JP2007242975A - Printed-wiring board and its manufacturing method - Google Patents

Printed-wiring board and its manufacturing method Download PDF

Info

Publication number
JP2007242975A
JP2007242975A JP2006065010A JP2006065010A JP2007242975A JP 2007242975 A JP2007242975 A JP 2007242975A JP 2006065010 A JP2006065010 A JP 2006065010A JP 2006065010 A JP2006065010 A JP 2006065010A JP 2007242975 A JP2007242975 A JP 2007242975A
Authority
JP
Japan
Prior art keywords
resin
copper
layer
copper plating
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006065010A
Other languages
Japanese (ja)
Other versions
JP4829647B2 (en
Inventor
Mitsuru Nozaki
充 野崎
Morio Take
杜夫 岳
Yasuo Tanaka
恭夫 田中
Hidefumi Nagata
英史 永田
Yasuo Kikuchi
靖雄 菊地
Shinji Yano
真司 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PI R&D Co Ltd
Mitsubishi Gas Chemical Co Inc
Original Assignee
PI R&D Co Ltd
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PI R&D Co Ltd, Mitsubishi Gas Chemical Co Inc filed Critical PI R&D Co Ltd
Priority to JP2006065010A priority Critical patent/JP4829647B2/en
Priority to TW96102863A priority patent/TWI384908B/en
Priority to CN2007100082213A priority patent/CN101009973B/en
Priority to US11/657,529 priority patent/US7989081B2/en
Priority to KR1020070008038A priority patent/KR101308119B1/en
Publication of JP2007242975A publication Critical patent/JP2007242975A/en
Application granted granted Critical
Publication of JP4829647B2 publication Critical patent/JP4829647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a printed-wiring board being capable of easily forming an extremely fine-line circuit and having the excellent adhesive strength and heat resistance of a copper plating layer. <P>SOLUTION: In the manufacturing method for the printed-wiring board, a B-stage resin composition layer is laminated and molded on the resin-layer surface of a resin composite copper foil forming a block copolymerizing polyimide resin and a resin layer containing a polymaleimide compound on one surface of a copper foil. In the manufacturing method, all the copper foil are etched and removed, the resin-layer surface is exposed and the electroless copper plating layer 5 is formed on the whole surface without irregularly treating the resin-layer surface. An electrolytic copper plating layer is formed, and the electroless copper plating layer 5 and the electrolytic copper plating layer are etched and removed selectively and a copper circuit is formed. Alternately, the electroless copper plating layer 5 is formed, the electrolytic copper-plating pattern layer is formed selectively on the electroless copper plating layer and the electroless copper plating layer forming no electrolytic copper plating layer is etched and removed and the copper circuit is formed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、極細線回路が容易に形成できるプリント配線板の製造方法及び該製造方法で得られたプリント配線板に関する。本発明の製造方法で得られるプリント配線板は、銅メッキ層の接着力や耐熱性に優れることから、細密回路を有する高密度プリント配線板として好適に使用される。 The present invention relates to a method for manufacturing a printed wiring board in which an ultrafine wire circuit can be easily formed, and a printed wiring board obtained by the manufacturing method. Since the printed wiring board obtained by the production method of the present invention is excellent in the adhesive strength and heat resistance of the copper plating layer, it is suitably used as a high-density printed wiring board having a fine circuit.

近年、電子機器に用いられる半導体部品等の電子部品を実装するため、プリント配線板は半導体回路の超高密度化と相まって、その回路導体幅と回路間絶縁スペースは、より極細線化することが要求されている。従来、プリント配線板に使用する銅張積層板の銅箔としては、接着力が良好な、銅箔マット面の凹凸が顕著な電解銅箔が使用されている。これらの電解銅箔は、接着力は良好であるが、エッチング法により細密回路を形成する際に、銅箔マット面の凹凸の影響により、銅箔の凸部の一部が、絶縁用樹脂表面に残り易く、これを完全に除去するため、エッチング時間を伸ばすと回路がオーバーエッチングされ、回路の位置精度や接着力が低下する等の問題があった。 In recent years, in order to mount electronic components such as semiconductor components used in electronic devices, printed circuit boards, coupled with the ultra-high density of semiconductor circuits, the circuit conductor width and inter-circuit insulation space can be made finer. It is requested. Conventionally, as a copper foil of a copper clad laminate used for a printed wiring board, an electrolytic copper foil having a good adhesive force and a remarkable unevenness on the surface of the copper foil mat has been used. These electrolytic copper foils have good adhesion, but when forming a fine circuit by etching method, due to the unevenness of the copper foil mat surface, some of the convex portions of the copper foil are If the etching time is extended, the circuit is over-etched to completely remove it, and there is a problem in that the circuit position accuracy and adhesive strength are reduced.

これらの改善手段として、銅箔面の凹凸を抑えた所謂ロープロファイル銅箔が実用化されている。しかしながら、この銅箔を元来接着力が弱い高耐熱性の熱硬化性樹脂等の銅張積層板で使用すると、細密回路では接着力の不足が問題となり、極細線化に向け大きな障害となっている。また古くから、銅箔と絶縁用樹脂との密着力を向上させるために、銅箔に絶縁性の接着層を形成する方法が実用化されている。例えば、紙フェノール樹脂銅張積層板ではフェノール・ブチラール樹脂を銅箔に形成する手法、ガラスエポキシ樹脂銅張積層板ではエポキシ樹脂接着剤を銅箔に形成する手法などが知られている。これら接着剤付き銅箔の具体例としては、薄い接着剤層を形成した銅箔を使用する銅張積層板(例えば特許文献1参照)や半硬化樹脂フィルムを張りつけた銅箔を使用する銅張積層板(例えば特許文献2参照)なども提案されているが、接着剤付き銅箔を使用した銅張積層板では、接着力レベルや吸湿耐熱性の点で問題があり、更なる改善が必要であった。   As these improvement means, what is called a low profile copper foil which suppressed the unevenness | corrugation of the copper foil surface is put into practical use. However, when this copper foil is used in a copper-clad laminate such as a high heat-resistant thermosetting resin that originally has a low adhesive strength, a shortage of adhesive strength becomes a problem in fine circuits, which is a major obstacle to ultra-thin wires. ing. Also, since long ago, in order to improve the adhesion between the copper foil and the insulating resin, a method of forming an insulating adhesive layer on the copper foil has been put into practical use. For example, a technique of forming phenol-butyral resin on a copper foil in a paper phenolic resin copper-clad laminate, and a technique of forming an epoxy resin adhesive on a copper foil in a glass epoxy resin copper-clad laminate are known. Specific examples of these adhesive-attached copper foils include a copper-clad laminate using a copper foil with a thin adhesive layer (see, for example, Patent Document 1) and a copper-clad using a copper foil attached with a semi-cured resin film. Laminates (see, for example, Patent Document 2) have also been proposed, but copper-clad laminates using copper foil with adhesive have problems in terms of adhesive strength level and moisture absorption heat resistance, and further improvements are necessary. Met.

特開平8-216340 号公報JP-A-8-216340 特開平9-11397号公報JP-A-9-11397

本発明の目的は、極細線回路が容易に形成でき、且つ銅メッキ層の接着力や耐熱性に優れるプリント配線板の製造方法を提供するにある。   An object of the present invention is to provide a method for producing a printed wiring board, in which an ultrafine wire circuit can be easily formed and the copper plating layer has excellent adhesive strength and heat resistance.

本発明者は、上記課題を解決すべき鋭意検討した結果、特定の樹脂複合銅箔を使用した銅張積層板を使用し、銅箔をエッチング除去して樹脂層表面を露出させ、該樹脂層表面を凹凸処理することなく、銅メッキ層を形成した後、選択的にエッチング除去して銅回路を形成することで、接着力や耐熱性に優れるプリント配線板が得られることを見出し、本発明に到達した。 As a result of intensive studies to solve the above problems, the present inventor used a copper-clad laminate using a specific resin composite copper foil, and removed the copper foil by etching to expose the resin layer surface. The present invention finds that a printed wiring board having excellent adhesion and heat resistance can be obtained by forming a copper plating layer without forming unevenness on the surface, and then selectively removing by etching to form a copper circuit. Reached.

即ち、本発明は、銅箔の片面にブロック共重合ポリイミド樹脂とポリマレイミド化合物を含有する樹脂層を形成した樹脂複合銅箔の樹脂層面に、Bステージ樹脂組成物層を重ね、積層成形して銅張積層板とした後、該銅張積層板の銅箔をすべてエッチング除去し、樹脂層表面を露出させて積層板とし、該積層板の樹脂層表面を凹凸処理することなく、無電解銅メッキにより無電解銅メッキ層を形成し、次いで無電解銅メッキ層の上に電解銅メッキにより電解銅メッキ層を形成した後、無電解銅メッキ層と電解銅メッキ層を、選択的にエッチング除去して銅回路を形成するプリント配線板の製造方法を提供する。   That is, in the present invention, a B-stage resin composition layer is laminated on a resin layer surface of a resin composite copper foil in which a resin layer containing a block copolymerized polyimide resin and a polymaleimide compound is formed on one side of a copper foil, and then laminated and molded. After making the copper clad laminate, the copper foil of the copper clad laminate is all etched away, the resin layer surface is exposed to make a laminate, and electroless copper is obtained without subjecting the resin layer surface of the laminate to uneven treatment. An electroless copper plating layer is formed by plating, and then an electrolytic copper plating layer is formed on the electroless copper plating layer by electrolytic copper plating. Then, the electroless copper plating layer and the electrolytic copper plating layer are selectively removed by etching. Thus, a method for manufacturing a printed wiring board for forming a copper circuit is provided.

