JP2003069218A - Method for manufacturing printed wiring board having extra-fine pattern - Google Patents

Method for manufacturing printed wiring board having extra-fine pattern

Info

Publication number
JP2003069218A
JP2003069218A JP2001252584A JP2001252584A JP2003069218A JP 2003069218 A JP2003069218 A JP 2003069218A JP 2001252584 A JP2001252584 A JP 2001252584A JP 2001252584 A JP2001252584 A JP 2001252584A JP 2003069218 A JP2003069218 A JP 2003069218A
Authority
JP
Japan
Prior art keywords
copper
layer
plating
copper plating
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001252584A
Other languages
Japanese (ja)
Inventor
Morio Take
杜夫 岳
Nobuyuki Ikeguchi
信之 池口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2001252584A priority Critical patent/JP2003069218A/en
Publication of JP2003069218A publication Critical patent/JP2003069218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high density printed wiring board having an excellent copper foil adhesive force and an extra-fine pattern having a good shape. SOLUTION: A method for manufacturing the printed wiring board comprises the steps of removing the copper foil of a copper-clad board by etching to retain its surface ruggedness, forming through holes and/or blind via holes through the board, surface-treating the board, then to a surface ruggedness to 1 to 7 μm, electroless copper plating thereon in thickness of 0.1 to 2 μm, then electrically copper plating to 0.5 to 3 μm, adhering a plating resist, then adhering an electric copper plating to 6 to 30 μm, releasing the plating resist, and removing a thin electric copper plating layer and an electroless copper plating layer by dissolving, and thereby forming a pattern of line/space=40/40 μm or less and further 25/25 μm or less. Accordingly, a copper pattern undercut is extremely small, and the high density printed wiring board having the excellent adhesive force of the copper can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ライン/スペースが極
細線パターン、例えば40/40μm以下、更には25/25μm以
下のパターンを有するプリント配線板の製造方法に関す
るものであり、得られた極細線パターンを有する高密度
プリント配線板は、新規な半導体プラスチックパッケー
ジ用等に主に使用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a printed wiring board having a fine line pattern having a line / space of, for example, 40/40 μm or less, further 25/25 μm or less. High density printed wiring boards having line patterns are mainly used for new semiconductor plastic packages and the like.

【0002】[0002]

【従来の技術】従来、半導体プラスチックパッケージ等
に用いられる高密度のプリント配線板において、細線の
パターンを作製する方法は、サブトラクティブ法で5μm
以下の極薄銅箔を使用し、貫通孔及び/又はブラインド
ビア孔を炭酸ガスレーザー等で形成した後、銅メッキを
15μm程度付着させ、メッキレジスト等を用いて銅箔を
エッチング除去するか、炭酸ガスレーザーを銅箔上に直
接照射して貫通孔及び/又はブラインドビア孔形成後に
孔部に発生した銅箔バリを溶解除去すると同時に表層の
銅箔をSUEP(Surface Uniform Etching Process )で12μ
mの厚みから5μm以下まで溶解除去し、デスミア処理
後、銅メッキを15μm程度付着させて通常のエッチング
レジスト等を用いて極細線のパターンを作製する方法等
が知られている。これらの方法は、エッチングによって
パターンの上側が底部側より細くなり、断面が台形とな
るか、三角形となり、不良の発生の原因となっていた。
2. Description of the Related Art Conventionally, in a high-density printed wiring board used for semiconductor plastic packages and the like, a method of forming a fine line pattern is a subtractive method of 5 μm.
Using the following ultra-thin copper foil, after forming through-holes and / or blind via holes with carbon dioxide laser etc., then copper plating
Deposit about 15 μm and remove the copper foil by etching using a plating resist or directly irradiate carbon dioxide gas laser on the copper foil to remove copper foil burr generated in the hole after forming the through hole and / or blind via hole. 12μ the surface layer of the copper foil and simultaneously dissolved and removed by SUEP (S urface U niform E tching P rocess)
There is known a method of dissolving and removing from the thickness of m to 5 μm or less, performing desmear treatment, depositing copper plating to a thickness of about 15 μm, and forming an ultrafine wire pattern using a normal etching resist or the like. In these methods, the upper side of the pattern becomes thinner than the bottom side due to etching, and the cross section becomes trapezoidal or triangular, causing defects.

【0003】また、セミアディティブ法でメッキアップ
してから同様にエッチングレジスト等を用いて極細線の
パターンを作製する方法もあるが、これも銅メッキの厚
さを18μm位に厚くした場合には同様の形状となり、銅
との接着力にも問題があった。更に、フルアディティブ
法で銅メッキを付着する場合、銅との接着力、信頼性が
低い等の問題があった。一方、極薄銅箔を使用し、この
上に無電解銅メッキを施した後、パターン銅メッキ法に
てパターンを形成する方法、更にはセミアディティブ法
で薄く無電解銅層を基板の上に付け、これを用いてパタ
ーン銅メッキ法にてパターンを形成する方法があるが、
最後のフラッシュエッチングにて無電解銅層がサイドエ
ッチングされ、細密パターンにおいて銅接着力に問題の
あるものであった。更に細密パターンにおいては、耐マ
イグレーション性等の信頼性が問題となっていた。
There is also a method of forming an ultrafine wire pattern by using an etching resist or the like in the same manner after plating up by the semi-additive method, but this is also done when the thickness of copper plating is increased to about 18 μm. The shape was similar, and there was a problem with the adhesive strength to copper. Further, when the copper plating is attached by the full additive method, there are problems such as low adhesion with copper and low reliability. On the other hand, using an ultra-thin copper foil, after applying electroless copper plating on this, a method of forming a pattern by the pattern copper plating method, and further a thin electroless copper layer on the substrate by the semi-additive method There is a method of forming a pattern by a pattern copper plating method using
In the final flash etching, the electroless copper layer was side-etched, and there was a problem with copper adhesion in a fine pattern. Further, in a fine pattern, reliability such as migration resistance has been a problem.

【0004】[0004]

【発明が解決しようとする課題】本発明は、以上の問題
点を解決した、銅箔の接着力を保持し、且つ形状の良好
な極細線パターンが形成され、耐マイグレーション性等
の信頼性に優れた高密度プリント配線板の製造方法を提
供するものである。
DISCLOSURE OF THE INVENTION The present invention has solved the above problems and formed an ultrafine wire pattern which retains the adhesive strength of a copper foil and has a good shape, and has high reliability such as migration resistance. An excellent method for manufacturing a high-density printed wiring board is provided.

