JPS5810509B2 - Novel water-swellable fiber and method for producing the same - Google Patents

Novel water-swellable fiber and method for producing the same

Info

Publication number
JPS5810509B2
JPS5810509B2 JP53109435A JP10943578A JPS5810509B2 JP S5810509 B2 JPS5810509 B2 JP S5810509B2 JP 53109435 A JP53109435 A JP 53109435A JP 10943578 A JP10943578 A JP 10943578A JP S5810509 B2 JPS5810509 B2 JP S5810509B2
Authority
JP
Japan
Prior art keywords
fiber
fibers
water
polymer
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53109435A
Other languages
Japanese (ja)
Other versions
JPS5536360A (en
Inventor
孝二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP53109435A priority Critical patent/JPS5810509B2/en
Publication of JPS5536360A publication Critical patent/JPS5536360A/en
Publication of JPS5810509B2 publication Critical patent/JPS5810509B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

【発明の詳細な説明】 本発明は、親水性架橋重合体(以下ヒドロゲルと呼称す
る)外層部とアクリロニトリル系重合体(以下AN系重
合体と略称する)及び/又は他の重合体内層部との多層
構造からなり、かつ潜在乃至顕在捲縮を有し、しかも高
度の水膨潤性及び高物性を有する新規な水膨潤性繊維及
びその製造方法に関するものである。
Detailed Description of the Invention The present invention provides an outer layer of a hydrophilic crosslinked polymer (hereinafter referred to as hydrogel) and an inner layer of an acrylonitrile polymer (hereinafter referred to as AN polymer) and/or another polymer. The present invention relates to a novel water-swellable fiber that has a multilayer structure, has latent or actual crimp, and has high water-swellability and high physical properties, and a method for producing the same.

近年、高度の水膨潤性を有する重合体が、その特殊機能
に着目され幅広い用途分野に適用されつつある。
In recent years, highly water-swellable polymers have attracted attention for their special functions and are being applied to a wide range of fields of use.

例えば、かかる重合体の瞬間多量吸水能力を利用してお
むつ、生理用品等に、或はその水分保持能力を利用して
土壌改良材、インスタント土のう等に、また人体組織と
の親和性に着目して軟質コンタクトレンズ、人工臓器、
外科用縫合材等に適用が試みられ、それらの用途のうち
既に実用化段階に入ったものもある。
For example, the ability of such polymers to instantly absorb large amounts of water can be used to make diapers, sanitary products, etc., the ability to retain moisture can be used to make soil conditioners, instant sandbags, etc., and the compatibility with human tissue can be used to develop polymers. soft contact lenses, artificial organs,
Attempts have been made to apply it to surgical suture materials, and some of these applications have already entered the stage of practical use.

このように広範な適用の可能性を有する水膨潤性重合体
(ヒドロゲル)は、その用途に応じて繊維形態となす方
が好ましい場合が少なくなく、かかる繊維状のヒドロゲ
ルもい(つか知られている。
It is often preferable for water-swellable polymers (hydrogel), which have a wide range of applicability, to be in the form of fibers depending on the intended use. .

ところが、かかる既存の天然もしくは合成の繊維におい
ては、ある程度の水膨潤性能を有するとはいうもののそ
の水膨潤度は極めて低いものであったり或は水溶性であ
ったり、いずれにしても自重の数倍から数百倍の水を吸
収保持し、しかも水不溶性である水膨潤性繊維の範晴か
らはほど遠いものでしかなかった。
However, although such existing natural or synthetic fibers have a certain degree of water swelling ability, their degree of water swelling is extremely low, or they are water soluble, and in any case, their own weight is very low. It was far from the standard of water-swellable fibers, which can absorb and retain anywhere from twice as much water to several hundred times as much, and are water-insoluble.

また、特公昭52〜42916号公報において、アクリ
ル系繊維に特定の架橋構造と多量の塩の形のカルボキシ
ル基とを導入せしめてなる高膨潤性繊維状構造体の記載
がなされてはいる。
Further, Japanese Patent Publication No. 52-42916 describes a highly swellable fibrous structure obtained by introducing a specific crosslinked structure and a large amount of carboxyl groups in the form of salt into acrylic fibers.

しかし、かかる繊維状構造体においては、極めて多量の
塩の形のカルボキシル基を導入せしめており、また繊維
の内外層全体に亘ってヒドロゲル化しているために、確
かに高度の水膨潤性能を付与し得た反面、非常に脆く繊
維の概念からはほど遠い物性のものでしかなかった。
However, in such fibrous structures, extremely large amounts of carboxyl groups in the form of salts are introduced, and the entire inner and outer layers of the fibers are hydrogel-formed, so they certainly have a high degree of water swelling performance. However, it was extremely brittle and had physical properties far from the concept of fiber.

即ち、依然として満足すべき性能を有する水膨潤性繊維
は存在していないというのが実態であり、高度の水膨潤
性付与と繊維物性保持とは二律背反する課題であった。
That is, the reality is that water-swellable fibers with satisfactory performance still do not exist, and imparting high water-swellability and maintaining fiber physical properties are contradictory issues.

ここにおいて本発明者は、上記の如き本質的困難性を克
服し、繊維物性を保持しながら高度の水膨潤性を付与す
べく鋭意検討した結果、潜在乃至顕在捲縮を有し、かつ
AN系重合体からなる繊維(以下AN系繊維と略称する
)に、特定のアルカリ金属水酸化物水性溶液を作用せし
めて該繊維の外層部のみを選択的に親水架橋化(ヒドロ
ゲル化)することにより、捲縮性能及び繊維物性を損う
ことなく水膨潤性能を有利に付与し得る事実を見出し、
本発明に到達した。
Here, as a result of intensive studies to overcome the above-mentioned essential difficulties and provide a high degree of water swelling property while maintaining the fiber physical properties, the present inventors have found that the present inventors have found that the fibers have latent or actual crimp and are AN-based fibers. By applying a specific alkali metal hydroxide aqueous solution to a fiber made of a polymer (hereinafter abbreviated as AN-based fiber), only the outer layer of the fiber is selectively hydrophilically crosslinked (hydrogelated). Discovered the fact that water swelling performance can be advantageously imparted without impairing crimp performance and fiber properties,
We have arrived at the present invention.

即ち、本発明の目的は、潜在乃至顕在捲縮を有し、しか
も高度の水膨潤性及び高物性を兼備する新規な水膨潤性
繊維及びその製造方法を提供することにある。
That is, an object of the present invention is to provide a novel water-swellable fiber that has latent or actual crimp and also has high water-swellability and high physical properties, and a method for producing the same.

かくの如き目的を達成するための本発明に係る水膨潤性
繊維は、ヒト狛ゲルからなる外層部とAN系重合体及び
/又は他の重合体からなる内層部とで構成され、かつ潜
在乃至顕在捲縮を有し、しかも−coOX(X:アルカ
リ金属又はNH4)で示される塩型カルボキシル基を0
.5〜5.0mmo1/7含有し、かつ3〜300CC
/1の水膨潤度及び高物性を有するものであり、またか
かる水膨潤性繊維は、潜在乃至顕在捲縮を有するAN系
繊維に、6.0mol/1000?溶液以上の高濃度ア
ルカリ金属水酸化物水性溶液、又は0.5mol/10
00P溶液以上の濃度の電解質塩類を共存せしめた低濃
度アルカリ金属水酸化物水性溶液を作用せしめて該繊維
の外層部をヒドロゲル化することによりヒドロゲルから
なる外層部とAN系重合体及び/又は他の重合体からな
る内層部とで構成され、かつ潜在乃至顕在捲縮を有し、
しかも−COOX(X:アルカリ金属又はNH4)で示
される塩型カルボキシル基を05〜5.0mmol/?
含有し、かつ3〜300CC/?の水膨潤度及び高物性
を有する繊維に形成することにより、有利に製造するこ
とができる。
The water-swellable fiber according to the present invention for achieving the above object is composed of an outer layer made of human staghorn gel and an inner layer made of AN polymer and/or other polymer, and It has obvious crimps and has a salt-type carboxyl group represented by -coOX (X: alkali metal or NH4).
.. Contains 5-5.0 mmo1/7 and 3-300 CC
/1 water swelling degree and high physical properties, and such water swelling fibers have a water swelling degree of 6.0 mol/1000? Highly concentrated alkali metal hydroxide aqueous solution, or 0.5 mol/10
By applying a low concentration alkali metal hydroxide aqueous solution coexisting with an electrolyte salt at a concentration higher than the 00P solution to hydrogel the outer layer of the fiber, the outer layer consisting of a hydrogel and an AN-based polymer and/or others are formed. and an inner layer made of a polymer, and has latent to actual crimp,
Moreover, the salt-type carboxyl group represented by -COOX (X: alkali metal or NH4) is contained in an amount of 05 to 5.0 mmol/?
Contains and 3 to 300 CC/? It can be advantageously produced by forming the fiber into a fiber having a degree of water swelling and high physical properties.