本発明はさらに、銅箔の片面にブロック共重合ポリイミド樹脂とポリマレイミド化合物を含有する樹脂層を形成した樹脂複合銅箔の樹脂層面に、Bステージ樹脂組成物層を重ね、積層成形して銅張積層板とした後、該銅張積層板の銅箔をすべてエッチング除去し、樹脂層表面を露出させて積層板とし、該積層板の樹脂層表面を凹凸処理することなく、無電解銅メッキにより無電解銅メッキ層を形成し、次いで無電解銅メッキ層の上に選択的に電解銅メッキ層を形成した後、少なくとも電解銅メッキ層が形成されていない無電解銅メッキ層をエッチング除去して銅回路を形成するプリント配線板の製造方法を提供する。   In the present invention, a B-stage resin composition layer is laminated on a resin layer surface of a resin composite copper foil in which a resin layer containing a block copolymerized polyimide resin and a polymaleimide compound is formed on one side of the copper foil, and then laminated to form copper. After forming the laminated laminate, all of the copper foil of the copper-clad laminate is removed by etching, the resin layer surface is exposed to form a laminated plate, and electroless copper plating is performed without roughening the resin layer surface of the laminated plate. After forming an electroless copper plating layer, and then selectively forming an electrolytic copper plating layer on the electroless copper plating layer, at least the electroless copper plating layer on which the electrolytic copper plating layer is not formed is removed by etching. A method of manufacturing a printed wiring board for forming a copper circuit is provided.

本発明のプリント配線板の製造方法において、無電解銅メッキ層または電解銅メッキ層を形成した後に、好ましくは、100℃〜200℃で加熱処理をすることを特徴とするプリント配線板の製造方法を提供する。   In the method for producing a printed wiring board of the present invention, preferably, after the electroless copper plating layer or the electrolytic copper plating layer is formed, heat treatment is preferably performed at 100 ° C. to 200 ° C. I will provide a.

本発明のプリント配線板の製造方法において、好ましく使用されるブロック共重合ポリイミド樹脂は、一般式(1)及び一般式(2)で表される構造単位を有するブロック共重合ポリイミド樹脂である。   In the method for producing a printed wiring board of the present invention, the block copolymerized polyimide resin preferably used is a block copolymerized polyimide resin having structural units represented by the general formulas (1) and (2).

Figure 2007242975
Figure 2007242975

Figure 2007242975
Figure 2007242975

(式中のm,nは、m:n=1:9〜3:1を満たす整数)
本発明のプリント配線板の製造方法において、樹脂複合銅箔の樹脂層厚みは、より好ましくは、0.1μm〜10μmである。
(M and n in the formula are integers satisfying m: n = 1: 9 to 3: 1)
In the method for producing a printed wiring board of the present invention, the resin layer thickness of the resin composite copper foil is more preferably 0.1 μm to 10 μm.

本発明のプリント配線板の製造方法において、樹脂複合銅箔の樹脂層におけるブロック共重合ポリイミドとマレイミド化合物との含有比率は、より好ましくは、重量比で10〜90:90〜10である。   In the method for producing a printed wiring board of the present invention, the content ratio of the block copolymerized polyimide and the maleimide compound in the resin layer of the resin composite copper foil is more preferably 10 to 90:90 to 10 by weight.

本発明のプリント配線板の製造方法により得られたプリント配線板は、従来の細線回路幅を大幅に縮小する、極細線(12μm幅程度)の銅回路の形成を可能とし、かつ接着力や吸湿耐熱性に優れている。このため、細密回路を有する高密度プリント配線板として好適であり、本発明の技術の実用性は極めて高い。 The printed wiring board obtained by the method for manufacturing a printed wiring board according to the present invention enables the formation of a copper circuit with a very fine wire (about 12 μm width), which greatly reduces the width of the conventional fine wire circuit, and has an adhesive force and moisture absorption. Excellent heat resistance. For this reason, it is suitable as a high-density printed wiring board having a fine circuit, and the practicality of the technique of the present invention is extremely high.

プリント配線板に使用する銅張積層板の銅箔としては、銅箔の接着力を確保するため、接着する銅箔面に凹凸を形成し、また、防錆メッキ層を施した銅箔を用いるのが一般的である。しかしながら、エッチングで細線回路を形成する場合、銅箔の凹凸の足残りや、防錆メッキ層のエッチング速度が遅いため、銅回路断面が台形になり易く、約50μm幅の細線回路形成が限界であった。また、より細線の形成法として、3μm程度の極薄の銅箔の積層板上に、選択的に銅細線を25μm厚さ程度メッキし、次いで、全表面から5μm程度、銅をエッチングして、銅細線を形成するパターンメッキ法によっても、この凹凸の足部や、防錆メッキ層のエッチング速度が遅く、約30μm幅より細い銅回路形成は困難であった。   As the copper foil of the copper clad laminate used for the printed wiring board, in order to secure the adhesive strength of the copper foil, a copper foil having a concavo-convex formed on the surface of the copper foil to be bonded and a rust-proof plating layer is used. It is common. However, when forming thin wire circuits by etching, the copper foil cross section tends to be trapezoidal due to the slow etching rate of the copper foil unevenness and the anticorrosion plating layer, and the formation of thin wire circuits with a width of about 50 μm is the limit. there were. In addition, as a method of forming a finer wire, a copper thin wire is selectively plated to a thickness of about 25 μm on an extremely thin copper foil laminate of about 3 μm, and then the copper is etched about 5 μm from the entire surface, Even by the pattern plating method for forming a copper fine wire, the etching rate of the uneven foot portion and the anticorrosive plating layer is slow, and it is difficult to form a copper circuit thinner than about 30 μm.

次に、本発明を図面に基づいて説明する。本発明は、銅張積層板の回路形成において、細線形成の限界や、銅回路の低接着力の問題を解決する、プリント配線板の製造方法に関する。本発明は、銅箔(図1の1)の片面にブロック共重合ポリイミド樹脂とポリマレイミド化合物を含有する樹脂層(図1の2)を形成した樹脂複合銅箔の樹脂層面に、Bステージ樹脂組成物層(図1の3)を重ね、積層成形して銅張積層板を形成する。該銅張積層板の銅箔をすべてエッチング除去して樹脂層表面(図3の5)を露出させて積層板を形成する。該積層板の樹脂層表面を凹凸処理することなく、無電解銅メッキにより無電解銅メッキ層(図4の6)を形成し、次いで無電解銅メッキ層の上に電解銅メッキにより電解銅メッキ層(図5の7)を形成する。無電解銅メッキ層と電解銅メッキ層を、選択的にエッチング除去して銅回路(図6の7)を形成するプリント配線板の製造方法に関する。必要によりスルーホールやブラインドホール(図2の4)を形成する。   Next, the present invention will be described with reference to the drawings. The present invention relates to a method of manufacturing a printed wiring board that solves the limitations of thin wire formation and the problem of low adhesion of copper circuits in circuit formation of copper-clad laminates. The present invention provides a B-stage resin on the resin layer surface of a resin composite copper foil in which a resin layer (2 in FIG. 1) containing a block copolymerized polyimide resin and a polymaleimide compound is formed on one surface of a copper foil (1 in FIG. 1). The composition layers (3 in FIG. 1) are stacked and laminated to form a copper clad laminate. All of the copper foil of the copper-clad laminate is removed by etching to expose the resin layer surface (5 in FIG. 3) to form a laminate. An electroless copper plating layer (6 in FIG. 4) is formed by electroless copper plating without roughening the resin layer surface of the laminate, and then electrolytic copper plating is performed on the electroless copper plating layer by electrolytic copper plating. A layer (7 in FIG. 5) is formed. The present invention relates to a method of manufacturing a printed wiring board in which an electroless copper plating layer and an electrolytic copper plating layer are selectively removed by etching to form a copper circuit (7 in FIG. 6). If necessary, through holes and blind holes (4 in FIG. 2) are formed.

メッキ銅層を選択的にエッチング除去して銅回路を形成する方法には、通常2つの方法が存在する。1つは、銅メッキ層上の銅回路を形成する部分を、エッチングレジストで被覆し、公知のエッチング法により、回路(図6、8)形成する方法である。他の1つの方法は、積層板の全面に形成した薄い無電解銅メッキ層上に、銅回路を形成する場所以外を、メッキレジストで被覆し、パターンメッキにより、電解銅メッキ層を形成した後、メッキレジストを剥離し、少なくとも、電解銅メッキ層を形成していない無電解銅メッキ層をエッチングして、回路を形成する方法である。   There are generally two methods for forming a copper circuit by selectively removing the plated copper layer by etching. One is a method of forming a circuit (FIGS. 6 and 8) by coating a portion where a copper circuit on the copper plating layer is formed with an etching resist and using a known etching method. Another method is to cover the thin electroless copper plating layer formed on the entire surface of the laminated plate with a plating resist except for the place where the copper circuit is to be formed, and after forming the electrolytic copper plating layer by pattern plating. In this method, the plating resist is removed and at least the electroless copper plating layer on which the electrolytic copper plating layer is not formed is etched to form a circuit.