【0005】[0005]

【発明が解決するための手段】本発明は、以下の工程で
プリント配線板を製造することにより、極細線のパター
ンを有し、且つ銅箔の接着力に優れた高密度のプリント
配線板を得ることができた。即ち、(1)少なくとも2層
以上の両面金属箔張板の金属箔全面を全てエッチング除
去して表層の凹凸を残したまま、(2)貫通孔及び/又は
ブラインドビア孔を所定位置に孔あけしてから、(3)全
体を処理して、表層の凹凸を1〜7μmとなるようにし、
(4)この板全体に0.1〜2μmの無電解銅メッキを施し、
(5)該無電解銅メッキ析出層を電極にして厚さ0.5〜3μm
の電気銅メッキ層を形成し、(6)この銅メッキ析出層の
上の必要部分にパターン電気メッキ用のメッキレジスト
層を形成し、(7)メッキレジスト層が形成されていない
銅面に、電気銅メッキでパターン銅メッキを6〜30μm、
好適には10〜20μm付着させ、(8)メッキレジストを剥離
除去し、(9)全面をエッチングして、少なくともパター
ン銅メッキ層の形成されていない部分の薄い電気銅層及
び無電解銅層を溶解除去して極細線パターンを有するプ
リント配線板を製造する。
The present invention provides a high-density printed wiring board having an ultrafine wire pattern and excellent adhesive strength of copper foil by manufacturing the printed wiring board in the following steps. I was able to get it. That is, (1) the entire surface of the metal foil of the double-sided metal foil-clad plate of at least two layers is removed by etching, leaving (2) through holes and / or blind via holes at predetermined positions. Then, (3) the whole is processed so that the unevenness of the surface layer becomes 1 to 7 μm,
(4) 0.1 ~ 2 μm electroless copper plating is applied to the whole plate,
(5) 0.5 ~ 3μm thickness using the electroless copper plating deposition layer as an electrode
Forming an electrolytic copper plating layer, (6) forming a plating resist layer for pattern electroplating on a necessary portion on the copper plating deposit layer, and (7) on the copper surface on which the plating resist layer is not formed, Electrolytic copper plating pattern copper plating 6 ~ 30μm,
It is preferably 10 to 20 μm deposited, (8) the plating resist is peeled off, and (9) the entire surface is etched to form a thin electrolytic copper layer and an electroless copper layer at least where the pattern copper plating layer is not formed. It is removed by dissolution to produce a printed wiring board having an ultrafine wire pattern.

【0006】又、銅箔接着力を良好にするためには、該
両面金属箔張板が、内層板の両面にブタジエン骨格を有
するゴムを必須成分とする基材補強のない樹脂組成物層
を形成するか、該両面銅張板の少なくとも表層に、請求
項1の(3)処理で溶解する樹脂粉体を含有してなる樹脂
組成物層を形成しておき、デスミア処理等の表面処理に
よって表面凹凸が、1〜7μm、好適には2〜5μmとなるよ
うにすることにより、その後の無電解銅メッキの銅との
接着強度に優れ、パターン形状にも優れた極細線パター
ンを有するプリント配線板が製造できた。
Further, in order to improve the adhesive strength of the copper foil, the double-sided metal foil-clad sheet has a resin composition layer containing a rubber having a butadiene skeleton as an essential component on both sides of an inner layer board and having no base material reinforcement. Or a resin composition layer containing a resin powder that dissolves in the treatment (3) of claim 1 is formed on at least the surface layer of the double-sided copper-clad plate, and the surface treatment such as desmear treatment is performed. By setting the surface unevenness to be 1 to 7 μm, preferably 2 to 5 μm, the printed wiring having an ultrafine wire pattern with excellent adhesive strength with the subsequent electroless copper plating copper and the pattern shape is also excellent. The board was manufactured.

【0007】更に、熱硬化性樹脂組成物の樹脂成分とし
て、該両面金属箔張板の少なくとも表層に多官能性シア
ン酸エステル、該シアン酸エステルプレポリマーを必須
成分として含有するものを用いることにより、耐マイグ
レーション性等の信頼性に優れた高密度プリント配線板
を得ることができた。
Further, as the resin component of the thermosetting resin composition, by using a polyfunctional cyanate ester and a cyanate ester prepolymer as an essential component in at least the surface layer of the double-sided metal foil-clad sheet, It was possible to obtain a high-density printed wiring board having excellent reliability such as migration resistance.

【0008】[0008]

【発明の実施の形態】本発明は、一般のマット面に凹凸
を有する金属箔を用いて積層された両面金属箔張板を用
いて、ライン/スペース=40/40μm、更には25/25μm以
下の細線パターンを有する高密度のプリント配線板を製
造するものである。工程は、 (1)まず最外層に一般のマット面に凹凸を有する金属
箔、好適には電解銅箔を張った、少なくとも2層以上の
銅層を有する銅張板を作製する。この両面銅張板の銅箔
全面を全てエッチング除去して表層の凹凸を残したまま
とする。銅箔は、一般に公知の銅箔が使用できる。好適
には、マット面の凹凸が大きい方が好ましい。銅箔の厚
さは特に限定はないが、18〜50μmが好ましい。銅箔の
厚さが18μmより薄いとエッチングした後の凹凸が小さ
く、その後の工程で銅箔接着力が低くなる問題が生じる
ことがある。又、銅箔が50μmより厚いと、銅箔のエッ
チングに時間がかかり、生産性に劣る。その他、公知の
金属箔、例えばニッケル箔等が使用される。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention uses a double-sided metal foil-clad sheet laminated using a metal foil having irregularities on a general mat surface, line / space = 40/40 μm, and further 25/25 μm or less. To manufacture a high-density printed wiring board having a fine wire pattern. The steps are: (1) First, a metal-clad sheet having irregularities on a general matte surface, preferably an electrolytic copper foil, is provided on the outermost layer to prepare a copper-clad plate having at least two copper layers. The entire surface of the copper foil of this double-sided copper clad plate is completely removed by etching to leave the surface irregularities. As the copper foil, generally known copper foil can be used. It is preferable that the unevenness of the matte surface is large. The thickness of the copper foil is not particularly limited, but is preferably 18 to 50 μm. When the thickness of the copper foil is less than 18 μm, the unevenness after etching is small, which may cause a problem that the adhesive strength of the copper foil becomes low in the subsequent steps. If the copper foil is thicker than 50 μm, it takes time to etch the copper foil, resulting in poor productivity. In addition, a known metal foil such as nickel foil is used.

【0009】(2)次に貫通孔及び/又はブラインドビア
孔を所定位置に孔あけする。貫通孔及び/又はブライン
ドビア孔は、孔径25μm以上で80mμm未満の場合、YAGレ
ーザーやエキシマレーザー等のUVレーザーを使用する。
又、孔径80μm以上で180mμm以下の場合は炭酸ガスレー
ザーが好ましい。炭酸ガスレーザーを、好適にはパルス
エネルギー5〜30mJでパルス発振にて照射して所定の位
置に所定の大きさの貫通孔及び/又はブラインドビア孔
をあける。ブラインドビア孔を形成した場合、孔底部に
は樹脂残が1μm程度残るため、無電解銅メッキ前にデス
ミア処理、プラズマ処理等の樹脂除去処理を行う必要が
ある。炭酸ガスレーザーは、赤外線波長域にある9.3〜1
0.6μmの波長が一般に使用される。又、孔径180μmを越
える貫通孔はメカニカルドリルで孔あけする。もちろ
ん、銅箔を付けたまま孔あけし、その後、銅箔をエッチ
ングすることも可能である。
(2) Next, a through hole and / or a blind via hole is formed at a predetermined position. For the through hole and / or the blind via hole, when the hole diameter is 25 μm or more and less than 80 mμm, a UV laser such as a YAG laser or an excimer laser is used.
When the pore size is 80 μm or more and 180 mμm or less, carbon dioxide laser is preferable. The carbon dioxide gas laser is irradiated with pulse oscillation, preferably with a pulse energy of 5 to 30 mJ, to form a through hole and / or a blind via hole of a predetermined size at a predetermined position. When a blind via hole is formed, a resin residue of about 1 μm remains at the bottom of the hole, so it is necessary to perform resin removal treatment such as desmear treatment or plasma treatment before electroless copper plating. Carbon dioxide laser is in the infrared wavelength range 9.3 to 1
A wavelength of 0.6 μm is commonly used. Also, through holes with a hole diameter of more than 180 μm are drilled with a mechanical drill. Of course, it is also possible to make a hole with the copper foil still attached and then etch the copper foil.