而して本発明に係るAN系重合体とは、ANを共重合成
分として含有する重合体の総称であり、AN単独重合体
又はANと他の1種もしくは2種以上のエチレン系不飽
和化合物との共重合体、或はANと他の重合体、例えば
澱粉、ポリビニルアルコール等とのグラフト共重合体、
AN系重合体と他の重合体、例えばポリ塩化ビニル系、
ポリアミド系、ポリオレフィン系、ポリスチレン系、ポ
リビニルアルコール基、セルロース系等との混合重合体
等を挙げることができる。
The AN-based polymer according to the present invention is a general term for polymers containing AN as a copolymerization component, and is an AN homopolymer or AN and one or more other ethylenically unsaturated compounds. or a graft copolymer of AN and other polymers such as starch, polyvinyl alcohol, etc.
AN-based polymers and other polymers, such as polyvinyl chloride-based,
Examples include mixed polymers with polyamides, polyolefins, polystyrenes, polyvinyl alcohol groups, celluloses, and the like.

かくの如きAN系重合体におけるANの含有率は、30
重量%以上、好ましくは50%以上であることが望まし
く、かかる推奨範囲に満たないAN含有率の重合体か・
らなる繊維を出発物質として用いる場合には、アルカリ
加水分解処理によって充分親水化されないか、もしくは
親水化し得ても、水膨潤性の繊維に形成し難いため好ま
しくない。
The content of AN in such an AN-based polymer is 30
It is desirable that the AN content is at least 50% by weight, preferably at least 50%, and the AN content is less than this recommended range.
When using fibers consisting of the following as a starting material, it is not preferable because it is not sufficiently hydrophilized by alkaline hydrolysis treatment, or even if it can be made hydrophilic, it is difficult to form water-swellable fibers.

また、AN系重合体の共重合成分である前記エチレン系
不飽和化合物の種類或は該重合体の分子量等の重合体組
成面では特に制約は認められず、最終製品の要求性能、
単量体の共重合性等に応じて任意に選択することができ
る。
In addition, there are no particular restrictions on the polymer composition, such as the type of the ethylenically unsaturated compound that is the copolymerization component of the AN polymer or the molecular weight of the polymer, and the required performance of the final product,
It can be arbitrarily selected depending on the copolymerizability of the monomers, etc.

更に、これ等の重合体の作製方法及び該重合体より潜在
乃至顕在捲縮を有する繊維を形製せしめる方法等に関し
ても、公知の方法(例えば単一成分紡糸、鞘−芯複合紡
糸等)から任意に選択することができる。
Furthermore, methods for producing these polymers and methods for forming fibers with latent or actual crimp from the polymers can be made from known methods (for example, single-component spinning, sheath-core composite spinning, etc.). Can be selected arbitrarily.

つまり、本発明において採用せる潜在乃至顕在捲縮を有
するAN系繊維とは、前記AN系重合体単一成分からな
る繊維のほかに、さらに後続の加水分解処理条件下にお
いて加水分解されやすいAN系重合体を鞘成分とし、加
水分解されに(いAN系重合体を芯成分とした又は前記
AN系重合体を鞘成分とし、他の重合体(例えば前記し
た如きポリアミド系、ポリオレフィン系等)を芯成分と
した等の鞘−芯型複合紡糸繊維、二成分乃至三成分以上
の重合体をランダムに複合紡糸してなる繊維、海島型複
合繊維、二成分貼り合せ型複合繊維或はサンドインチ型
複合繊維等の特殊紡糸繊維等を挙げることができ、がか
る繊維が潜在乃至顕在捲縮を有する限り本発明の出発物
質として採用することができる。
In other words, the AN-based fibers having latent or actual crimp that can be employed in the present invention include the AN-based fibers that are easily hydrolyzed under the conditions of the subsequent hydrolysis treatment, in addition to the fibers made of the single AN-based polymer component. A polymer is used as a sheath component, and a hydrolyzed AN-based polymer is used as a core component, or the AN-based polymer is used as a sheath component, and another polymer (for example, the above-mentioned polyamide-based, polyolefin-based, etc.) is used as a core component. Sheath-core type composite spun fibers such as core component fibers, fibers made by randomly spun composites of two or more component polymers, sea-island type composite fibers, two-component laminated type composite fibers, or sand inch type composite fibers Specific spun fibers such as composite fibers can be mentioned, and as long as such fibers have latent or actual crimp, they can be employed as the starting material of the present invention.

なお、二成分貼り合せ型、ランダム複合紡糸型、偏心的
鞘−芯型、海島型等の複合繊維の如き自己捲縮発現型繊
維は、機械的に捲縮が付与された繊維よりもその捲縮保
持能力が優れており、例えばアルカリ処理条件下におい
て捲縮を消失しにくく、或は所望によりアルカリ処理時
に潜在捲縮を顕在化せしめることもでき、従って該自己
捲縮発現型繊維を出発物質として使用する方が好ましい
Note that self-crimping type fibers such as two-component bonding type, random composite spinning type, eccentric sheath-core type, sea-island type composite fibers, etc. It has excellent crimp-retaining ability, and for example, crimp does not disappear easily under alkali treatment conditions, or if desired, latent crimp can be brought to light during alkali treatment. It is preferable to use it as

また、該自己捲縮発現型繊維は、熱処理手段等により捲
縮を顕在化せしめて使用に供したり、捲縮を顕在化せし
めないで、或は顕在化せしめた後熱延伸等の手段により
該捲縮を消失せしめて捲縮を潜在化せしめた状態で使用
に供することもでき、更に該潜在乃至顕在捲縮を有する
自己捲縮発現型繊維に機械捲縮を付与せしめた繊維も、
本発明の出発物質として好適に採用できることは言うま
でもない。
In addition, the self-crimping type fiber may be used after making the crimps obvious by heat treatment, or without making the crimps obvious, or by making the crimps obvious and then using hot stretching or the like. It is also possible to use the fiber in a state where the crimp is made latent by eliminating the crimp, and furthermore, the fiber is made by imparting mechanical crimp to the self-crimping type fiber having the latent or actual crimp.
It goes without saying that it can be suitably employed as a starting material for the present invention.

かかるAN系繊維の潜在する或は顕在化された捲縮特性
は、本発明に推奨するアルカリ処理条件下において概ね
維持され、従ってAN系繊維の捲縮特性が最終的に得ら
れる水膨潤性繊維の捲縮特性をほぼ一義的に決定づける
The latent or actual crimp properties of such AN-based fibers are generally maintained under the alkali treatment conditions recommended in the present invention, and therefore water-swellable fibers that ultimately have the crimp properties of AN-based fibers are obtained. almost uniquely determines the crimp characteristics of

かかるAN系繊維の捲縮特性としては、潜在乃至顕在捲
縮を有する限り何ら限定されるものではないが、該捲縮
を顕在化せしめた状態において繊維長25mmあたりの
捲縮数(Cn)が3個以上、好ましくは5個以上、捲縮
度(Ci)が5%以上、好ましくは7%以上であること
が最終的に得られる水膨潤性繊維製品の腰、嵩高性等の
実用性能上望ましい。
The crimp characteristics of such AN-based fibers are not limited in any way as long as they have latent or actual crimp, but the number of crimp (Cn) per 25 mm of fiber length is In terms of practical performance such as stiffness and bulk of the water-swellable fiber product that is finally obtained, it is important to have 3 or more, preferably 5 or more, and a degree of crimp (Ci) of 5% or more, preferably 7% or more. desirable.