本発明のプリント配線板での銅メッキ層の高い接着力は、予め、樹脂複合銅箔に形成された樹脂層によって得られるものである。(該樹脂層と熱硬化性樹脂組成物との接着は、Bステージ樹脂組成物の接着力により、該樹脂層に接着させることによるものである。)銅メッキ層の接着力は、無電解銅メッキ後、もしくは、電解銅メッキ終了後、100℃〜200℃で加熱処理をすることにより、より向上することができる。また本発明のプリント配線板は、吸湿後のはんだリフローなどの部品実装特性に、著しくすぐれた耐熱性も兼ね備えている。   The high adhesive strength of the copper plating layer in the printed wiring board of the present invention is obtained by a resin layer previously formed on the resin composite copper foil. (Adhesion between the resin layer and the thermosetting resin composition is caused by adhering to the resin layer by the adhesive force of the B-stage resin composition.) It can improve more by heat-processing at 100 to 200 degreeC after plating or after completion | finish of electrolytic copper plating. The printed wiring board of the present invention also has extremely excellent heat resistance in component mounting characteristics such as solder reflow after moisture absorption.

本発明のプリント配線板の製造方法において使用する樹脂複合銅箔の樹脂層として好ましく使用されるブロック共重合ポリイミドは、第一の構造単位よりなるイミドオリゴマーの末端に、第二の構造単位よりなるイミドオリゴマーが結合している構造を有する共重合ポリイミドであれば特に限定されない。これらのブロック共重合ポリイミドは、極性溶媒中で、テトラカルボン酸二無水物とジアミンを反応させイミドオリゴマーとした後、更にテトラカルボン酸二無水物と別のジアミン、もしくは別のテトラカルボン酸二無水物とジアミンを加え、イミド化する逐次重合反応によって合成される。使用する極性溶媒はN−メチル−2−ピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、テトラメチル尿素等、ポリイミドを溶解する極性溶媒が挙げられる。また、ケトン系又はエーテル系の溶媒を混合して使用する事も可能であり、ケトン系溶媒としては、メチルエチルケトン、メチルプロピルケトン、メチルイソプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、メチル-n-ヘキシルケトン、ジエチルケトン、ジイソプロピルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン、アセチルアセトン、ジアセトンアルコール、シクロヘキセン−n−オンが、エーテル系溶媒としてはジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、エチルイソアミルアルコール、エチル-t-ブチルエーテル、エチルベンジルエーテル、ジエチレングリコールジメチルエーテル、クエジルメチルエーテル、アニソール、フェネトールが使用可能である。また、イミド化反応時に生成する水を除去するために、トルエンやキシレン等の水と共沸する溶媒を添加し、系外に取り除く必要がある。また、反応を促進するために、ピリジン等のアミン系触媒や、ピリジンとγ-バレロラクトンの様な塩基と環状エステルの二成分系触媒が好適に用いられる。反応温度は 120〜200℃で、トルエンやキシレン等の水と共沸する溶媒や、ピリジン等の触媒は、最終的に系外に留去させる事により、ブロック共重合ポリイミドのみの極性溶媒溶液を得ることが可能である。   The block copolymerized polyimide preferably used as the resin layer of the resin composite copper foil used in the method for producing a printed wiring board of the present invention is composed of the second structural unit at the end of the imide oligomer composed of the first structural unit. Any copolymerized polyimide having a structure in which an imide oligomer is bonded is not particularly limited. These block copolymerized polyimides are prepared by reacting a tetracarboxylic dianhydride and a diamine in a polar solvent to form an imide oligomer, and then further tetracarboxylic dianhydride and another diamine or another tetracarboxylic dianhydride. It is synthesized by a sequential polymerization reaction in which a product and a diamine are added and imidized. Examples of the polar solvent to be used include polar solvents that dissolve polyimide, such as N-methyl-2-pyrrolidone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, sulfolane, and tetramethylurea. It is also possible to use a mixture of a ketone or ether solvent, and examples of the ketone solvent include methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl butyl ketone, methyl isobutyl ketone, and methyl-n-hexyl. Ketone, diethyl ketone, diisopropyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methylcyclohexanone, acetylacetone, diacetone alcohol, cyclohexene-n-one are ether solvents such as dipropyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, Tetrahydropyran, ethyl isoamyl alcohol, ethyl t-butyl ether, ethyl benzyl ether, diethylene glycol dimethyl ether, quedyl methyl Ether, anisole and phenetole can be used. Moreover, in order to remove the water produced | generated at the time of imidation reaction, it is necessary to add and remove the solvent azeotropically with water, such as toluene and xylene. In order to accelerate the reaction, an amine catalyst such as pyridine or a two-component catalyst of a base and a cyclic ester such as pyridine and γ-valerolactone is preferably used. The reaction temperature is 120-200 ° C, and solvents such as toluene and xylene azeotrope with water and catalysts such as pyridine are finally distilled out of the system to form a polar solvent solution containing only block copolymerized polyimide. It is possible to obtain.

本発明で使用される樹脂複合銅箔の樹脂層に使用されるブロック共重合ポリイミドとしては、一般式(1)及び一般式(2)で表される構造単位を有する溶剤可溶性ブロック共重合ポリイミドが好適である。このブロック共重合ポリイミドに使用されるテトラカルボン酸二無水物は3,4、3'.4'-ビフェニルテトラカルボン酸二無水物であり、ジアミンは1,3-ビス(3-アミノフェノキシ)ベンゼン及び2,2-ビス{4-(4-アミノフェノキシ)フェニル}プロパンである。また、各単位重縮合物の分子量を制御する為に、一段目の反応時にテトラカルボン酸二無水物とジアミンのモル比をずらし、末端を酸無水物またはアミンとし、二段目の反応ではテトラカルボン酸二無水物とジアミンのモル比を一段目と逆にする事などで、充分な分子量のブロック共重合ポリイミドを得ることが可能である。本発明のブロック共重合ポリイミドの重量平均分子量(Mw)は 50000〜300000が望ましい。より好適には 80000〜200000である。Mwが 50000未満であると樹脂層が脆くなり本目的に使用できない。一方、Mwが 300000より大きいと樹脂の溶液粘度が高くなりすぎ塗工が困難となる。また、最終的な分子量を制御する為に、使用するテトラカルボン酸二無水物とジアミンとのモル比をずらして合成することも可能である。一般式(1)と一般式(2)の各々の単位重縮合物のモル比は、一般式(1):一般式(2)=1:9〜3:1である。より好適には、一般式(1):一般式(2)=1:3〜3:1である。一般式(1)の構造の比率が 10モル%未満になると接着力の低下が問題となり、一般式(2)の構造の比率が 25モル%未満になるとはんだ耐熱性の低下が問題となる。   As the block copolymer polyimide used for the resin layer of the resin composite copper foil used in the present invention, a solvent-soluble block copolymer polyimide having a structural unit represented by the general formula (1) and the general formula (2) is used. Is preferred. The tetracarboxylic dianhydride used in this block copolymerized polyimide is 3,4,3'.4'-biphenyltetracarboxylic dianhydride, and the diamine is 1,3-bis (3-aminophenoxy) benzene. And 2,2-bis {4- (4-aminophenoxy) phenyl} propane. In addition, in order to control the molecular weight of each unit polycondensate, the molar ratio of tetracarboxylic dianhydride and diamine is shifted during the first stage reaction to make the terminal an acid anhydride or amine, and in the second stage reaction the tetra It is possible to obtain a block copolymerized polyimide having a sufficient molecular weight by reversing the molar ratio of carboxylic dianhydride and diamine to that of the first stage. As for the weight average molecular weight (Mw) of the block copolymerization polyimide of this invention, 50000-300000 are desirable. More preferably, it is 80000-200000. If Mw is less than 50000, the resin layer becomes brittle and cannot be used for this purpose. On the other hand, if Mw is greater than 300,000, the resin solution viscosity becomes too high and coating becomes difficult. Moreover, in order to control the final molecular weight, it is also possible to synthesize by shifting the molar ratio of the tetracarboxylic dianhydride to be used and the diamine. The molar ratio of each unit polycondensate of general formula (1) and general formula (2) is general formula (1): general formula (2) = 1: 9 to 3: 1. More preferably, general formula (1): general formula (2) = 1: 3 to 3: 1. When the ratio of the structure of the general formula (1) is less than 10 mol%, a decrease in adhesive strength becomes a problem. When the ratio of the structure of the general formula (2) is less than 25 mol%, a decrease in solder heat resistance becomes a problem.

本発明で使用される樹脂複合銅箔の樹脂層に使用されるポリマレイミド化合物とは、1分子中に2個以上のマレイミド基を有する化合物であれば特に限定されない。好適なものとしては、4,4'-ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、m-フェニレンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、3,3'-ジメチル-5,5'-ジエチル-4,4'-ジフェニルメタンビスマレイミドが挙げられ、1種もしくは2種以上を適宜混合して使用することも可能である。またポリマレイミド化合物のプレポリマー、もしくはポリマレイミド化合物とアミン化合物のプレポリマーなども使用可能である。樹脂複合銅箔の樹脂層におけるブロック共重合ポリイミドとビスマレイミド化合物との含有割合は、重量比で、10〜90:90〜10であり、好ましくは20〜80:80〜20である。   The polymaleimide compound used in the resin layer of the resin composite copper foil used in the present invention is not particularly limited as long as it is a compound having two or more maleimide groups in one molecule. Preferred examples include 4,4′-diphenylmethane bismaleimide, polyphenylmethane maleimide, m-phenylene bismaleimide, bisphenol A diphenyl ether bismaleimide, 3,3′-dimethyl-5,5′-diethyl-4,4 ′. -Diphenylmethane bismaleimide can be mentioned, and one or two or more can be used in appropriate mixture. A prepolymer of a polymaleimide compound or a prepolymer of a polymaleimide compound and an amine compound can also be used. The content ratio of the block copolymerized polyimide and the bismaleimide compound in the resin layer of the resin composite copper foil is 10 to 90:90 to 10 and preferably 20 to 80:80 to 20 by weight.