【0010】(3)このエッチングした板全体を処理し
て、表層の凹凸を、1〜7μm,、好適には2〜5μmとなる
ようにする。板を処理する方法は特に限定はなく、銅箔
をエッチングした後の凹凸を大きく損なわない程度とす
る。処理方法としては、具体的には過マンガン酸カリ等
の溶液によるデスミア処理、プラズマ処理等が挙げられ
る。
(3) The entire etched plate is processed so that the unevenness of the surface layer is 1 to 7 μm, preferably 2 to 5 μm. The method of treating the plate is not particularly limited, and it is set to such an extent that the unevenness after etching the copper foil is not significantly impaired. Specific examples of the treatment method include desmear treatment with a solution of potassium permanganate or the like, plasma treatment, and the like.

【0011】(4)この板全体に0.1〜2μmの無電解銅メッ
キを施す。メッキ厚さが厚い場合、フラッシュエッチン
グ(下記(9)でのエッチング)によるパターン下部のアン
ダーカットが発生し、銅箔接着力が低下して不良の原因
となる。
(4) 0.1-2 μm electroless copper plating is applied to the entire plate. When the plating thickness is large, undercut occurs in the lower part of the pattern due to flash etching (etching in (9) below), and the copper foil adhesive strength is reduced, causing defects.

【0012】(5)次いで、該無電解銅メッキ析出層を電
極にして厚さ0.5〜3μmの電気銅メッキ層を形成する。
銅メッキの種類は特に限定はなく、例えば硫酸銅メッ
キ、ピロ燐酸銅メッキ等が使用できる。 (6)この銅メッキ析出層の上の必要部分にパターン電気
メッキ用のメッキレジスト層を形成する。この工程も一
般に公知の方法で実施する。 (7)メッキレジスト層が形成されていない銅面に、電気
銅メッキでパターン銅メッキを6〜30μm付着させ、 (8)メッキレジストを剥離除去し、 (9)全面をエッチングして、少なくともパターン銅メッ
キ層の形成されていない部分の薄い電気銅層及び無電解
銅層を基材に到達するまで溶解除去して極細線パターン
を有するプリント配線板を製造する。この工程で細密パ
ターンを作製することにより、通常の方法に比べてアン
ダーカットが発生せず、形状の良好なパターンが形成で
き、信頼性に優れたプリント配線板が製造できた。
(5) Next, an electroless copper plating layer having a thickness of 0.5 to 3 μm is formed by using the electroless copper plating deposition layer as an electrode.
The type of copper plating is not particularly limited, and for example, copper sulfate plating, copper pyrophosphate plating, etc. can be used. (6) A plating resist layer for pattern electroplating is formed on a necessary portion on the copper plating deposit layer. This step is also performed by a generally known method. (7) On the copper surface on which the plating resist layer is not formed, apply a pattern copper plating of 6 to 30 μm by electrolytic copper plating, (8) remove the plating resist, and (9) etch the entire surface to remove at least the pattern. The thin electrolytic copper layer and the electroless copper layer in the portion where the copper plating layer is not formed are dissolved and removed until reaching the base material to manufacture a printed wiring board having an ultrafine wire pattern. By producing a fine pattern in this step, an undercut was not generated as compared with a usual method, a pattern with a good shape could be formed, and a highly reliable printed wiring board could be manufactured.

【0013】全面を最後に電気銅メッキした後、メッキ
レジストを剥離してから、薄い銅層の部分を基板に到達
するまでエッチングしてパターンを作製する。このエッ
チング液は特に限定はなく、例えば、特開平02-22887、
同02-22896、同02-25089、同02-25090、同02-59337、同
02-60189、同02-166789、同03-25995、同03-60183、同0
3-94491、同04-199592、同04-263488で開示された、薬
品で金属表面を溶解除去する方法(SUEP法と呼
ぶ)、塩化第二鉄、塩化銅、或いは過硫酸アンモニウム
溶液を使用する方法等、一般に公知の方法が使用できる
が、好ましくはSUEP法が使用される。エッチング速度は
特に限定はないが、一般には0.02〜1.0μm/sec.で行
う。
After the entire surface is electrolytically copper-plated lastly, the plating resist is peeled off, and the thin copper layer portion is etched until it reaches the substrate to form a pattern. This etching solution is not particularly limited, for example, JP-A-02-22887,
02-22896, 02-25089, 02-25090, 02-59337,
02-60189, 02-166789, 03-25995, 03-60183, 0
3-94491, 04-199592 and 04-263488, a method of dissolving and removing a metal surface with a chemical (referred to as a SUEP method), a method of using ferric chloride, copper chloride or ammonium persulfate solution. Generally known methods such as the above can be used, but the SUEP method is preferably used. The etching rate is not particularly limited, but is generally 0.02 to 1.0 μm / sec.

【0014】本発明の両面銅張板に使用する熱硬化性樹
脂組成物は特に制限はなく、一般に公知の熱硬化性樹脂
が使用される。具体的には、エポキシ樹脂、多官能性シ
アン酸エステル樹脂 多官能性マレイミドーシアン酸エ
ステル樹脂、多官能性マレイミド樹脂、不飽和基含有ポ
リフェニレンエーテル樹脂等が挙げられ、1種或いは2種
類以上が組み合わせて使用される。耐熱性、耐マイグレ
ーション性、吸湿後の電気的特性等の点から多官能性シ
アン酸エステル樹脂組成物が好適である。
The thermosetting resin composition used for the double-sided copper clad board of the present invention is not particularly limited, and generally known thermosetting resins are used. Specifically, epoxy resin, polyfunctional cyanate ester resin polyfunctional maleimide-cyanate ester resin, polyfunctional maleimide resin, unsaturated group-containing polyphenylene ether resin, and the like, one or more kinds. Used in combination. A polyfunctional cyanate ester resin composition is preferable in terms of heat resistance, migration resistance, electrical characteristics after moisture absorption, and the like.

【0015】本発明で好適に使用される多官能性シアン
酸エステル化合物とは、分子内に2個以上のシアナト基
を有する化合物である。具体的に例示すると、1,3-又は
1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼ
ン、1,3-、1,4-、1,6-、1,8-、2,6-又は2,7-ジシアナト
ナフタレン、1,3,6-トリシアナトナフタレン、4,4-ジシ
アナトビフェニル、ビス(4-ジシアナトフェニル)メタ
ン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス
(3,5-ジブロモー4-シアナトフェニル)プロパン、ビス(4
-シアナトフェニル)エーテル、ビス(4-シアナトフェニ
ル)チオエーテル、ビス(4-シアナトフェニル)スルホ
ン、トリス(4-シアナトフェニル)ホスファイト、トリス
(4-シアナトフェニル)ホスフェート、およびノボラック
とハロゲン化シアンとの反応により得られるシアネート
類などである。これらの分子内に臭素が結合したものも
使用できる。
The polyfunctional cyanate ester compound preferably used in the present invention is a compound having two or more cyanato groups in the molecule. Specifically, 1,3-or
1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-, 2,6- or 2,7-dicyanatonaphthalene , 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanatophenyl) propane, 2,2-bis
(3,5-dibromo-4-cyanatophenyl) propane, bis (4
-Cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) sulfone, tris (4-cyanatophenyl) phosphite, tris
Examples include (4-cyanatophenyl) phosphate, and cyanates obtained by the reaction of novolac and cyanogen halide. Those in which bromine is bound in these molecules can also be used.