かくの如きAN系繊維は短繊維、長繊維、繊維トウ、糸
、編織物、不織布等いかなる形態のものであっても後続
のアルカリ処理工程に供することができ、またAN系繊
維製造工程等において排出される廃繊維、或は該繊維製
造工程中途品(例えば、熱延伸後の繊維等)であっても
潜在乃至顕在捲縮を有する限り本発明の出発物質として
使用できることは言うまでもない。
Such AN-based fibers can be subjected to the subsequent alkali treatment process in any form such as short fibers, long fibers, fiber tows, threads, knitted fabrics, and non-woven fabrics. It goes without saying that even waste fibers that are discharged or intermediate products of the fiber manufacturing process (for example, fibers after hot drawing) can be used as the starting material in the present invention as long as they have latent or actual crimp.

かかるAN系繊維を出発物質として潜在乃至顕在捲縮を
有し、しかも高度の水膨潤性及び高物性を有する水膨潤
性繊維を得るためには、AN系繊維の外層部のみを選択
的にヒドロゲル化して該ヒドロゲル外層とAN系重合体
及び/又は他の重合体内層との多層構造を有する繊維と
なすことが必要である。
In order to obtain water-swellable fibers having latent or actual crimp using such AN-based fibers as a starting material and having high water-swellability and high physical properties, only the outer layer of the AN-based fibers is selectively hydrogelized. It is necessary to form a fiber having a multilayer structure of the outer layer of the hydrogel and the inner layer of AN polymer and/or other polymer.

か(して製せられる二層構造又は多層構造を有する繊維
の水膨潤度は、3〜300CC/?、更に好ましくは5
〜200CC/1の範囲内にあることが必要であり、ま
た、かかる水膨潤度を有し、しかも充分なる繊維物性を
保持させるために、かがる水膨潤性繊維中に導入する一
COOX(X:アルカリ金属又はNH4)で示される塩
型カルボキシル基の量を0.5〜5.Ommol/グ、
更に好ましくは0.5〜3.5mmol/?の範囲内に
調節することが必要である。
The water swelling degree of the fiber having a two-layer structure or a multi-layer structure produced by
-200 CC/1, and in order to have such water swelling degree and maintain sufficient fiber physical properties, COOX (COOX) is introduced into the water-swellable fiber. X: The amount of alkali metal or salt type carboxyl group represented by NH4) is 0.5 to 5. Ommol/g,
More preferably 0.5 to 3.5 mmol/? It is necessary to adjust it within the range of .

該塩型カルボキシル基の量が本発明の推奨範囲の下限を
外れる場合には親水乃至吸水性能が不充分となり、また
該範囲の上限を越える場合には繊維物性が低下すると共
に柔軟性の乏しい脆いものしか得られなくなり、好まし
くない。
If the amount of the salt-type carboxyl group is outside the lower limit of the recommended range of the present invention, the hydrophilic or water-absorbing performance will be insufficient, and if it exceeds the upper limit of the range, the physical properties of the fiber will deteriorate and the fiber will become brittle with poor flexibility. You'll only be able to get things, which is not good.

尚、上記塩型カルボキシル基の種類としては、Li、に
、Na等のアルカリ金属又はNH4のいずれか1種又は
2種以上の混合型の塩のいずれであっても構わない。
The salt-type carboxyl group may be any one of Li, an alkali metal such as Na, or NH4, or a mixed salt of two or more thereof.

かくの如き水膨潤性繊維の捲縮特性に関しては、該繊維
が潜在乃至顕在捲縮を有する限り何ら制約は認められず
、該繊維の用途に応じてがかる捲縮特性を適宜設定する
ことが可能であるが、最終製品の腰、嵩高性等の諸性能
の改善等の観点から捲縮を顕在化せしめた状態において
、概ね捲縮数(Cn)が3個以上、捲縮度(Ci)が5
%以上の捲縮特性を有する水膨潤性繊維を作製すること
が望ましい。
Regarding the crimp characteristics of such water-swellable fibers, there are no restrictions as long as the fibers have latent or actual crimp, and the crimp characteristics can be set as appropriate depending on the use of the fibers. However, from the viewpoint of improving various performances such as elasticity and bulkiness of the final product, in a state where crimps are made apparent, the number of crimps (Cn) is generally 3 or more and the degree of crimps (Ci) is 5
It is desirable to produce water-swellable fibers with crimp characteristics of % or more.

また、通常の衣料用繊維等と同様に紡績等の加工を施す
場合には、該水膨潤性繊維の顕在捲縮特性を捲縮数(C
n)が5〜15個、捲縮度(Ci)が5〜25%の範囲
内に調製することが望ましい。
In addition, when processing such as spinning in the same way as normal clothing fibers, etc., the actual crimp characteristic of the water-swellable fibers is determined by the crimp number (C
It is desirable that the number of n) is 5 to 15 and the degree of crimp (Ci) is 5 to 25%.

次に、AN系繊維の加水分解方法について詳述する。Next, a method for hydrolyzing AN-based fibers will be described in detail.

最終的にヒドロゲル外層とml系重合体等内層とで構成
され、かつ潜在乃至顕在捲縮を有する水膨潤性繊維が得
られるならば、加水分解方法に伺ら制約は認められない
が、AN系繊維の外層部のみを選択的にヒドロゲル化し
得る一段加水分解、架橋処理方法として、本発明におい
ては以下に記載せる如き手段を採用した。
As long as water-swellable fibers consisting of an outer hydrogel layer and an inner layer of ML polymer, etc., and having latent or actual crimp can be obtained, there are no restrictions on the hydrolysis method, but AN-based In the present invention, the following method was adopted as a one-step hydrolysis and crosslinking treatment method capable of selectively hydrogelating only the outer layer portion of the fiber.

即ち、前記AN系繊維に、6.0mol/10001溶
液以上の高濃度アルカリ金属水酸化物水性溶液を作用せ
しめる(以下A法と略称する)か、又は0.5mol/
1000?溶液以上の濃度の電解質塩類を共存せしめた
低濃度アルカリ金属水酸化物水性溶液を作用せしめる(
以下B法と略称する)いずれかの方法を採用した。
That is, the AN-based fiber is treated with a highly concentrated alkali metal hydroxide aqueous solution of 6.0 mol/10001 solution or more (hereinafter abbreviated as method A), or 0.5 mol/10001 solution or more is applied.
1000? A low concentration alkali metal hydroxide aqueous solution coexisting with electrolyte salts at a concentration higher than that of the solution is applied (
Either method (hereinafter abbreviated as method B) was adopted.

尚、上記A法を採用するに際し、6、Omol/100
0g溶液未満の濃度のアルカり水性溶液を作用せしめる
場合には、AN系繊維は加水分解反応により親水化され
るものの水溶性となり、本発明の目的とするヒドロゲル
外層部を形成せしめることはできない。
In addition, when adopting the above method A, 6, Omol/100
When an alkaline aqueous solution with a concentration of less than 0 g solution is applied, the AN-based fibers become hydrophilic through the hydrolysis reaction but become water-soluble, making it impossible to form the outer hydrogel layer as the object of the present invention.

また、6.25〜8.85mol/10007溶液、更
に6.25〜8.50mol/1000?溶液の濃度範
囲のアルカリ水性溶液を使用することにより、本発明を
より効果的に達成することができる。
Also, 6.25 to 8.85 mol/10007 solution, and further 6.25 to 8.50 mol/1000? The present invention can be more effectively accomplished by using an alkaline aqueous solution in the concentration range of the solution.

