JP2003105657A - Internal material of shoe having hygroscopic and pyrogenic property - Google Patents

Internal material of shoe having hygroscopic and pyrogenic property

Info

Publication number
JP2003105657A
JP2003105657A JP2001297655A JP2001297655A JP2003105657A JP 2003105657 A JP2003105657 A JP 2003105657A JP 2001297655 A JP2001297655 A JP 2001297655A JP 2001297655 A JP2001297655 A JP 2001297655A JP 2003105657 A JP2003105657 A JP 2003105657A
Authority
JP
Japan
Prior art keywords
shoe
fine particles
hygroscopic
inner member
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001297655A
Other languages
Japanese (ja)
Inventor
Ryoji Nakamura
良司 中村
Seiichi Ochi
清一 越智
Akihisa Nakagawa
明久 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2001297655A priority Critical patent/JP2003105657A/en
Publication of JP2003105657A publication Critical patent/JP2003105657A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an internal material of shoe such as shoe side fabric, shoe insole member, etc., having improved heat retaining property and stuffy feeling, excellent comfortableness with nice heat retaining property and hygroscopicity especially in winter. SOLUTION: This internal material of shoe such as a shoe side fabric, a shoe insole, etc., is a structural body stuck with a highly hygroscopic fine particle and comprises at least 20 mass % of a hygroscopic and pyrogenic structural body having >=3 deg.C maximum temperature rise in moisture absorption. The internal material of shoe comprises a hygroscopic and pyrogenic structural body keeping heat generation in moisture absorption for >=30 deg.C minutes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、靴内部材に関す
る。詳しくは、保温性と蒸れ感を改良した快適性に優れ
た靴側地、靴インソールなどの靴内部材に関する。
TECHNICAL FIELD The present invention relates to an inner shoe member. More specifically, the present invention relates to an inner shoe member such as a shoe side, a shoe insole, etc., which has improved heat retention and stuffiness and is excellent in comfort.

【0002】[0002]

【従来の技術】保温性に着目した一般衣料、防寒衣料、
スポーツ衣料や低温倉庫用ユニホームなどが種々実用化
されている。しかしながら靴内の保温に関しては保温剤
のスペースの確保が難しいことから、ほとんど提案され
ていない。しいて言えば、靴下に工夫がされる事が多
い。より昔には、保温効果を高めるために靴内に真綿等
の詰めものを用いたこともあった。もう1つの靴の課題
は蒸れやすいことにある。これをさけるために、夏期等
にはメッシュや紐を組み合わせたサンダル等が着用され
るが、雨天等の外部からの着水がある場合等には適さな
い。また、保温と通気は相反する特性であり、通常の方
法では同時満足できない。
2. Description of the Related Art General clothing, cold clothing,
Various sports clothing and uniforms for low temperature warehouses have been put to practical use. However, as for the heat retention in the shoes, it is hardly proposed because it is difficult to secure a space for the heat insulation agent. Speaking of which, socks are often devised. In the olden days, padding such as cotton was used in the shoes to enhance the heat retaining effect. Another problem with shoes is that they tend to get stuffy. In order to avoid this, sandals or the like in which meshes and strings are combined are worn in the summer and the like, but it is not suitable when there is external landing such as rain. In addition, heat retention and ventilation are contradictory properties, and cannot be satisfied simultaneously by ordinary methods.

【0003】[0003]

【発明が解決しようとする課題】本発明は、保温性と蒸
れ感を改良し、特に冬季に快適な保温性と吸湿性を合わ
せ持つ快適性に優れた靴側地、靴インソール部材などの
靴内部材を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention is a shoe such as a shoe side or shoe insole member having improved heat retention and stuffiness and having excellent heat retention and moisture absorption especially in winter. It is intended to provide an inner member.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を解決
するため、靴内部材として次の技術構成を持つ基布を導
入する。すなわち、 1.高吸湿性微粒子が付着されてなる繊維構造体であ
り、吸湿時の最大温度上昇が3℃以上である吸湿発熱性
繊維構造体を20質量%以上含有する靴内部材。
In order to solve the above problems, the present invention introduces a base cloth having the following technical construction as an inner member for shoes. That is, 1. A shoe inner member which is a fibrous structure to which highly hygroscopic fine particles are adhered, and which contains 20% by mass or more of a hygroscopic exothermic fiber structure having a maximum temperature rise of 3 ° C. or more when absorbing moisture.

【0005】2.前記構造体が吸湿時の発熱が30分以
上保持されることを特徴とする第1に記載の靴内部材。
2. The shoe inner member according to the first aspect, wherein heat generated when the structure absorbs moisture is retained for 30 minutes or more.

【0006】3.前記構造体に付着させる高吸湿性微粒
子が有機微粒子であることを特徴とする第2に記載の靴
内部材。
3. The shoe inner member according to the second aspect, wherein the highly hygroscopic fine particles attached to the structure are organic fine particles.

【0007】4.前記構造体が高吸湿性有機微粒子がポ
リスチレン系、ポリアクリロニトリル系、ポリアクリル
酸エステル系、ポリメタクリル酸エステル系のいずれか
のビニル系重合体で、スルホン酸基、カルボン酸基、リ
ン酸基あるいは、それらの金属塩の少なくとも1種の親
水基を有し、かつジビニルベンゼントリアリルイソシア
ネートまたはヒドラジンのいずれかで架橋された架橋重
合体である第3に記載の靴内部材。
4. The structure is a highly hygroscopic organic fine particle is a polystyrene-based, polyacrylonitrile-based, polyacrylic acid ester-based, polymethacrylic acid ester-based vinyl polymer, sulfonic acid group, carboxylic acid group, phosphoric acid group or The shoe inner member according to the third aspect, which is a crosslinked polymer having at least one hydrophilic group of metal salts thereof and crosslinked with either divinylbenzenetriallyl isocyanate or hydrazine.

【0008】5.前記微粒子が高吸湿性微粒子の平均粒
子径が2μm未満であることを特徴とする第2〜4のい
ずれかに記載の靴内部材。
5. The shoe inner member according to any one of items 2 to 4, wherein the fine particles have an average particle diameter of less than 2 μm.

【0009】6.前記構造体が高吸湿性微粒子を親水性
樹脂を介して構造体に固定化されていることを特徴とす
る第2〜5のいずれかに記載の靴内部材。
6. 6. The shoe inner member according to any one of 2 to 5, wherein the structure has a highly hygroscopic fine particle fixed to the structure via a hydrophilic resin.