【0016】これらのほかに特公昭41-1928、同43-1846
8、同44-4791、同45-11712、同46-41112、同47-26853及
び特開昭51-63149等に記載の多官能性シアン酸エステル
化合物類も用い得る。また、これら多官能性シアン酸エ
ステル化合物のシアナト基の三量化によって形成される
トリアジン環を有する分子量400〜6,000 のプレポリマ
ーが使用される。このプレポリマーは、上記の多官能性
シアン酸エステルモノマーを、例えば鉱酸、ルイス酸等
の酸類;ナトリウムアルコラート等、第三級アミン類等
の塩基;炭酸ナトリウム等の塩類等を触媒として重合さ
せることにより得られる。このプレポリマー中には一部
未反応のモノマーも含まれており、モノマーとプレポリ
マーとの混合物の形態をしており、このような原料は本
発明の用途に好適に使用される。一般には可溶な有機溶
剤に溶解させて使用する。
[0016] In addition to these, Japanese Patent Publications 41-1928 and 43-1846
8, polyfunctional cyanate ester compounds described in JP-A-51-63149 and JP-A-44-4791, JP-A-45-11712, JP-A-46-41112 and JP-A-47-26853 can also be used. Further, a prepolymer having a molecular weight of 400 to 6,000 and having a triazine ring formed by trimerizing the cyanato group of these polyfunctional cyanate ester compounds is used. This prepolymer is obtained by polymerizing the above-mentioned polyfunctional cyanate ester monomer using, for example, acids such as mineral acid and Lewis acid; bases such as sodium alcoholate and tertiary amines; salts such as sodium carbonate as a catalyst. It is obtained by The prepolymer also contains some unreacted monomer and is in the form of a mixture of the monomer and the prepolymer. Such a raw material is suitably used for the purpose of the present invention. Generally, it is used by dissolving it in a soluble organic solvent.

【0017】エポキシ樹脂としては、室温で固形、液状
のものいずれでも使用可能である。室温で液状のエポキ
シ樹脂としては、一般に公知の臭素が結合したもの、臭
素の結合していないものが使用可能である。具体的に
は、ビスフェノールA型エポキシ樹脂、ビスフェノールF
型エポキシ樹脂、フェノールノボラック型エポキシ樹
脂、ポリエーテルポリオールのジグリシジル化物、酸無
水物のエポキシ化物、脂環式エポキシ樹脂等が単独或い
は2種以上組み合わせて使用される。又、固形の樹脂と
しては、上記樹脂の固形のもの等、一般に公知のものが
使用できる。
The epoxy resin may be either solid or liquid at room temperature. As the epoxy resin which is liquid at room temperature, generally known bromine-bonded ones and bromine-unbonded ones can be used. Specifically, bisphenol A type epoxy resin, bisphenol F
Type epoxy resins, phenol novolac type epoxy resins, diglycidylated products of polyether polyols, epoxidized products of acid anhydrides, alicyclic epoxy resins and the like are used alone or in combination of two or more. In addition, as the solid resin, generally known resins such as the solid resins of the above resins can be used.

【0018】以上の熱硬化性樹脂以外に、ポリイミド樹
脂、二重結合を分子内に有するポリフェニレンオキサイ
ド樹脂等が、1種或いは2種以上組み合わせて使用され
る。両面銅張板において、熱硬化性樹脂全体又は表層に
ブタジエン骨格を有するゴム成分を必須成分とする基材
補強又は基材補強のない樹脂組成物層を形成するのが、
銅メッキの接着力を上げるのに好ましい。
In addition to the thermosetting resins described above, a polyimide resin, a polyphenylene oxide resin having a double bond in the molecule, and the like are used alone or in combination of two or more. In the double-sided copper-clad board, to form a resin composition layer with or without base material reinforcement containing a rubber component having a butadiene skeleton as an essential component in the entire thermosetting resin or surface layer,
It is preferable to increase the adhesive strength of copper plating.

【0019】本発明のブタジエン骨格を分子内に有する
樹脂は特に限定はないが、具体的にはエポキシ基含有ポ
リブタジエン樹脂、ポリブタジエン樹脂、MBS樹脂、
ABS樹脂、ブタジエンーアクリロニトリル樹脂、ブタ
ジエンースチレン樹脂、マレイン化ブタジエン樹脂等が
挙げられる。これらは粉体で配合する方法、樹脂と相溶
させて均一に分散する方法等が使用される。これらの成
分は1種或いは2種以上が組み合わせて使用される。
The resin having a butadiene skeleton of the present invention in the molecule is not particularly limited, but specifically, epoxy group-containing polybutadiene resin, polybutadiene resin, MBS resin,
Examples thereof include ABS resin, butadiene-acrylonitrile resin, butadiene-styrene resin, and maleated butadiene resin. These are used by a method of blending in powder, a method of being compatible with a resin and uniformly dispersing. These components are used alone or in combination of two or more.

【0020】又、両面銅張板の少なくとも表層に、エッ
チングした板を処理する工程で溶解する樹脂粉体を含有
してなる樹脂組成物層を形成することにより、この部分
を選択的に溶解除去して凹凸を形成することができ、銅
メッキの接着性向上を図ることができる。この粉体は特
に限定はなく、具体的には、熱硬化性樹脂、熱可塑性樹
脂の公知の粉体が使用でき、粒子径は一般には0.5〜5μ
mのものを使用する。又、樹脂組成物と相溶性のあるブ
タジエン骨格を有する樹脂を配合することもできる。
Further, by forming a resin composition layer containing a resin powder which is dissolved in the step of treating the etched plate on at least the surface layer of the double-sided copper clad plate, this portion is selectively dissolved and removed. As a result, irregularities can be formed, and the adhesiveness of copper plating can be improved. This powder is not particularly limited, and specifically, known powders of thermosetting resin and thermoplastic resin can be used, and the particle diameter is generally 0.5 to 5 μm.
Use m. Further, a resin having a butadiene skeleton compatible with the resin composition can be blended.

【0021】本発明で使用する銅張板は、2層以上の銅
の層を有する銅張板であり、熱硬化性樹脂銅張積層板と
しては、無機、有機基材の公知の熱硬化性銅張積層板、
その多層銅張板、表層に樹脂付き銅箔シートを使用した
多層板等、一般に公知の構成の多層銅張板、また、ポリ
イミドフィルム、ポリパラバン酸フィルム等の基材の銅
張板が挙げられる。
The copper-clad board used in the present invention is a copper-clad board having two or more layers of copper. The thermosetting resin copper-clad laminate is a known thermosetting resin for inorganic and organic base materials. Copper clad laminate,
Examples thereof include a multilayer copper clad board, a multilayer board using a resin-coated copper foil sheet as a surface layer, and the like, and a copper clad board as a base material such as a polyimide film and a polyparabanic acid film.

【0022】基材補強銅張積層板は、まず補強基材に熱
硬化性樹脂組成物を含浸、乾燥させてBステージとし、
プリプレグを作成する。次に、このプリプレグを所定枚
数重ね、その外側にマット面に凹凸が形成された銅箔を
配置して、加熱、加圧下に積層成形し、銅張積層板とす
る。多層板は、この両面銅張積層板の銅箔を加工してパ
ターンを形成し、銅箔表面を処理して内層板を作製し、
この外側にプリプレグ、Bステージ樹脂シート等を置い
て、銅箔をその外側に配置し、積層成形するか、或いは
銅箔付きBステージ樹脂シートを内層板の外側に配置
し、積層成形して多層銅張板とする。この銅箔はエッチ
ング除去するため、マット面に凹凸が形成された他の金
属箔でも良い。
The base material-reinforced copper-clad laminate is prepared by first impregnating the reinforcing base material with the thermosetting resin composition and drying it to form B stage,
Create a prepreg. Next, a predetermined number of these prepregs are stacked, a copper foil having irregularities formed on the matt surface is arranged on the outside thereof, and laminated under heat and pressure to form a copper clad laminate. The multilayer board, the copper foil of this double-sided copper clad laminate is processed to form a pattern, and the copper foil surface is processed to produce an inner layer board,
A prepreg, a B-stage resin sheet, etc. are placed on the outside of this, and a copper foil is placed on the outside and laminated, or a B-stage resin sheet with a copper foil is placed on the outside of the inner layer plate and laminated to form a multilayer. Use copper clad board. Since this copper foil is removed by etching, another metal foil having unevenness on the matte surface may be used.