本発明で使用される樹脂複合銅箔に使用される銅箔は、プリント配線板に使用される公知の銅箔であれば特に限定されないが、好適には電解銅箔、圧延銅箔、これらの銅合金等が使用される。これらの銅箔に、例えばニッケル、コバルト処理、シラン処理剤などの公知の表面処理が施されたものも使用可能である。銅箔の厚さは特に限定されないが、好適には35μm以下である。樹脂層を形成する銅箔面の表面粗さ(Rz)は、4μm以下が好適であり、2μm以下がより好適である(Rzとは、JIS B0601で規定される十点平均粗さである。)。   The copper foil used for the resin composite copper foil used in the present invention is not particularly limited as long as it is a known copper foil used for printed wiring boards, but preferably an electrolytic copper foil, a rolled copper foil, and these A copper alloy or the like is used. For example, nickel, cobalt treatment, or a known surface treatment such as a silane treatment agent may be used on these copper foils. The thickness of the copper foil is not particularly limited, but is preferably 35 μm or less. The surface roughness (Rz) of the copper foil surface forming the resin layer is preferably 4 μm or less, and more preferably 2 μm or less (Rz is the ten-point average roughness defined by JIS B0601. ).

本発明で使用される樹脂複合銅箔における樹脂層の厚さは、銅箔の表面粗さレベルに応じて樹脂層の厚さを調整することが可能であるが、厚くなると、銅箔塗工後の加熱工程での乾燥が不十分となり易く、使用した銅張積層板の耐熱性が低下する場合があることから、0.1μm〜10μmが好ましく、1〜7μmがより好ましい。   In the resin composite copper foil used in the present invention, the thickness of the resin layer can be adjusted according to the surface roughness level of the copper foil. Since drying in the subsequent heating step tends to be insufficient, and the heat resistance of the copper clad laminate used may be reduced, 0.1 μm to 10 μm is preferable, and 1 to 7 μm is more preferable.

本発明で使用される樹脂複合銅箔は、前述の合成方法で得られたブロック共重合ポリイミド樹脂の極性溶媒溶液中にポリマレイミド化合物を1種又は2種以上配合し、室温又は加温しながら攪拌溶解させて、銅箔の片面に直接塗工し、乾燥することにより作製する。塗工方式としては、リバースロール、ロッド(バー)、ブレード、ナイフ、ダイ、グラビア、ロータリースクリーン等の種々の方式が可能である。乾燥には、熱風乾燥機や赤外線乾燥機等、使用溶媒の除去に充分な温度をかける事が出来る物であれば特に限定されるものではない。   The resin composite copper foil used in the present invention is blended with one or more polymaleimide compounds in the polar solvent solution of the block copolymerized polyimide resin obtained by the above-described synthesis method, while room temperature or heating. It is prepared by dissolving with stirring, coating directly on one side of the copper foil, and drying. As a coating method, various methods such as a reverse roll, a rod (bar), a blade, a knife, a die, a gravure, and a rotary screen are possible. The drying is not particularly limited as long as it can apply a temperature sufficient to remove the solvent used, such as a hot air dryer or an infrared dryer.

該ブロック共重合ポリイミド樹脂とポリマレイミド化合物との溶液を、銅箔に塗布した後、250℃〜360℃の温度で加熱して樹脂複合銅箔を作る。より低温、または、より高温の加熱では、樹脂複合銅箔の吸湿後の耐熱性が著しく劣る。樹脂複合銅箔の樹脂膜は、少なくとも200℃以下の温度では溶融することがなく、耐熱性や耐燃性、電気絶縁性に優れる。該加熱は、銅の酸化を防止するため、真空中又は窒素等の不活性雰囲気中で更に高温で乾燥することが好ましい。   After apply | coating the solution of this block copolymerization polyimide resin and a polymaleimide compound to copper foil, it heats at the temperature of 250 to 360 degreeC, and makes resin composite copper foil. With heating at a lower temperature or higher temperature, the heat resistance of the resin composite copper foil after moisture absorption is significantly inferior. The resin film of the resin composite copper foil does not melt at a temperature of at least 200 ° C. and is excellent in heat resistance, flame resistance, and electrical insulation. In order to prevent copper oxidation, the heating is preferably performed at a higher temperature in a vacuum or in an inert atmosphere such as nitrogen.

本発明のプリント配線板の製造方法において樹脂複合銅箔と積層成形するBステージ樹脂組成物層に使用する樹脂組成物は、プリント配線板に使用される公知の熱硬化性樹脂組成物であれば、特に限定されない。これらの樹脂としては、例えば、エポキシ樹脂、ポリイミド樹脂、シアン酸エステル樹脂、マレイミド樹脂、2重結合付加ポリフェニレンエーテル樹脂、これらの樹脂の臭素やリン含有化合物等の樹脂組成物などが挙げられ、1種或いは2種以上が組み合わせて使用される。耐マイグレーション性等の信頼性、耐熱性等の点から、シアン酸エステル樹脂を必須成分とする樹脂組成物、例えばエポキシ樹脂等との併用が好適である。これら熱硬化性樹脂には、必要に応じて、公知の触媒、硬化剤、硬化促進剤を使用することが可能である。   In the method for producing a printed wiring board of the present invention, the resin composition used for the B-stage resin composition layer that is laminated with the resin composite copper foil is a known thermosetting resin composition used for a printed wiring board. There is no particular limitation. Examples of these resins include epoxy resins, polyimide resins, cyanate ester resins, maleimide resins, double bond-added polyphenylene ether resins, and resin compositions such as bromine and phosphorus-containing compounds of these resins. Species or two or more are used in combination. From the viewpoint of reliability such as migration resistance and heat resistance, it is preferable to use a resin composition containing a cyanate ester resin as an essential component, for example, an epoxy resin. For these thermosetting resins, known catalysts, curing agents, and curing accelerators can be used as necessary.

本発明で使用されるBステージ樹脂組成物層に使用する樹脂組成物に好適に使用されるシアン酸エステル樹脂とは、分子内に2個以上のシアナト基を有する化合物である。具体的に例示すると、1,3-又は1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-、1,4-、1,6-、1,8-、2,6-又は2,7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4,4-ジシアナトビフェニル、ビス(4-ジシアナトフェニル)メタン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(3,5-ジブロモー4-シアナトフェニル)プロパン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、トリス(4-シアナトフェニル)ホスファイト、トリス(4-シアナトフェニル)ホスフェート、および各種のノボラック樹脂とハロゲン化シアンとの反応により得られるシアン酸エステル樹脂等である。これらは1種或いは2種以上が適宜組み合わせて使用される。   The cyanate ester resin suitably used for the resin composition used for the B-stage resin composition layer used in the present invention is a compound having two or more cyanato groups in the molecule. Specific examples include 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-, 2 , 6- or 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanato Phenyl) propane, 2,2-bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) ) Sulfone, tris (4-cyanatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and cyanate ester resins obtained by reacting various novolak resins with cyanogen halides. These may be used alone or in combination of two or more.

シアン酸エステル樹脂に好適に併用されるエポキシ樹脂としては、公知のものが使用できる。具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ビフェニル型エポキシ樹脂、フルオレン型エポキシ樹脂、レゾルシン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、エポキシ化ポリフェニレンエーテル樹脂;ブタジエン、ペンタジエン、ビニルシクロヘキセン、ジシクロペンチルエーテル等の二重結合をエポキシ化したポリエポキシ化合物類;ポリオール、水酸基含有シリコン樹脂類とエピクロルヒドリンとの反応によって得られるポリグリシジル化合物類等が挙げられる。又、これらの公知の臭素付加樹脂、リン含有エポキシ樹脂等が挙げられる。これらは1種或いは2種類以上が適宜組み合わせて使用される。   As an epoxy resin suitably used in combination with a cyanate ester resin, known resins can be used. Specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin, biphenyl type epoxy resin, fluorene type epoxy resin, resorcin type epoxy resin, Naphthalene type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, epoxidized polyphenylene ether resin; polyepoxy compounds epoxidized with double bond such as butadiene, pentadiene, vinylcyclohexene, dicyclopentyl ether; polyol, hydroxyl group Examples thereof include polyglycidyl compounds obtained by the reaction of containing silicon resins with epichlorohydrin. Moreover, these well-known bromine addition resin, phosphorus containing epoxy resin, etc. are mentioned. These may be used alone or in combination of two or more.