かかる好適範囲の上限を越える条件においては、アルカ
リ金属水酸化物の活動度が低下するため反応速度を高め
るためには高温処理が必要となり、また残留アルカリの
除去処理が困難となるなど実用上好ましくない。
Under conditions exceeding the upper limit of this preferred range, the activity of the alkali metal hydroxide decreases, requiring high-temperature treatment to increase the reaction rate, and making it difficult to remove residual alkali, which is not practical. do not have.

また前記B法を採用するに際し、共存せしめる塩が0.
5mol/1000?溶液未満の低濃度である場合には
、AN系繊維は加水分解反応により親水化されるものの
その殆んどが水溶性となり、低濃度アルカリ水性溶液に
て一段の工程でヒドロゲル外層部を形成せしめることは
できない。
Furthermore, when employing method B, the amount of salt allowed to coexist is 0.
5mol/1000? When the concentration is low, below that of the solution, the AN-based fibers are made hydrophilic by the hydrolysis reaction, but most of them become water-soluble, and the outer layer of the hydrogel can be formed in one step in a low-concentration alkaline aqueous solution. It is not possible.

また、1.0mol/1000グ溶液以上の塩濃度、又
は該塩濃度及び0.25〜6.0mol/10001溶
液、更に好ましくは0.5〜5.0mol/10001
溶液のアルカリ金属水酸化物濃度のアルカリ水性溶液を
使用することにより、本発明をより工業的有利に実施す
ることができる。
Also, a salt concentration of 1.0 mol/1000 g solution or more, or the salt concentration and 0.25 to 6.0 mol/10001 solution, more preferably 0.5 to 5.0 mol/10001
By using an alkaline aqueous solution having the alkali metal hydroxide concentration of the solution, the present invention can be carried out more industrially.

尚、前記A法については、本出願人に係る特願昭51− 158423号明細書に更に詳細に記載されている。Regarding method A, the patent application filed by the applicant in 1972- It is described in further detail in the specification of No. 158423.

ここにおいて、本発明にて使用するアルカリ金属水酸化
物としては、Na、に、Li等のアルカリ金属類の水酸
化物もしくはそれ等の混合物を挙げることができ、また
、電解質塩類としては、アルカリ処理条件下に安定であ
る限りいかなる塩をも採用することができ、該塩を構成
する陽イオン成分が例えばMa、に、Li等のアルカリ
金属類:Be、Mg、Ca、Ba等のアルカリ土類金属
類;Cu、Zn、AI、Mn、Fe、Co、Ni等の他
の金属類;NH4等であり、また陰イオン成分が例えば
塩酸、硫酸、硝酸、炭酸、クロム酸、重クロム酸、塩素
酸、次亜塩素酸、有機カルボン酸、有機スルホン酸等の
酸根等で構成される塩の1種もしくは2種以上の混合物
を挙げることができる。
Here, examples of the alkali metal hydroxide used in the present invention include hydroxides of alkali metals such as Na, Li, etc., and mixtures thereof; Any salt can be used as long as it is stable under the treatment conditions, and the cationic components constituting the salt are, for example, Ma, alkaline metals such as Li, alkaline earths such as Be, Mg, Ca, Ba, etc. Other metals such as Cu, Zn, AI, Mn, Fe, Co, Ni, etc., and anionic components such as hydrochloric acid, sulfuric acid, nitric acid, carbonic acid, chromic acid, dichromic acid, etc. Examples include one type or a mixture of two or more types of salts composed of acid groups such as chloric acid, hypochlorous acid, organic carboxylic acids, and organic sulfonic acids.

尚、上記陽イオン成分が2価以上の元素である電解質塩
類を用いる場合には、生成するヒドロゲル外層部が凝集
・合体し易く、また膨潤度が低下するため、アルカリ金
属類又はNH4を陽イオン成分とする塩を使用する方が
好ましい。
In addition, when using electrolyte salts in which the above-mentioned cationic component is an element with a valence of 2 or more, the outer layer of the resulting hydrogel tends to aggregate and coalesce, and the degree of swelling decreases. It is preferable to use salt as an ingredient.

更に、水に代わる溶媒として、被処理AN系繊維を溶解
せしめない限り、メタノール、エタノール、プロパツー
ル。
Furthermore, as a solvent in place of water, methanol, ethanol, and propatool can be used as long as they do not dissolve the AN fibers to be treated.

2−メトキシエタノール、2−エトキシエタノール、ジ
メチルホルムアミド、ジメチルスルホキシド等の水混和
性有機溶媒と水との水性混合溶媒を使用することができ
、更に必要に応じて他の無機系物質或は有機系物質を共
存せしめることも可能である。
An aqueous mixed solvent of water and a water-miscible organic solvent such as 2-methoxyethanol, 2-ethoxyethanol, dimethylformamide, dimethylsulfoxide, etc. can be used, and if necessary, other inorganic substances or organic substances can be used. It is also possible to allow substances to coexist.

ここにおいて、公知技術の条件下にアルカリ加水分解処
理を施した場合には事実上水溶性重合体のみを生成する
にも拘らず、本発明に推奨する前記A又はB法の特定条
件を採用することにより、公知条件の反応から予想され
る結果とは著しく異なるヒドロゲルを一段の工程で、し
かも高収量にて生成する。
Here, although the alkaline hydrolysis treatment under the conditions of the known technology actually produces only a water-soluble polymer, the specific conditions of the above-mentioned method A or B recommended for the present invention are adopted. This produces hydrogels in a single step and in high yields, which are significantly different from the results expected from reactions under known conditions.

かかる作用機構としては、とりわけ繊維外層部における
二)リル基の加水分解反応に付随して、分子間の架橋結
合もしくは分子内の環状構造等を形成する副反応等が、
上述の特定の条件において特異的に進行すること等によ
り説明し得るが、未だその詳細を解明するに至っていな
い。
The mechanism of action is, in particular, side reactions that form intermolecular crosslinks or intramolecular cyclic structures accompanying the hydrolysis reaction of dilyl groups in the outer fiber layer.
This can be explained by the fact that it progresses specifically under the above-mentioned specific conditions, but the details have not yet been elucidated.

尚、上記の如きアルカリ水性溶液を作用せしめる際の温
度条件或は処理時間等反応条件としては、重合体の形態
、結晶性等重合体の微細構造成はアルカリ濃度等により
好適条件範囲が異なるため、一義的に規定することは不
可能であるが、一般には高温下に作用させる程反応速度
は増大し処理効果を有利に達成し得ることから好ましく
は、50℃以上、更に好ましくは80℃以上の温度条件
を使用することにより、本発明を効果的に実施すること
ができる。
In addition, as for the reaction conditions such as temperature conditions and treatment time when making the alkaline aqueous solution act as mentioned above, the preferable range of conditions varies depending on the fine structure of the polymer such as the form of the polymer, crystallinity, etc., depending on the alkali concentration, etc. Although it is impossible to define it unambiguously, in general, the higher the reaction temperature, the higher the reaction rate and the more advantageous the treatment effect can be achieved, so it is preferably 50°C or higher, more preferably 80°C or higher. The present invention can be effectively practiced by using temperature conditions of .

また、AN系繊維に対するアルカリ水性溶液の処理量と
しても、厳密な制限は認められないが、該繊維1重量部
に対して該水性溶液を少なくとも3重量部、好ましくは
4重量部以上使用することが望ましく、かかる条件にお
いて繊維と水性溶液との接触を容易ならしめ、本発明の
親水化反応ならびに架橋反応を効果的に進行せしめるこ
とができる。
Further, although there are no strict limitations on the amount of alkaline aqueous solution treated with the AN fiber, at least 3 parts by weight, preferably 4 parts by weight or more of the aqueous solution should be used per 1 part by weight of the fiber. Desirably, under such conditions, the fibers can easily come into contact with the aqueous solution, and the hydrophilization reaction and crosslinking reaction of the present invention can proceed effectively.

