JP2003243810A - Method of manufacturing printed wiring board equipped with very fine wire pattern - Google Patents

Method of manufacturing printed wiring board equipped with very fine wire pattern

Info

Publication number
JP2003243810A
JP2003243810A JP2002038154A JP2002038154A JP2003243810A JP 2003243810 A JP2003243810 A JP 2003243810A JP 2002038154 A JP2002038154 A JP 2002038154A JP 2002038154 A JP2002038154 A JP 2002038154A JP 2003243810 A JP2003243810 A JP 2003243810A
Authority
JP
Japan
Prior art keywords
layer
copper
plating
copper foil
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002038154A
Other languages
Japanese (ja)
Inventor
Morio Take
杜夫 岳
Nobuyuki Ikeguchi
信之 池口
Keiichi Iwata
恵一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002038154A priority Critical patent/JP2003243810A/en
Priority to US10/170,614 priority patent/US7140103B2/en
Priority to TW091113994A priority patent/TW536928B/en
Priority to KR1020020037039A priority patent/KR100936446B1/en
Publication of JP2003243810A publication Critical patent/JP2003243810A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-density printed wiring board which is equipped with a very fine wire pattern excellent in adhesion to a copper foil and superior in shape. <P>SOLUTION: A layer made of nickel and/or cobalt or an alloy of them is deposited as thick as 0.1 to 5 μm on the rugged mat surface of an electrolytic copper foil, the electrolytic copper foil mounted with the above layer is used as the copper foil, the copper foil is deposited as an outermost layer on a copper plated board, the electrolytic copper foil as the outermost layer is selectively removed by etching, a thin electroless plating copper layer and an electrolytic copper layer are provided to the residual layer of nickel metal, cobalt metal or an alloy layer of them, a pattern plating resist layer is deposited thereon, a pattern electrolytic copper plating process is carried out, the plating resist layer is removed, then the thin electroless plating copper layer and the electrolytic copper layer are selectively removed by dissolution, and then the layer of nickel metal, cobalt or an alloy of them is selectively removed by etching for the formation of the high-density printed wiring board. Therefore, the high-density wiring board which is equipped with the very fine wire pattern nearly having no undercut and excellent in adhesion to the copper foil can be obtained. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、ライン/スペースが極
細線パターン、例えば40/40μm以下、更には25/25μm以
下のパターンを有するプリント配線板の製造方法に関す
るものであり、得られた極細線パターンを有する高密度
プリント配線板は、新規な半導体プラスチックパッケー
ジ用等に主に使用される。 【0002】 【従来の技術】従来、半導体プラスチックパッケージ等
に用いられる高密度のプリント配線板において、細線の
パターンを作製する方法は、サブトラクティブ法で5μm
以下の極薄銅箔を使用し、貫通孔及び/又はブラインド
ビア孔を炭酸ガスレーザー等で形成した後、メッキレジ
ストを付着後に銅メッキを15μm程度付着させ、メッキ
レジスト除去後に極薄銅箔をエッチング除去するか、炭
酸ガスレーザーを銅箔上に直接照射して貫通孔及び/又
はブラインドビア孔形成後に孔部に発生した銅箔バリを
溶解除去すると同時に表層の銅箔をSUEP(Surface Unifo
rm Etching Process )で12μmの厚みから5μm以下まで
溶解除去し、デスミア処理後、銅メッキを15μm程度付
着させて通常のエッチングレジスト等を用いて極細線の
パターンを作製する方法等が知られている。この方法
は、エッチングによってパターン上が底部より細くな
り、断面が台形となるか、三角形状となり、不良の発生
の原因となっていた。 【0003】また、セミアディティブ法で銅メッキアッ
プしてから同様にエッチングレジストを用い極細線のパ
ターンを作製する方法もあるが、これも銅メッキの厚さ
を18μm位に厚くした場合には同様の形状となり、又銅
メッキが10μm位に薄くすると孔部の付着厚さが不足し
て信頼性に劣る等の欠点があり、銅との接着力にも問題
があった。更に、フルアディティブ法で銅メッキがを付
着する場合、銅箔を厚くしても銅箔接着力が低い等の問
題があった。一方、極薄銅箔を使用し、この上に無電解
銅メッキを数μm施した後、パターン銅メッキ法にてパ
ターンを形成する方法、更にはセミアディティブ法で数
μm無電解銅層を基板の上に付け、これを用いてパター
ン銅メッキ法にてパターンを形成する方法があるが、最
後のフラッシュエッチングにて無電解銅層がサイドエッ
チングされ、アンダーカットが発生して銅接着力に問題
のあるものであった。 【0004】 【発明が解決しようとする課題】本発明は、サブトラク
ティブ法を用いて、以上の問題点を解決した、銅箔の接
着力を保持し、且つパターン形状の良好な極細線パター
ンを形成したプリント配線板の製造方法を提供するもの
である。 【0005】 【発明が解決するための手段】本発明は、以下の工程で
プリント配線板を製造することにより、極細線のパター
ンを有し、且つ銅箔の接着力に優れた高密度のプリント
配線板を得ることができた。即ち、(1)ニッケル及び/
又はコバルト、或いはその合金を銅箔の片面に凹凸を形
成した表面に厚さ0.1〜5μm付着させた電解銅箔を最外
層に用いて作製した両面銅張板又は多層両面銅張板の表
層の銅層をエッチング除去してニッケル及び/又はコバ
ルト、或いはその合金層を残し、(2)孔内を含む表面に
0.1〜1μmの無電解銅メッキを施し、(3)該無電解銅メッ
キ析出層を電極にして厚さ0.5〜3μmの電気銅メッキ層
を形成し、(4)この銅メッキ析出層の上の必要部分にパ
ターン電気メッキ用のメッキレジスト層を形成し、(5)
メッキレジスト層が形成されていない銅面に、電気銅メ
ッキでパターン銅メッキを6〜30μm付着させ、(6)メッ
キレジストを剥離除去し、(7)少なくともパターン銅メ
ッキ層の形成されていない部分の薄い電気銅層及び無電
解銅層をニッケル又はコバルト、或いはその合金層を殆
ど溶解しない薬液で全面をエッチングしてニッケル又は
コバルト、或いはその合金層を残した後、(8)銅を殆ど
溶解しない薬液で全体をエッチングしてニッケル又はコ
バルト、或いはその合金層を溶解除去して極細線パター
ンを作製することにより、極細線で、形状が良好で、接
着力の優れたプリント配線板を製造することができた。 【0006】 【発明の実施の形態】本発明は、ニッケル及び/又はコ
バルト、或いはその合金を銅箔の片面の凹凸を形成した
表面に厚さ0.1〜5μm付着させた電解銅箔を最外層に用
いて作製した両面銅張板又は多層両面銅張板の表層の銅
層をエッチング除去してニッケル及び/又はコバルト、
或いはその合金層を残し、これを利用して、ライン/ス
ペース=40/40μm以下、更には25/25μm以下の細線パタ
ーンを有する高密度のプリント配線板を作製する方法で
ある。工程は、 (1)まず最外層にニッケル及び/又はコバルト、或いは
その合金を電解銅箔の片面に凹凸を形成した表面に厚さ
0.1〜5μm付着させた電解銅箔を最外層に用いて、少な
くとも2層以上の銅箔を有する銅張板を作製する。この
銅張板に、一般に公知の方法にて貫通孔及び/又はブラ
インドビア孔を形成する。もちろん、表層の電解銅箔を
エッチング除去してから孔あけを行っても良い。 【0007】この最外層にニッケル及び/又はコバル
ト、或いはその合金を電解銅箔の片面に凹凸を形成した
表面に厚さ0.1〜5μm付着させた電解銅箔を最外層に用
いて、加熱、加圧、好ましくは真空下で積層成形して両
面銅張板或いは多層両面銅張板を作製する。 【0008】この両面銅張板、多層両面銅張板の表層の
電解銅箔を、ニッケル及び/又はコバルト、或いはその
合金層を殆ど溶解しない薬液で全体をエッチングして除
去し、0.1〜5μmのニッケル及び/又はコバルト、或い
はその合金層を露出させる。この後レーザー、メカニカ
ルドリルで貫通孔及び/又はブラインドビア孔を形成す
るか、或いは電解銅箔を残したまま貫通孔及び/又はブ
ラインドビア孔を形成し、その後表層の電解銅箔だけエ
ッチング除去する方法で表層に0.1〜5μmのニッケル及
び/又はコバルト、或いはその合金層を残した両面板を
作製する。 【0009】(2)次いで、この孔があいた両面板の孔内
を含む表面に0.1〜1μmの無電解銅メッキを施す。 (3)次に、該無電解銅メッキ析出層を電極にして厚さ0.5
〜3μmの電気銅メッキ層を形成する。銅メッキの種類は
特に限定はなく、例えば硫酸銅メッキ、ピロ燐酸銅メッ
キ等が使用できる。 (4)この銅メッキ析出層の上の必要部分にパターン電気
銅メッキ用のメッキレジスト層を形成する。この工程も
一般に公知の方法で実施する。 【0010】(5)メッキレジスト層が形成されていない
銅面に、電気銅メッキでパターン銅メッキを6〜30μm付
着させ、 (6)メッキレジストを剥離除去し、 (7)少なくともパターン銅メッキ層の形成されていない
部分の薄い電気銅層及び無電解銅層をニッケル又はコバ
ルト、或いはその合金層を殆ど溶解しない薬液で全面を
エッチングしてニッケル又はコバルト、或いはその合金
層を残した後、 (8)銅を殆ど溶解しない薬液で全体をエッチングしてニ
ッケル又はコバルト、或いはその合金層を溶解除去して
極細線パターンを作製することにより、極細線で、形状
が良好で、接着力の優れたプリント配線板を製造する。 【0011】この工程で細密パターンを作製することに
より、通常の方法に比べてアンダーカットが発生せず、
形状の良好なパターンが形成でき、信頼性に優れたプリ
ント配線板が製造できた。銅だけを選択的にエッチング
除去し、ニッケル金属、コバルト金属、或いはこれらの
合金を殆ど溶解しない薬液としては、一般に公知のもの
が使用できが、ニッケル金属等の溶解速度が遅いアルカ
リ性エッチング液が好適に使用される。 【0012】また、ニッケル金属、コバルト金属、或い
はこれらの合金のエッチング速度が速く、銅のエッチン
グ速度が遅い薬液も、一般に公知のものが使用できる。
例えば、硫酸/過酸化水素/添加剤を主体としたもの、フ
ッ化アンモニウム/過酸化水素/添加剤を主体としたもの
等が挙げられる。市販品としては、三菱ガス化学<株>の
商品名ピュータックス、メルテックス<株>のメルストリ
ップN-950等が使用される。 【0013】本発明で使用する銅張板は、2層以上の銅
の層を有する銅張板であり、熱硬化性樹脂銅張積層板と
しては、無機、有機基材の公知の熱硬化性両面銅張積層
板、その多層両面銅張積層板、表層に樹脂付き銅箔シー
トを使用し作成した多層板等、一般に公知の構成の多層
銅張板、また、ポリイミドフィルム、ポリパラバン酸フ
ィルム、全芳香族ポリアミドフィルム、液晶ポリエステ
ルフィルム等の基材の銅張板が挙げられる。 【0014】基材補強銅張積層板は、まず補強基材に熱
硬化性樹脂組成物を含浸、乾燥させてBステージとし、
プリプレグを作製する。次に、このプリプレグを所定枚
数重ね、最外層にニッケル及び/又はコバルト、或いは
その合金を銅箔の片面に凹凸を形成した表面に厚さ0.1
〜5μm付着させた電解銅箔を両面に配置して、加熱、加
圧、好ましくは真空下に積層成形し、両面銅張積層板と
する。多層板は、公知の電解銅箔を両面に使用して作製
した両面銅張積層板の銅箔を加工してパターンを形成
し、必要により銅箔表面を化学処理して内層板を作製
し、この外側にプリプレグ、Bステージ樹脂シート等を
置いて、ニッケル及び/又はコバルト、或いはその合金
を銅箔の片面に凹凸を形成した表面に厚さ0.1〜5μm付
着させた電解銅箔を両面に配置して、加熱、加圧、好ま
しくは真空下に同様に積層成形するか、或いはニッケル
及び/又はコバルト、又はその合金を銅箔の片面に凹凸
を形成した表面に厚さ0.1〜5μm付着させた電解銅箔の
マット面にBステージ樹脂シートを付着させたものを内
層板の両側に配置し、積層成形して多層銅張板とする等
し、一般に公知の両面銅張多層板を作製する。 【0015】基材としては、一般に公知の、有機、無機
の織布、不織布が使用できる。無機の繊維としては、具
体的にはE、S、D、NEガラス等の繊維等が挙げらる。
又、有機繊維としては、全芳香族ポリアミド、液晶ポリ
エステル等一般に公知の繊維等が挙げられる。これら
は、混抄でも良い。また、フィルム基材も挙げられる。 【0016】本発明使用される熱硬化性樹脂組成物の樹
脂としては、一般に公知の熱硬化性樹脂が使用される。
具体的には、エポキシ樹脂、多官能性シアン酸エステル
樹脂、 多官能性マレイミドーシアン酸エステル樹脂、
多官能性マレイミド樹脂、不飽和基含有ポリフェニレン
エーテル樹脂等が挙げられ、1種或いは2種類以上が組み
合わせて使用される。出力の高い炭酸ガスレーザー照射
による加工でのスルーホール形状の点からは、ガラス転
移温度が150℃以上の熱硬化性樹脂組成物が好ましく、
耐湿性、耐マイグレーション性、吸湿後の電気的特性等
の点から多官能性シアン酸エステル樹脂組成物が好適で
ある。 【0017】貫通孔及び/又はブラインドビア孔を炭酸
ガスレーザーで形成する場合、特開平11-220243、特開
平11-346059の方法、また電解銅箔上に黒色酸化銅処
理、薬液処理等を行ったものの上から炭酸ガスレーザー
を直接銅箔の上に照射して孔を形成する方法等が使用で
きる。その後に表層の電解銅箔をエッチング除去する
か、最初に電解銅箔をエッチング除去して薄いニッケル
金属、コバルト金属、或いはこれらの合金処理層を露出
させてから、この上から直接炭酸ガスレーザーを照射し
て孔を形成する方法等で形成する。しかしながら、孔部
のバリ発生の点からは、後者が好ましい。更には、UV-Y
AGレーザーでも孔あけ可能である。また、100μm以上の
貫通孔は、一般にメカニカルドリルで、公知の方法で孔
あけする。 【0018】本発明で使用する、ニッケル金属、コバル
ト金属、或いはこれらの合金処理層を電解銅箔のマット
面の凹凸に形成する方法は、一般に公知の方法が使用で
きる。凹凸の大きさは特に限定はないが、細密パターン
作製上から、好ましくは凹凸は1〜3μmのものが使用さ
れる。銅箔のシャイニー面は、従来公知の処理が可能で
ある。例えば表面凹凸がなく、この表面に防錆処理した
もの、シャイニー面表層にニッケル金属、コバルト金
属、或いはこれらの合金処理層を付着させたもの等が使
用される。 【0019】炭酸ガスレーザーは、赤外線波長域にある
9.3〜10.6μmの波長が一般に使用される。表層の銅箔を
エッチング除去後に孔あけする場合、エネルギーは5〜3
0mJ、好適には6〜20mJ にてパルス発振で銅箔を加工
し、孔をあける。エネルギーは表層のニッケル金属、コ
バルト金属、或いはこれらの合金処理層上に直接照射し
て孔あけする。 【0020】エキシマレーザー、Nd-YAGレーザー等のUV
レーザーでの孔形成も使用できる。UVレーザーは、UV波
長のレーザー光を照射して孔あけするものであり、波長
は特に限定はないが、一般に200〜400nm、1.06μm の波
長が使用される。特にソリッドステートUVレーザーが使
用される。これは、有機物に極力熱の影響を与えない
で、有機物を構成している分子結合を断ち切るメカニズ
ムで加工するものである。孔の中は炭酸ガスレーザーに
比べて炭素が発生せず、クリーンなために、その後の銅
メッキも特に前処理がなくても信頼性良く付着させるこ
とができる。UVレーザー波長は短いために、銅にも吸収
され、孔あけ補助材料を使用しないでも銅箔の上にレー
ザーを照射することにより、銅箔への孔あけ、更には絶
縁層の孔あけが可能である。 【0021】全面を最後に電気銅メッキした後、パター
ン作製用メッキレジストを剥離除去し、全体をニッケル
金属、コバルト金属、或いはこれらの合金処理層の部分
を殆どエッチングして薄い電気銅層、無電解銅層、ニッ
ケル金属、コバルト金属、或いはこれらの合金処理層の
部分を基板に到達するまでエッチングしてパターンを作
製する。このエッチング液は特に限定はなく、塩化第二
鉄、塩化銅、或いは過硫酸アンモニウム溶液を使用する
方法等、一般に公知の方法が使用できる。また、特開平
02-22887、同02-22896、同02-25089、同02-25090、同02
-59337、同02-60189、同02-166789、同03-25995、同03-
60183、同03-94491、同04-199592、同04-263488で開示
された、薬品で金属表面を溶解除去する方法(SUEP
法と呼ぶ)によってエッチングする。エッチング速度
