結果を表1に示す。
<Example 2>
In Example 1, a nonwoven fabric structure was obtained in the same manner except that the thickness of the nonwoven fabric structure was reduced. In the obtained nonwoven fabric structure, each nonwoven fabric layer was curved in the same direction. The evaluation results of the nonwoven fabric structure are shown in Table 1.
<実施例3>
実施例1において、吸放湿性繊維Aの割合を50質量%、熱接着性繊維aの割合を50質量%とすること以外は同様にして不織布構造体を得た。得られた不織布構造体は各不織布層が同一方向に湾曲しているものであった。該不織布構造体の評価結果を表1に示す。
<Example 3>
A nonwoven fabric structure was obtained in the same manner as in Example 1 except that the proportion of the hygroscopic fibers A was 50 mass% and the proportion of the heat-adhesive fibers a was 50 mass%. In the obtained nonwoven fabric structure, each nonwoven fabric layer was curved in the same direction. The evaluation results of the nonwoven fabric structure are shown in Table 1.
<実施例4>
実施例1において、吸放湿性繊維Aの割合を50質量%、熱接着性繊維aの割合を50質量%とし、目付けを増加させること以外は同様にして不織布構造体を得た。得られた不織布構造体は各不織布層が同一方向に湾曲しているものであった。該不織布構造体の評価結果を表1に示す。
<Example 4>
In Example 1, the nonwoven fabric structure was obtained in the same manner except that the moisture absorbing / releasing fiber A was 50 mass%, the thermal adhesive fiber a was 50 mass%, and the basis weight was increased. In the obtained nonwoven fabric structure, each nonwoven fabric layer was curved in the same direction. The evaluation results of the nonwoven fabric structure are shown in Table 1.
<実施例5>
実施例1において、吸放湿性繊維Aの代わりに、レーヨンを用いること以外は同様にして不織布構造体を得た。得られた不織布構造体は各不織布層が同一方向に湾曲しているものであった。該不織布構造体の評価結果を表1に示す。
<Example 5>
In Example 1, a nonwoven fabric structure was obtained in the same manner except that rayon was used instead of the hygroscopic fiber A. In the obtained nonwoven fabric structure, each nonwoven fabric layer was curved in the same direction. The evaluation results of the nonwoven fabric structure are shown in Table 1.
<比較例1>
実施例1において、混綿する繊維を18質量%の吸放湿性繊維A、52質量%の熱接着性繊維aおよび30質量%のポリエステル繊維b(単繊維繊度3.3dtex、繊維長51mm、融点256℃)とすること以外は同様にして不織布構造体を得た。得られた不織布構造体は各不織布層が屈曲や湾曲を有していないものであった。該不織布構造体の評価結果を表1に示す。
<Comparative Example 1>
In Example 1, the blended fibers were 18% by mass hygroscopic fiber A, 52% by mass thermal adhesive fiber a and 30% by mass polyester fiber b (single fiber fineness 3.3 dtex, fiber length 51 mm, melting point 256. A non-woven fabric structure was obtained in the same manner except that In the obtained nonwoven fabric structure, each nonwoven fabric layer had no bending or bending. The evaluation results of the nonwoven fabric structure are shown in Table 1.
<比較例2>
実施例1において、混綿する繊維を50質量%の熱接着性繊維aおよび50質量%の高融点ポリエステル繊維(単繊維繊度3.3dtex、繊維長51mm、融点256℃)とすること以外は同様にして不織布構造体を得た。得られた不織布構造体は各不織布層が屈曲や湾曲を有していないものであった。該不織布構造体の評価結果を表1に示す。
<Comparative example 2>
In Example 1, the fibers to be blended are the same except that 50% by mass of the heat-adhesive fiber a and 50% by mass of the high melting point polyester fiber (single fiber fineness 3.3 dtex, fiber length 51 mm, melting point 256 ° C.). Thus, a nonwoven fabric structure was obtained. In the obtained nonwoven fabric structure, each nonwoven fabric layer had no bending or bending. The evaluation results of the nonwoven fabric structure are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1からわかるように、不織布のジグザグ形状が見える面において、各不織布層が同一方向に湾曲している実施例1~5の不織布構造体においては、曲げ長さが短く、風合いがやわらかいものであった。一方、吸放湿性繊維の含有量の少ない比較例1の繊維や吸放湿性繊維を含有しない比較例2の不織布構造体では曲げ長さが長く、やわらかさに乏しいものであった。 As can be seen from Table 1, in the nonwoven fabric structures of Examples 1 to 5 in which the nonwoven fabric layers are curved in the same direction on the surface where the zigzag shape of the nonwoven fabric can be seen, the bending length is short and the texture is soft. there were. On the other hand, the fiber of Comparative Example 1 having a small content of moisture absorbing / releasing fibers and the nonwoven fabric structure of Comparative Example 2 not containing moisture absorbing / releasing fibers had a long bending length and were poor in softness.
1 ジグザグ形状
2 折り曲げ線
3 湾曲した不織布層
 