本発明で使用されるBステージ樹脂組成物層の作製方法は特に限定されないが、例えば、熱硬化性樹脂組成物を溶剤に溶解・分散させるか無溶剤でワニスとし、離型フィルムの片面に塗布、乾燥してBステージ樹脂組成物シートとする方法、基材に塗布、乾燥してBステージ化しプリプレグとする方法、導体回路を形成した基板の上に、直接塗布、乾燥してBステージ樹脂組成物層を形成する方法等、公知の方法で作製する。このBステージ樹脂組成物層の厚さは特に限定されないが、シートの場合は、好適には 4〜150μmであり、塗布する場合も同様である。プリプレグの場合は、好適には、厚さ 10〜200μmとする。   The method for producing the B-stage resin composition layer used in the present invention is not particularly limited. For example, the thermosetting resin composition is dissolved / dispersed in a solvent or made into a varnish without a solvent and applied to one side of a release film. , A method of drying to form a B-stage resin composition sheet, a method of applying to a base material, a method of drying to form a B-stage to form a prepreg, and a B-stage resin composition by directly coating and drying on a substrate on which a conductor circuit is formed It is produced by a known method such as a method of forming a physical layer. The thickness of the B-stage resin composition layer is not particularly limited, but in the case of a sheet, it is preferably 4 to 150 μm, and the same applies when applied. In the case of a prepreg, the thickness is preferably 10 to 200 μm.

本発明で使用されるBステージ樹脂組成物層には、得られる銅張積層板の特性から、基材を使用することが好ましい。使用される基材としては、プリント配線板に使用される公知の基材であれば、特に限定されない。具体的には、E、NE、D、S、Tガラス等の一般に公知のガラス繊維の不織布、織布等が挙げられる。これらの基材は、樹脂組成物との密着性を向上させるため、その基材に公知の表面処理を施すことが好ましい。   In the B stage resin composition layer used in the present invention, it is preferable to use a base material from the characteristics of the obtained copper-clad laminate. As a base material to be used, if it is a well-known base material used for a printed wiring board, it will not specifically limit. Specific examples include generally known nonwoven fabrics and woven fabrics of glass fibers such as E, NE, D, S, and T glass. In order for these base materials to improve adhesiveness with a resin composition, it is preferable to perform well-known surface treatment to the base material.

本発明における銅張積層板の製造方法は、前記樹脂複合銅箔の樹脂層面を、上記Bステージ樹脂組成物層に対向させて配置し、積層成形するものである。具体的には、Bステージ樹脂組成物層、もしくは積層板の両面にBステージ樹脂組成物層を配置又は形成したものの、少なくとも片面に、樹脂複合銅箔の樹脂層面を対向させて配置し、加熱、加圧、好ましくは真空下で積層成形して銅張積層板とする。又、多層板を作製する場合は、導体回路を形成した内層基板の両面にBステージ樹脂組成物層を配置又は形成し、このBステージ樹脂組成物層面に、樹脂複合銅箔の樹脂層面を対向させて配置し、加熱、加圧、好ましくは真空下で積層成形して多層銅張積層板とする。   The manufacturing method of the copper clad laminated board in this invention arrange | positions the resin layer surface of the said resin composite copper foil facing the said B stage resin composition layer, and carries out lamination molding. Specifically, although a B-stage resin composition layer or a B-stage resin composition layer is disposed or formed on both surfaces of a laminate, at least one surface is disposed with the resin layer surface of the resin composite copper foil facing and heated. Then, lamination molding is performed under pressure, preferably under vacuum, to obtain a copper-clad laminate. When producing a multilayer board, a B-stage resin composition layer is disposed or formed on both surfaces of the inner substrate on which the conductor circuit is formed, and the resin layer surface of the resin composite copper foil is opposed to the B-stage resin composition layer surface. The multilayer copper-clad laminate is formed by heating and pressurizing, preferably under vacuum, and forming by lamination.

これらに使用する積層板や回路基板の種類は、特に限定されず、プリント配線板材料用の公知の積層板、金属箔張板、好適には銅張板が使用できる。具体的には、熱硬化性樹脂組成物及び/又は熱可塑性樹脂組成物などを使用した、無機繊維及び/又は有機繊維基材銅張積層板、耐熱性フィルム基材銅張板、更にはこれらの基材の組み合わせた複合基材銅張積層板及びこれらの多層銅張板、アディティブ法等で作製した多層銅張板等、公知のものが使用できる。回路基板の導体厚さは特に限定されないが、好適には 3〜35μmである。この導体回路上は、Bステージ樹脂組成物層の樹脂との密着性を高める公知の処理、例えば黒色酸化銅処理、薬液処理(例えばメック社のCZ処理)等を施すのが好ましい。   The kind of the laminated board and circuit board used for these is not specifically limited, A well-known laminated board for printed wiring board materials, a metal foil tension board, Preferably a copper tension board can be used. Specifically, inorganic fiber and / or organic fiber-based copper-clad laminates, heat-resistant film-based copper-clad plates using thermosetting resin compositions and / or thermoplastic resin compositions, and further these Known materials such as composite base material copper clad laminates obtained by combining these base materials, multilayer copper clad plates, multilayer copper clad plates prepared by the additive method, and the like can be used. The conductor thickness of the circuit board is not particularly limited, but is preferably 3 to 35 μm. On this conductor circuit, it is preferable to perform a known process for improving the adhesion of the B-stage resin composition layer to the resin, for example, a black copper oxide process, a chemical solution process (for example, CZ process of MEC).

銅張積層板製造時の積層条件は特に限定されないが、好ましくは、温度 100〜250℃、圧力 5〜40kgf/cm2、真空度 30mmHg以下で 30分〜5時間積層成形する。積層は、最初から最後までこの条件でも良いが、ゲル化までは積層成形し、その後、取り出して加熱炉で後硬化することも可能である。 Lamination conditions during the production of the copper-clad laminate are not particularly limited. Preferably, lamination is performed at a temperature of 100 to 250 ° C., a pressure of 5 to 40 kgf / cm 2 , and a degree of vacuum of 30 mmHg or less for 30 minutes to 5 hours. Lamination may be performed under these conditions from the beginning to the end, but it is also possible to laminate and form until gelation, and then take out and post-cure in a heating furnace.

本発明のプリント配線板の製造方法は、上記銅張積層板を使用し、先ず、ドリル、レーザー等で、スルーホールやブラインドビアの孔あけ加工を行い、必要に応じて、過マンガン酸塩類でのデスミア処理を行い、孔あけ銅張積層板とした後、銅箔をすべてエッチング除去する。エッチング除去する方法は、エッチング液の種類に特に制限はなく、公知の方法が適用可能である。   The method for producing a printed wiring board according to the present invention uses the copper-clad laminate, and first drills through holes and blind vias with a drill, a laser, etc., and if necessary, with permanganates. After the desmear process is performed to form a perforated copper-clad laminate, all the copper foil is removed by etching. The method for removing the etching is not particularly limited in the type of the etchant, and a known method can be applied.

次に、樹脂層面を露出させた積層板の樹脂層表面を凹凸処理することなく、無電解銅メッキを行う。一般的に、銅メッキにより導体層を形成するプリント配線板の製造法においては、銅メッキ層と硬化性樹脂との接着力を確保するため、過マンガン酸塩等で、樹脂エッチングして、樹脂表面に凹凸を形成する必要があるが、本発明では、凹凸処理する必要がない特徴を有する。無電解銅メッキの方法は公知の方法で行う。一般的には、パラヂウム触媒を該樹脂膜表面に形成し、続いて、無電解銅メッキ液中に浸漬して、0.5〜2μmの厚さに銅層を形成する。次いで、全面に電解銅メッキを行い、エッチングにより強固に接着した銅回路を形成するか、もしくは、選択的に電解銅メッキを付着させ、少なくとも無電解銅メッキ層の厚み部分をエッチングにて除去することにより強固に接着した銅回路を形成する。電解銅メッキの厚さは、任意に選択される。この際、銅メッキ層の接着力をさらに向上させるため、無電解銅メッキ層または電解銅メッキ層を形成後に100℃〜200℃で加熱処理をする。加熱時間は特に制限はないが、好適には30分〜5時間が選択される。銅箔を酸化させないために真空中や、不活性ガス中での加熱が好ましい。   Next, electroless copper plating is performed without subjecting the resin layer surface of the laminated plate with the resin layer surface exposed to an uneven treatment. In general, in the method of manufacturing a printed wiring board in which a conductor layer is formed by copper plating, in order to ensure the adhesive force between the copper plating layer and the curable resin, the resin is etched with permanganate or the like, and the resin Although it is necessary to form unevenness on the surface, the present invention has a feature that does not require unevenness treatment. The electroless copper plating is performed by a known method. In general, a palladium catalyst is formed on the surface of the resin film, and subsequently immersed in an electroless copper plating solution to form a copper layer having a thickness of 0.5 to 2 μm. Next, electrolytic copper plating is performed on the entire surface to form a copper circuit that is firmly adhered by etching, or alternatively, electrolytic copper plating is selectively attached, and at least the thickness portion of the electroless copper plating layer is removed by etching. Thus, a firmly bonded copper circuit is formed. The thickness of the electrolytic copper plating is arbitrarily selected. At this time, in order to further improve the adhesive strength of the copper plating layer, heat treatment is performed at 100 ° C. to 200 ° C. after the formation of the electroless copper plating layer or the electrolytic copper plating layer. The heating time is not particularly limited, but is preferably selected from 30 minutes to 5 hours. In order not to oxidize the copper foil, heating in a vacuum or in an inert gas is preferable.