【0010】7.前記構造体中の高吸湿性微粒子と親水
性樹脂の質量比が1/1〜19/1であることを特徴と
する第2〜6のいずれかに記載の靴内部材。
7. 7. The shoe inner member according to any one of 2 to 6, wherein the mass ratio of the highly hygroscopic fine particles and the hydrophilic resin in the structure is 1/1 to 19/1.

【0011】8.前記構造体が天然繊維、化合繊もしく
はこれらの混用繊維で構成される編物、織物、不織布、
であることを特徴とする第2〜7のいずれかに記載の靴
内部材。
8. The structure is a natural fiber, a knitted fabric, a woven fabric or a non-woven fabric composed of a compound fiber or a mixed fiber of these,
The shoe inner member according to any one of the second to seventh aspects.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する.本発明の靴側地、靴インソール部材
などの靴内部材は少なくとも構成積層材の一部に吸湿発
熱性繊維構造体を用いる。本発明に用いる吸湿発熱構造
体とは、ポリエステル系、ポリアミド系、ポリアクリル
ニトリル系、ポリエチレン系、ポリプロピレン系、ポリ
ブチレンテレフタレート系、ポリテトラメチレンテレフ
タレート系、ポリウレタン系、ポリフェニレンサルファ
イド系等の合成繊維、レーヨン、アセテート等の化学繊
維、木綿、麻、シルク、ウール、羽毛などの天然繊維も
しくはこれらの混用素材からなる編物、織物、不織布、
組物などで構成される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. In the shoe inner member such as the shoe side material and the shoe insole member of the present invention, the moisture absorbing and heat generating fiber structure is used for at least a part of the constituent laminated materials. The moisture absorbing heat generating structure used in the present invention, polyester-based, polyamide-based, polyacrylonitrile-based, polyethylene-based, polypropylene-based, polybutylene terephthalate-based, polytetramethylene terephthalate-based, polyurethane-based, polyphenylene sulfide-based synthetic fibers, Knitted fabrics, woven fabrics, non-woven fabrics made of chemical fibers such as rayon and acetate, natural fibers such as cotton, hemp, silk, wool, and feathers, or mixed materials thereof.
It is composed of braids.

【0013】本発明に用いる高吸湿性微粒子(高吸湿/
吸水発熱性有機微粒子とも表記する。)とは、吸湿時に
発熱性を示す微粒子であれば、特に化学構造的に限定さ
れるものではない。例えば、吸湿性シリカなどの無機
系、もしくは吸湿性ポリウレタン系、ポリアミド系、ポ
リエステル系およびポリアクリレート系などの種々の有
機系微粒子の適用が可能であるが、特に、高吸湿/吸水
発熱性有機微粒子が好ましく、例えば、ポリスチレン
系、ポリアクリロニトリル系、ポリアクリル酸エステル
系、ポリメタクリル酸エステル系のいずれかのビニル系
重合体で、スルホン酸基、カルボン酸基、リン酸基ある
いは、それらの金属塩の少なくとも1種の親水基を有
し、かつジビニルベンゼン、トリアリルイソシアネート
またはヒドラジンのいずれかで架橋された架橋重合体微
粒子である。
Highly hygroscopic fine particles (high moisture absorption /
Also referred to as water-absorbing and exothermic organic fine particles. ) Is not particularly limited in terms of chemical structure as long as it is a fine particle that exhibits exothermicity when absorbing moisture. For example, inorganic particles such as hygroscopic silica, or various organic particles such as hygroscopic polyurethane, polyamide, polyester and polyacrylate particles can be applied, but particularly high hygroscopic / water absorbing exothermic organic particles. Preferably, for example, polystyrene-based, polyacrylonitrile-based, polyacrylic acid ester-based, polymethacrylic acid ester-based vinyl polymer, sulfonic acid group, carboxylic acid group, phosphoric acid group or a metal salt thereof. Which is at least one kind of hydrophilic group and is crosslinked with divinylbenzene, triallyl isocyanate or hydrazine.

【0014】高吸湿性微粒子の粒度は、吸湿発熱速度/
発熱効率、均一付着性、風合い及び耐磨耗性の点から細
かいほど望ましく、平均粒子径2μm未満がより好まし
い。
The particle size of the highly hygroscopic fine particles depends on the heat absorption rate of moisture absorption /
From the viewpoint of heat generation efficiency, uniform adhesion, texture and abrasion resistance, finer is preferable, and average particle diameter of less than 2 μm is more preferable.

【0015】本発明に用いる高吸湿性微粒子の付与方法
は、繊維、フィルムもしくは樹脂層に直接練り込む方法
や編物、織物、不織布、フリース、紐状物、フィルム及
び樹脂成形品などの表層にバインダー樹脂を介して付着
させる方法が挙げられるが、吸湿/吸水発熱速度/発熱
効率の点から後者のバインダー樹脂を介する付着方法が
好ましい。
The method of applying the highly hygroscopic fine particles used in the present invention is a method of directly kneading into a fiber, a film or a resin layer, or a binder on the surface layer of a knitted fabric, a woven fabric, a nonwoven fabric, a fleece, a string, a film or a resin molded product. A method of attaching via a resin is mentioned, but the latter method of attaching via a binder resin is preferable from the viewpoint of moisture absorption / water absorption heat generation rate / heat generation efficiency.