1 Zigzag shape 2 Folding line 3 Curved nonwoven fabric layer

Claims (7)

  1. 吸放湿性繊維と熱接着性繊維を含有する不織布がジグザグに折り畳まれることによって、不織布層が積層された構造が形成されており、かつ、各不織布層間が接着されている不織布構造体であって、該構造体のジグザグ形状が見える面において、各不織布層が同一方向に屈曲または湾曲していることを特徴とする不織布構造体。 A nonwoven fabric structure in which nonwoven fabric layers containing hygroscopic fibers and heat-adhesive fibers are folded zigzag to form a laminate of nonwoven fabric layers, and each nonwoven fabric layer is bonded. A nonwoven fabric structure wherein each nonwoven fabric layer is bent or curved in the same direction on the surface where the zigzag shape of the structure can be seen.
  2. JIS L 1913の6.7.3 a法により測定した、折り曲げ線のある面を上下面としたときの、折り曲げ線に対する直角の方向の曲げ長さが7cm以下であることを特徴とする請求項1に記載の不織布構造体。 The bending length in a direction perpendicular to the fold line measured by JIS L 1913 6.7.3 a method when the plane with the fold line is the upper and lower surfaces is 7 cm or less. The nonwoven fabric structure according to 1.
  3. 目付けが120~2000g/m2であり、厚さが4~40mmであることを特徴とする請求項1又は2に記載の不織布構造体。 The nonwoven fabric structure according to claim 1 or 2, wherein the basis weight is 120 to 2000 g / m2, and the thickness is 4 to 40 mm.
  4. 不織布中の吸放湿性繊維の含有量が20~80質量%であり、熱接着性繊維の含有量が20~80質量%であることを特徴とする請求項1~3のいずれかに記載の不織布構造体。 The content of hygroscopic fibers in the nonwoven fabric is 20 to 80% by mass, and the content of heat-adhesive fibers is 20 to 80% by mass, according to any one of claims 1 to 3. Nonwoven structure.
  5. 吸放湿性繊維が、架橋構造とカルボキシル基を有する繊維であることを特徴とする請求項1~4のいずれかに記載の不織布構造体。 The nonwoven fabric structure according to any one of claims 1 to 4, wherein the moisture-absorbing / releasing fibers are fibers having a crosslinked structure and a carboxyl group.
  6. 請求項1~5のいずれかに記載の不織布構造体を含有する中綿。 A batting containing the nonwoven fabric structure according to any one of claims 1 to 5.
  7. 請求項1~5のいずれかに記載の不織布構造体を含有するクッション材。
     
    A cushion material comprising the nonwoven fabric structure according to any one of claims 1 to 5.
PCT/JP2016/073236 2016-08-08 2016-08-08 Nonwoven fabric structure and padding and cushion material containing said structure WO2018029737A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018533303A JP6792828B2 (en) 2016-08-08 2016-08-08 Non-woven fabric structure and batting and cushioning material containing the structure
PCT/JP2016/073236 WO2018029737A1 (en) 2016-08-08 2016-08-08 Nonwoven fabric structure and padding and cushion material containing said structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073236 WO2018029737A1 (en) 2016-08-08 2016-08-08 Nonwoven fabric structure and padding and cushion material containing said structure

Publications (1)

Publication Number Publication Date
WO2018029737A1 true WO2018029737A1 (en) 2018-02-15

Family

ID=61161893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073236 WO2018029737A1 (en) 2016-08-08 2016-08-08 Nonwoven fabric structure and padding and cushion material containing said structure

Country Status (2)