その後の銅回路を形成する方法は、公知のサブトラクティブ法またはパターンメッキ法に準じて行い、プリント配線板とする。具体的には、サブトラクティブ法でパターン形成する場合は、銅メッキ層上の銅回路を形成する部分を、エッチングレジストで被覆し、公知のエッチング法により、選択的に銅メッキ層を除去し、回路パターン形成を行い、プリント配線板とする。また、パターンメッキ法でパターン形成する場合は、0.5から1μm程度の無電解銅メッキ層を形成した後、銅回路を形成する場所以外を、メッキレジストで選択的に被覆し、パターンメッキにより、電解銅メッキ層を10から30μm程度形成した後、メッキレジストを剥離し、少なくとも、電解銅メッキ層を形成していない無電解銅メッキ層をエッチングして、パターン形成を行い、プリント配線板とする。   The subsequent method for forming a copper circuit is performed in accordance with a known subtractive method or pattern plating method to obtain a printed wiring board. Specifically, in the case of pattern formation by the subtractive method, a portion of the copper plating layer on which the copper circuit is formed is covered with an etching resist, and the copper plating layer is selectively removed by a known etching method. A circuit pattern is formed to obtain a printed wiring board. In addition, when forming a pattern by the pattern plating method, after forming an electroless copper plating layer of about 0.5 to 1 μm, the area other than the place where the copper circuit is to be formed is selectively covered with a plating resist. After forming a copper plating layer of about 10 to 30 μm, the plating resist is peeled off, and at least an electroless copper plating layer on which no electrolytic copper plating layer is formed is etched to form a pattern to obtain a printed wiring board.

以下に合成例、比較合成例、実施例、比較例で本発明を具体的に説明する。
(合成例)
ステンレス製の碇型攪拌棒、窒素導入管とストップコックのついたトラップ上に、玉付冷却管を取り付けた還流冷却器を取り付けた2リットルの三つ口フラスコに、3,4、3',4'-ビフェニルテトラカルボン酸二無水物 117.68g(400mmol)、1,3-ビス(3-アミノフェノキシ)ベンゼン 87.7g(300mmol)、γ-バレロラクトン 4.0g(40mmol)、ピリジン 4.8g(60mmol)、N-メチル-2-ピロリドン(以下NMPと記す) 300g、トルエン 20gを加え、180℃で1時間加熱した後室温付近まで冷却した後、3,4、3',4'-ビフェニルテトラカルボン酸二無水物 29.42g(100mmol)、2,2-ビス{4-(4-アミノフェノキシ)フェニル}プロパン 82.12g(200mmol)、NMP 200g、トルエン 40gを加え、室温で1時間混合後、180℃で3時間加熱して、固形分 38%のブロック共重合ポリイミドを得た。このブロック共重合ポリイミドは、一般式(1):一般式(2)=3:2であり、数平均分子量:70000、重量平均分子量:150000であった。
Hereinafter, the present invention will be specifically described with reference to synthesis examples, comparative synthesis examples, examples, and comparative examples.
(Synthesis example)
To a 2-liter three-necked flask equipped with a stainless steel vertical stirring bar, a trap equipped with a nitrogen inlet tube and a stopcock, and a reflux condenser equipped with a ball cooling tube, 3,4, 3 ', 4'-biphenyltetracarboxylic dianhydride 117.68 g (400 mmol), 1,3-bis (3-aminophenoxy) benzene 87.7 g (300 mmol), γ-valerolactone 4.0 g (40 mmol), pyridine 4.8 g (60 mmol) , N-methyl-2-pyrrolidone (hereinafter referred to as NMP) 300 g and toluene 20 g were added, heated at 180 ° C. for 1 hour, cooled to near room temperature, and then 3,4,3 ′, 4′-biphenyltetracarboxylic acid. Add 29.42 g (100 mmol) of dianhydride, 82.12 g (200 mmol) of 2,2-bis {4- (4-aminophenoxy) phenyl} propane, 200 g of NMP and 40 g of toluene, mix at room temperature for 1 hour, and then at 180 ° C. The block copolymer polyimide having a solid content of 38% was obtained by heating for 3 hours. The block copolymerized polyimide had general formula (1): general formula (2) = 3: 2, number average molecular weight: 70000, and weight average molecular weight: 150,000.

実施例1〜4
合成例で得られたブロック共重合ポリイミド溶液をNMPで更に希釈し、固形分 10%のブロック共重合ポリイミド溶液とした。このブロック共重合ポリイミド溶液にビス(4-マレイミドフェニル)メタン(BMI-H、ケイ・アイ化成)を表1に記載した固形分重量比率で各々60℃、20分間溶解混合して各々樹脂溶液とした後、厚み 12μmの電解銅箔(F0-WS箔 Rz=1.5μm、古河サーキットフォイル製)のマット面に、リバースロール塗工機を用いて塗工し、窒素雰囲気下で、120℃で3分間、160℃で3分間乾燥処理後、最後に300℃で2分間加熱処理を行い、各々樹脂複合銅箔を作製した。
Examples 1-4
The block copolymerized polyimide solution obtained in the synthesis example was further diluted with NMP to obtain a block copolymerized polyimide solution having a solid content of 10%. In this block copolymerized polyimide solution, bis (4-maleimidophenyl) methane (BMI-H, Kei Ii Kasei) was dissolved and mixed at a solid content weight ratio shown in Table 1 at 60 ° C. for 20 minutes, respectively. After that, it was coated on the mat surface of 12μm thick electrolytic copper foil (F0-WS foil Rz = 1.5μm, manufactured by Furukawa Circuit Foil) using a reverse roll coating machine, and at 3O 0 C under nitrogen atmosphere. After 3 minutes of drying at 160 ° C. for 3 minutes, finally, heat treatment was performed at 300 ° C. for 2 minutes to produce a resin composite copper foil.

一方、2,2-ビス(4-シアナトフェニル)プロパン 400gを 150℃に溶融させ、撹拌しながら4時間反応させ、これをメチルエチルケトンで溶解し、更にブロム化ビスフェノールA型エポキシ樹脂(エピクロン1123P、大日本インキ製)600g、オクチル酸亜鉛 0.1部を加えワニスとした。このワニスを、厚さ 100μmのガラス織布基材に含浸させ、150℃で 6分間乾燥し、樹脂量 45%、厚さ 105μm、ゲル化時間(at170℃) 120秒のBステージ樹脂組成物層(プリプレグ)を作製した。このプリプレグを4枚重ね合わせた上下面に、各々上記の樹脂複合銅箔の樹脂層面を対向させて配置し、温度 220℃、圧力 40kgf/cm、真空度 30mmHg以下で1時間積層成形して、厚さ 0.4mmの銅張積層板を各々作製した。これらの銅張積層板に、直径0.2mmの孔をドリルであけた後、過酸化水素・硫酸エッチング液で銅箔を全面除去した。更に、無電解メッキ液(奥野製薬製、ATSアドカッパーCT)で、厚さ1μmの銅層を形成して、130℃の加熱炉で2時間加熱した後、硫酸銅メッキ液で1.5アンペア/dm2で70分間の電解メッキをし、20μm厚さの銅層を形成した。この銅層を形成した各々の積層板に、厚さ10μmのエッチングレジストフィルムを貼り付け、露光、現像して銅回路を形成する部分(幅34μmの線状)のみエッチングレジストで被覆した後、塩化銅エッチング液でエッチングを行い、エッチングレジストを剥離して、平均25μm幅の銅回路を有するプリント配線板を各々作製した。評価結果を表1に示す。 On the other hand, 400 g of 2,2-bis (4-cyanatophenyl) propane was melted at 150 ° C., reacted for 4 hours with stirring, dissolved in methyl ethyl ketone, and further brominated bisphenol A type epoxy resin (Epicron 1123P, Dainippon Ink) (600 g) and zinc octylate (0.1 part) were added to make a varnish. This varnish is impregnated into a glass woven fabric substrate with a thickness of 100 μm, dried at 150 ° C. for 6 minutes, a B-stage resin composition layer having a resin amount of 45%, a thickness of 105 μm, and a gelation time (at 170 ° C.) of 120 seconds. A (prepreg) was prepared. The upper and lower surfaces of the four prepregs are placed on the top and bottom surfaces of the resin composite copper foil facing each other, and laminated and molded for 1 hour at a temperature of 220 ° C, a pressure of 40 kgf / cm 2 , and a degree of vacuum of 30 mmHg or less. A copper clad laminate having a thickness of 0.4 mm was produced. After drilling a hole with a diameter of 0.2 mm in these copper clad laminates, the copper foil was entirely removed with a hydrogen peroxide / sulfuric acid etching solution. Further, a 1 μm thick copper layer was formed with an electroless plating solution (Okuno Pharmaceutical Co., Ltd., ATS Adcopper CT), heated in a heating furnace at 130 ° C. for 2 hours, and then 1.5 ampere / dm 2 with a copper sulfate plating solution. Was subjected to electrolytic plating for 70 minutes to form a copper layer having a thickness of 20 μm. A 10 μm-thick etching resist film is attached to each laminated board on which the copper layer is formed, and after exposure and development, only a portion (34 μm wide linear shape) forming a copper circuit is covered with the etching resist, and then chlorinated. Etching was performed with a copper etchant, and the etching resist was peeled off to produce printed wiring boards each having a copper circuit with an average width of 25 μm. The evaluation results are shown in Table 1.