は、0.02〜1.0μm/秒 で行う。 【0022】 【実施例】以下に実施例、比較例で本発明を具体的に説
明する。尚、特に断らない限り、『部』は重量部を表
す。 実施例1 2,2-ビス(4-シアナトフェニル)プロパン900部、ビス(4-
マレイミドフェニル)メタン100部を150℃に熔融させ、
撹拌しながら4時間反応させ、プレポリマーを得た。こ
れをメチルエチルケトンとジメチルホルムアミドの混合
溶剤に溶解した。これにビスフェノールA型エポキシ樹
脂(商品名:エピコート1001、油化シェルエポキシ<株>
製)400部、クレゾールノボラック型エポキシ樹脂(商品
名:ESCN-220F、住友化学工業<株>製)600部を加え、均
一に溶解混合した。更に触媒としてオクチル酸亜鉛0.4
部を加え、溶解混合し、これに無機充填剤(商品名:焼成
タルク、日本タルク<株>製)2000部を加え、均一撹拌
混合してワニスAを得た。このワニスを厚さ100μmのガ
ラス織布に含浸し150℃で乾燥して、ゲル化時間(at170
℃)80秒、熱硬化性樹脂組成物含有量が44重量%のプリプ
レグ(プリプレグB)、及び厚さ50μmのガラス織布に含浸
し150℃で乾燥して、ゲル化時間(at170℃)120秒、熱硬
化性樹脂組成物含有量が70重量%のプリプレグCを作製し
た。厚さ18μmの一般の電解銅箔を上記プリプレグB 4
枚の上下に配置し、200℃、20kgf/cm2、30mmHg以下の真
空下で2時間積層成形し、絶縁層厚み0.4mmの両面銅
張積層板Dを得た。これにパターンを作製し、黒色酸化
銅処理を施した後、この上下にプリプレグCを各1枚置
き、その量外側に厚さ12μmの一般の電解銅箔(マット
面凹凸Rz:4.2μm)の表層にニッケル処理を2.5μm施し
た銅箔を配置し、同様に積層成形して4層両面銅張積層
板Eを作製した。この表裏の12μmの一般の電解銅箔をア
ルカリエッチング溶液でエッチング除去してニッケル処
理の2.5μmだけを残した4層両面金属張積層板Fとし
た。 【0023】一方、ポリビニルアルコール粉体を水に溶
解し、厚さ50μmのアルミニウムの片面に樹脂層厚さ30
μmとなるように塗布、乾燥してバックアップシートG
を作製した。上記4層両面金属箔張積層板Fの下にバッ
クアップシートGを、樹脂面が銅箔側を向くように配置
し、温度100℃のロールにて、線圧15kgf/cmでラミネー
トし、密着性の良好な塗膜を形成した。間隔1mmで、孔
径100μmの貫通孔を直接炭酸ガスレーザーで、パルスエ
ネルギー10mJで6ショット照射し貫通孔をあけた。また
12mJ1ショット照射して孔径100μmのブラインドビア孔
を作製した。デスミア処理後、ニッケルを溶解する薬液
(商品名:ピュータックス、三菱ガス化学<株>製)で銅
箔をエッチングしてニッケル箔を2μmまで溶解した後、
孔部に発生した少しのバリを溶解除去した。これに無電
解銅メッキを厚さ0.4μm付着させ、次いで電気銅メッキ
で厚さ1μmの銅層を付着させた。この銅メッキ析出層の
上の必要部分にパターン電気銅メッキ用レジスト層を厚
さ18μm形成し、メッキレジストが形成されていない部
分の銅面に電気銅メッキでパターン銅メッキを15μm付
着させた。メッキレジストを全て剥離し、全面をアルカ
リ性エッチング液でエッチングして薄い電気銅層及び無
電解銅層をエッチング除去後、薬液としてニッケルを溶
解する上記薬液を用いてニッケル層だけをエッチング除
去してライン/スペース=25/25μmのパターンを形成し
た。このパターン断面はエッチングによるアンダーカッ
トもなく、良好な形状であった。この上にUV選択熱硬化
永久保護レジストを付着させ、ニッケルメッキ、金メッ
キを付着させて高密度プリント配線板とした。このプリ
ント配線板の評価結果を表1に示す。 【0024】実施例2 エポキシ樹脂(商品名:エピコート5045)700部、及びエポ
キシ樹脂(商品名:ESCN220F)300部、ジシアンジアミド35
部、2-エチル-4-メチルイミダゾール1部をメチルエチル
ケトンとジメチルホルムアミドの混合溶剤に溶解し、さ
らに実施例1の焼成タルクを800部を加え、強制撹拌し
て均一分散し、ワニスHを得た。これを厚さ100μmのガ
ラス織布に含浸、乾燥して、ゲル化時間150秒、熱硬化
性樹脂組成物含有量45重量%のプリプレグ(プリプレグI)
を作成した。このプリプレグIを6枚使用し、厚さ12μm
の一般の電解銅箔(マット面凹凸Rz:2.7μm)の表層に
ニッケル・コバルト合金処理を3μm付着した銅箔を、合
金面がプリプレグ側を向くように両面に配置し、190
℃、20kgf/cm2、30mmHg以下の真空下で2時間積層成形し
て両面銅張積層板Jを作製した。この両面の銅箔のニッ
ケル・コバルト合金処理層3μmを残して電解銅箔部分を
部分をエッチング除去した後に、裏面に実施例1のバッ
クアップシートGを配置して同様にラミネートして接着
させた後、この表面から炭酸ガスレーザーパルスエネル
ギー10mJで8ショット照射し、孔径100μmの貫通孔をあ
けた。これをプラズマ装置の中に入れ、デスミア処理後
に、全体に厚さ0.3μmの無電解銅メッキを施し、次いで
厚さ2μmの電気銅メッキを施した後、電気銅メッキ用の
メッキレジストを15μm付着させ、メッキレジスト層が
形成されていない銅面に電気銅メッキを14μm付着させ
た。メッキレジストを剥離除去し、全面をアルカリエッ
チング液でフラッシュエッチングして、薄い電気銅層及
び無電解銅層をニッケル・コバルト合金層まで溶解除去
した。更に実施例1のニッケル系金属を溶解する薬液で
残存したニッケル・コバルト合金処理層を溶解除去して
ライン/スペース=20/20μmを有する高密度プリント配
線板を作製した。UV選択熱硬化型永久保護レジストで必
要部分を被覆後、ニッケルメッキ、金メッキを付着させ
てプリント配線板とした。評価結果を表1に示す。 【0025】比較例1 実施例1のプリント配線板作製において、表層に厚さ12
μmの一般の電解銅箔を張り、これを平均厚さ3μmまで
エッチングして表面に1μmの凹凸をつけた。これをXY
テーブルの上に置き、表面から12mJの炭酸ガスレーザー
パルスエネルギー6ショット照射して孔径100μmの貫通
孔をあけ、また12mJ 1ショット照射して孔径100μmの
ブラインドビア孔を形成し、デスミア処理後に銅メッキ
を無電解銅メッキ3μmだけ施し、その次の電気銅メッキ
を施さずに、直接無電解銅メッキ上にパターン電気銅メ
ッキを施した。これを同様にエッチングして、パターン
銅メッキの付着していない薄い無電解銅層及び極薄銅箔
層をエッチング除去してプリント配線板とした。このパ
ターンの下側はアンダーカットが両側5.4μmあった。評
価結果を表1に示す。 【0026】比較例2 実施例2の両面銅張積層板の表層に厚さ12μmの一般の
電解銅箔を張り、これを平均厚さ3μmまでエッチング
して表面に1μmの凹凸をつけた。これをXYテーブルの
上に置き、表面から10mJの炭酸ガスレーザーパルスエネ
ルギー8ショット照射して貫通孔をあけ、同様にプラズ
マ処理後、無電解銅メッキを0.3μm施し、電気銅メッ
キを14μm付着させ、この上に20μmのエッチングレジス
トを付着させ、定法にてライン/スペース=20/20μmの
パターンを形成したが、形状は三角形となり、形状は良
好でなかった。評価結果を表1に示す。 【0027】比較例3 実施例1の両面銅張多層板の表層の銅箔及びニッケル金
属層をエッチング除去した後、炭酸ガスレーザー15mJで
孔径100μmの貫通孔をあけ、この表面をデスミア処理
し、無電解銅メッキを2μm施し、その上に電気銅メッ
キを16μm付着させた。これを比較例2と同様にしてラ
イン/スペース=25/25μmのパターンを形成した。これ
はアンダーカットが有り、且つ形状は三角形となり、形
状不良であった。評価結果を表1に示す。 【0028】比較例4 実施例2において、ワニスHの固形分100部に対し、アク
リロニトリルーブタジエンゴム(商品名:N210S、JSR<
株>製)を3部添加し、均一に攪拌混合した後、同様にプ
リプレグを作製し、積層成形して両面銅張積層板とし
た。この銅張板の表層の銅箔及びニッケル・コバルト層
をエッチング除去した後、炭酸ガスレーザー10mJで孔径
100μmの貫通孔をあけ、この表面をデスミア処理し、全
体に無電解銅メッキを4μm施し、電気銅メッキレジス
トを付着させ、メッキレジストの付着していない場所の
無電解銅メッキの上に電気銅メッキを16μm付着させ
た。メッキレジストを剥離後、全面をエッチングして薄
い無電解銅メッキ層を溶解除去してライン/スペース=
20/20μmのパターンを形成した。これはアンダーカット
があった。評価結果を表1に示す。 【0029】 (表1) 項目 実施例 比較例 1 2 1 2 3 4 アンダーカット(μm) < 1 < 1 5.5 < 1 2.2 6.1 パターン断面形状 良好 良好 不良 三角形状 三角形状 不良 銅箔接着力(kgf/cm) 1.33 1.18 0.67 0.90 0.43 0.55 ガラス転移温度 (℃) 235 160 235 160 235 154 耐マイグレーション性 (Ω) 常態 5x1014 6x1014 5x1014 4x1014 5x1014 5x1014 200hrs. 3x1011 4x108 3x1011 2x108 4x1011 2x108 500hrs. 6x1010 <108 7x1010 <108 5x1010 <108 【0030】<測定方法> 1)アンダーカット及びパターン断面形状 パターン断面を100個観察し、平均値で表示した。設計
値に対し、片面のエッチングされた距離を示した。又、
形状も観察した。 2)銅箔接着力 JIS C6481に準じて測定した。幅はパターン幅で測定
し、kgf/cmに換算して表示した。 3)ガラス転移温度 JIS C6481のDMA法に準じて測定した。 4)耐マイグレーション性 各実施例、比較例において、作製したパターン上に熱硬
化型レジスト(商品名:BT-M450 三菱ガス化学<株>製)
を厚さ40μmとなるように被覆し、硬化させて、これを8
5℃・85%RH・50VDC印加し、パターン間の絶縁抵抗値を
測定した。 【0031】 【発明の効果】貫通孔及び/又はブラインドビア孔を有
する、少なくとも2層以上の薄銅の層を有する両面銅張
板に極細線パターンを作製する方法において、銅箔とし
て電解銅箔のマット面の凹凸の表面にニッケル金属、コ
バルト金属、或いはこれらの合金層を0.1〜5μm付着さ
せた銅箔を使用し、これを少なくとも最外層に付着させ
た後、この表層の電解銅箔部分だけを選択的にエッチン
グ除去し、残ったニッケル金属、コバルト金属、或いは
これらの合金層の上に薄い無電解銅メッキ及び電気銅メ
ッキを施してからパターンメッキレジストを付着してパ
ターン電気銅メッキを行い、メッキレジストを除去後に
全体を銅の溶解性が優れ、ニッケル金属、コバルト金
属、或いはこれらの合金層の溶解性の低い薬液でエッチ
ング除去して薄い電気銅層及び無電解銅層を溶解除去し
てニッケル金属、コバルト金属、或いはこれらの合金層
を露出し、その後にニッケル金属、コバルト金属、或い
はこれらの合金層の溶解性が良好で銅の溶解性が低い薬
液でエッチングすることにより、アンダーカットが極め
て少なく、形状が良好で、銅箔の密着力の優れた高密度
プリント配線板を作製できた。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the manufacture of a printed wiring board having a line / space pattern having an extremely fine line pattern, for example, a pattern of 40/40 .mu.m or less, and more preferably 25/25 .mu.m or less. The present invention relates to a method, and the high-density printed wiring board having the obtained ultrafine line pattern is mainly used for a new semiconductor plastic package or the like. 2. Description of the Related Art Conventionally, in a high-density printed wiring board used for a semiconductor plastic package or the like, a method of forming a fine line pattern is 5 μm by a subtractive method.
Using the following ultra-thin copper foil, after forming through-holes and / or blind via holes with a carbon dioxide laser or the like, depositing a plating resist and then depositing copper plating about 15 μm, removing the plating resist and removing the ultra-thin copper foil Either by etching or by irradiating a carbon dioxide gas laser directly on the copper foil to dissolve and remove the copper foil burrs generated in the holes after the formation of through-holes and / or blind via holes, and simultaneously remove the surface copper foil by SUEP (Surface Unifo
rm Etching Process), dissolving and removing from 12 μm thickness to 5 μm or less, and after desmearing, attaching a copper plating of about 15 μm and using a normal etching resist or the like to produce a pattern of ultrafine lines, etc. are known. . In this method, the pattern becomes thinner than the bottom by etching, and the cross section becomes trapezoidal or triangular, which has caused a defect. [0003] There is also a method of producing a fine line pattern using an etching resist after copper plating up by a semi-additive method. However, the same method is used when the copper plating thickness is increased to about 18 μm. When the thickness of the copper plating is reduced to about 10 μm, there is a defect that the adhesion thickness of the hole is insufficient and the reliability is poor. Furthermore, when copper plating adheres by the full additive method, there is a problem that the copper foil adhesion is low even if the copper foil is thickened. On the other hand, using an ultra-thin copper foil, electroless copper plating is applied on top of this by a few μm, then a pattern is formed by a pattern copper plating method, and furthermore, a few μm electroless copper layer is applied by a semi-additive method to the substrate. There is a method of forming a pattern by pattern copper plating using this, but the electroless copper layer is side-etched in the last flash etching, undercut occurs and there is a problem with copper adhesion It was something with SUMMARY OF THE INVENTION [0004] The present invention solves the above-mentioned problems by using a subtractive method. An object of the present invention is to provide a method for manufacturing a formed printed wiring board. SUMMARY OF THE INVENTION The present invention provides a high-density printed circuit having an extremely fine line pattern and excellent copper foil adhesion by manufacturing a printed wiring board in the following steps. A wiring board was obtained. That is, (1) nickel and / or
Or cobalt, or the surface layer of a double-sided copper-clad board or multilayer double-sided copper-clad board produced using an electrolytic copper foil having a thickness of 0.1 to 5 μm adhered to a surface having irregularities formed on one side of a copper foil as an outermost layer. The copper layer is removed by etching to leave nickel and / or cobalt or its alloy layer.