【0016】バインダー樹脂としては、通常の含浸法、
パディング法、コーティング法、スプレー法に適用でき
るシリコン系、ウレタン系、アクリル系、ポリエステル
系、ポリアミド系、ポリエチレンオキサイド系などの樹
脂が挙げられ、特に限定されないが、親水性、すなわ
ち、吸湿性、透湿性に優れ、高吸湿/吸水発熱性微粒子
の優れた吸湿性、吸水性を阻害せず、しかも高吸湿/吸
水発熱性微粒子と構造体を効果的に接着固定化できるバ
インダー機能に優れるタイプが望ましい。特に好ましい
親水性樹脂バインダーとしては、親水性セグメントとし
て、ポリアルキレンオキサイド付加型、スルホン酸塩、
カルボン酸塩等の極性親水基型、アミド変成型などを導
入した親水性シリコーン系樹脂、親水性ウレタン系樹
脂、親水性ポリアミド系樹脂、親水性ポリエチレンオキ
サイド系樹脂で、樹脂自身の吸湿性、透湿性が高く、吸
湿性を阻害しないものがあげられる。ここで言う樹脂の
透湿性とは無孔膜状態での透湿性を意味する。微多孔膜
で発現する透湿性が高い樹脂でも、樹脂自身の吸湿性が
低いバインダー樹脂では、高吸湿発熱性微粒子の優れた
吸湿発熱もしくは吸水発熱性をマスキングし、低下させ
る。また、これら高吸湿/吸水発熱性微粒子と親水性樹
脂バインダーの系に耐久性向上のために、イソシアネー
ト系、メチロール系、エチレンイミン系、多官能アジリ
ジニル系、金属塩系など各種架橋剤を、併用微粒子本来
の吸湿性を低下させない範囲で併用しても良い。
As the binder resin, a usual impregnation method,
Examples of the resin include silicone-based, urethane-based, acrylic-based, polyester-based, polyamide-based, and polyethylene oxide-based resins that can be applied to the padding method, coating method, and spray method, and are not particularly limited, but are hydrophilic, that is, hygroscopic, permeable. It is desirable to use a type that has excellent wettability, does not inhibit the excellent hygroscopicity and water absorption of the highly hygroscopic / water-absorbing exothermic fine particles, and has an excellent binder function that can effectively adhere and fix the highly hygroscopic / water-absorbing exothermic fine particles to the structure. . As a particularly preferable hydrophilic resin binder, as the hydrophilic segment, polyalkylene oxide addition type, sulfonate,
Hydrophilic silicone resin, hydrophilic urethane resin, hydrophilic polyamide resin, hydrophilic polyethylene oxide resin with polar hydrophilic group type such as carboxylate, modified amide, etc. Those that have high wettability and do not impair hygroscopicity can be mentioned. The moisture permeability of the resin as used herein means the moisture permeability in a non-porous film state. Even a resin having a high moisture permeability expressed by a microporous film, a binder resin having a low hygroscopicity of the resin itself masks and lowers the excellent moisture absorption heat generation or water absorption heat generation property of the high moisture absorption heat generation fine particles. In addition, in order to improve the durability, these high moisture absorption / water absorption exothermic fine particles and hydrophilic resin binder are combined with various crosslinking agents such as isocyanate type, methylol type, ethyleneimine type, polyfunctional aziridinyl type, and metal salt type. You may use together in the range which does not reduce the original hygroscopic property of fine particles.

【0017】本発明における高吸湿発熱性微粒子と親水
性樹脂の配合比及びこれらの付着量は、吸湿発熱性に大
きく影響する。親水性樹脂の親水レベルにより高吸湿発
熱性微粒子と親水性樹脂の配合比は多少異なるが、通常
1/1〜19/1の配合使用が望ましく、好ましくは、
10/1〜19/1の配合比が、さらに好ましくは、1
5/1〜19/1の配合比などの、特に親水性樹脂の配
合比率の小さいものほど、優れた吸湿発熱性を発現させ
ることができる。但し、親水性樹脂が極端に少ない場
合、もしくは併用しない場合は構造物表面に付着した高
吸湿発熱性微粒子の磨耗耐久性が低下し、脱落し易くな
る。逆に、親水性樹脂の配合比が多い場合は、親水性樹
脂といえども、高吸湿発熱性微粒子本来の保有する吸湿
性を阻害するケースが多いため、マスキング効果により
吸湿発熱速度及び発熱量が極端に低下する。もちろん、
親水性樹脂の吸湿性が高吸湿発熱性微粒子と同等以上の
場合は、親水性樹脂の配合比を増加することができる。
The compounding ratio of the highly hygroscopic heat-generating particles and the hydrophilic resin and the amount of these adhering particles in the present invention have a great influence on the heat-moisture absorption. The compounding ratio of the highly hygroscopic heat-generating particles and the hydrophilic resin is slightly different depending on the hydrophilic level of the hydrophilic resin, but it is usually desirable to use the compounding ratio of 1/1 to 19/1, and preferably,
The compounding ratio of 10/1 to 19/1 is more preferably 1
Particularly, the smaller the compounding ratio of the hydrophilic resin, such as the compounding ratio of 5/1 to 19/1, is, the more excellent heat absorption by moisture absorption can be exhibited. However, when the hydrophilic resin is extremely small, or when the hydrophilic resin is not used together, the abrasion resistance of the highly hygroscopic and heat-generating fine particles adhered to the surface of the structure is lowered, and the particles easily fall off. On the contrary, when the mixing ratio of the hydrophilic resin is high, even in the case of the hydrophilic resin, there are many cases where the hygroscopicity originally possessed by the highly hygroscopic exothermic particles is obstructed. Extremely low. of course,
When the hygroscopicity of the hydrophilic resin is equal to or higher than that of the highly hygroscopic and heat-generating fine particles, the compounding ratio of the hydrophilic resin can be increased.

【0018】本発明に用いる吸湿発熱性構造体の発熱性
は、物質の吸湿に産出する吸着反応熱に基づくもので、
構造体に含まれる高吸湿性微粒子及び併用親水性樹脂バ
インダーの吸湿性能力及び付着量に依存する。すなわ
ち、高吸湿性微粒子で、しかも細かいほど、吸湿レベル
の高い親水性樹脂バインダーほど、吸着水分による産熱
は大きく、発熱速度も早く、発熱保持時間も長くなる。
もちろん、かかる吸湿性は構造体基材単独でも保有する
ため、より効果的な吸湿発熱性を実現させるためには適
用吸湿発熱性微粒子の吸湿率(20℃、65%RH)は
25%以上が望ましく、さらに好ましくは40%以上で
ある。また、併用親水性樹脂はかかる吸湿/吸水発熱性
微粒子の吸湿性/吸水性をできるだけ阻害しない少なく
とも吸湿率(20℃、65%RH)3〜50%のものが
好ましい。すなわち、効果的な吸湿発熱性を得るために
は、本発明の高度な吸湿発熱性を保有する構造体を出来
るだけ低吸湿率、更に好ましくは完全乾燥(絶乾)状態
に近い状態で保管することが肝要である。逆に、飽和吸
湿率以上に水分を吸着し、発熱が完了した構造体は、放
熱冷却され当初の温度まで低下するが、再度、乾燥して
吸着水を取り除けば、元来の優れた吸湿発熱性が再発現
する。
The exothermicity of the hygroscopic and exothermic structure used in the present invention is based on the heat of adsorption reaction generated when the substance absorbs moisture.
It depends on the hygroscopic ability and the amount of adhesion of the highly hygroscopic fine particles and the combined hydrophilic resin binder contained in the structure. That is, the higher the hygroscopic particles, the finer the hydrophilic resin binder having the higher hygroscopic level, the larger the heat production due to the adsorbed moisture, the faster the heat generation rate, and the longer the heat retention time.
Of course, since the structure substrate alone has such hygroscopicity, the moisture absorption rate (20 ° C., 65% RH) of the applied hygroscopic exothermic fine particles should be 25% or more in order to realize more effective hygroscopicity. Desirably, more preferably 40% or more. Further, the combined hydrophilic resin preferably has at least a moisture absorption rate (20 ° C., 65% RH) of 3 to 50% which does not impair the hygroscopicity / water absorptivity of the moisture absorption / water absorption exothermic fine particles as much as possible. That is, in order to obtain effective moisture absorption and heat generation, the structure having a high degree of moisture absorption and heat generation of the present invention is stored with a moisture absorption rate as low as possible, and more preferably in a state close to a completely dry (absolute dry) state. It is essential. On the other hand, the structure that has absorbed heat above the saturated moisture absorption rate and has completed heat generation is cooled by heat dissipation and drops to the initial temperature, but if it is dried again to remove the adsorbed water, the original excellent moisture absorption heat generation Gender reappears.