(表1) 評価結果

Figure 2007242975
(Table 1) Evaluation results
Figure 2007242975

実施例5〜8
実施例1〜4において、無電解メッキ液により、厚さ1μmの銅層を形成する工程までは実施例1〜4と同様に行い、次いで厚さ15μmのメッキレジストフィルムを貼り付け、露光、現像して銅回路を形成する場所以外をメッキレジストで被覆(レジスト残り幅9μm、レジスト開溝幅15μm)した後、メッキレジストを剥離し、硫酸銅メッキ液を用い、1.5アンペア/ dmで50分間電解銅メッキを行い、厚さ17μmの銅回路を各々形成した。ついで、過酸化水素/硫酸エッチング液(三菱ガス化学製 商品名 CPE800)でエッチングをおこない、線幅/線間隔が約12/12μmの回路を形成した後、130℃の加熱炉で2時間加熱してプリント配線板を各々作製した。評価結果を表2に示す。
Examples 5-8
In Examples 1 to 4, the steps up to forming a 1 μm thick copper layer with an electroless plating solution are performed in the same manner as in Examples 1 to 4, and then a 15 μm thick plating resist film is attached, exposed, and developed. Then, after coating the areas other than the copper circuit with a plating resist (resist remaining width 9 μm, resist groove width 15 μm), the plating resist is peeled off, and a copper sulfate plating solution is used at 1.5 ampere / dm 2 . Electrolytic copper plating was performed for 50 minutes to form copper circuits having a thickness of 17 μm. Next, etching is performed with a hydrogen peroxide / sulfuric acid etchant (trade name CPE800, manufactured by Mitsubishi Gas Chemical) to form a circuit having a line width / line spacing of about 12/12 μm, and then heated in a heating furnace at 130 ° C. for 2 hours. Each printed wiring board was manufactured. The evaluation results are shown in Table 2.

表2 評価結果

Figure 2007242975
Table 2 Evaluation results
Figure 2007242975

比較例1、2
実施例1、5において、ビスマレイミドを使用しない以外は、実施例1、5と同様にして行い、プリント配線板を作製した。評価結果を表3に示す。
Comparative Examples 1 and 2
A printed wiring board was produced in the same manner as in Examples 1 and 5 except that bismaleimide was not used in Examples 1 and 5. The evaluation results are shown in Table 3.

表3 評価結果

Figure 2007242975
Table 3 Evaluation results
Figure 2007242975

(測定方法)
1)全体厚み:
JIS C6481に準じて、樹脂複合銅箔(サイズ500×500mm)の厚みをマイクロメータにて5ケ所測定した平均値。
2)銅メッキ接着力:
0.4mmの銅張積層板の銅箔を全面エッチングした積層板を使用し、回路形成することなく、無電解メッキと電解銅メッキを行った全面銅メッキ層積層板を作製し、JIS C6481に準じて、3回測定した平均値。
3)吸湿耐熱性:
プリント配線板を50mm×50mm角に切断し、プレシッヤークッカー試験機(平山製作所製PC-3型)で121℃、2気圧で所定時間処理後、260℃の半田槽に60秒間フロートさせて、外観変化の異常の有無を目視にて観察した。(○:異常なし、×:膨れ、剥がれが発生)
(Measuring method)
1) Overall thickness:
According to JIS C6481, the average value of the thickness of resin composite copper foil (size 500 x 500 mm) measured at five locations with a micrometer.
2) Copper plating adhesive strength:
Using a laminate of copper foil of 0.4 mm copper-clad laminate that has been etched on the entire surface, a full copper-plated layer laminate that has undergone electroless plating and electrolytic copper plating is prepared without forming a circuit. Similarly, the average value measured three times.
3) Hygroscopic heat resistance:
Cut the printed wiring board into 50mm x 50mm square, treat it at 121 ° C and 2 atm for a specified time with a prescher cooker tester (PC-3 type manufactured by Hirayama Seisakusho), then float it in a solder bath at 260 ° C for 60 seconds. The presence or absence of abnormal appearance changes was visually observed. (○: No abnormality, ×: Swelling and peeling occurred)

本発明で使用される銅張積層板の説明図である。It is explanatory drawing of the copper clad laminated board used by this invention. スルーホールを形成した銅張積層板の説明図である。It is explanatory drawing of the copper clad laminated board in which the through hole was formed. 銅箔を除去して樹脂層表面を露出させた積層板の説明図である。It is explanatory drawing of the laminated board which removed the copper foil and exposed the resin layer surface. 樹脂層表面に無電解銅メッキ層を形成した積層板の説明図である。It is explanatory drawing of the laminated board which formed the electroless copper plating layer in the resin layer surface. 無電解銅メッキ層上に電解銅メッキ層を形成した積層板の説明図である。It is explanatory drawing of the laminated board which formed the electrolytic copper plating layer on the electroless copper plating layer. 無電解銅メッキ層と電解銅メッキ層を選択的に除去したプリント配線板の説明図である。It is explanatory drawing of the printed wiring board which selectively removed the electroless copper plating layer and the electrolytic copper plating layer.

符号の説明Explanation of symbols

1 銅箔
2 樹脂層
3 Bステージ樹脂組成物層
4 スルーホール
5 無電解銅メッキ層
6 電解銅メッキ層
7 回路
DESCRIPTION OF SYMBOLS 1 Copper foil 2 Resin layer 3 B stage resin composition layer 4 Through hole 5 Electroless copper plating layer 6 Electrolytic copper plating layer 7 Circuit

Claims (8)

銅箔の片面にブロック共重合ポリイミド樹脂とポリマレイミド化合物を含有する樹脂層を形成した樹脂複合銅箔の樹脂層面に、Bステージ樹脂組成物層を重ね、積層成形して銅張積層板とした後、該銅張積層板の銅箔をすべてエッチング除去し、樹脂層表面を露出させて積層板とし、該積層板の樹脂層表面を凹凸処理することなく、無電解銅メッキにより無電解銅メッキ層を形成し、次いで無電解銅メッキ層の上に電解銅メッキにより電解銅メッキ層を形成した後、無電解銅メッキ層と電解銅メッキ層を、選択的にエッチング除去して銅回路を形成するプリント配線板の製造方法。 A B-stage resin composition layer was laminated on the resin layer surface of the resin composite copper foil in which a resin layer containing a block copolymerized polyimide resin and a polymaleimide compound was formed on one side of the copper foil, and a copper-clad laminate was obtained by laminating and molding. After that, all the copper foil of the copper-clad laminate is removed by etching, the resin layer surface is exposed to form a laminate, and the electroless copper plating is performed by electroless copper plating without roughening the resin layer surface of the laminate. After forming an electrolytic copper plating layer on the electroless copper plating layer by electrolytic copper plating, the electroless copper plating layer and the electrolytic copper plating layer are selectively etched away to form a copper circuit. A printed wiring board manufacturing method. 銅箔の片面にブロック共重合ポリイミド樹脂とポリマレイミド化合物を含有する樹脂層を形成した樹脂複合銅箔の樹脂層面に、Bステージ樹脂組成物層を重ね、積層成形して銅張積層板とした後、該銅張積層板の銅箔をすべてエッチング除去し、樹脂層表面を露出させて積層板とし、該積層板の樹脂層表面を凹凸処理することなく、無電解銅メッキにより無電解銅メッキ層を形成し、次いで無電解銅メッキ層の上に選択的に電解銅メッキ層を形成した後、少なくとも電解銅メッキ層が形成されていない無電解銅メッキ層をエッチング除去して銅回路を形成するプリント配線板の製造方法。 A B-stage resin composition layer was laminated on the resin layer surface of the resin composite copper foil in which a resin layer containing a block copolymerized polyimide resin and a polymaleimide compound was formed on one side of the copper foil, and a copper-clad laminate was obtained by laminating and molding. After that, all the copper foil of the copper-clad laminate is removed by etching, the resin layer surface is exposed to form a laminate, and the electroless copper plating is performed by electroless copper plating without roughening the resin layer surface of the laminate. After forming a layer and then selectively forming an electrolytic copper plating layer on the electroless copper plating layer, at least the electroless copper plating layer on which the electrolytic copper plating layer is not formed is removed by etching to form a copper circuit A printed wiring board manufacturing method. 請求項1および請求項2記載のプリント配線板の製造方法において、無電解メッキ層または電解銅メッキ層を形成した後に、100℃〜200℃で加熱処理をすることを特徴とするプリント配線板の製造方法。 3. The method of manufacturing a printed wiring board according to claim 1, wherein after the electroless plating layer or the electrolytic copper plating layer is formed, heat treatment is performed at 100 ° C. to 200 ° C. Production method. 該ブロック共重合ポリイミドが、一般式(1)及び一般式(2)で表される構造単位を有するブロック共重合ポリイミド樹脂である請求項1〜3のいずれかに記載のプリント配線板の製造方法。
Figure 2007242975


Figure 2007242975

(式中のm,nは、m:n=1:9〜3:1を満たす整数)
The method for producing a printed wiring board according to any one of claims 1 to 3, wherein the block copolymerized polyimide is a block copolymerized polyimide resin having structural units represented by the general formula (1) and the general formula (2). .
Figure 2007242975


Figure 2007242975

(M and n in the formula are integers satisfying m: n = 1: 9 to 3: 1)
該樹脂複合銅箔の樹脂層厚みが0.1μm〜10μmである樹脂複合銅箔である請求項1〜4のいずれかに記載のプリント配線板の製造方法。 The method for producing a printed wiring board according to claim 1, wherein the resin composite copper foil is a resin composite copper foil having a resin layer thickness of 0.1 μm to 10 μm. 該樹脂複合銅箔の樹脂層におけるブロック共重合ポリイミドとマレイミド化合物との含有割合が、重量比で10〜90:90〜10である樹脂複合銅箔である請求項1〜5のいずれかに記載のプリント配線板の製造方法。 6. The resin composite copper foil according to claim 1, wherein a content ratio of the block copolymerized polyimide and the maleimide compound in the resin layer of the resin composite copper foil is 10 to 90:90 to 10 by weight. Manufacturing method of printed wiring board. 該樹脂複合銅箔が、銅箔の片面に該ブロック共重合ポリイミドと該マレイミド化合物を含有する樹脂溶液を塗工した後、250〜360℃の加熱処理工程を経てなる、200℃以下では、溶融しない樹脂層を形成した樹脂複合銅箔である請求項1〜6のいずれかに記載のプリント配線板の製造方法。 After the resin composite copper foil is coated on one side of the copper foil with a resin solution containing the block copolymerized polyimide and the maleimide compound, it is subjected to a heat treatment step of 250 to 360 ° C. The method for producing a printed wiring board according to claim 1, wherein the resin composite copper foil has a resin layer that is not formed. 請求項1〜7のいずれかに記載のプリント配線板の製造方法で得られるプリント配線板。

The printed wiring board obtained by the manufacturing method of the printed wiring board in any one of Claims 1-7.