Country Link
JP (1) JP6792828B2 (en)
WO (1) WO2018029737A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459521B2 (en) 2020-01-21 2024-04-02 セイコーエプソン株式会社 Cushioning material manufacturing method and cushioning material manufacturing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201563A (en) * 1987-10-09 1989-08-14 Toray Ind Inc Packed fiber and production thereof
US6153059A (en) * 1992-10-09 2000-11-28 The University Of Tennessee Research Corporation Composite of pleated and nonwoven webs, method and apparatus for the electrostatic charging of same
JP2005535789A (en) * 2001-12-14 2005-11-24 キンバリー クラーク ワールドワイド インコーポレイテッド Absorbent composite material with high holding capacity and high uptake rate
JP2006069370A (en) * 2004-09-02 2006-03-16 Nihon Glassfiber Industrial Co Ltd Interior material for vehicle
JP2007022014A (en) * 2005-07-21 2007-02-01 Teijin Fibers Ltd Multilayer fiber pressboard and method for manufacturing the same and fiber product
JP2007239115A (en) * 2006-03-07 2007-09-20 Tokyo Kasen Kk Apparatus for producing formed fiber material and formed fiber material
JP2014080720A (en) * 2014-01-24 2014-05-08 Teijin Ltd Thermal insulation material and textile product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077571A (en) * 2008-09-29 2010-04-08 Toray Ind Inc Heat-insulating material
JP5480991B1 (en) * 2013-04-02 2014-04-23 美津濃株式会社 Fluorescent whitening highly cross-linked polyacrylate fiber, method for producing the same, and fiber structure including the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201563A (en) * 1987-10-09 1989-08-14 Toray Ind Inc Packed fiber and production thereof
US6153059A (en) * 1992-10-09 2000-11-28 The University Of Tennessee Research Corporation Composite of pleated and nonwoven webs, method and apparatus for the electrostatic charging of same
JP2005535789A (en) * 2001-12-14 2005-11-24 キンバリー クラーク ワールドワイド インコーポレイテッド Absorbent composite material with high holding capacity and high uptake rate
JP2006069370A (en) * 2004-09-02 2006-03-16 Nihon Glassfiber Industrial Co Ltd Interior material for vehicle
JP2007022014A (en) * 2005-07-21 2007-02-01 Teijin Fibers Ltd Multilayer fiber pressboard and method for manufacturing the same and fiber product
JP2007239115A (en) * 2006-03-07 2007-09-20 Tokyo Kasen Kk Apparatus for producing formed fiber material and formed fiber material
JP2014080720A (en) * 2014-01-24 2014-05-08 Teijin Ltd Thermal insulation material and textile product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459521B2 (en) 2020-01-21 2024-04-02 セイコーエプソン株式会社 Cushioning material manufacturing method and cushioning material manufacturing device

Also Published As

Publication number Publication date
JP6792828B2 (en) 2020-12-02
JPWO2018029737A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6455680B2 (en) Cross-linked acrylate fiber and fiber structure containing the fiber
JP4529145B2 (en) Slow moisture absorption and release cross-linked acrylic fiber
US9040631B1 (en) Padding
TW200923154A (en) Substrate for buffering material and uses thereof
EP3366822A1 (en) Cotton wadding
JPH0959872A (en) Hydroscopic cross-linkable acrylic fiber and fiber structure using the same
KR20160131105A (en) Wadding
JP6315302B2 (en) Cross-linked acrylate-based ultrafine fiber structure
JP6039379B2 (en) Base fabric for sheet containing liquid cosmetics
WO2018029737A1 (en) Nonwoven fabric structure and padding and cushion material containing said structure
JP2009133036A (en) Knitted fabric having excellent heat-retaining property
JPWO2006027911A1 (en) Advanced flame retardant hygroscopic fibers and fiber structures
JP5192913B2 (en) Cloth products with little cold feeling after moisture absorption
JP5054596B2 (en) Cloth for clothing
JP2020070514A (en) Long and short composite spun yarn excellent in moisture absorbing and releasing property and abrasion resistance, and woven or knitted fabric
WO2017179379A1 (en) High volume, long-lasting high heat generation fiber as well as fiber structure, odor-eliminating material and padding containing said fiber
JP7061292B2 (en) Batting
JP2004169240A (en) Fiber structure
KR102490200B1 (en) Fiber with moisture desorbing and cooling characteristics, and fiber structure containing the same
JP4277193B2 (en) Elastic processed yarn with exothermic properties
JP6226644B2 (en) Cotton
JP2001040547A (en) Woven fabric having structure to continue moisture- absorbing heat-generation action for long period
KR102378343B1 (en) Hygroscopic granular cotton and batting containing the granular cotton
KR101186820B1 (en) Method for High Performance Heat-generating Finishing of Textile Products
JP4023704B2 (en) Manufacturing method of composite yarn

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018533303

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912621

Country of ref document: EP

Kind code of ref document: A1