JP2003051657A - Method for manufacturing printed circuit substrate having ultra fine wiring pattern - Google Patents

Method for manufacturing printed circuit substrate having ultra fine wiring pattern

Info

Publication number
JP2003051657A
JP2003051657A JP2001238861A JP2001238861A JP2003051657A JP 2003051657 A JP2003051657 A JP 2003051657A JP 2001238861 A JP2001238861 A JP 2001238861A JP 2001238861 A JP2001238861 A JP 2001238861A JP 2003051657 A JP2003051657 A JP 2003051657A
Authority
JP
Japan
Prior art keywords
plating
copper
layer
copper foil
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001238861A
Other languages
Japanese (ja)
Inventor
Morio Take
杜夫 岳
Nobuyuki Ikeguchi
信之 池口
Katsuji Komatsu
勝次 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2001238861A priority Critical patent/JP2003051657A/en
Publication of JP2003051657A publication Critical patent/JP2003051657A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a high-density printed circuit substrate in which a pattern having proper copper foil adhesive force and a good shape is manufactured of ultra fine wirings on a thin copper foil-clad copper-clad substrate. SOLUTION: A method for manufacturing a printed circuit substrate, having the ultra fine wiring pattern comprises the steps of applying electroless copper plating of 0.1 to 1 μm and then electric copper plating of 0.5 to 3 μm by using an ultra thin copper foil (a), having a copper foil thickness of 5 μm or less of an outermost layer formed with a through-hole and/or a blind via hole, adhering a plating resist (h), then making electric copper plating of 6 to 30 μm to adhere, further making adhering plating resist (j) thereon, making nickel plating and gold plating or solder plating to adhere at a position in which the plating resist is not adhered, peeling off the resist, and then melt removing a thin electrical copper plating layer (g), an electroless copper plating layer (f) and the ultra fine copper foil layer by etching to form a pattern of line/space = 40/40 μm or less. Accordingly, the high-density printed circuit substrate having the very small undercut of the pattern and superior copper foil adhering force can be obtained.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、ライン/スペースが極
細線パターン、例えば40/40μm以下のパターンを有する
プリント配線板の製造方法に関するものであり、得られ
た極細線パターンを有する高密度プリント配線板は、新
規な半導体プラスチックパッケージ用等に主に使用され
る。 【0002】 【従来の技術】従来、半導体プラスチックパッケージ等
に用いられる高密度のプリント配線板において、細線の
パターンを作製する方法は、サブトラクティブ法で5μm
以下の極薄銅箔を使用し、貫通孔及び/又はブラインド
ビア孔を炭酸ガスレーザー等で形成した後、銅メッキを
15μm程度付着させ、メッキレジスト等を用いて銅箔を
エッチング除去するか、炭酸ガスレーザーを銅箔上に直
接照射して貫通孔及び/又はブラインドビア孔形成後に
孔部に発生した銅箔バリを溶解除去すると同時に表層の
銅箔をSUEP(Surface Uniform Etching Process )で12μ
mの厚みから5μm以下まで溶解除去し、デスミア処理
後、銅メッキを15μm程度付着させて通常のエッチング
レジスト等を用いて極細線のパターンを作製する方法等
が知られている。この方法は、エッチングによってパタ
ーン上が底部より細くなり、断面が台形となるか、三角
形となり、不良の発生の原因となっていた。 【0003】また、セミアディティブ法でメッキアップ
してから同様にエッチングレジスト等を用いて極細線の
パターンを作製する方法もあるが、これも銅メッキの厚
さを18μm位に厚くした場合には同様の形状となり、ま
た銅との接着力、信頼性等に問題があった。更に、フル
アディティブ法で銅メッキを付着する場合、銅メッキ層
を厚くしても銅の接着力が低い等の問題があった。一
方、極薄銅箔を使用し、この上に無電解銅メッキを施し
た後、パターン銅メッキ法にてパターンを形成する方
法、更にはセミアディティブ法で薄く無電解銅層を基板
の上に付け、これを用いてパターン銅メッキ法にてパタ
ーンを形成する方法があるが、最後のフラッシュエッチ
ングにて無電解銅層がサイドエッチングされ、細密パタ
ーンにおいて銅接着力に問題のあるものであった。更
に、細密パターンにおいては、耐マイグレーション性等
の信頼性に問題のあるものであった。 【0004】 【発明が解決しようとする課題】本発明は、サブトラク
ティブ法にて、以上の問題点を解決した、即ち、銅箔の
接着力を保持し、且つパターン形状の良好な極細線パタ
ーンを形成したプリント配線板の製造方法を提供するも
のである。 【0005】 【発明が解決するための手段】本発明は、以下の工程で
プリント配線板を製造することにより、極細線のパター
ンを有し、且つ銅箔の接着力に優れた高密度のプリント
配線板を得ることができた。即ち、(1)貫通孔及び/又
はブラインドビア孔が形成されている、最外層の銅箔厚
さが5μm以下の極薄銅張板を用い、孔内を含む表面に0.