Applying an electroless copper plating of 0.1 to 1 μm, (3) forming an electrolytic copper plating layer having a thickness of 0.5 to 3 μm using the electroless copper plating deposited layer as an electrode, and (4) on the copper plating deposited layer Form a plating resist layer for pattern electroplating on necessary parts, (5)
On the copper surface where the plating resist layer is not formed, pattern copper plating is adhered by 6 to 30 μm by electrolytic copper plating, (6) the plating resist is peeled off, and (7) at least the portion where the pattern copper plating layer is not formed (8) Almost copper is dissolved after etching the entire surface of the thin electrolytic copper layer and electroless copper layer with a chemical solution that hardly dissolves nickel or cobalt or its alloy layer, leaving nickel or cobalt or its alloy layer. By etching the whole with a chemical solution that does not dissolve and remove the nickel or cobalt or its alloy layer to produce an ultrafine line pattern, a printed wiring board with ultrafine lines, good shape, and excellent adhesion is manufactured. I was able to. DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolytic copper foil in which nickel and / or cobalt or an alloy thereof is adhered to a surface having irregularities on one side of a copper foil having a thickness of 0.1 to 5 μm as an outermost layer. The copper layer of the surface layer of the double-sided copper-clad board or multilayer double-sided copper-clad board produced by using nickel and / or cobalt,
Alternatively, there is a method of producing a high-density printed wiring board having a fine line pattern of line / space = 40/40 μm or less, and further 25/25 μm or less, by using the alloy layer left. The process is as follows: (1) First, nickel and / or cobalt or its alloy is applied to the outermost layer on the surface of the electrolytic copper foil with irregularities formed on one side.
A copper-clad board having at least two or more layers of copper foil is produced by using an electrolytic copper foil having 0.1 to 5 μm adhered as an outermost layer. Through holes and / or blind via holes are formed in the copper clad plate by a generally known method. Of course, holes may be formed after the electrolytic copper foil on the surface layer is removed by etching. The outermost layer is made of an electrolytic copper foil in which nickel and / or cobalt or an alloy thereof is adhered to a surface having irregularities formed on one side of the electrolytic copper foil with a thickness of 0.1 to 5 μm. A double-sided copper clad board or a multilayer double-sided copper clad board is produced by laminating under pressure, preferably under vacuum. The electrolytic copper foil on the surface of the double-sided copper-clad board or the multilayer double-sided copper-clad board is entirely removed by etching with a chemical solution that hardly dissolves nickel and / or cobalt or its alloy layer. Exposing the nickel and / or cobalt or its alloy layer. Thereafter, a through hole and / or a blind via hole is formed by a laser or a mechanical drill, or a through hole and / or a blind via hole is formed while leaving the electrolytic copper foil, and then only the electrolytic copper foil on the surface layer is etched away. A double-sided plate is prepared by leaving a nickel and / or cobalt or alloy layer of 0.1 to 5 μm on the surface layer by the method. (2) Next, electroless copper plating of 0.1 to 1 μm is applied to the surface of the double-sided board including the holes, including the inside of the holes. (3) Next, the electroless copper plating deposited layer was used as an electrode to a thickness of 0.5
An electrolytic copper plating layer of ~ 3 µm is formed. The type of copper plating is not particularly limited, and for example, copper sulfate plating, copper pyrophosphate plating, or the like can be used. (4) A plating resist layer for pattern copper electroplating is formed on required portions of the copper plating deposition layer. This step is also performed by a generally known method. (5) A pattern copper plating of 6 to 30 μm is adhered to the copper surface on which the plating resist layer is not formed by electrolytic copper plating. (6) The plating resist is peeled off. (7) At least the pattern copper plating layer After etching the entire thin copper layer and the electroless copper layer in the portion where no is formed with a chemical solution that hardly dissolves nickel or cobalt or its alloy layer, leaving nickel or cobalt or its alloy layer, 8) By etching the whole with a chemical solution that hardly dissolves copper and dissolving and removing nickel or cobalt or its alloy layer to produce an ultrafine line pattern, it is an ultrafine line, has a good shape, and has excellent adhesion. Manufacture printed wiring boards. By producing a fine pattern in this step, undercut does not occur as compared with the ordinary method,
A pattern having a good shape could be formed, and a printed wiring board excellent in reliability could be manufactured. As a chemical solution which selectively removes only copper and does not substantially dissolve nickel metal, cobalt metal, or an alloy thereof, a generally known chemical solution can be used, but an alkaline etching solution having a slow dissolution rate of nickel metal or the like is preferable. Used for Known chemicals can also be used as a chemical solution having a high etching rate for nickel metal, cobalt metal, or an alloy thereof and a low etching rate for copper.
For example, those mainly composed of sulfuric acid / hydrogen peroxide / additive, those mainly composed of ammonium fluoride / hydrogen peroxide / additive, and the like can be mentioned. As commercially available products, Pyutax (trade name of Mitsubishi Gas Chemical Co., Ltd.) and Melstrip N-950 (Meltex Co., Ltd.) are used. The copper-clad board used in the present invention is a copper-clad board having two or more copper layers. As the thermosetting resin copper-clad board, a known thermosetting resin of an inorganic or organic base material is used. Double-sided copper-clad laminates, the multilayer double-sided copper-clad laminates, multilayer boards made using a copper foil sheet with resin for the surface layer, etc., multilayer copper-clad boards of generally known configurations, also polyimide films, polyparabanic acid films, A copper-clad board of a substrate such as an aromatic polyamide film and a liquid crystal polyester film can be used. The substrate-reinforced copper-clad laminate is first impregnated with a thermosetting resin composition and dried to form a B stage,
Make a prepreg. Next, a predetermined number of the prepregs are stacked, and nickel and / or cobalt or an alloy thereof is formed on the outer surface of the copper foil with a thickness of 0.1 mm on one surface of the copper foil.
Electrodeposited copper foil having a thickness of about 5 μm is arranged on both sides, and laminated under heat, pressure, or preferably under vacuum to form a double-sided copper-clad laminate. The multilayer board is formed by processing a copper foil of a double-sided copper-clad laminate prepared using a known electrolytic copper foil on both sides to form a pattern, and if necessary, chemically treating the copper foil surface to produce an inner layer board, A prepreg, a B-stage resin sheet, etc. are placed on the outside, and an electrolytic copper foil having nickel and / or cobalt or an alloy thereof adhered to a surface having irregularities formed on one side of the copper foil with a thickness of 0.1 to 5 μm is arranged on both sides. Then, under heat, pressure, preferably laminated under the same vacuum, or nickel and / or cobalt, or an alloy thereof was attached to a surface having irregularities formed on one surface of the copper foil to a thickness of 0.1 to 5 μm. A generally known double-sided copper-clad multilayer board is produced by arranging a B-stage resin sheet adhered to the matte surface of an electrolytic copper foil on both sides of an inner layer board and laminating and forming a multilayer copper-clad board. As the substrate, generally known organic and inorganic woven fabrics and nonwoven fabrics can be used. Specific examples of the inorganic fibers include fibers such as E, S, D, and NE glass.
Examples of the organic fibers include generally known fibers such as wholly aromatic polyamide and liquid crystal polyester. These may be mixed. In addition, a film substrate is also used. As the resin of the thermosetting resin composition used in the present invention, generally known thermosetting resins are used.
Specifically, epoxy resin, polyfunctional cyanate resin, polyfunctional maleimide-cyanate resin,