【0023】基材としては、一般に公知の、有機、無機
の織布、不織布が使用できる。具体的には、無機の繊維
としては、具体的にはE、S、D、NEガラス等の繊維
等が挙げられる。又、有機繊維としては、全芳香族ポリ
アミド、液晶ポリエステル等一般に公知の繊維等が挙げ
られる。これらは、混抄でも良い。また、フィルム基材
も挙げられる。
As the substrate, generally known organic and inorganic woven fabrics and nonwoven fabrics can be used. Specifically, examples of the inorganic fiber include fibers such as E, S, D, and NE glass. Examples of the organic fiber include generally known fibers such as wholly aromatic polyamide and liquid crystal polyester. These may be mixed papers. Moreover, a film base material can also be used.

【0024】[0024]

【実施例】以下に実施例、比較例で本発明を具体的に説
明する。尚、特に断らない限り、『部』は重量部を表
す。 実施例1 2,2-ビス(4-シアナトフェニル)プロパン900部、ビス(4-
マレイミドフェニル)メタン100部を150℃に熔融させ、
撹拌しながら4時間反応させ、プレポリマーを得た。こ
れをメチルエチルケトンとジメチルホルムアミドの混合
溶剤に溶解した。これにビスフェノールA型エポキシ樹
脂(商品名:エピコート1001、油化シェルエポキシ<株>
製)400部、クレゾールノボラック型エポキシ樹脂(商品
名:ESCN-220F、住友化学工業<株>製)600部を加え、均
一に溶解混合した。更にMBS樹脂(商品名:パラロイドE
XL-2655、呉羽化学<株>製)200部、エポキシ化ポリブタ
ジエン樹脂(デナレックスR-45EPT、ナガセケムテックス
<株>製)100部、及び触媒としてオクチル酸亜鉛0.4部を
加え、均一に溶解混合し、これに無機充填剤(商品名:焼
成タルク、日本タルク<株>製)2000部を加え、均一撹
拌混合してワニスAを得た。このワニスを厚さ100μmの
ガラス織布に含浸し、150℃で乾燥して、ゲル化時間(at
170℃)120秒、熱硬化性樹脂組成物含有量が44重量%のプ
リプレグ(プリプレグB)を作製した。厚さ18μmの電解銅
箔(表面凹凸Kz=2.6μm)を、上記プリプレグB 4枚の上
下に配置し、200℃、20kgf/cm2、30mmHg以下の真空下で
2時間積層成形し、絶縁層厚み400μmの両面銅張積層板
Cを得た。
The present invention will be specifically described below with reference to Examples and Comparative Examples. Unless otherwise specified, “part” means part by weight. Example 1 900 parts of 2,2-bis (4-cyanatophenyl) propane, bis (4-
Maleimide phenyl) 100 parts of methane is melted to 150 ℃,
The reaction was carried out for 4 hours with stirring to obtain a prepolymer. This was dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide. In addition to this, bisphenol A type epoxy resin (trade name: Epicoat 1001, Yuka Shell Epoxy Co., Ltd.)
400 parts of cresol novolac type epoxy resin (trade name: ESCN-220F, manufactured by Sumitomo Chemical Co., Ltd.) were added and uniformly mixed. Furthermore, MBS resin (trade name: Paraloid E
XL-2655, Kureha Chemical Co., Ltd. 200 parts, epoxidized polybutadiene resin (Denalex R-45EPT, Nagase Chemtex)
100 parts of Co., Ltd.) and 0.4 part of zinc octylate as a catalyst were added and uniformly dissolved and mixed, and 2000 parts of an inorganic filler (trade name: calcined talc, manufactured by Nippon Talc Co., Ltd.) was added and uniformly mixed. Varnish A was obtained by mixing with stirring. This varnish was impregnated into a glass woven cloth with a thickness of 100 μm, dried at 150 ° C, and the gelation time (at
A prepreg (prepreg B) having a thermosetting resin composition content of 44% by weight was produced at 170 ° C. for 120 seconds. Electrolytic copper foil with a thickness of 18 μm (surface roughness Kz = 2.6 μm) is placed above and below four of the above prepregs B, and the temperature is 200 ° C, 20 kgf / cm 2 , under vacuum of 30 mmHg or less.
Laminate molding was performed for 2 hours to obtain a double-sided copper-clad laminate C having an insulating layer thickness of 400 μm.

【0025】この銅張積層板の両面の銅箔をエッチング
除去した。表面の凹凸は平均で3.6〜4.5μmであった。
この板の表面から、炭酸ガスレ−ザーのパルスエネルギ
ー15mJで6ショット照射して孔径100μmの貫通孔をあけ
た。デスミア処理を行って表層のブタジエンゴム成分を
溶解して凹凸を4.2〜5.0μmとした後、無電解銅メッキ
を厚さ0.9μm付着させ、次いで電気銅メッキで厚さ1.7
μmの銅層を付着させた。この銅メッキ析出層の上の必
要部分にパターン電気銅メッキ用レジスト層を厚さ15μ
m形成し、メッキレジストが形成されていない部分の銅
面に電気銅メッキでパターン銅メッキを15μm付着さ
せ、メッキレジストを剥離後、全面をSUEP溶液でエッチ
ングして、ライン/スペース=25/25μmのパターンを形
成した。このパターン断面はエッチングによるアンダー
カットもなく、良好な形状であった。この上にメッキレ
ジストを付着させ、ニッケルメッキ、金メッキを付着さ
せた。このプリント配線板の評価結果を表1に示す。
The copper foils on both sides of this copper clad laminate were removed by etching. The surface roughness was 3.6 to 4.5 μm on average.
From the surface of this plate, 6 shots were irradiated with a pulse energy of a carbon dioxide laser of 15 mJ to form a through hole having a hole diameter of 100 μm. After performing desmear treatment to dissolve the butadiene rubber component on the surface layer to make unevenness 4.2 to 5.0 μm, electroless copper plating is attached to a thickness of 0.9 μm, and then electrolytic copper plating is applied to a thickness of 1.7 μm.
A μm copper layer was deposited. A 15 μm thick resist layer for patterned copper electroplating on the required area on this copper plating deposit layer.
After forming m, pattern copper plating is attached by 15 μm by electrolytic copper plating on the copper surface where the plating resist is not formed, and after removing the plating resist, the entire surface is etched with SUEP solution, line / space = 25/25 μm Pattern was formed. The cross section of this pattern had a good shape without undercutting due to etching. A plating resist was deposited on this, and nickel plating and gold plating were deposited. Table 1 shows the evaluation results of this printed wiring board.