更に、AN系繊維にアルカリ水性溶液を作用せしめる方
法としては、任意の繊維長に切断された短繊維を水性溶
液中に懸濁せしめ、スクリュー型攪拌装置、ミキサー等
の剪断装置或はニーグー等の混練装置等を使用して攪拌
乃至混練する方法、長繊維、繊維トウ、糸、編織物、不
織布等の連続した繊維を該水性溶液中にて緊張下もしく
は無緊張下に走行させる方法、或は前記短繊維、長繊維
等を網状容器中に充填して水性溶液中にて振盪する方法
、処理液を含浸後熱処理する方法等公知の不均一系処理
方法から広く選択することができる。
Furthermore, as a method for applying an alkaline aqueous solution to AN-based fibers, short fibers cut into arbitrary fiber lengths are suspended in an aqueous solution, and then cut using a shearing device such as a screw type stirring device, a mixer, or a shearing device such as a Ni-Goo. A method of stirring or kneading using a kneading device etc., a method of running continuous fibers such as long fibers, fiber tows, threads, knitted fabrics, non-woven fabrics, etc. in the aqueous solution under tension or under no tension, or A wide range of known heterogeneous treatment methods can be selected, such as a method in which the short fibers, long fibers, etc. are filled in a mesh container and shaken in an aqueous solution, and a method in which heat treatment is performed after impregnation with a treatment liquid.

斜上の如(、AN系繊維にアルカリ水性溶液を作用せし
めてヒドロゲル外層部とAN系重合体及び/又は他の重
合体内層部との多層構造を有する繊維を作製するに際し
、最終的に得られる繊維の水膨潤度及び物性と特に密接
な関係を有する塩型カルボキシル基(−coox)量を
制御することが重要である。
When producing a fiber having a multilayer structure of an outer hydrogel layer and an inner layer of AN polymer and/or other polymers by applying an alkaline aqueous solution to AN fibers, It is important to control the amount of salt-type carboxyl groups (-coox), which has a particularly close relationship with the degree of water swelling and physical properties of the fibers.

かかる塩型カルボキシル基量を制御する手段としては、
被処理AN系繊維の種類、部ち組成、結晶性、単繊維繊
度等、或は加水分解処理条件、即ちアルカリ金属水酸化
物及び/又は電解質塩類の濃度、加水分解時の温度、被
処理繊維に対するアルカリ水性溶液の処理量、処理時間
等により種々に変化せしめることが可能であり、一義的
に規定することは困難であるが、加水分解処理条件、特
に処理時間を概ね40分間以下、好ましくは2〜30分
間の範囲内において調節することにより、容易に本発明
の目的を達成することができる。
As a means for controlling the amount of salt-type carboxyl groups,
Type, part composition, crystallinity, single fiber fineness, etc. of the AN fiber to be treated, or hydrolysis treatment conditions, i.e. concentration of alkali metal hydroxide and/or electrolyte salts, temperature during hydrolysis, fiber to be treated It is possible to vary the amount of alkaline aqueous solution treated, the treatment time, etc., and it is difficult to define it unambiguously, but the hydrolysis treatment conditions, especially the treatment time, are approximately 40 minutes or less, preferably By adjusting the time within the range of 2 to 30 minutes, the object of the present invention can be easily achieved.

かかる本発明の推奨範囲を越える長時間に亘りAN系重
合体単一成分からなる繊維に加水分解処理を施す場合に
は、AN系重合体内層部が全(なくなるか、或は該内層
部が残ったとしてもその量が少ないか、もしくは外層部
と内層部の境界が不明瞭になるなどのため、満足すべき
物性を有する水膨潤性繊維が得られな(なるので望まし
くない。
When hydrolyzing a fiber made of a single AN-based polymer for a long period of time exceeding the recommended range of the present invention, the inner layer of the AN-based polymer may completely disappear or the inner layer may Even if it remains, it is not desirable because the amount is small or the boundary between the outer layer and the inner layer becomes unclear, making it impossible to obtain water-swellable fibers with satisfactory physical properties.

かくして得られた水膨潤性繊維は、水洗処理等により該
繊維中に残留するアルカリ金属水酸化物を除去した後、
必要ならば公知の方法により塩型カルボキシル基をアル
カリ金属又はアンモニウムの塩に変える等の処理を施し
、次いで所望により乾燥処理に付して乾燥生成物に形成
せしめる。
After removing the alkali metal hydroxide remaining in the water-swellable fiber thus obtained by washing with water or the like,
If necessary, a treatment such as converting the salt-type carboxyl group into an alkali metal or ammonium salt is performed by a known method, and then, if desired, a drying treatment is performed to form a dry product.

而して、ヒドロゲル外層部とAN系重合体及び/又は他
の重合体内層部とで構成され、かつ潜在乃至顕在捲縮を
有する水膨潤性繊維を得ることができ、驚くべきことに
該繊維は3〜300cc/グ、好ましくは5〜200C
C/グの水膨潤度を有すると共に、乾湿強度、乾湿伸度
、結節強度等の繊維物性に関しても通常の衣料用AN系
繊維と殆んど遜色のない水準の性能(例えば乾強度2.
0グ/d以上、湿潤強度1.57/d以上)を発揮する
As a result, it is possible to obtain water-swellable fibers that are composed of an outer hydrogel layer and an inner layer of an AN polymer and/or other polymer, and that have latent or actual crimp. is 3-300cc/g, preferably 5-200C
In addition to having a water swelling degree of C/g, the performance of fiber properties such as wet and dry strength, wet and dry elongation, and knot strength is almost comparable to that of ordinary AN-based clothing fibers (for example, dry strength of 2.5g).
0 g/d or more, wet strength 1.57/d or more).

また、該繊維はAN系重合体等の内層部を有している故
、膨潤状態においても長さ方向の寸法変化が起こらない
特異な性質をも有している。
In addition, since the fiber has an inner layer made of an AN polymer or the like, it also has a unique property of not undergoing dimensional change in the length direction even in a swollen state.

かくの如き二層又は多層構造からなり、かつ潜在乃至顕
在捲縮を有する本発明の水膨潤性繊維は、卓抜した水膨
潤性能と共に、AN系重合体及び/又は他の重合体から
なる内層部を有しているが故に強伸度、柔軟性、腰等に
おいても優れた物性を発揮するものであり、また、捲縮
を有するが故に最終製品における腰、嵩高性等の諸性能
等において優れた特徴を発揮することが本発明の特筆す
べき利点である。
The water-swellable fiber of the present invention, which has such a two-layer or multilayer structure and has latent or actual crimp, has excellent water-swelling performance and an inner layer made of an AN polymer and/or other polymer. Because it has crimps, it exhibits excellent physical properties such as strength and elongation, flexibility, and stiffness. Also, because it has crimps, it has excellent properties such as stiffness and bulk in the final product. It is a noteworthy advantage of the present invention that it exhibits the following characteristics.

また、共重合成分として架橋形成単量体等を含有する特
殊な組成の重合体よりなる繊維等の使用を要することな
く、通常のAN系繊維もしくは該AN系繊維等製造工程
より排出される廃繊維等を出発物質として使用し、アル
カリ水性溶液の一段処理工程によって、高度の水膨潤性
能及び優れた物性を有する繊維が得られ、しかもアルカ
リ処理条件の調節により、得られる繊維の水膨潤度及び
物性を適宜制御し得る点も、本発明の特徴的利点である
In addition, it does not require the use of fibers made of polymers with special compositions containing cross-linking monomers as copolymerization components, and it is possible to use ordinary AN fibers or wastes discharged from the AN fiber manufacturing process. By using fibers as a starting material and performing a one-step treatment process with an alkaline aqueous solution, fibers with high water swelling performance and excellent physical properties can be obtained.Fibers with high water swelling performance and excellent physical properties can be obtained by adjusting the alkali treatment conditions. Another characteristic advantage of the present invention is that physical properties can be controlled appropriately.