JP2006065010A 2006-01-25 2006-03-10 Printed wiring board and manufacturing method thereof Active JP4829647B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006065010A JP4829647B2 (en) 2006-03-10 2006-03-10 Printed wiring board and manufacturing method thereof
TW96102863A TWI384908B (en) 2006-01-25 2007-01-25 Resin composite copper foil, printed wiring board, and production process thereof
CN2007100082213A CN101009973B (en) 2006-01-25 2007-01-25 Resin composite copper foil, printed wiring board, and production process thereof
US11/657,529 US7989081B2 (en) 2006-01-25 2007-01-25 Resin composite copper foil, printed wiring board, and production processes thereof
KR1020070008038A KR101308119B1 (en) 2006-01-25 2007-01-25 Resin composite copper foil, printed wiring board, and production process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065010A JP4829647B2 (en) 2006-03-10 2006-03-10 Printed wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007242975A true JP2007242975A (en) 2007-09-20
JP4829647B2 JP4829647B2 (en) 2011-12-07

Family

ID=38588210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065010A Active JP4829647B2 (en) 2006-01-25 2006-03-10 Printed wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4829647B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040728A (en) * 2009-07-14 2011-02-24 Ajinomoto Co Inc Copper clad laminate
JP2012114217A (en) * 2010-11-24 2012-06-14 Nitto Denko Corp Manufacturing method of wiring circuit board
JP5470487B1 (en) * 2013-05-29 2014-04-16 Jx日鉱日石金属株式会社 Copper foil, copper clad laminate for semiconductor package using the same, printed wiring board, printed circuit board, resin substrate, circuit forming method, semi-additive method, circuit forming substrate for semiconductor package, and semiconductor package
KR101797333B1 (en) * 2012-11-30 2017-11-13 제이엑스금속주식회사 Copper foil with carrier
KR20180037252A (en) 2015-08-03 2018-04-11 제이엑스금속주식회사 Process for producing printed wiring board, surface-treated copper foil, laminate, printed wiring board, semiconductor package and electronic device
KR20180059507A (en) 2015-09-24 2018-06-04 제이엑스금속주식회사 Metal foil, metal foil with a release layer, laminate, printed wiring board, semiconductor package, electronic device and manufacturing method of printed wiring board
KR20180090210A (en) 2017-02-02 2018-08-10 제이엑스금속주식회사 Metal foil with release layer, metal foil, laminate, printed wiring board, semiconductor package, method of manufacturing printed wiring board and electronic device
JP2018172788A (en) * 2017-03-30 2018-11-08 ワイエムティー カンパニー リミテッド Production method of porous copper foil and porous copper foil using the production method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118625A (en) * 1993-10-05 1995-05-09 W R Grace & Co Heat-curable polyimide adhesive composition and bonding with same adhesive composition
JP2002361790A (en) * 2001-06-08 2002-12-18 Kanegafuchi Chem Ind Co Ltd Method for manufacturing laminated body
WO2003004262A1 (en) * 2001-07-06 2003-01-16 Kaneka Corporation Laminate and its producing method
JP2003236982A (en) * 2002-02-15 2003-08-26 Kanegafuchi Chem Ind Co Ltd Method for manufacturing laminated body and printed- wiring board
JP2004322636A (en) * 2003-04-07 2004-11-18 Mitsui Chemicals Inc Polyimide metal laminate and its production process
JP2006082228A (en) * 2004-09-14 2006-03-30 Mitsubishi Gas Chem Co Inc Resin composite copper foil and copper clad laminated sheet using it and printed wiring board
JP2006196863A (en) * 2004-12-14 2006-07-27 Mitsubishi Gas Chem Co Inc Method of fabricating printed circuit board
JP2007196471A (en) * 2006-01-25 2007-08-09 Mitsubishi Gas Chem Co Inc Resin composite copper foil, and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118625A (en) * 1993-10-05 1995-05-09 W R Grace & Co Heat-curable polyimide adhesive composition and bonding with same adhesive composition
JP2002361790A (en) * 2001-06-08 2002-12-18 Kanegafuchi Chem Ind Co Ltd Method for manufacturing laminated body
WO2003004262A1 (en) * 2001-07-06 2003-01-16 Kaneka Corporation Laminate and its producing method
JP2003236982A (en) * 2002-02-15 2003-08-26 Kanegafuchi Chem Ind Co Ltd Method for manufacturing laminated body and printed- wiring board
JP2004322636A (en) * 2003-04-07 2004-11-18 Mitsui Chemicals Inc Polyimide metal laminate and its production process
JP2006082228A (en) * 2004-09-14 2006-03-30 Mitsubishi Gas Chem Co Inc Resin composite copper foil and copper clad laminated sheet using it and printed wiring board
JP2006196863A (en) * 2004-12-14 2006-07-27 Mitsubishi Gas Chem Co Inc Method of fabricating printed circuit board
JP2007196471A (en) * 2006-01-25 2007-08-09 Mitsubishi Gas Chem Co Inc Resin composite copper foil, and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040728A (en) * 2009-07-14 2011-02-24 Ajinomoto Co Inc Copper clad laminate
JP2012114217A (en) * 2010-11-24 2012-06-14 Nitto Denko Corp Manufacturing method of wiring circuit board
US8869391B2 (en) 2010-11-24 2014-10-28 Nitto Denko Corporation Producing method of wired circuit board
KR101797333B1 (en) * 2012-11-30 2017-11-13 제이엑스금속주식회사 Copper foil with carrier
JP5470487B1 (en) * 2013-05-29 2014-04-16 Jx日鉱日石金属株式会社 Copper foil, copper clad laminate for semiconductor package using the same, printed wiring board, printed circuit board, resin substrate, circuit forming method, semi-additive method, circuit forming substrate for semiconductor package, and semiconductor package
WO2014192895A1 (en) * 2013-05-29 2014-12-04 Jx日鉱日石金属株式会社 Copper foil, copper foil with carrier, copper-clad laminate, printed circuit board, circuit forming substrate for semiconductor package, semiconductor package, electronic device, resin substrate, circuit forming method, semiadditive method, and printed circuit board manufacturing method
KR20180037252A (en) 2015-08-03 2018-04-11 제이엑스금속주식회사 Process for producing printed wiring board, surface-treated copper foil, laminate, printed wiring board, semiconductor package and electronic device
KR20180059507A (en) 2015-09-24 2018-06-04 제이엑스금속주식회사 Metal foil, metal foil with a release layer, laminate, printed wiring board, semiconductor package, electronic device and manufacturing method of printed wiring board
KR20180090210A (en) 2017-02-02 2018-08-10 제이엑스금속주식회사 Metal foil with release layer, metal foil, laminate, printed wiring board, semiconductor package, method of manufacturing printed wiring board and electronic device
JP2018172788A (en) * 2017-03-30 2018-11-08 ワイエムティー カンパニー リミテッド Production method of porous copper foil and porous copper foil using the production method

Also Published As

Publication number Publication date
JP4829647B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
TWI384908B (en) Resin composite copper foil, printed wiring board, and production process thereof
KR101289043B1 (en) Resin Composite Metal Foil, Laminate and Process for the Production of Printed Wiring Board Using the Laminate
JP5636367B2 (en) Resin composite electrolytic copper foil, copper-clad laminate and printed wiring board
JP4740692B2 (en) Manufacturing method of printed wiring board
JP4221290B2 (en) Resin composition
JP4829647B2 (en) Printed wiring board and manufacturing method thereof
JP4896533B2 (en) Resin composite copper foil and method for producing the same
TW200304349A (en) Metal foil with resin and metal-clad laminate, and printed wiring board using the same and method for production thereof
KR101314382B1 (en) Resin composition for printed circuit board
JP5641942B2 (en) Resin composite copper foil
JP4767517B2 (en) Resin composite copper foil, copper-clad laminate and printed wiring board using the same
JP4797816B2 (en) Method for manufacturing printed wiring board
JP5253754B2 (en) Resin composite copper foil
JP2004276411A (en) Laminate, printed wiring board and method for manufacturing the printed wiring board
JP2005135985A (en) Manufacturing method for printed wiring board
JP2005288714A (en) B-stage resin composition sheet and manufacturing method of copper clad laminate using it
JP2003243810A (en) Method of manufacturing printed wiring board equipped with very fine wire pattern
JP4390055B2 (en) Method for producing copper clad laminate
JP2008279764A (en) Manufacturing process of sheet material for printed wiring board, and multilayer printed circuit board using it
JP2003260755A (en) B-stage resin composition sheet with metallic foil containing heat resisting film base material for lamination

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4829647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250