【0019】本発明によれば、高吸湿発熱性微粒子の種
類及び付着量を最適化し、適正な親水性樹脂バインダー
を介して付着させた構造体は、吸湿時の最大温度上昇が
3℃以上、好ましくは4℃以上、より好ましくは5℃以
上であり、あるいは吸水時の発熱保持時間が30秒以
上、より好ましくは1分以上保持される等、吸湿発熱速
度、発熱量、発熱保持時間の総合発熱性能面で、従来に
ない優れた吸湿発熱性が得られる。
According to the present invention, the structure in which the kind and the amount of the highly hygroscopic heat-generating particles are optimized, and the particles are adhered via a proper hydrophilic resin binder, the maximum temperature rise during moisture absorption is 3 ° C. or more, It is preferably 4 ° C. or higher, more preferably 5 ° C. or higher, or the heat retention time when absorbing water is 30 seconds or longer, more preferably 1 minute or longer. In terms of heat generation performance, excellent heat absorption by moisture absorption that has never been obtained can be obtained.

【0020】本発明の靴内部材において、靴側地の場
合、高吸湿発熱構造体は単独で用いる事ができるが、補
強を目的に粗いメッシュ材等で覆うことも可能であり、
高吸湿発熱構造体の外面には靴として要求される保形性
と強度を確保するための外皮が張り合わされている。該
靴内部材中の高吸湿発熱構造体の質量は少なくとも20
%が必要であり、20%未満になると保温、吸湿性能と
も体感できない。必要により靴側地全体を高密度織物等
で弾性体を構成し、全体に含浸させることも可能であ
る。
In the shoe inner member of the present invention, in the case of the shoe ground, the high moisture absorption heat generating structure can be used alone, but can also be covered with a coarse mesh material for the purpose of reinforcement,
The outer surface of the high moisture absorption heat generating structure is covered with an outer skin for ensuring the shape retention and strength required for shoes. The mass of the highly hygroscopic heat generating structure in the shoe inner member is at least 20.
% Is required, and if it is less than 20%, neither heat retention nor moisture absorption performance can be felt. If necessary, it is also possible to form an elastic body on the entire shoe side by using a high-density fabric or the like and impregnate the entire body.

【0021】また、靴インソール部材の場合、高吸湿発
熱構造体は足裏側近にあることが好ましいが、補強を目
的に粗いメッシュ材等で覆うことも可能であり、高吸湿
発熱構造体の下部には緩衝と保湿を目的とした、空隙率
の高い弾力部材を積層する事がより好ましい。吸湿した
水分は該空隙に高湿度空気として貯蔵され、歩行時の靴
インソール部材の繰り返し圧縮により、靴外に排出され
る。該靴インソール部材中の高吸湿発熱構造体の質量は
少なくとも20%が必要であり、20%未満になると保
温、吸湿性能とも体感できない。必要により靴インソー
ル部材全体を不織布等で弾性体を構成し、全体に含浸さ
せることも可能である。
Further, in the case of the shoe insole member, it is preferable that the high moisture absorption heat generating structure is located near the sole side, but it is also possible to cover it with a coarse mesh material for the purpose of reinforcement, and the lower part of the high moisture absorption heat generating structure. It is more preferable to stack an elastic member having a high porosity for the purpose of cushioning and moisturizing. The absorbed moisture is stored as high-humidity air in the void and is discharged to the outside of the shoe by the repeated compression of the shoe insole member during walking. The mass of the high moisture absorption heat generating structure in the shoe insole member needs to be at least 20%, and if it is less than 20%, neither heat retention nor moisture absorption performance can be felt. If necessary, the entire shoe insole member may be made of a non-woven fabric or the like to form an elastic body and the whole body may be impregnated.

【0022】本発明における外皮材料としては水をはじ
き、気相水分を通す、いわゆる透湿防水機能を備えた素
材を用いることが好ましい。
As the outer skin material in the present invention, it is preferable to use a material having a so-called moisture-permeable and waterproof function of repelling water and allowing moisture in the vapor phase to pass therethrough.

【0023】本発明の靴内部材は、これらの優れた高吸
湿発熱性に加えて、抗菌防臭性、制菌性、消臭性、ノネ
ナール消臭性の多機能性を発現させることもできる。
The shoe inner member of the present invention can exhibit multi-functionality such as antibacterial deodorant property, bacteriostatic property, deodorant property, and nonenal deodorant property, in addition to these excellent high moisture absorption and heat generation properties.

【0024】[0024]

【実施例】以下に実施例により本発明を詳細に説明する
が、本発明は、何らこれらに限定するものではない。以
下で、単に部、%と記載したものは、質量基準を意味す
る。吸湿率及び発熱温度は以下の測定法で実施した。
The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto. Below, what is described simply as part and% means on a mass basis. The moisture absorption rate and the exothermic temperature were measured by the following measuring methods.