かくの如き高度の水膨潤性及び優れた物性を兼ね備えた
本発明の水膨潤性繊維は、単独で、又は既存の天然、半
合成もしくは合成繊維等と混紡、混抄することにより、
卓抜した吸湿性、吸水性、保水性を有する新規な繊維素
材としておむつ、生理用品、濾紙等に、或は水と混和性
のない有機溶剤からの脱水材、シール材、カチオン交換
繊維等に、更に既存のヒドロゲル粉粒体と同様インスタ
ント土のう、人工土壌、水どけ、保温・保冷材等に適用
することができる。
The water-swellable fiber of the present invention, which has such high water-swellability and excellent physical properties, can be used alone or by blending or making with existing natural, semi-synthetic or synthetic fibers, etc.
As a new fiber material with outstanding hygroscopicity, water absorbency, and water retention, it can be used for diapers, sanitary products, filter paper, etc., or as a dehydration material from organic solvents that are immiscible with water, sealing materials, cation exchange fibers, etc. Furthermore, like existing hydrogel powders, it can be applied to instant sandbags, artificial soil, drainage, heat/cold insulation materials, etc.

本発明の理解を更に容易にするため、以下に実施例を記
載するが、本発明の要旨はこれ等実施例の記載によって
何ら限定されるものではない。
In order to further facilitate understanding of the present invention, examples are described below, but the gist of the present invention is not limited in any way by the description of these examples.

尚、実施例に記載される百分率及び部は、特に断りのな
い限り全て重量基準によるものである。
It should be noted that all percentages and parts described in the Examples are based on weight unless otherwise specified.

尚、以下の実施例に記載する水膨潤度、塩型カルボキシ
ル基(−COOX)量、嵩高性及び腰張り性は下記の方
法にて測定乃至算出したものである。
In addition, the degree of water swelling, the amount of salt-type carboxyl group (-COOX), the bulkiness, and the elasticity described in the following examples were measured or calculated by the following methods.

(1)水膨潤度(cc/グ) 試料繊維的0.11を純水中に浸漬し25℃に保ち24
時間後、ナイロン濾布(200メツシユ)に包み、遠心
脱水機(3GX30分、但しGは重力加速度)により繊
維間の水を除去する。
(1) Degree of water swelling (cc/g) A sample fiber of 0.11 was immersed in pure water and kept at 25°C for 24 hours.
After a period of time, the fibers were wrapped in a nylon filter cloth (200 mesh) and the water between the fibers was removed using a centrifugal dehydrator (3G x 30 minutes, where G is gravitational acceleration).

このようにして調製した試料の重量を測定する(wty
)。
The weight of the sample prepared in this way is measured (wty
).

次に、該試料を80℃の真空乾燥機中で恒量になるまで
乾燥して重量を測定する(W2P)。
Next, the sample is dried in a vacuum dryer at 80° C. until it reaches a constant weight, and the weight is measured (W2P).

以上の測定結果から、次式によって算出した。From the above measurement results, it was calculated using the following formula.

従って、本水膨潤度は、繊維の自重の何倍の水を吸収保
持するかを示す数値である。
Therefore, the water swelling degree is a numerical value indicating how many times the weight of the fiber can absorb and retain water.

(2)−COOX基量(mmol/?) 十分乾燥した試料約11を精秤しくxy)、これに20
0m1の水を加えた後、50℃に加温しながらIN塩酸
水溶液を添加してpH2にし次いで0.IN苛性ソーダ
水溶液で常法に従って滴定曲線を求めた。
(2) -COOX base amount (mmol/?) Accurately weigh approximately 11 of the sufficiently dried sample (xy), add 20
After adding 0ml of water, while heating to 50°C, IN hydrochloric acid aqueous solution was added to adjust the pH to 2, and then to 0.0ml. A titration curve was determined using an IN aqueous sodium hydroxide solution according to a conventional method.

該滴定曲線からカルボキシル基に消費された苛性ソーダ
水溶液消費量(Ycc)を求めた。
The amount of caustic soda aqueous solution consumed by carboxyl groups (Ycc) was determined from the titration curve.

以上の測定結果から、次式によって算出した。From the above measurement results, it was calculated using the following formula.

尚、多価カチオンが含まれる場合は、常法によりこれら
のカチオンの量を求め、上式を補正する必要がある。
In addition, when polyvalent cations are included, it is necessary to determine the amount of these cations by a conventional method and correct the above formula.

(3)嵩高性(om2/l)及び腰張り性(P/l)試
料繊維約1.01を開繊した後、10×10(Cm)の
矩形に積み重ねて作成した試験片の重量を測定する(W
3?)。
(3) Bulky property (om2/l) and lumbar property (P/l) After opening the sample fiber by approximately 1.01, measure the weight of the test piece created by stacking it in a 10 x 10 (Cm) rectangle. (W
3? ).

次に、該試験片を定速圧縮試験機を用いLoomm/分
の速度で5?/cm2の圧縮荷重まで圧縮−除重を3回
繰返し、3回目の圧縮曲線より0.51/cm2初荷重
時における試験片の厚さくhocm)を求め、次式によ
って嵩高性を算出した。
Next, the test piece was tested at a speed of 5?Lomm/min using a constant speed compression tester. Compression and unloading were repeated three times to a compression load of /cm2, and the thickness (hocm) of the test piece at the initial load of 0.51/cm2 was determined from the third compression curve, and the bulkiness was calculated using the following formula.

上記せる圧縮−除重を3回繰返した試験片を、次いで5
0?/cmの荷重まで圧縮を行なって求めた圧縮曲線か
ら圧縮仕事量(腰張り性)を試験片の厚さと圧縮荷重と
の積分値として算出した。
The above compression-unloading process was repeated three times, and then the test piece was
0? The compression work (waist strength) was calculated as the integral value of the thickness of the test piece and the compression load from the compression curve obtained by compressing to a load of /cm.

実施例 に 成分貼り合せ型AN系複合繊維(日本エクスラン工業■
製、単繊維繊度:6d、繊維長;51mm)5部を30
%(7,5mol/1000P溶液)苛性ソーダ水溶液
95部中に浸漬し、攪拌下に10分間煮沸し、次いで該
繊維中の残留アルカリを水洗除去した後、乾燥させて白
色乃至微黄色を呈する水膨潤性繊維(I)に形成した。
Example: Composite bonding type AN-based composite fiber (Japan Exlan Kogyo ■
made, single fiber fineness: 6d, fiber length: 51mm) 5 parts to 30
% (7.5 mol/1000P solution) The fibers are immersed in 95 parts of aqueous caustic soda solution, boiled for 10 minutes while stirring, and then washed with water to remove residual alkali in the fibers, dried to give a water-swollen white to slightly yellow color. The fibers (I) were formed.

得られた繊維(I)は水に溶解せず、該繊維(I)を水
膨潤状態においてしごいてみたところ、AN系重合体芯
部が残っていることが確認された。
The obtained fiber (I) did not dissolve in water, and when the fiber (I) was squeezed in a water-swollen state, it was confirmed that the AN polymer core remained.

なお、該繊維(I)は2.6mmol/?の−COON
a基を含有していた。
In addition, the amount of the fiber (I) is 2.6 mmol/? -COON
It contained an a group.

また、該繊維(I)の諸物性を測定した結果を、被処理
AN系繊維の物性値と共に第1表に記載する。
In addition, the results of measuring various physical properties of the fiber (I) are listed in Table 1 together with the physical property values of the AN fiber to be treated.

第1表の結果より明らかなように、本発明に係る水膨潤
性繊維(I)は、卓抜した水膨潤性能が付与されたにも
係らず、捲縮特性、強伸度共に参考値(被処理ml系複
合繊維)と殆んど遜色のない水準を維持していることが
理解されよう。
As is clear from the results in Table 1, although the water-swellable fiber (I) according to the present invention has excellent water-swelling performance, both the crimp property and the strength and elongation are at reference values. It can be seen that the level is maintained at a level almost comparable to that of treated ml-based composite fibers).