1〜1μmの無電解銅メッキを施し、(2)次いで、該無電解
銅メッキ析出層を電極にして厚さ0.5〜3μmの電気銅メ
ッキ層を形成し、(3)この銅メッキ析出層の上の必要部
分にパターン電気メッキ用のメッキレジスト層を形成
し、(4)メッキレジスト層が形成されていない銅面に、
電気銅メッキでパターン銅メッキを6〜30μm付着させ、
(5)その上にメッキレジストを付着させ、(6)ニッケルメ
ッキ及び金メッキ、又はハンダメッキを付着させ、(7)
メッキレジストを剥離除去し、(8)全面をエッチングし
て、少なくともパターン銅メッキ層の形成されていない
部分の薄い電気銅層、無電解銅層及び極薄銅箔層を溶解
除去して極細線パターンを有するプリント配線板を製造
する。 【0006】 【発明の実施の形態】本発明は、一般の5μm以下の薄銅
箔を用いて積層された銅張板を用いて、ライン/スペー
ス=40/40μm以下、更には25/25μm以下の細線パターン
を作製する方法で高密度のプリント配線板を製造するも
のである。工程は、(1)まず最外層に5μm以下の一般の
電解銅箔を張った、少なくとも2層以上の銅箔を有する
極薄銅箔張板を作製する。この極薄銅張板に、一般に公
知の方法にて貫通孔及び/又はブラインドビア孔を形成
する。 【0007】この最外層の銅箔厚さが5μm以下の極薄銅
箔張板を製造する方法は特に制限はなく、例えば、保護
金属板補強薄銅箔を用いて積層成形し、保護金属板を剥
離して銅張板とする方法、厚さが5μmを越える銅箔を用
いて積層成形し、これを孔あけ前にエッチング除去して
5μm以下とするか、炭酸ガスレーザーで特開平11-22024
3、特開平11-346059 に示すように孔あけ後、孔周辺に
発生した銅箔バリをエッチング除去すると同時に銅箔の
厚さ方向の一部をエッチング除去して残存銅箔厚さ5μm
以下とする方法等、一般に公知の方法が使用できる。こ
の孔があいた銅張板の孔内を含む表面に0.1〜1μmの無
電解銅メッキを施す。 【0008】(2)次いで、該無電解銅メッキ析出層を電
極にして厚さ0.5〜3μmの電気銅メッキ層を形成する。
銅メッキの種類は特に限定はなく、例えば硫酸銅メッ
キ、ピロ燐酸銅メッキ等が使用できる。(3)この銅メッ
キ析出層の上の必要部分にパターン電気銅メッキ用のメ
ッキレジスト層を形成する。この工程も一般に公知の方
法で実施する。メッキレジストは、UV照射で硬化度が
不充分な場合は、後UV照射や後熱硬化で硬化度を向上
させ、次工程の電気メッキで膨潤のないようにする。 【0009】(4)メッキレジスト層が形成されていない
銅面に、電気銅メッキでパターン銅メッキを6〜30μm、
好適には10〜20μm付着させ、(5)その上にメッキレジス
トを付着させ、(6)必要な箇所にニッケルメッキ及び金
メッキ、又はハンダメッキを付着させ、(7)メッキレジ
ストを剥離除去し、(8)全面をエッチングして、少なく
ともパターン銅メッキ層の形成されていない部分の薄い
電気銅層、無電解銅層及び極薄銅箔層を溶解除去して極
細線パターンを有するプリント配線板を製造する。この
工程で細密パターンを作製することにより、通常の方法
に比べてアンダーカットが発生せず、形状の良好なパタ
ーンが形成でき、信頼性に優れたプリント配線板が製造
できた。 【0010】本発明で使用する銅張板は、2層以上の銅
の層を有する銅張板であり、熱硬化性樹脂銅張積層板と