【0026】実施例2 エポキシ樹脂(商品名:エピコート5045)700部、及びエポ
キシ樹脂(商品名:ESCN220F)300部、ジシアンジアミド35
部、2-エチル-4-メチルイミダゾール1部をメチルエチル
ケトンとジメチルホルムアミドの混合溶剤に溶解し、さ
らに実施例1の焼成タルクを800部を加え、強制撹拌し
て均一分散し、ワニスDを得た。これを厚さ100μmのガ
ラス織布に含浸、乾燥して、ゲル化時間150秒、熱硬化
性樹脂組成物含有量45重量%のプリプレグ(プリプレグE)
を作製した。又上記ワニスD100部に対し、アクリロニト
リル/ブタジエンゴム(商品名:XER-91、日本合成ゴム<
株>製)を10部を配合して均一分散した後、これを厚さ50
μmのガラス織布に含浸、乾燥して、ゲル化時間178秒、
熱硬化性樹脂組成物含有量70重量%のプリプレグ(プリプ
レグF)を作成した。このプリプレグEを2枚使用し、厚
さ12μmの一般の電解銅箔を両面に置き、190℃、20kgf/
cm2、30mmHg以下の真空下で2時間積層成形して両面銅張
積層板Gを作製した。この両面にパターンを形成し、黒
色酸化銅処理を施し、この両外側に上記プリプレグFを
各1枚配置し、その外側に、厚さ35μmの一般の電解銅
箔を配置し、同様に積層成形し、4層板を作製した。こ
の表面の銅箔をエッチング除去した。表面凹凸は4.3〜
4.8μmであった。この表面から、炭酸ガスレーザーパル
スエネルギー15mJで1ショット照射し、孔径100μmのブ
ラインドビア孔を両面にあけた。これをプラズマ装置の
中に入れ、底部の残存樹脂を除去すると同時に、表層の
凹凸を4.6〜5.5μmとした。
Example 2 700 parts of epoxy resin (trade name: Epicoat 5045), 300 parts of epoxy resin (trade name: ESCN220F), dicyandiamide 35
Parts, 1 part of 2-ethyl-4-methylimidazole was dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide, 800 parts of the calcined talc of Example 1 was further added, and the mixture was forcibly stirred and uniformly dispersed to obtain a varnish D. . This is impregnated into a glass woven fabric having a thickness of 100 μm and dried, and a gelling time of 150 seconds, a prepreg having a thermosetting resin composition content of 45% by weight (prepreg E)
Was produced. Also, for 100 parts of the above varnish D, acrylonitrile / butadiene rubber (trade name: XER-91, Japan Synthetic Rubber <
Co., Ltd.) was mixed and uniformly dispersed in 10 parts, and the thickness was 50
Impregnated into a glass woven cloth of μm, dried, gel time 178 seconds,
A prepreg (prepreg F) having a thermosetting resin composition content of 70% by weight was prepared. Two pieces of this prepreg E are used, a general electrolytic copper foil with a thickness of 12 μm is placed on both sides, 190 ° C, 20 kgf /
Double-sided copper-clad laminate G was produced by laminating and molding for 2 hours under a vacuum of cm 2 and 30 mmHg or less. Patterns are formed on both sides, black copper oxide treatment is applied, one piece of the above prepreg F is arranged on both outer sides, and a general electrolytic copper foil having a thickness of 35 μm is arranged on the outer side, and similarly laminated forming Then, a four-layer board was produced. The copper foil on this surface was removed by etching. Surface unevenness is 4.3 ~
It was 4.8 μm. Carbon dioxide laser pulse energy of 15 mJ was irradiated from this surface for one shot, and blind via holes with a hole diameter of 100 μm were opened on both sides. This was put in a plasma device to remove the residual resin at the bottom, and at the same time, the unevenness of the surface layer was adjusted to 4.6 to 5.5 μm.

【0027】この全体に厚さ1μmの無電解銅メッキを施
し、次いで厚さ2μmの電気銅メッキを施した後、電気銅
メッキ用のメッキレジストを15μm付着させ、メッキレ
ジスト層が形成されていない銅面に電気銅メッキを14μ
m付着させ、メッキレジストを剥離し、全面をエッチン
グして、パターン銅メッキ層が形成されていない部分の
薄い電気銅層及び無電解銅層を溶解除去してライン/ス
ペース=20/20μmを有するプリント配線板を作製した。
この上にメッキレジストを付着させ、ニッケルメッキ、
金メッキを付着させた。評価結果を表1に示す。
After electroless copper plating with a thickness of 1 μm is applied to the whole, and then electrolytic copper plating with a thickness of 2 μm is applied, a plating resist for electrolytic copper plating of 15 μm is adhered, and a plating resist layer is not formed. 14μ electrolytic copper plating on the copper surface
m adhere, peel off the plating resist, and etch the entire surface to dissolve and remove the thin electrolytic copper layer and electroless copper layer in the part where the pattern copper plating layer is not formed, and have line / space = 20 / 20μm A printed wiring board was produced.
A plating resist is attached on this, nickel plating,
Gold plated. The evaluation results are shown in Table 1.

【0028】比較例1 実施例1のプリント配線板作製において、銅メッキを無
電解銅メッキだけを2μm施し、その次の電気銅メッキを
施さずに、直接無電解銅メッキ上にパネル電気銅メッキ
を施した。これを同様にエッチングして、パターン銅メ
ッキの付着していない薄い無電解銅層をエッチング除去
してプリント配線板とした。これはアンダーカットが両
側3.7μm有った。その後は、実施例1と同様にしてプリ
ント配線板とした。評価結果を表1に示す。
Comparative Example 1 In the production of the printed wiring board of Example 1, only the electroless copper plating was applied to a thickness of 2 μm, and the subsequent electroless copper plating was not applied. Was applied. This was similarly etched, and the thin electroless copper layer to which the pattern copper plating was not attached was removed by etching to obtain a printed wiring board. This had undercuts of 3.7 μm on both sides. After that, a printed wiring board was prepared in the same manner as in Example 1. The evaluation results are shown in Table 1.

【0029】比較例2 実施例2の4層銅張積層板の表層に12μmの一般の電解
銅箔を張り、これを平均厚さ3μmまでエッチングする
と同時に銅箔表面に1μmの凹凸をつけた。これをXYテ
ーブルの上に置き、表面から14mJの炭酸ガスレーザーパ
ルスエネルギー1ショット照射してブラインドビア孔を
あけ、同様にプラズマ処理後、無電解銅メッキを2μm
施し、電気銅メッキを14μm付着させ、この上にエッチ
ングレジストを20μm付着させてから、ライン/スペー
ス=20/20μmのパターンを形成したが、形状は三角形と
なり、形状は良好でなかった。その後は、実施例1と同
様にしてプリント配線板とした。評価結果を表1に示
す。
Comparative Example 2 A general electrolytic copper foil having a thickness of 12 μm was applied to the surface layer of the 4-layer copper clad laminate of Example 2, and this was etched to an average thickness of 3 μm, and at the same time unevenness of 1 μm was formed on the surface of the copper foil. Place this on an XY table, irradiate one shot of carbon dioxide laser pulse energy of 14 mJ from the surface to open a blind via hole, and similarly perform plasma treatment, then electroless copper plating to 2 μm
Then, 14 μm of electrolytic copper plating was deposited, and 20 μm of etching resist was deposited thereon, and then a pattern of line / space = 20/20 μm was formed, but the shape was a triangle and the shape was not good. After that, a printed wiring board was prepared in the same manner as in Example 1. The evaluation results are shown in Table 1.