一方、比較例として、10%(2,5mol/1000
グ溶液)及び23%(5,75mo171000グ溶液
)の苛性ソーダ水溶液を使用する以外は上記処方に従っ
て処理したところ、いずれの場合においても被処理AN
系複合繊維は水溶液中に溶解して粘稠な溶液を形成した
に留まり、かかる低濃度苛性ソーダ単独水溶液を使用し
た場合には、本発明の目的とする水膨潤性繊維に形成す
ることはできなかった。
On the other hand, as a comparative example, 10% (2.5 mol/1000
The process was carried out according to the above recipe except that a 23% (5,75 mo171000 g solution) caustic soda aqueous solution was used. In both cases, the treated AN
The system composite fibers only dissolve in an aqueous solution to form a viscous solution, and when such a low concentration aqueous solution of caustic soda alone is used, it is not possible to form them into the water-swellable fibers that are the object of the present invention. Ta.

また、上述の苛性ソーダに代えて苛性カリの35%(6
,25mol/1000?溶液)水溶液を使用する以外
は前記処方に従って処理したところ、やはり白色乃至微
黄色を呈し実質的に水不溶性且つ水膨潤性を有し、捲縮
を有する繊維が得られた。
In addition, 35% (6%) of caustic potash can be used instead of the above-mentioned caustic soda.
,25mol/1000? Solution) When the treatment was carried out according to the above recipe except that an aqueous solution was used, fibers which were white to slightly yellow in color, substantially water-insoluble and water-swellable, and had crimps were obtained.

実施例 2 実施例1記載二成分貼り合せ型AN系複合繊維(但し、
繊維長:10mm)、機械捲縮を付与した単一成分AN
系繊維(AN=90%、単繊維繊度;6d、繊維長:1
0mm、Cn=9°01Ci=10.0)及び捲縮を付
与していない前記単一成分AN系繊維の各5部を、20
%(1,5mol/1000グ溶液)の芒硝を共存させ
た10%(2,5mol/1000f溶液)苛性ソーダ
水溶液95部中に浸漬し、実施例1記載の処方に従って
3種の水膨潤性繊維(■〜■)を作製した。
Example 2 Two-component bonded AN-based composite fiber described in Example 1 (however,
Fiber length: 10 mm), single component AN with mechanical crimping
System fiber (AN=90%, single fiber fineness: 6d, fiber length: 1
0mm, Cn=9°01Ci=10.0) and 5 parts each of the single component AN fiber without crimping, 20
% (1.5 mol/1000 g solution) of sodium chloride coexisted with 95 parts of a 10% (2.5 mol/1000 f solution) caustic soda aqueous solution, and three types of water-swellable fibers ( ■~■) were produced.

かくして得られた3種の繊維(■〜■)はいずれも水に
溶解せず、またAN系重合体芯部が残っていることが確
認された。
It was confirmed that none of the three types of fibers (■ to ■) thus obtained were dissolved in water, and that the AN polymer core remained.

該繊維(■〜■)の諸物性を測定した結果を第2表に記
載する。
The results of measuring various physical properties of the fibers (■ to ■) are listed in Table 2.

第2表の結果より明らかなように、本発明に係る捲縮を
有する水膨潤性繊維(■及び■)は、捲縮を有さない水
膨潤性繊維(■)に比べ、嵩高性及び腰張り性が顕著に
改善される事実が理解される。
As is clear from the results in Table 2, the water-swellable fibers with crimps (■ and ■) according to the present invention have higher bulkiness and lower waist than the water-swellable fibers without crimps (■). The fact that sex is significantly improved is understood.

また、かかる性能の改善傾向は本発明品の中でも自己捲
縮発現型繊維(即ち、上記複合繊維)を出発物質として
採用してなる繊維(n)において顕著である。
Moreover, such a tendency for improvement in performance is remarkable in the fiber (n) which employs a self-crimping type fiber (ie, the above-mentioned composite fiber) as a starting material among the products of the present invention.

なお、上記二成分貼り合せ型AN系複合繊維について加
水分解処理時間のみを1時間に延長したところ、得られ
た繊維(V)は3.4mmol/?のCOONa基を含
有し、310CC/グという極めて大きな水膨潤度を有
するものの、極めて脆く、また該繊維を水膨潤状態にお
いてしごいてみたところ、AN系重合体芯部が全く残っ
ていないことが確認された。
In addition, when only the hydrolysis treatment time of the above-mentioned two-component bonded AN-based composite fiber was extended to 1 hour, the obtained fiber (V) was 3.4 mmol/? Although it contains COONa groups of confirmed.

実施例 3 実施例2記載の処方において、20%芒硝の代りに硝酸
ソーダを使用し、該塩及び苛性ソーダの濃度を第3表記
載の如く種々変化させて、実施例2記載のAN系複合繊
維を処理した。
Example 3 In the formulation described in Example 2, sodium nitrate was used instead of 20% Glauber's salt, and the concentrations of the salt and caustic soda were varied as shown in Table 3 to produce the AN-based composite fiber described in Example 2. processed.

得られた10種の水膨潤性繊維(■〜XV)はいずれも
捲縮を有していた。
All of the 10 types of water-swellable fibers (■ to XV) obtained had crimps.

該繊維(■〜XV)の水膨潤度及び−COONa基量を
測定した結果を、第3表に併記する。
The results of measuring the degree of water swelling and the amount of -COONa groups of the fibers (■ to XV) are also listed in Table 3.

第3表の結果より、アルカリ水溶液中に共存させる塩の
濃度が本発明に推奨する範囲に満たない場合(試料No
、XV)には、水膨潤度の低い繊維しか得られず、また
水溶性重合体の生成量が著増するため目的とする水膨潤
繊維の収率は、約40%と低かった。
From the results in Table 3, it is clear that when the concentration of salt coexisting in the alkaline aqueous solution is below the range recommended for the present invention (sample No.
, XV), only fibers with a low degree of water swelling were obtained, and the yield of the desired water-swellable fibers was as low as about 40% because the amount of water-soluble polymer produced was significantly increased.

また、試料AM[、即ちアルカリ濃度が極めて低い場合
には、所望の水膨潤度を有する繊維が得られなかった。
Further, in sample AM [that is, when the alkali concentration was extremely low], fibers having the desired degree of water swelling could not be obtained.

更に、試料No、■、■、■及び■より、アルカリ濃度
が一定でも塩濃度を変化させることにより、水膨潤度を
種々に変化させた繊維を作製することができることも明
らかである。
Furthermore, it is clear from Samples No., ■, ■, ■, and ■ that even if the alkali concentration is constant, fibers with various degrees of water swelling can be produced by changing the salt concentration.

実施例 4 二成分貼り合せ型AN系複合繊維(単繊維繊度:2.5
d、10分間煮沸後のCn=15個/25mm、C1=
37%)を、C1=13%になる如き張力下に30%苛
性ソーダ水溶液中にて処理(但し処理温度;95℃、処
理時間、25分)したところ、白色乃至微黄色を呈し、
0.6mmol/?の−COONa基を含有し、水膨潤
度が、37cc/グの水膨潤性繊維(X■)が得られた
Example 4 Two-component bonded AN-based composite fiber (single fiber fineness: 2.5
d, Cn=15 pieces/25mm after boiling for 10 minutes, C1=
37%) was treated in a 30% caustic soda aqueous solution under tension such that C1 = 13% (treatment temperature: 95°C, treatment time: 25 minutes), it exhibited a white to slightly yellow color,
0.6 mmol/? A water-swellable fiber (X■) containing -COONa groups and having a water swelling degree of 37 cc/g was obtained.

かくして得られた捲縮を有する繊維(XVI、Cn−1
1個/25mm、C1=13%)をカードがげしたとこ
ろ、繊維の開繊性、絡み合い共に問題なかった。
The thus obtained crimped fiber (XVI, Cn-1
1 piece/25 mm, C1=13%) was carded, and there were no problems with the fiber opening or entanglement.