Examples thereof include a polyfunctional maleimide resin and an unsaturated group-containing polyphenylene ether resin, and one kind or a combination of two or more kinds is used. From the viewpoint of through-hole shape in processing by high-output carbon dioxide laser irradiation, a thermosetting resin composition having a glass transition temperature of 150 ° C or higher is preferable,
A polyfunctional cyanate resin composition is preferred from the viewpoints of moisture resistance, migration resistance, electrical properties after moisture absorption, and the like. When the through-holes and / or blind via holes are formed by a carbon dioxide laser, the methods described in JP-A-11-220243 and JP-A-11-346059, and black copper oxide treatment, chemical treatment and the like are performed on the electrolytic copper foil. A method of directly irradiating a carbon dioxide laser on the copper foil from above the copper foil to form holes can be used. After that, the electrolytic copper foil on the surface layer is removed by etching, or the electrolytic copper foil is first removed by etching to expose the thin nickel metal, cobalt metal, or their alloyed layer, and then a carbon dioxide laser is applied directly from above. It is formed by a method of forming holes by irradiation. However, the latter is preferable from the viewpoint of the occurrence of burrs in the holes. Furthermore, UV-Y
Drilling is possible with an AG laser. In addition, through holes having a diameter of 100 μm or more are generally formed by a known method using a mechanical drill. As a method for forming a nickel metal, a cobalt metal, or an alloy thereof on the matte surface of the electrolytic copper foil, a generally known method can be used in the present invention. The size of the unevenness is not particularly limited, but preferably 1 to 3 μm is used from the viewpoint of producing a fine pattern. Conventionally known processing can be performed on the shiny surface of the copper foil. For example, there are used those having no surface irregularities and having this surface subjected to rust prevention treatment, those having a nickel metal, cobalt metal, or an alloy treatment layer thereof adhered to the surface layer of a shiny surface. The carbon dioxide laser is in the infrared wavelength range.
Wavelengths between 9.3 and 10.6 μm are commonly used. When drilling after removing the surface copper foil by etching, the energy is 5 to 3
The copper foil is processed by pulse oscillation at 0 mJ, preferably 6 to 20 mJ, and holes are made. Energy is radiated directly onto the surface layer of nickel metal, cobalt metal, or an alloy thereof to form holes. UV such as excimer laser and Nd-YAG laser
Laser hole formation can also be used. The UV laser is used for piercing by irradiating a laser beam having a UV wavelength. The wavelength is not particularly limited, but wavelengths of 200 to 400 nm and 1.06 μm are generally used. In particular, a solid state UV laser is used. In this method, the organic material is processed by a mechanism that cuts molecular bonds constituting the organic material without affecting the heat as much as possible. Since no carbon is generated in the holes as compared with the carbon dioxide laser and the holes are clean, the subsequent copper plating can be deposited with high reliability without any particular pretreatment. Because the UV laser wavelength is short, it is also absorbed by copper.By irradiating a laser on the copper foil without using a drilling auxiliary material, it is possible to drill holes in the copper foil and even drill the insulating layer. It is. After the entire surface is finally electroplated with copper, the plating resist for forming a pattern is peeled off and the entire nickel metal, cobalt metal, or an alloy-treated layer thereof is almost etched to form a thin copper layer. A pattern is formed by etching an electrolytic copper layer, a nickel metal, a cobalt metal, or an alloy-treated layer thereof until it reaches the substrate. The etchant is not particularly limited, and a generally known method such as a method using a ferric chloride, copper chloride, or ammonium persulfate solution can be used. In addition,
02-22887, 02-22896, 02-25089, 02-25090, 02
-59337, 02-60189, 02-166789, 03-25995, 03-
No. 60183, 03-94491, 04-199592, 04-263488, a method for dissolving and removing metal surfaces with chemicals (SUEP
Method). The etching rate is 0.02 to 1.0 μm / sec. The present invention will be specifically described below with reference to examples and comparative examples. Unless otherwise specified, “parts” indicates parts by weight. Example 1 900 parts of 2,2-bis (4-cyanatophenyl) propane,
100 parts of (maleimidophenyl) methane are melted at 150 ° C,
The mixture was reacted for 4 hours with stirring to obtain a prepolymer. This was dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide. Add bisphenol A type epoxy resin (trade name: Epicoat 1001, Yuka Shell Epoxy Co., Ltd.)
) And 600 parts of a cresol novolak type epoxy resin (trade name: ESCN-220F, manufactured by Sumitomo Chemical Co., Ltd.) were uniformly mixed and dissolved. Further, as a catalyst, zinc octylate 0.4
Was added and dissolved and mixed. To this, 2000 parts of an inorganic filler (trade name: calcined talc, manufactured by Nippon Talc Co., Ltd.) was added, and the mixture was uniformly stirred and mixed to obtain Varnish A. This varnish is impregnated with a glass woven fabric having a thickness of 100 μm, dried at 150 ° C., and subjected to a gelation time (at 170
C) 80 seconds, prepreg having a thermosetting resin composition content of 44% by weight (prepreg B), and impregnated into a glass woven fabric having a thickness of 50 μm, dried at 150 ° C, and gelled at 120 ° C. In seconds, a prepreg C having a thermosetting resin composition content of 70% by weight was prepared. A general electrolytic copper foil having a thickness of 18 μm is prepreg B 4
The two- sided copper-clad laminate D having an insulating layer thickness of 0.4 mm was obtained by arranging the upper and lower sheets and laminating them under vacuum at 200 ° C., 20 kgf / cm 2 and 30 mmHg for 2 hours. After forming a pattern on this and subjecting it to black copper oxide treatment, one prepreg C is placed on each of the upper and lower sides, and a 12 μm-thick general electrolytic copper foil (mat surface unevenness Rz: 4.2 μm) is placed on the outside of the prepreg. A copper foil subjected to nickel treatment of 2.5 μm was placed on the surface layer and laminated and molded in the same manner to produce a four-layer double-sided copper-clad laminate E. The front and back 12 μm general electrolytic copper foils were removed by etching with an alkaline etching solution to obtain a four-layer double-sided metal-clad laminate F leaving only 2.5 μm of nickel treatment. On the other hand, polyvinyl alcohol powder is dissolved in water, and a resin layer having a thickness of 30 μm is formed on one side of a 50 μm thick aluminum.
μm, backup sheet G
Was prepared. A backup sheet G was placed under the four-layer double-sided metal foil-clad laminate F so that the resin surface faced the copper foil side, and was laminated with a roll at a temperature of 100 ° C. at a linear pressure of 15 kgf / cm. Good coating film was formed. At a distance of 1 mm, through-holes having a hole diameter of 100 μm were directly irradiated with 6 shots of a carbon dioxide laser at a pulse energy of 10 mJ to form through-holes. Also
A blind via hole having a hole diameter of 100 μm was formed by irradiating one shot of 12 mJ. After the desmear treatment, the copper foil is etched with a chemical that dissolves nickel (trade name: Pyutax, manufactured by Mitsubishi Gas Chemical Co., Ltd.) to dissolve the nickel foil to 2 μm,
Some burrs generated in the holes were dissolved and removed. To this, electroless copper plating was applied in a thickness of 0.4 μm, and then a copper layer having a thickness of 1 μm was applied by electrolytic copper plating. A resist layer for pattern copper electroplating was formed to a thickness of 18 μm on a required portion on the copper plating deposition layer, and a pattern copper plating of 15 μm was applied to the copper surface of the portion where the plating resist was not formed by copper electroplating. After stripping off all the plating resist, etching the entire surface with an alkaline etchant to remove the thin electrolytic copper layer and the electroless copper layer, and then removing only the nickel layer using the above chemical solution that dissolves nickel as a chemical solution. / Space = 25/25 μm pattern was formed. This pattern cross section had a good shape without undercut due to etching. A UV selective thermosetting permanent protection resist was adhered thereon, and nickel plating and gold plating were adhered to obtain a high-density printed wiring board. Table 1 shows the evaluation results of the printed wiring board. Example 2 Epoxy resin (trade name: Epicoat 5045) 700 parts, epoxy resin (trade name: ESCN220F) 300 parts, dicyandiamide 35