しては、無機、有機基材の公知の熱硬化性銅張積層板、
その多層銅張板、表層に樹脂付き銅箔シートを使用した
多層板等、一般に公知の構成の多層銅張板、また、ポリ
イミドフィルム、ポリパラバン酸フィルム等の基材の銅
張板が挙げられる。 【0011】基材補強銅張積層板は、まず補強基材に熱
硬化性樹脂組成物を含浸、乾燥させてBステージとし、
プリプレグを作成する。次に、このプリプレグを所定枚
数重ね、その外側に保護金属板補強の厚さ3〜5μmの銅
箔を配置して、加熱、加圧下に積層成形し、銅張積層板
とする。多層板は、両面銅張積層板の銅箔を加工してパ
ターンを形成し、銅箔表面を処理して内層板を作製し、
この外側にプリプレグ、Bステージ樹脂シートを置い
て、保護金属板補強薄銅箔をその外側に配置し、積層成
形するか、或いは保護金属板補強薄銅箔付きBステージ
樹脂シートを内層板の外側に配置し、積層成形して多層
銅張板とする。又、両面銅張板、多層銅張板の最外層に
7μm以上の銅箔を用いて積層成形し、この銅箔をエッチ
ングして厚さ5μm以下の厚さとすることもできる。この
場合、銅箔の足(こぶ)のみを残すようにエッチングす
ることも可能である。 【0012】基材としては、一般に公知の、有機、無機
の織布、不織布が使用できる。具体的には、無機の繊維
としては、具体的にはE、S、D、NEガラス等の繊維等
が挙げられる。又、有機繊維としては、全芳香族ポリア
ミド、液晶ポリエステル等一般に公知の繊維等が挙げら
れる。これらは、混抄でも良い。また、フィルム基材も
挙げられる。 【0013】本発明使用される熱硬化性樹脂組成物の樹
脂としては、一般に公知の熱硬化性樹脂が使用される。
具体的には、エポキシ樹脂、多官能性シアン酸エステル
樹脂、多官能性マレイミドーシアン酸エステル樹脂、多
官能性マレイミド樹脂、不飽和基含有ポリフェニレンエ
ーテル樹脂等が挙げられ、1種或いは2種類以上が組み合
わせて使用される。出力の高い炭酸ガスレーザー照射に
よる加工でのスルーホール形状の点からは、ガラス転移
温度が150℃以上の熱硬化性樹脂組成物が好ましく、耐
湿性、耐マイグレーション性、吸湿後の電気的特性等の
点から多官能性シアン酸エステル樹脂組成物が好適であ
る。 【0014】貫通孔及び/又はブラインドビア孔を炭酸
ガスレーザーで形成する場合、特開平11-220243、特開
平11-346059の方法以外に、銅箔のシャイニー面にニッ
ケル金属、コバルト金属、これらの合金処理を施した銅
箔を使用し、炭酸ガスレーザーを直接銅箔の上に照射し
て孔を形成する方法、また一般の銅箔上に黒色酸化銅処
理、薬液処理等を行ったものの上から炭酸ガスレーザー
を直接銅箔の上に照射して孔を形成する方法等が使用で
きる。 【0015】本発明で使用する、保護金属板に接着した
銅箔は、一般に公知のものが挙げられる。銅箔の厚さは
3〜5μmであり、銅箔のシャイニー面に無処理のもの、
或いはニッケル金属、コバルト金属、これらの合金処理
がなされているものが使用される。金属処理をされてい
る場合、表面に銅箔を積層して張り、表層の保護金属板
を除去後、この上から直接比較的低エネルギーの5〜20m
Jの炭酸ガスレーザーを照射して孔が形成できる。又、
この薄銅箔のかわりに薄ニッケル箔を使用できる。 【0016】貫通孔及び/又はブラインドビア孔をあけ
る場合、一般の5μmを越える銅箔を表層に用いて銅張板
を作製し、表層の銅箔を薬液にて5μm以下に溶解し、直