Claims (1)

【特許請求の範囲】 1 親水性架橋重合体からなる外層部とアクリロニトリ
ル系重合体及び/又は他の重合体からなる内層部とで構
成され、かつ潜在乃至顕在捲縮を有し、しかも−COO
X(X:アルカリ金属又はNH4)で示される塩型カル
ボキシル基を0.5〜5.0mmol/?含有し、かつ
3〜300CC/グの水膨潤度及び高物性を有する新規
な水膨潤性繊維。 2 潜在乃至顕在捲縮を有し、かつアクリロニトリル系
重合体からなる繊維に、6.0 mol/1000グ溶
液以上の高濃度アルカリ金属水酸化物水性溶液、又は0
.5mol/1000グ溶液以上の濃度の電解質塩類を
共存せしめた低濃度アルカリ金属水酸化物水性溶液を作
用せしめて該繊維の外層部を親水架橋化することにより
親水性架橋重合体からなる外層部とアクリロニトリル系
重合体及び/又は他の重合体からなる内層部とで構成さ
れ、かつ潜在乃至顕在捲縮を有し、しかも−COOX(
X:アルカリ金属又はNH4)で示される塩型カルボキ
シル基を0.5〜5.0mmol/グ含有し、かつ3〜
300CC/?の水膨潤度及び高物性を有する繊維に形
成することを特徴とする新規な水膨潤性繊維の製造方法
。 3 低濃度アルカリ金属水酸化物水性溶液として、0.
5mol/1000?溶液以上の濃度の電解質塩類を共
存せしめた0、25〜6、Omol/1000g溶液の
濃度のアルカリ金属水酸化物水性溶液を使用する特許請
求の範囲第2項記載の製造方法。
[Scope of Claims] 1 It is composed of an outer layer made of a hydrophilic crosslinked polymer and an inner layer made of an acrylonitrile polymer and/or other polymer, and has latent or actual crimp, and -COO
The salt type carboxyl group represented by X (X: alkali metal or NH4) is 0.5 to 5.0 mmol/? A novel water-swellable fiber having a degree of water swelling of 3 to 300 CC/g and high physical properties. 2. A highly concentrated aqueous alkali metal hydroxide solution of 6.0 mol/1000 g solution or more, or 0
.. The outer layer portion of the fiber is hydrophilically crosslinked by applying a low concentration alkali metal hydroxide aqueous solution coexisting with an electrolyte salt at a concentration of 5 mol/1000 g solution or higher to form an outer layer portion made of a hydrophilic crosslinked polymer. an inner layer made of an acrylonitrile polymer and/or another polymer, and has latent or actual crimp, and -COOX (
X: Contains 0.5 to 5.0 mmol/g of salt type carboxyl group represented by alkali metal or NH4), and 3 to
300CC/? 1. A method for producing a novel water-swellable fiber, which comprises forming the fiber into a fiber having a degree of water swelling and high physical properties. 3.0 as a low concentration alkali metal hydroxide aqueous solution.
5mol/1000? 3. The manufacturing method according to claim 2, wherein an aqueous alkali metal hydroxide solution having a concentration of 0.25 to 6.0 mol/1000 g of solution is used, in which electrolyte salts are present at a concentration higher than that of the solution.
JP53109435A 1978-09-05 1978-09-05 Novel water-swellable fiber and method for producing the same Expired JPS5810509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53109435A JPS5810509B2 (en) 1978-09-05 1978-09-05 Novel water-swellable fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53109435A JPS5810509B2 (en) 1978-09-05 1978-09-05 Novel water-swellable fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JPS5536360A JPS5536360A (en) 1980-03-13
JPS5810509B2 true JPS5810509B2 (en) 1983-02-25

Family

ID=14510163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53109435A Expired JPS5810509B2 (en) 1978-09-05 1978-09-05 Novel water-swellable fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JPS5810509B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086716U (en) * 1983-11-18 1985-06-14 松下電器産業株式会社 combustion tube
JP2009156791A (en) * 2007-12-27 2009-07-16 Kankyo Kiki:Kk Sheet for formalin absorption
JP2015224409A (en) * 2014-05-29 2015-12-14 日本エクスラン工業株式会社 Inner cotton, and futon and clothing including the inner cotton
JP2015224408A (en) * 2014-05-29 2015-12-14 日本エクスラン工業株式会社 Crosslinked acrylate fiber good in dispersibility

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174646A (en) * 1982-04-03 1983-10-13 旭化成株式会社 Sewing machine yarn
JPH0517035Y2 (en) * 1986-05-14 1993-05-07
KR20030013896A (en) * 2001-08-10 2003-02-15 주식회사 제씨콤 Complexed inner core comprising polypropylene swallable yarn for fiber cable and a process thereof
CN109642349B (en) * 2016-09-26 2021-08-06 东洋纺株式会社 Moisture-absorbing heat-generating fiber
JP6247800B1 (en) * 2016-09-26 2017-12-13 東洋紡株式会社 Hygroscopic exothermic fiber
WO2018061369A1 (en) * 2016-09-29 2018-04-05 東洋紡株式会社 Batting
JP6247801B1 (en) * 2016-09-29 2017-12-13 東洋紡株式会社 Batting
KR102478354B1 (en) * 2017-03-31 2022-12-15 도요보 가부시키가이샤 batting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497526A (en) * 1972-05-31 1974-01-23
JPS5442493A (en) * 1977-09-06 1979-04-04 Mitsubishi Rayon Co Production of quality improved acrylic fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497526A (en) * 1972-05-31 1974-01-23
JPS5442493A (en) * 1977-09-06 1979-04-04 Mitsubishi Rayon Co Production of quality improved acrylic fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086716U (en) * 1983-11-18 1985-06-14 松下電器産業株式会社 combustion tube
JP2009156791A (en) * 2007-12-27 2009-07-16 Kankyo Kiki:Kk Sheet for formalin absorption
JP2015224409A (en) * 2014-05-29 2015-12-14 日本エクスラン工業株式会社 Inner cotton, and futon and clothing including the inner cotton
JP2015224408A (en) * 2014-05-29 2015-12-14 日本エクスラン工業株式会社 Crosslinked acrylate fiber good in dispersibility

Also Published As

Publication number Publication date
JPS5536360A (en) 1980-03-13

Similar Documents

Publication Publication Date Title
JPS5810508B2 (en) Novel water-swellable fiber with high water-swellability and high physical properties and method for producing the same
US4374175A (en) Novel water-swellable fibers and process for producing the same
CA1082382A (en) Fluid absorbent cellulose fibers containing alkaline salts of polymers of acrylic acid, methacrylic acid or an acryloamidoalkane sulfonic acid with aliphatic esters of acrylic acid or methacrylic acid
JP2003534401A (en) Ion-sensitive polymer dispersible in hard water and its application
DE69421634T2 (en) Water absorbing composition and material
JPS5810509B2 (en) Novel water-swellable fiber and method for producing the same
JPH08510796A (en) Non-woven fabric product and manufacturing method thereof
US4240937A (en) Alloy fibers of rayon and an alkali metal or ammonium salt of an azeotropic copolymer of polyacrylic acid and methacrylic acid having improved absorbency
JPS6037202B2 (en) water absorbent acrylic fiber
JPS6262180B2 (en)
JPS6260502B2 (en)
JPS6262181B2 (en)
JPH022983B2 (en)
US4507204A (en) Water-removing material usable for hydrophobic liquids and process for producing the same
JPS6262174B2 (en)
KR100475423B1 (en) Absorbent acrylic fiber
KR830000391B1 (en) New method for producing water swellable fibers
JPH08325938A (en) Hygroscopic acrylic fiber having ph buffering property and its production
JPH07216730A (en) Ph buffering fiber and production thereof
JPS5936720A (en) Acrylic conjugate fiber having high shrink characteristics
KR820001660B1 (en) A process for producing novel water-swellable fibers
DE2634994C3 (en) Cellulose regenerated fibers with embedded acrylic polymer and high absorption capacity
JP2002510722A (en) Processing of polyacrylonitrile polymer
JPS5836209A (en) Moisture and water absorbing acrylic fiber
JPS626851B2 (en)