【0030】 (表1) 項目 実施例 比較例 1 2 1 2 アンダーカット(μm) < 1 < 1 3.7 < 1 パターン断面形状 良好 良好 やや不良 三角形状 銅箔接着力(kgf/cm) 1.06 1.09 0.70 0.87 ガラス転移温度 <層樹脂>(℃) 196 153 195 153 耐マイグレーション性 常態 4x1014 5x1014 5x1014 6x1014 200hrs. 7x1010 7x108 6x1010 7x108 (Table 1) Item Example Comparative Example 1 2 1 2 Undercut (μm) <1 <1 3.7 <1 Pattern cross-sectional shape Good Good Somewhat poor Triangle copper foil adhesion (kgf / cm) 1.06 1.09 0.70 0.87 The glass transition temperature <layer resin> (℃) 196 153 195 153 migration resistance normal 4x10 14 5x10 14 5x10 14 6x10 14 200hrs. 7x10 10 7x10 8 6x10 10 7x10 8

【0031】<測定方法> 1)アンダーカット及びパターン断面形状 : パターン断
面を100個観察し、平均値で表示した。設計値に対し、
片面のエッチングされた距離を示した。又、形状も観察
した。 2)銅箔接着力 : JIS C6481に準じて測定した。幅はパタ
ーン幅で測定し、kgf/cmに換算して表示した。 3)ガラス転移温度 : JIS C6481のDMA法に準じて測定
した。 4)耐マイグレーション性 : 各実施例、比較例におい
て、作製したパターン上に熱硬化型レジスト(商品名:
BT-M450 三菱ガス化学<株>製)を厚さ40μmとなるよう
に被覆し、硬化させて、これを85℃・85%RH・50VDC印加
し、パターン間の絶縁抵抗値を測定した。
<Measurement method> 1) Undercut and pattern cross-section shape: 100 pattern cross-sections were observed and displayed as an average value. For design value,
The etched distance on one side is shown. The shape was also observed. 2) Copper foil adhesion: Measured according to JIS C6481. The width was measured by the pattern width and converted into kgf / cm for display. 3) Glass transition temperature: measured according to the DMA method of JIS C6481. 4) Migration resistance: In each of the examples and comparative examples, a thermosetting resist (product name:
BT-M450 Mitsubishi Gas Chemical Co., Ltd.) was coated to a thickness of 40 μm and cured, and this was applied at 85 ° C., 85% RH, 50 VDC, and the insulation resistance value between patterns was measured.

【0032】[0032]

【発明の効果】貫通孔及び/又はブラインドビア孔を有
する、少なくとも2層以上の銅の層を有する銅張板に極
細線パターンを作製する方法において、表面凹凸を表層
の銅箔をエッチング除去することによって形成し、貫通
孔及び/又はブラインドビア孔を形成した後、表面を処
理して表面凹凸を1〜7μm、好適には2〜5μmとし、この
上に無電解銅メッキを0.1〜2μm付着させ、更に電気銅
メッキを0.5〜3μm施してからメッキレジストを付着し
てパターン銅メッキを6〜30μm行い、メッキレジストを
剥離後、薄い電気銅層及び無電解銅層を基板に到達する
までエッチング除去することにより、アンダーカットの
極めて少なく、銅の接着力に優れ、形状の良好なパター
ンを作製できた。
INDUSTRIAL APPLICABILITY In a method for producing an ultrafine wire pattern on a copper clad plate having at least two copper layers having through holes and / or blind via holes, surface irregularities are removed by etching the surface copper foil. After forming through holes and / or blind via holes, the surface is processed to have surface irregularities of 1 to 7 μm, preferably 2 to 5 μm, and electroless copper plating of 0.1 to 2 μm is deposited on this. And 0.5 to 3 μm of electrolytic copper plating, and then depositing a plating resist to perform pattern copper plating of 6 to 30 μm.After removing the plating resist, etching the thin electrolytic copper layer and electroless copper layer until reaching the substrate. By removing it, it was possible to fabricate a pattern having a very small undercut, an excellent copper adhesive force, and a good shape.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5E343 AA07 AA15 AA16 AA17 AA18 AA38 BB23 BB24 BB44 CC78 DD33 DD43 ER18 ER26 GG02 GG08    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 5E343 AA07 AA15 AA16 AA17 AA18                       AA38 BB23 BB24 BB44 CC78                       DD33 DD43 ER18 ER26 GG02                       GG08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】(1)少なくとも2層以上の両面金属箔張板
の金属箔全面を全てエッチング除去して表層の凹凸を残
したまま、(2)貫通孔及び/又はブラインドビア孔を所
定位置に孔あけしてから、(3)全体を処理して、表層の
凹凸が1〜7μmとなるようにし、(4)この板全体に0.1〜2
μmの無電解銅メッキを施し、(5)該無電解銅メッキ析出
層を電極にして厚さ0.5〜3μmの電気銅メッキ層を形成
し、(6)この銅メッキ析出層の上の必要部分にパターン
電気メッキ用のメッキレジスト層を形成し、(7)メッキ
レジスト層が形成されていない銅面に、電気銅メッキで
パターン銅メッキを6〜30μm付着させ、(8)メッキレジ
ストを剥離除去し、(9)全面をエッチングして、少なく
ともパターン銅メッキ層の形成されていない部分の薄い
電気銅層、無電解銅層及び極薄銅箔層を溶解除去して製
造することを特徴とする極細線パターンを有するプリン
ト配線板の製造方法。
(1) (2) Through holes and / or blind via holes are provided at predetermined positions while the entire metal foil of the double-sided metal foil-clad sheet of at least two layers is removed by etching to leave the surface unevenness. After making holes in (3), the whole surface is processed so that the unevenness of the surface layer becomes 1 to 7 μm, and (4) 0.1 to 2 is applied to the whole plate.
Applying electroless copper plating of μm, (5) forming an electroless copper plating layer having a thickness of 0.5 to 3 μm by using the electroless copper plating deposit layer as an electrode, (6) necessary portion on the copper plating deposit layer Form a plating resist layer for pattern electroplating on (7) Apply 6 to 30 μm of pattern copper plating by electro copper plating on the copper surface where the plating resist layer is not formed, and (8) remove the plating resist. Then, (9) by etching the entire surface, at least the thin copper copper layer of the portion where the pattern copper plating layer is not formed, the electroless copper layer and the ultra-thin copper foil layer are dissolved and removed to produce. A method for manufacturing a printed wiring board having an ultrafine wire pattern.
【請求項2】 該両面金属箔張板が、内層板の両面にブ
タジエン骨格を有するゴムを必須成分とする樹脂組成物
層が形成された請求項1記載の極細線パターンを有する
プリント配線板の製造方法。
2. The printed wiring board having an ultrafine wire pattern according to claim 1, wherein the double-sided metal foil-clad board has a resin composition layer containing a rubber having a butadiene skeleton as an essential component on both surfaces of an inner layer board. Production method.
【請求項3】 該両面金属箔張板の少なくとも表層に、
請求項1の(3)処理で溶解する樹脂粉体を含有してなる
樹脂組成物層が形成された請求項1記載の極細線パター
ンを有するプリント配線板の製造方法。
3. At least the surface layer of the double-sided metal foil-clad plate,
The method for producing a printed wiring board having an ultrafine wire pattern according to claim 1, wherein a resin composition layer containing a resin powder that dissolves in the treatment (3) of claim 1 is formed.
【請求項4】 該両面金属箔張板の少なくとも表層に使
用する熱硬化性樹脂が、多官能性シアン酸エステル、該
シアン酸エステルプレポリマーを必須成分として含有す
る請求項1、2又は3記載の極細線パターンを有するプ
リント配線板の製造方法。
4. The thermosetting resin used for at least the surface layer of the double-sided metal foil-clad sheet contains a polyfunctional cyanate ester and the cyanate ester prepolymer as essential components. A method for manufacturing a printed wiring board having an ultrafine wire pattern.
JP2001252584A 2001-08-23 2001-08-23 Method for manufacturing printed wiring board having extra-fine pattern Pending JP2003069218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001252584A JP2003069218A (en) 2001-08-23 2001-08-23 Method for manufacturing printed wiring board having extra-fine pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001252584A JP2003069218A (en) 2001-08-23 2001-08-23 Method for manufacturing printed wiring board having extra-fine pattern