Part of 2-ethyl-4-methylimidazole was dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide, and 800 parts of the calcined talc of Example 1 was further added thereto. . This is impregnated into a glass woven fabric having a thickness of 100 μm, dried, and gelled for 150 seconds, a thermosetting resin composition content of 45% by weight of prepreg (prepreg I)
It was created. Use 6 prepreg I, 12μm thick
A copper foil with a nickel-cobalt alloy treatment applied to the surface layer of a general electrolytic copper foil (matte surface unevenness Rz: 2.7 μm) with a thickness of 3 μm is placed on both sides so that the alloy surface faces the prepreg side.
Laminate molding was performed for 2 hours under a vacuum of 20 ° C., 20 kgf / cm 2 and 30 mmHg to produce a double-sided copper-clad laminate J. After removing the electrolytic copper foil portion by etching away the nickel-cobalt alloy treated layer of the copper foil of 3 μm on both surfaces, the backup sheet G of Example 1 was placed on the back surface, and the laminate was similarly laminated and bonded. The surface was irradiated with 8 shots of carbon dioxide laser pulse energy at 10 mJ to form a through hole having a hole diameter of 100 μm. Put this in a plasma device, after desmearing, apply a 0.3 μm thick electroless copper plating, then apply a 2 μm thick electrolytic copper plating, then attach a 15 μm plating resist for electrolytic copper plating Then, 14 μm of electrolytic copper plating was applied to the copper surface on which the plating resist layer was not formed. The plating resist was peeled off and the entire surface was flash-etched with an alkaline etching solution to dissolve and remove the thin electrolytic copper layer and the electroless copper layer up to the nickel-cobalt alloy layer. Further, the remaining nickel-cobalt alloy treated layer was dissolved and removed with the chemical solution for dissolving the nickel-based metal of Example 1 to produce a high-density printed wiring board having a line / space = 20/20 μm. After coating necessary portions with a UV-selective thermosetting permanent protection resist, nickel plating and gold plating were applied to form a printed wiring board. Table 1 shows the evaluation results. Comparative Example 1 In the production of the printed wiring board of Example 1, the thickness was
A general electrolytic copper foil of μm was applied, and this was etched to an average thickness of 3 μm to give a surface with irregularities of 1 μm. This is XY
Place on a table, irradiate 6 shots of 12 mJ carbon dioxide laser pulse energy from the surface to make a through hole with a hole diameter of 100 μm, and irradiate one shot of 12 mJ to form a blind via hole with a hole diameter of 100 μm, and copper plating after desmear treatment Was applied only by 3 μm of electroless copper plating, and a pattern electrolytic copper plating was applied directly on the electroless copper plating without applying the subsequent electrolytic copper plating. This was similarly etched to remove the thin electroless copper layer and the ultra-thin copper foil layer to which the pattern copper plating was not adhered, to obtain a printed wiring board. The underside of this pattern had an undercut of 5.4 μm on both sides. Table 1 shows the evaluation results. Comparative Example 2 A general electrolytic copper foil having a thickness of 12 μm was applied to the surface layer of the double-sided copper-clad laminate of Example 2, and this was etched to an average thickness of 3 μm to provide 1 μm irregularities on the surface. Place this on an XY table, irradiate 8 shots of 10 mJ carbon dioxide laser pulse energy from the surface to make through holes, similarly apply plasma treatment, apply 0.3 μm of electroless copper plating, and attach 14 μm of electrolytic copper plating Then, a 20 μm etching resist was attached thereon, and a pattern of line / space = 20/20 μm was formed by an ordinary method. However, the shape was triangular and the shape was not good. Table 1 shows the evaluation results. Comparative Example 3 After the surface copper foil and nickel metal layer of the double-sided copper-clad multilayer board of Example 1 were removed by etching, a through hole having a hole diameter of 100 μm was made with a carbon dioxide laser 15 mJ, and the surface was desmeared. Electroless copper plating was applied to 2 μm, and electrolytic copper plating was applied to 16 μm thereon. In the same manner as in Comparative Example 2, a pattern of line / space = 25/25 μm was formed. This had an undercut, the shape was triangular, and the shape was poor. Table 1 shows the evaluation results. Comparative Example 4 In Example 2, acrylonitrile butadiene rubber (trade name: N210S, JSR <
Co., Ltd.) was added, and the mixture was uniformly stirred and mixed. Thereafter, a prepreg was prepared in the same manner and laminated and molded to obtain a double-sided copper-clad laminate. After etching and removing the copper foil and nickel / cobalt layer on the surface layer of this copper clad board, the pore size was
A through hole of 100 μm is made, this surface is desmeared, electroless copper plating is applied to the entire surface by 4 μm, an electrolytic copper plating resist is attached, and an electrolytic copper plating is applied on the electroless copper plating where no plating resist is attached. Plating was deposited at 16 μm. After stripping the plating resist, the entire surface is etched to dissolve and remove the thin electroless copper plating layer, and line / space =
A 20/20 μm pattern was formed. This had an undercut. Table 1 shows the evaluation results. (Table 1) Item Example Comparative Example 1 2 1 2 3 4 Undercut (μm) <1 <1 5.5 <1 2.2 6.1 Pattern Cross Section Good Good Bad Triangular Triangular Bad Copper Adhesive Force (kgf / cm) 1.33 1.18 0.67 0.90 0.43 0.55 glass transition temperature (℃) 235 160 235 160 235 154 migration resistance (Omega) normal 5x10 14 6x10 14 5x10 14 4x10 14 5x10 14 5x10 14 200hrs. 3x10 11 4x10 8 3x10 11 2x10 8 4x10 11 2x10 8 500hrs. 6x10 10 < 10 8 7x10 10 <10 8 5x10 10 <10 8 [0030] <measurement method> 1) the undercut and the pattern cross-sectional shape pattern section and 100 observed and expressed as mean values. The etched distance on one side is shown with respect to the design value. or,
The shape was also observed. 2) Copper foil adhesive strength was measured according to JIS C6481. The width was measured by the pattern width and converted to kgf / cm and displayed. 3) Glass transition temperature Measured according to the DMA method of JIS C6481. 4) Migration resistance In each of the examples and comparative examples, a thermosetting resist (trade name: BT-M450 manufactured by Mitsubishi Gas Chemical Co., Ltd.) was applied on the prepared pattern.
Is coated to a thickness of 40 μm, cured, and
5 ° C., 85% RH, 50 VDC was applied, and the insulation resistance between the patterns was measured. According to the method for producing an ultrafine wire pattern on a double-sided copper-clad board having at least two or more thin copper layers having through holes and / or blind via holes, an electrolytic copper foil is used as the copper foil. Use a copper foil with nickel metal, cobalt metal, or an alloy layer of 0.1 to 5 μm attached to the uneven surface of the mat surface, and attach it to at least the outermost layer. Only by selectively etching away, applying a thin electroless copper plating and an electrolytic copper plating on the remaining nickel metal, cobalt metal or their alloy layer, and then attaching a pattern plating resist to form a pattern electrolytic copper plating. After removing the plating resist, the whole is etched with a chemical solution with excellent solubility of copper and low solubility of nickel metal, cobalt metal or their alloy layers. Dissolve and remove the thin copper layer and the electroless copper layer to expose the nickel metal, cobalt metal or their alloy layer, and then the nickel metal, cobalt metal or their alloy layer has good solubility and copper By etching with a chemical solution having low solubility, a high-density printed wiring board with very little undercut, good shape, and excellent copper foil adhesion was produced.