【0025】<絶乾質量>サンプルを110℃×6時間
乾燥後、シリカゲル入りデシケータに入れ、20℃、6
5%RH環境下で調温後、質量測定を行った。 <吸湿性>20℃、65%RH環境下で24時間調温調
湿後の質量測定を行い、下記式から算出した。 吸湿率(%)={(吸湿質量−絶乾質量)/絶乾質量}
×100
<Absolute dry mass> After drying the sample at 110 ° C for 6 hours, the sample was placed in a desiccator containing silica gel and kept at 20 ° C for 6 hours.
After adjusting the temperature in a 5% RH environment, mass measurement was performed. <Hygroscopicity> The mass was measured after the temperature and humidity were adjusted for 24 hours in an environment of 20 ° C. and 65% RH, and calculated from the following formula. Moisture absorption rate (%) = {(moisture absorption mass-excess dry mass) / excess dry mass}
× 100

【0026】<吸湿発熱性>110℃×6時間乾燥後、
シリカゲル入りデシケータに入れ、絶乾状態とした5c
m×5cmの測定サンプルに温度センサー(例えば安立
計器(株)製;540K MD−5型)を装着後、20
℃、95%RH環境下(例えば硫酸カリウム飽和水溶液
入りデシケータ)での吸湿発熱性を温度記録計(例えば
安立計器(株)製;DATA COLLECTOR A
M−7052型)で計測した。 <吸水発熱性>前記絶乾状態の5cm×5cmの測定サ
ンプルに温度センサーを装着後、20℃、65%RH環
境下で、サンプル質量の50%相当量のイオン交換水を
3〜5秒の間に均一に噴霧後、吸水発熱性を温度記録計
にて計測した。最大吸水発熱温度及び吸水前サンプル温
度以上の吸水発熱保持時間(分)で評価した。
<Heat absorption by moisture absorption> After drying at 110 ° C. for 6 hours,
5c put in desiccator containing silica gel and dried
20 after mounting a temperature sensor (for example, manufactured by Anritsu Keiki Co., Ltd .; 540K MD-5 type) on a measurement sample measuring m × 5 cm.
Temperature recorder (for example, manufactured by Anritsu Keiki Co., Ltd .; DATA COLLECTOR A)
M-7052 type). <Water absorption exothermicity> After attaching a temperature sensor to the measurement sample of 5 cm x 5 cm in the absolutely dry state, ion-exchanged water equivalent to 50% of the sample mass for 3 to 5 seconds was placed in an environment of 20 ° C and 65% RH. After uniformly spraying in the meantime, the water absorption exothermicity was measured with a temperature recorder. The water absorption heat generation time and the water absorption heat generation retention time (minutes) above the maximum water absorption heat generation temperature and the sample temperature before water absorption were evaluated.

【0027】<結露性>10〜15リットルの内体積を
有するデシケーターに5cm×5cmのサンプルを投入
し、ふたを開けた状態で20℃、80%の室内に放置
し、調温・調湿した。24時間後、デシケーターのふた
を閉めて10℃に保たれた環境下に5分以内に移動させ
る。その1時間後にふたを開けサンプルの結露状態を目
視判定した。
<Dew Condensation> A 5 cm × 5 cm sample was put into a desiccator having an internal volume of 10 to 15 liters, and the lid was left open in a room at 20 ° C. and 80% for temperature control and humidity control. . After 24 hours, the desiccator lid is closed, and the desiccator is moved to the environment kept at 10 ° C. within 5 minutes. One hour later, the lid was opened and the state of dew condensation of the sample was visually judged.

【0028】<抗菌性>繊維製品の定量的抗菌試験方法
(統一試験方法)マニュアルに定める方法を用いた。
試験菌種としては、黄色ぶどう球菌 Staph−yl
ococcusaureus ATCC 6538Pを
用い、無加工布(標準綿布)菌数[B]、評価サンプル
菌数[C]より次の方法で求めた。 静菌活性値=logB−logC 本静菌活性値が2.2以上の製品を抗菌性ありとした。
<Antibacterial property> A quantitative antibacterial test method (unified test method) of a textile product was used according to the manual.
As the test bacterial species, Staphylococcus aureus Staph-yl
Using Occoccus aureus ATCC 6538P, the number was determined by the following method from the number of unprocessed cloth (standard cotton cloth) bacteria [B] and the number of evaluated sample bacteria [C]. Bacteriostatic activity value = logB-logC Products having a bacteriostatic activity value of 2.2 or more were considered to have antibacterial properties.

【0029】[実施例1]ポリエチレンテレフタレート
系ポリエステル長繊維ニードルパンチ不織布(単糸繊
度;5.5デシテックス、目付;100g/m2、厚み;
1.0mm)を本発明の高吸湿発熱性構造体の基布とし
て用いた。
[Example 1] Polyethylene terephthalate type polyester long fiber needle punched nonwoven fabric (single yarn fineness; 5.5 decitex, basis weight; 100 g / m 2 , thickness;
1.0 mm) was used as the base fabric of the highly hygroscopic and exothermic structure of the present invention.

【0030】次に高吸湿発熱性有機微粒子の製造を次の
方法で行った。メタクリル酸/p−スチレンスルホン酸
ソーダ=70/30の水溶性重合体350部及び硫酸ナ
トリウム35部を6500部の水に溶解し、櫂型攪拌機
付きの重合槽に仕込んだ。次に、アクリル酸メチル27
50部及びジビニルベンゼン330部に2,2'−アゾ
ビス−(2,4−ジメチルバレロニトリル)15部を溶
解して重合槽に仕込み、400rpmの攪拌下、60℃
で2時間重合し、重合率88%の共重合体を得た。該重
合体100部を水900部中に分散し、これに110部
の苛性ソーダを添加し、90℃、2.5時間反応を行
い、アクリル酸メチルのメチルエステル部を加水分解す
ることによりカルボキシル基4.6ミリ当量/gを有し
た架橋重合体を得た。得られた重合体を水中に分散し、
洗浄、脱水後、粉砕、分級もしくはろ過し、高吸湿/吸
水発熱性微粒子を得た。得られた高吸湿/吸水発熱性有
機微粒子の20℃、65%RH下での吸湿率は50%、
平均粒子径は0.8μmであった。
Next, the highly hygroscopic and exothermic organic fine particles were produced by the following method. 350 parts of a water-soluble polymer of methacrylic acid / sodium p-styrenesulfonate = 70/30 and 35 parts of sodium sulfate were dissolved in 6500 parts of water and charged into a polymerization tank equipped with a paddle type stirrer. Next, methyl acrylate 27
15 parts of 2,2'-azobis- (2,4-dimethylvaleronitrile) was dissolved in 50 parts and 330 parts of divinylbenzene and charged into a polymerization tank, and stirred at 400 rpm at 60 ° C.
Polymerization was carried out for 2 hours to obtain a copolymer having a polymerization rate of 88%. 100 parts of the polymer was dispersed in 900 parts of water, 110 parts of caustic soda was added thereto, and the reaction was carried out at 90 ° C. for 2.5 hours to hydrolyze the methyl ester part of methyl acrylate to obtain a carboxyl group. A cross-linked polymer having 4.6 meq / g was obtained. Disperse the obtained polymer in water,
After washing and dehydration, pulverization, classification or filtration was performed to obtain highly hygroscopic / water-absorbing exothermic particles. The high moisture absorption / water absorption exothermic organic fine particles thus obtained have a moisture absorption rate of 50% at 20 ° C. and 65% RH,
The average particle size was 0.8 μm.