Publications (1)

Publication Number Publication Date
JP2003069218A true JP2003069218A (en) 2003-03-07

Family

ID=19081033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001252584A Pending JP2003069218A (en) 2001-08-23 2001-08-23 Method for manufacturing printed wiring board having extra-fine pattern

Country Status (1)

Country Link
JP (1) JP2003069218A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1640150A1 (en) 2004-09-14 2006-03-29 Mitsubishi Gas Chemical Company, Inc. Polyimide/metal film laminates and process for the production of printed wiring board using the laminate
WO2012121164A1 (en) 2011-03-07 2012-09-13 三菱瓦斯化学株式会社 Resin composition for printed circuit board

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610993A (en) * 1979-07-06 1981-02-03 Tokyo Shibaura Electric Co Method of forming printed circuit
JPH03161992A (en) * 1989-11-21 1991-07-11 Nippondenso Co Ltd Manufacture of printed wiring board by additive method
JPH05267840A (en) * 1992-03-19 1993-10-15 Ibiden Co Ltd Forming method for adhesive layer of additive printed circuit board
JPH06228308A (en) * 1992-12-29 1994-08-16 Internatl Business Mach Corp <Ibm> Triazine polymer and its use
JPH07226584A (en) * 1994-02-14 1995-08-22 Hitachi Chem Co Ltd Manufacture of multilayer wiring board wherein copper foil with insulation bonding material is used
JPH08148837A (en) * 1994-11-16 1996-06-07 Dainippon Ink & Chem Inc Interlayer electric insulator for multilayered printed wiring board
JPH09181421A (en) * 1995-10-25 1997-07-11 Shin Kobe Electric Mach Co Ltd Manufacture of metal foil clad laminated board and manufacture of printed board
JPH1027960A (en) * 1996-07-09 1998-01-27 Mitsui Mining & Smelting Co Ltd Manufacture of multi-layer printed wiring board
JPH10507229A (en) * 1994-10-18 1998-07-14 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for forming an interconnected metallic structure layer on an electrically non-conductive surface
JPH10326967A (en) * 1997-05-26 1998-12-08 Shin Kobe Electric Mach Co Ltd Manufacture of multilayered printed wiring board
JPH10335785A (en) * 1997-05-29 1998-12-18 Matsushita Electric Works Ltd Circuit formation method
JPH11186716A (en) * 1997-10-14 1999-07-09 Fujitsu Ltd Method of forming metal layer
JP2000129137A (en) * 1998-10-27 2000-05-09 Toppan Printing Co Ltd Resin composition having high adhesion and electronic instrument part using the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610993A (en) * 1979-07-06 1981-02-03 Tokyo Shibaura Electric Co Method of forming printed circuit
JPH03161992A (en) * 1989-11-21 1991-07-11 Nippondenso Co Ltd Manufacture of printed wiring board by additive method
JPH05267840A (en) * 1992-03-19 1993-10-15 Ibiden Co Ltd Forming method for adhesive layer of additive printed circuit board
JPH06228308A (en) * 1992-12-29 1994-08-16 Internatl Business Mach Corp <Ibm> Triazine polymer and its use
JPH07226584A (en) * 1994-02-14 1995-08-22 Hitachi Chem Co Ltd Manufacture of multilayer wiring board wherein copper foil with insulation bonding material is used
JPH10507229A (en) * 1994-10-18 1998-07-14 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for forming an interconnected metallic structure layer on an electrically non-conductive surface
JPH08148837A (en) * 1994-11-16 1996-06-07 Dainippon Ink & Chem Inc Interlayer electric insulator for multilayered printed wiring board
JPH09181421A (en) * 1995-10-25 1997-07-11 Shin Kobe Electric Mach Co Ltd Manufacture of metal foil clad laminated board and manufacture of printed board
JPH1027960A (en) * 1996-07-09 1998-01-27 Mitsui Mining & Smelting Co Ltd Manufacture of multi-layer printed wiring board
JPH10326967A (en) * 1997-05-26 1998-12-08 Shin Kobe Electric Mach Co Ltd Manufacture of multilayered printed wiring board
JPH10335785A (en) * 1997-05-29 1998-12-18 Matsushita Electric Works Ltd Circuit formation method
JPH11186716A (en) * 1997-10-14 1999-07-09 Fujitsu Ltd Method of forming metal layer
JP2000129137A (en) * 1998-10-27 2000-05-09 Toppan Printing Co Ltd Resin composition having high adhesion and electronic instrument part using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1640150A1 (en) 2004-09-14 2006-03-29 Mitsubishi Gas Chemical Company, Inc. Polyimide/metal film laminates and process for the production of printed wiring board using the laminate
WO2012121164A1 (en) 2011-03-07 2012-09-13 三菱瓦斯化学株式会社 Resin composition for printed circuit board
EP2942190A1 (en) 2011-03-07 2015-11-11 Mitsubishi Gas Chemical Company, Inc. Resin composition for printed-wiring board

Similar Documents

Publication Publication Date Title
TW200304349A (en) Metal foil with resin and metal-clad laminate, and printed wiring board using the same and method for production thereof
JP2003304068A (en) Resin-attached metal foil for printed wiring board and multilayer printed wiring board using the same
JP2003340952A (en) Method for manufacturing b-stage resin composition sheet containing fibrous cloth base material for additive
JP2003313324A (en) Method for manufacturing base material-filled b-staged resin composition sheet
JP4595284B2 (en) Auxiliary sheet for drilling with carbon dioxide laser
JP2003060341A (en) Method of manufacturing printed wiring board having minute pattern
JP2003069218A (en) Method for manufacturing printed wiring board having extra-fine pattern
JPH1154914A (en) Manufacturing built-up multilayered printed wiring board
JP4888517B2 (en) Method for manufacturing printed circuit board for extra fine wire circuit
JP2003051657A (en) Method for manufacturing printed circuit substrate having ultra fine wiring pattern
JP3874076B2 (en) A method for producing a printed wiring board having an extra fine wire pattern.
JP2003249764A (en) Manufacturing method for b-stage resin composition sheet containing base for additive
JP2004335784A (en) Method for manufacturing printed wiring board
JP4395295B2 (en) Manufacturing method of printed wiring board and printed wiring board
JP2003283141A (en) B-stage resin composition sheet with metal foil for additive
JP2003243810A (en) Method of manufacturing printed wiring board equipped with very fine wire pattern
JP2003332734A (en) Method of manufacturing printed wiring board using additive method
JP2003246843A (en) Curable resin composition
JP2001007535A (en) Manufacture of multilayer printed wiring board with through-hole of high reliability
JP4978820B2 (en) Manufacturing method of high-density printed wiring board.
JPH10337809A (en) Ultra-thin copper foil with base material reinforced b-stage resin and its manufacture
JP2005045046A (en) Process for producing multilayer printed wiring board
JP2004319887A (en) Method for boring additive resin composition substrate by means of laser and process for producing printed wiring board
JP2004273911A (en) Method for manufacturing superthin-wire circuit printed wiring board
JP2004165411A (en) Method of manufacturing extremely thin copper foil-plated board excellent in thickness uniformity of copper foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080714

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100709

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100714

Free format text: JAPANESE INTERMEDIATE CODE: A131

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100909

A602 Written permission of extension of time

Effective date: 20100914

Free format text: JAPANESE INTERMEDIATE CODE: A602

A02 Decision of refusal

Effective date: 20101208

Free format text: JAPANESE INTERMEDIATE CODE: A02