【図面の簡単な説明】 【図1】実施例1の細線形成工程図(前半) 【図2】実施例1の細線形成工程図(後半) 【図3】比較例1の細線形成工程図 【図4】比較例2の細線形成工程図 【図5】比較例3の細線形成工程図 【図6】比較例4の細線形成工程図 【符号の説明】 a 積層板 b ニッケル金属層 c 無電解銅メッキ層 d 電気銅メッキ層 e 形成された孔部 f メッキレジスト g 電気銅パターン銅メッキ h 銅層をエッチングしたパターン i 残存したニッケル金属層 j 全部の金属層をエッチングして形成したパターン k 金属層をエッチングして形成されたスペース部分 l 発生したパターンアンダーカット部 m 一般の電解銅箔 [Brief description of the drawings] FIG. 1 is a diagram showing a thin line forming process of Example 1 (first half). FIG. 2 is a diagram showing a thin line forming process of Example 1 (second half). FIG. 3 is a diagram showing a thin line forming process of Comparative Example 1. FIG. 4 is a diagram showing a thin line forming process of Comparative Example 2. FIG. 5 is a diagram showing a thin line forming process of Comparative Example 3. FIG. 6 is a view showing a thin line forming process of Comparative Example 4. [Explanation of symbols] a laminated board b Nickel metal layer c Electroless copper plating layer d Electric copper plating layer e Hole formed f Plating resist g Electric copper pattern copper plating h Pattern etched copper layer i The remaining nickel metal layer j Patterns formed by etching all metal layers k Space part formed by etching metal layer l Generated pattern undercut m General electrolytic copper foil