【0031】かかる高吸湿発熱性微粒子20%を含む水
分散体95部に親水性樹脂バインダーとして、TF−3
500(花王社製親水性シリコン系バインダー;固形分
40%)4部およびアクアプレンWS105(明成化学
工業社製親水性ウレタン系バインダー;固形分40%)
1部を加えた加工パディング液に基布を浸漬し、マング
ルにて加工液ウエットピックアップ率100%になるよ
う絞った後、120℃で乾燥後、180℃で1分間乾熱
セットして構造体を得た。得られた構造体の吸湿発熱性
の特性を表1に示す。未加工品に比べ発熱速度、発熱温
度、発熱保持時間の優れた吸湿発熱性が得られ、また抗
菌性も確認できた。
TF-3 was added as a hydrophilic resin binder to 95 parts of an aqueous dispersion containing 20% of such highly hygroscopic and heat-generating fine particles.
500 parts (Kao Corporation hydrophilic silicone binder; solid content 40%) 4 parts and Aquaprene WS105 (Meisei Chemical Industry hydrophilic urethane binder; solid content 40%)
Immerse the base cloth in the processing padding liquid added with 1 part, squeeze the processing liquid wet pickup ratio to 100% with a mangle, dry it at 120 ° C, and set it at 180 ° C for 1 minute to dry heat and structure Got Table 1 shows the moisture absorption and exothermic properties of the obtained structure. As compared with the unprocessed product, it was possible to obtain the moisture absorption and heat generation properties, which were superior in heat generation rate, heat generation temperature, and heat generation retention time, and it was also possible to confirm antibacterial properties.

【0032】該加工布と補強用とするナイロン加工糸メ
ッシュ編み地(33デシテックス、6フィラメント使い
で目付が35g/m2)を張り合わせ靴内部材とした。同
布帛を靴の内側面及び底面に内装した靴(外皮は透湿防
水性の合成皮革を用いた)を作成した。該靴をナイロン
加工糸の靴下を着用して、10℃、RH40%の環境下
で30分歩行した時の着用感を、同種の外皮を用い、本
発明の靴内装材を着装しない靴と比較した。本発明の内
装材を用いた方は、温かく蒸れ感が少なかった。また、
本発明品を用いない靴を着用した時の靴下の足底部は若
干ではあるが、湿っぽくなっていた。
The processed cloth and a nylon processed thread mesh knitted fabric (33 decitex, using 6 filaments and a basis weight of 35 g / m 2 ) for reinforcement were laminated to form an inner shoe member. A shoe in which the same fabric is placed on the inner side surface and the bottom surface of a shoe (a synthetic leather having a moisture-permeable and waterproof property is used as an outer skin) is prepared. The wearing feeling of the shoe when it was worn for 30 minutes in an environment of 10 ° C. and 40% RH by wearing nylon socks was compared with that of a shoe using the same kind of outer skin and not wearing the shoe interior material of the present invention. did. The person using the interior material of the present invention was warm and had less stuffiness. Also,
When the shoes not using the product of the present invention were worn, the soles of the socks were slightly moist.

【0033】[実施例2]ポリエチレンテレフタレート
系ポリエステル長繊維加工糸織物(110デシテックス、2
4フィラメントの平織 目付;88g/m2)を基布とし
て実施例1と同様に処理し加工布を得た。その結果を表
1に示す。
Example 2 Polyethylene terephthalate-based polyester long-fiber processed yarn fabric (110 decitex, 2
A plain weave of 4 filaments having a basis weight of 88 g / m 2 ) was used as a base fabric and treated in the same manner as in Example 1 to obtain a processed fabric. The results are shown in Table 1.

【0034】該加工靴内部材と未加工の同一布を各々内
装した靴を実施例1と同法で靴を作成した。実施例1と
同法で評価したところ、加工布は未加工布に比べ、保温
性があり、蒸れ感もなく、また抗菌性も確認できた。
A shoe in which the processed shoe inner member and the unprocessed same cloth were respectively installed were prepared in the same manner as in Example 1. When evaluated in the same manner as in Example 1, it was confirmed that the processed cloth had heat retention, no stuffiness, and antibacterial properties as compared with the unprocessed cloth.

【0035】[比較例1]ポリエチレンテレフタレート
系ポリエステル長繊維加工糸織物(22デシテックス、
12フィラメントの平織 目付;23g/m2)を基布
として実施例1と同様に処理し加工布を得た。その結果
を表1に示す。
[Comparative Example 1] Polyethylene terephthalate-based polyester long-fiber processed yarn woven fabric (22 decitex,
A plain weave of 12 filaments having a basis weight of 23 g / m 2 was used as a base fabric and treated in the same manner as in Example 1 to obtain a processed fabric. The results are shown in Table 1.

【0036】該加工布とポリエステルフィラメント加工
糸織物(165デシテックス、48フィラメント、目
付;185g/m2)を張り合わせ靴内装材とした。実
施例1と同法で評価した。保温効果、蒸れ防止効果とも
実感できず、また抗菌性も認められなかった。更に靴下
の足裏部分にはわずかに水分の付着が触感的に認められ
た。
The processed cloth and a polyester filament processed yarn woven fabric (165 decitex, 48 filaments, basis weight: 185 g / m 2 ) were laminated to each other to provide a shoe interior material. Evaluation was carried out by the same method as in Example 1. Neither the heat retaining effect nor the stuffiness preventing effect was felt, and no antibacterial property was observed. Further, a slight amount of water was felt on the soles of the socks by touch.

【0037】[0037]

【表1】 [Table 1]

【0038】[実施例3]ポリエチレンテレフタレート
系ポリエステル長繊維ニードルパンチ不織布(単糸繊
度;5.5デシテックス、目付;212g/m2、厚み;2.1m
m)を本発明の高吸湿発熱性構造体の基布として用い
た。
[Example 3] Polyethylene terephthalate polyester long fiber needle punched nonwoven fabric (single yarn fineness; 5.5 decitex, basis weight; 212 g / m 2 , thickness; 2.1 m
m) was used as the base fabric of the highly hygroscopic and exothermic structure of the present invention.