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 3/06 H05K 3/06 A 5E346 3/18 3/18 G J 3/46 3/46 S (72)発明者 岩田 恵一 東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社東京工場内 Fターム(参考) 4E351 AA03 BB01 BB33 BB35 CC06 CC07 DD04 DD19 DD21 GG11 GG13 4K024 AA09 AB01 BA01 BB11 BC02 DA07 FA05 GA16 4K057 WA11 WB03 WC10 WE03 WE07 WE25 WN01 5E339 AB02 AD03 AD05 BC01 BD06 BD08 BE11 BE13 GG02 5E343 AA02 AA12 BB12 BB14 BB17 BB24 BB44 BB45 BB52 BB67 BB71 DD33 DD43 DD76 GG06 GG08 5E346 AA06 AA12 AA15 AA22 AA32 AA51 BB15 CC08 CC32 CC37 DD02 DD12 DD25 DD32 DD33 EE13 GG17 GG22 GG28 HH11 HH13 HH26 HH31 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05K 3/06 H05K 3/06 A 5E346 3/18 3/18 G J 3/46 3/46 S (72 ) Inventor Keiichi Iwata 6-1-1, Shinjuku, Katsushika-ku, Tokyo F-term in Tokyo Plant of Mitsubishi Gas Chemical Co., Ltd. 4E351 AA03 BB01 BB33 BB35 CC06 CC07 DD04 DD19 DD21 GG11 GG13 4K024 AA09 AB01 BA01 BB11 BC02 DA07 FA05 GA16 4K057 WA11 WB03 WC10 WE03 WE07 WE25 WN01 5E339 AB02 AD03 AD05 BC01 BD06 BD08 BE11 BE13 GG02 5E343 AA02 AA12 BB12 BB14 BB17 BB24 BB44 BB45 DD52 BB67 BB71 BB71 DD33 DD43 DD76 GG06 A08A12 A22 DD32 DD33 EE13 GG17 GG22 GG28 HH11 HH13 HH26 HH31