【0039】実施例1に記載の高吸湿発熱性微粒子20
%を含む水分散体95部に親水性樹脂バインダーとし
て、TF−3500(花王社製親水性シリコン系バイン
ダー;固形分40%)4部およびアクアプレンWS10
5(明成化学工業社製親水性ウレタン系バインダー;固
形分40%)1部を加えた加工パディング液に基布を浸
漬し、マングルにて加工液ウエットピックアップ率10
0%になるよう絞った後、120℃で乾燥後、180℃
で1分間乾熱セットして構造体を得た。得られた構造体
の吸湿発熱性の特性を表2に示す。未加工品に比べ発熱
速度、発熱温度、発熱保持時間の優れた吸湿発熱性が得
られ、また抗菌性も確認できた。
Highly hygroscopic exothermic particles 20 described in Example 1
% In an aqueous dispersion containing 100% of TF-3500 (Kao's hydrophilic silicone binder; solid content 40%) 4 parts and Aquaprene WS10
5 (Meisei Chemical Industry Co., Ltd. hydrophilic urethane binder; solid content 40%) The base cloth is dipped in the processing padding liquid and 1 part of the processing liquid is wet picked up with a mangle.
Squeeze to 0%, dry at 120 ° C, then 180 ° C
After that, the structure was obtained by dry heat setting for 1 minute. Table 2 shows the moisture absorption and exothermic properties of the obtained structure. As compared with the unprocessed product, it was possible to obtain the moisture absorption and heat generation properties, which were superior in heat generation rate, heat generation temperature, and heat generation retention time, and it was also possible to confirm antibacterial properties.

【0040】該加工布と未加工布を各々右足と左足の形
に整形し、通常の皮靴に挿入し、ナイロン加工糸の靴下
を着用して、10℃、RH40%の環境下で30分歩行
した時の着用感を比較した結果、未加工布を用いた物に
比べ、加工布を靴インソール部材として用いた方は、温
かく蒸れ感が少なかった。また、未加工布を着装した方
の靴下の足底部は若干ではあるが、湿っぽくなってい
た。
The processed cloth and the unprocessed cloth are shaped into the shape of the right foot and the left foot respectively, inserted into ordinary leather shoes, and the socks made of nylon processed thread are worn, and the environment is kept at 10 ° C. and RH 40% for 30 minutes. As a result of comparing the feeling of wearing when walking, it was found that the person using the processed cloth as the shoe insole member had a warmer and less stuffy feeling than the one using the unprocessed cloth. Moreover, the sole of the sock in which the unprocessed cloth was worn was slightly moist.

【0041】[実施例4]ポリエチレンテレフタレート
系ポリエステル長繊維ニードルパンチ不織布(単糸繊
度;5.5デシテックス 目付;101g/m2、厚み;1.0m
m)を基布として実施例1と同様に処理し加工布を得
た。その結果を表2に示す。
[Example 4] Polyethylene terephthalate polyester long fiber needle punched nonwoven fabric (single yarn fineness; 5.5 decitex unit weight; 101 g / m 2 , thickness; 1.0 m
m) was used as a base fabric and treated in the same manner as in Example 1 to obtain a processed fabric. The results are shown in Table 2.

【0042】該加工布と未加工不織布を張り合わせ、更
にポリエステルフィラメント(22デシテックスモノフ
ィラメント)で平織とした目付が25g/m2の織物を
加工布表面に張り合わせ、整形、縫製して靴インソール
部材とした。実施例1と同法で評価したところ加工布は
未加工布に比べ、保温性があり、蒸れ感もなく、また抗
菌性も確認できた。
The processed cloth and the unprocessed non-woven fabric were bonded together, and a plain weave of polyester filament (22 decitex monofilament) having a basis weight of 25 g / m 2 was bonded to the surface of the processed cloth, shaped and sewn to form a shoe insole member. . When evaluated by the same method as in Example 1, it was confirmed that the processed cloth had heat retention, no stuffiness, and antibacterial properties as compared with the unprocessed cloth.

【0043】[比較例2]ポリエチレンテレフタレート
系ポリエステル長繊維ニードルパンチ不織布(単糸繊
度;5.5デシテックス 目付;53g/m2、厚み;0.6m
m)を基布として実施例1と同法で加工し、高吸湿発熱
構造体を得た。その特性を表2に示す。
[Comparative Example 2] Polyethylene terephthalate polyester long fiber needle punched non-woven fabric (single yarn fineness; 5.5 decitex unit weight; 53 g / m 2 , thickness; 0.6 m
m) was used as a base fabric and processed in the same manner as in Example 1 to obtain a high moisture absorption heat generating structure. The characteristics are shown in Table 2.

【0044】該加工布とポリエチレンテレフタレート系
ポリエステル長繊維ニードルパンチ不織布未加工布(単
糸繊度;3.3テ゛シテックス 、目付;305g/m2)を張り合わせ、整
形して靴インソール部材とし、実施例1と同法で評価し
た。保温効果、蒸れ防止効果とも実感できず、抗菌性も
認められなかった。更に靴下の足裏部分にはわずかに水
分の付着が触感的に認められた。
The processed cloth and polyethylene terephthalate-based polyester long fiber needle punched non-woven cloth unprocessed cloth (single yarn fineness; 3.3 decitex, basis weight; 305 g / m 2 ) are laminated and shaped to form a shoe insole member. Evaluated by law. Neither the heat retaining effect nor the stuffiness preventing effect was felt, and no antibacterial property was observed. Further, a slight amount of water was felt on the soles of the socks by touch.

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【発明の効果】本発明によれば、吸湿性に優れ、更にこ
の吸湿による発熱する効果により、寒冷下の環境での着
用において、保温効果と蒸れ防止性能が優れる快適な靴
内気候をかもしだせる靴内装材、靴インソール部材など
の靴内部材を提供することができる。
EFFECTS OF THE INVENTION According to the present invention, due to its excellent hygroscopicity and the effect of generating heat due to this hygroscopicity, it can bring about a comfortable in-shoe climate which is excellent in heat retention and stuffiness prevention when worn in a cold environment. An inner shoe member such as a shoe interior material and a shoe insole member can be provided.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F050 AA01 AA06 BC01 BC03 BC07 BD01 HA16 HA80 HA89 4L033 AC07 AC15 CA11 CA13 CA18 4L047 AA07 AA12 AA13 AA21 BA03 CC16 DA00    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4F050 AA01 AA06 BC01 BC03 BC07                       BD01 HA16 HA80 HA89                 4L033 AC07 AC15 CA11 CA13 CA18                 4L047 AA07 AA12 AA13 AA21 BA03                       CC16 DA00

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 高吸湿性微粒子が付着されてなる繊維構
造体であり、吸湿時の最大温度上昇が3℃以上である吸
湿発熱性繊維構造体を少なくとも20質量%含むことを
特徴とする靴内部材。
1. A shoe having a hygroscopic exothermic fiber structure having a maximum hygroscopic temperature increase of 3 ° C. or more, which is a fibrous structure to which highly hygroscopic fine particles are attached. Inner member.
【請求項2】 吸湿時の発熱が30分以上保持される吸
湿発熱性瀬に構造体を含むことを特徴とする請求項1に
記載の請求項1に記載の靴内部材。
2. The shoe inner member according to claim 1, wherein a structure is included in a heat-absorbing heat-generating property that retains heat generated during moisture absorption for 30 minutes or more.
【請求項3】 高吸湿性微粒子が有機微粒子であること
を特徴とする請求項1〜2のいずれかに記載の靴内部
材。
3. The shoe inner member according to claim 1, wherein the highly hygroscopic fine particles are organic fine particles.
【請求項4】 高吸湿性有機微粒子がポリスチレン系、
ポリアクリロニトリル系、ポリアクリル酸エステル系、
ポリメタクリル酸エステル系のいずれかのビニル系重合
体で、スルホン酸基、カルボン酸基、リン酸基あるい
は、それらの金属塩の少なくとも1種の親水基を有し、
かつジビニルベンゼン、トリアリルイソシアネートまた
はヒドラジンのいずれかで架橋された架橋重合体である
請求項3に記載の靴内部材。
4. The highly hygroscopic organic fine particles are polystyrene-based,
Polyacrylonitrile-based, polyacrylic ester-based,
Any vinyl polymer of polymethacrylic acid ester type, having a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, or at least one hydrophilic group of metal salts thereof,
The shoe inner member according to claim 3, which is a crosslinked polymer crosslinked with either divinylbenzene, triallyl isocyanate or hydrazine.
【請求項5】 高吸湿性微粒子の平均粒子径が2μm未
満であることを特徴とする請求項3〜4のいずれかに記
載の靴内部材。
5. The shoe inner member according to claim 3, wherein the highly hygroscopic fine particles have an average particle diameter of less than 2 μm.
【請求項6】 吸湿性微粒子が親水性樹脂を介して構造
体に固定化されていることを特徴とする請求項1〜5の
いずれかに記載の靴内部材。
6. The shoe inner member according to claim 1, wherein the hygroscopic fine particles are fixed to the structure through a hydrophilic resin.
【請求項7】 高吸湿性微粒子と親水性樹脂の質量比が
1/1〜19/1であることを特徴とする請求項1〜6
のいずれかに記載の靴内部材。
7. A mass ratio of the highly hygroscopic fine particles and the hydrophilic resin is 1/1 to 19/1.
The shoe inner member according to any one of 1.
【請求項8】 構造体が天然繊維、化合繊もしくはこれ
らの混用繊維で構成される編物、織物、不織布、組物で
あることを特徴とする請求項1〜7のいずれかに記載の
靴内部材。
8. The shoe interior according to claim 1, wherein the structure is a knitted fabric, a woven fabric, a non-woven fabric or a braid composed of natural fibers, synthetic fibers or mixed fibers thereof. Material.
JP2001297655A 2001-09-27 2001-09-27 Internal material of shoe having hygroscopic and pyrogenic property Pending JP2003105657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001297655A JP2003105657A (en) 2001-09-27 2001-09-27 Internal material of shoe having hygroscopic and pyrogenic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001297655A JP2003105657A (en) 2001-09-27 2001-09-27 Internal material of shoe having hygroscopic and pyrogenic property

Publications (1)

Publication Number Publication Date
JP2003105657A true JP2003105657A (en) 2003-04-09

Family

ID=19118691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001297655A Pending JP2003105657A (en) 2001-09-27 2001-09-27 Internal material of shoe having hygroscopic and pyrogenic property

Country Status (1)

Country Link
JP (1) JP2003105657A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100409784C (en) * 2004-01-09 2008-08-13 帝人纤维株式会社 Shoe interior material, insole and boot
US7709075B2 (en) 2004-07-14 2010-05-04 Teijin Fibers Limited Internal material of sole, shoe insole and boot
JP2010116436A (en) * 2008-11-11 2010-05-27 Toyo Seikan Kaisha Ltd Water-absorbing resin composition
JP2013064209A (en) * 2011-09-19 2013-04-11 Achilles Corp Fiber structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100409784C (en) * 2004-01-09 2008-08-13 帝人纤维株式会社 Shoe interior material, insole and boot
US7709075B2 (en) 2004-07-14 2010-05-04 Teijin Fibers Limited Internal material of sole, shoe insole and boot
JP2010116436A (en) * 2008-11-11 2010-05-27 Toyo Seikan Kaisha Ltd Water-absorbing resin composition
JP2013064209A (en) * 2011-09-19 2013-04-11 Achilles Corp Fiber structure

Similar Documents

Publication Publication Date Title
JP2003193371A (en) Textile product for bedding or interior
JP2003105657A (en) Internal material of shoe having hygroscopic and pyrogenic property
CN107245887B (en) Fabric preparation method, fabric and garment
JP4264800B2 (en) Moisture absorption / water absorption exothermic structure
EP1541748A1 (en) Fiber processing agent and fiber processed with the fiber processing agent
JP4759898B2 (en) Diving suit
JP2002180308A (en) Thermal insulating wear
JP2003171814A (en) Windbreaker
WO1996013994A1 (en) Odor reducing insole with odor reactant particles
JP2003102784A (en) Moisture/water absorbing exothermic diaper
CN210148849U (en) Ventilative type superfine fiber composite cloth
JP2003093529A (en) Hygroscopic/water absorbing heating mask
JP4150865B2 (en) Insole for footwear
JP3912578B2 (en) Moisture absorption / water absorption exothermic structure for interlining
JP2003102594A (en) Vapor/liquid water absorption heat-generating bedding
JP2003129312A (en) Ski suit
JP2002266113A (en) Warmth-keeping product using artificial leather containing moisture-absorbing and releasing fiber generating heat by water-absorption
JP2003089976A (en) Skin-touching cloth material
JP7284588B2 (en) underwear fabric
JP2003143976A (en) Dew condensation-preventive material
JP2003105606A (en) Swimming suit
JP2003155609A (en) Emergency human body warming garment for prevention from death by drowning
JP2003119606A (en) Sportswear
JP2003096610A (en) Moisture/water-absorbing exothermic cold proofing outfit
JPH0340878A (en) Deodorizing, respiratory functional fiber structure and production thereof