Claims (1)

【特許請求の範囲】 【請求項1】 (1)ニッケル及び/又はコバルト、或いは
その合金を銅箔の片面に凹凸を形成した表面に厚さ0.1
〜5μm付着させた電解銅箔を少なくとも最外層に用いて
作製した両面銅張板又は多層両面銅張板の表層の銅層を
エッチング除去してニッケル及び/又はコバルト、或い
はその合金層を残し、(2)孔内を含む表面に0.1〜1μmの
無電解銅メッキを施し、(3)該無電解銅メッキ析出層を
電極にして厚さ0.5〜3μmの電気銅メッキ層を形成し、
(4)この銅メッキ析出層の上の必要部分にパターン電気
メッキ用のメッキレジスト層を形成し、(5)メッキレジ
スト層が形成されていない銅面に、電気銅メッキでパタ
ーン銅メッキを6〜30μm付着させ、(6)メッキレジスト
を剥離除去し、(7)少なくともパターン銅メッキ層の形
成されていない部分の薄い電気銅層及び無電解銅層をニ
ッケル又はコバルト、或いはその合金層を殆ど溶解しな
い薬液で全面をエッチングしてニッケル又はコバルト、
或いはその合金層を残した後、(8)銅を殆ど溶解しない
薬液で全体をエッチングしてニッケル又はコバルト、或
いはその合金層を溶解除去して製造することを特徴とす
る極細線パターンを有するプリント配線板の製造方法。
Claims 1. (1) Nickel and / or cobalt or an alloy thereof is coated on a copper foil with a thickness of 0.1 on a surface having irregularities formed on one surface thereof.
~ 5μm electrolytic copper foil adhered to at least the outermost layer produced by using at least the outermost copper clad board or multilayer double-sided copper clad copper layer of the surface layer by etching and leaving nickel and / or cobalt, or its alloy layer, (2) electroless copper plating of 0.1 to 1 μm is applied to the surface including the inside of the hole, (3) an electrocopper plating layer having a thickness of 0.5 to 3 μm is formed by using the electroless copper plating deposited layer as an electrode,
(4) A plating resist layer for pattern electroplating is formed on a necessary portion on the copper plating deposition layer, and (5) a pattern copper plating is performed on the copper surface on which the plating resist layer is not formed by electrolytic copper plating. (6) Strip the plating resist and remove (7) At least the thin copper layer and electroless copper layer where the pattern copper plating layer is not formed are almost nickel or cobalt, or alloy layer thereof. Etch the entire surface with a chemical that does not dissolve, nickel or cobalt,
Alternatively, after leaving the alloy layer, (8) a print having an extra fine line pattern characterized by being manufactured by dissolving and removing nickel or cobalt or its alloy layer by etching the whole with a chemical solution that hardly dissolves copper. Manufacturing method of wiring board.
JP2002038154A 2001-06-29 2002-02-15 Method of manufacturing printed wiring board equipped with very fine wire pattern Pending JP2003243810A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002038154A JP2003243810A (en) 2002-02-15 2002-02-15 Method of manufacturing printed wiring board equipped with very fine wire pattern
US10/170,614 US7140103B2 (en) 2001-06-29 2002-06-14 Process for the production of high-density printed wiring board
TW091113994A TW536928B (en) 2001-06-29 2002-06-26 Process for the production of high-density printed wiring board
KR1020020037039A KR100936446B1 (en) 2001-06-29 2002-06-28 Process for the production of high-density printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002038154A JP2003243810A (en) 2002-02-15 2002-02-15 Method of manufacturing printed wiring board equipped with very fine wire pattern

Publications (1)

Publication Number Publication Date
JP2003243810A true JP2003243810A (en) 2003-08-29

Family

ID=27779542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002038154A Pending JP2003243810A (en) 2001-06-29 2002-02-15 Method of manufacturing printed wiring board equipped with very fine wire pattern

Country Status (1)

Country Link
JP (1) JP2003243810A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202569A (en) * 2005-01-19 2006-08-03 Japan Aviation Electronics Industry Ltd Contact, connector using it, and method of manufacturing contact
WO2012101984A1 (en) * 2011-01-26 2012-08-02 住友ベークライト株式会社 Printed wiring board and method for producing printed wiring board
WO2012101985A1 (en) * 2011-01-26 2012-08-02 住友ベークライト株式会社 Printed wiring board and method for manufacturing printed wiring board
CN114928945A (en) * 2022-05-27 2022-08-19 珠海达汉电子科技有限公司 Manufacturing process of superfine circuit printed circuit board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202569A (en) * 2005-01-19 2006-08-03 Japan Aviation Electronics Industry Ltd Contact, connector using it, and method of manufacturing contact
WO2012101984A1 (en) * 2011-01-26 2012-08-02 住友ベークライト株式会社 Printed wiring board and method for producing printed wiring board
WO2012101985A1 (en) * 2011-01-26 2012-08-02 住友ベークライト株式会社 Printed wiring board and method for manufacturing printed wiring board
CN114928945A (en) * 2022-05-27 2022-08-19 珠海达汉电子科技有限公司 Manufacturing process of superfine circuit printed circuit board
CN114928945B (en) * 2022-05-27 2024-02-06 珠海达汉电子科技有限公司 Manufacturing process of superfine circuit printed circuit board

Similar Documents

Publication Publication Date Title
US6240636B1 (en) Method for producing vias in the manufacture of printed circuit boards
JP5816239B2 (en) Multilayer printed wiring board manufacturing method and multilayer printed wiring board
KR100936446B1 (en) Process for the production of high-density printed wiring board
JP3142270B2 (en) Manufacturing method of printed wiring board
JP2009239295A (en) Printed wiring board, and method of manufacturing the same
WO2003092344A1 (en) Production of via hole in flexible circuit printable board
WO2000069238A1 (en) Double-sided printed wiring board and method for manufacturing multilayer printed wiring board having three or more layers
JP3992225B2 (en) Metal foil with resin for printed wiring board and multilayer printed wiring board using the same
JP2007242975A (en) Printed-wiring board and its manufacturing method
JP2003243810A (en) Method of manufacturing printed wiring board equipped with very fine wire pattern
JP4300870B2 (en) Method for manufacturing printed wiring board
JP2003051657A (en) Method for manufacturing printed circuit substrate having ultra fine wiring pattern
JP4349082B2 (en) Printed wiring board manufacturing method and printed wiring board
JP2004273744A (en) Thermoplastic resin material and manufacturing method of printed circuit board
JP2003283134A (en) Printed-wiring board and method of manufacturing the same
JP3874076B2 (en) A method for producing a printed wiring board having an extra fine wire pattern.
JP3719093B2 (en) Method for drilling non-through holes in metal foil-clad laminates
JP2003060341A (en) Method of manufacturing printed wiring board having minute pattern
JP3815765B2 (en) Manufacturing method of multilayer printed wiring board
JP2003332735A (en) Wiring board, its manufacturing method, and conductor- laminated board
JP2000036662A (en) Manufacture of build-up multilayer interconnection board
JP4978820B2 (en) Manufacturing method of high-density printed wiring board.
JP2003224367A (en) High frequency printed wiring board and its manufacturing method
JP2003243808A (en) Method of manufacturing printed wiring board equipped with very fine wire pattern
JP2004259940A (en) Method for manufacturing printed wiring board and copper foil for laser punching