接炭酸ガスレーザーを照射して銅箔を加工して貫通孔及
び/又はブラインドビア孔をあける方法も使用できる。
また、100〜150μmの金属ドリルを使用して貫通孔あけ
する方法も使用できる。 【0017】炭酸ガスレーザーを、出力5〜60mJでパル
ス発振にて照射して銅箔厚さが厚い銅箔に貫通孔及び/
又はブラインドビア孔を形成した場合、孔周辺はバリが
発生する。そのため、炭酸ガスレーザー照射後、銅箔の
両表面を平面的に厚さ方向を、好適には薬液でエッチン
グし、もとの金属箔の一部の厚さを除去することによ
り、同時にバリも除去し、且つ、得られた薄くなった銅
箔は細密パターン形成に適しており、高密度のプリント
配線板に適した孔周囲の銅箔が残存した貫通孔及び/又
はブラインドビア孔を形成する。バリ除去の場合、機械
研磨よりはエッチングの方が、孔部のバリ除去、研磨に
よる寸法変化等の点から好適である。 【0018】本発明の孔部に発生した銅のバリ及び銅箔
の厚さ方向の一部をエッチング除去する方法としては、
特に限定しないが、例えば、特開平02-22887、同02-228
96、同02-25089、同02-25090、同02-59337、同02-6018
9、同02-166789、同03-25995、同03-60183、同03-9449
1、同04-199592、同04-263488で開示された、薬品で金
属表面を溶解除去する方法(SUEP法と呼ぶ)によ
る。エッチング速度は、0.02〜1.0μm/秒 で行う。 【0019】炭酸ガスレーザーは、赤外線波長域にある
9.3〜10.6μmの波長が一般に使用される。エネルギーは
5〜60mJ、好適には7〜45mJ にてパルス発振で銅箔を加
工し、孔をあける。エネルギーは表層の銅箔上の処理、
銅箔の厚さによって適宜選択する。もちろん、エキシマ
レーザー、YAGレーザーでの孔形成も使用又は併用でき
る。 【0020】全面を最後に電気銅メッキした後、エッチ
ングして薄い銅層の部分を基板に到達するまでエッチン
グしてパターンを作製する。このエッチング液は特に限
定はなく、上記のSUEP法、塩化第二鉄、塩化銅、或いは
過硫酸アンモニウム溶液を使用する方法等、一般に公知
の方法が使用できるが、好ましくはSUEP法が使用され
る。 【0021】 【実施例】以下に実施例、比較例で本発明を具体的に説
明する。尚、特に断らない限り、『部』は重量部を表
す。 実施例1 2,2-ビス(4-シアナトフェニル)プロパン900部、ビス(4-
マレイミドフェニル)メタン100部を150℃に熔融させ、
撹拌しながら4時間反応させ、プレポリマーを得た。こ
れをメチルエチルケトンとジメチルホルムアミドの混合
溶剤に溶解した。これにビスフェノールA型エポキシ樹
脂(商品名:エピコート1001、油化シェルエポキシ<株>
製)400部、クレゾールノボラック型エポキシ樹脂(商品
名:ESCN-220F、住友化学工業<株>製)600部を加え、均
一に溶解混合した。更に触媒としてオクチル酸亜鉛0.4
部を加え、溶解混合し、これに無機充填剤(商品名:焼成
タルク、日本タルク<株>製)2000部を加え、均一撹拌
混合してワニスAを得た。このワニスを厚さ100μmのガ
ラス織布に含浸し150℃で乾燥して、ゲル化時間(at170
℃)120秒、熱硬化性樹脂組成物含有量が44重量%のプリ
プレグ(プリプレグB)を作成した。厚さ12μmの一般の電
解銅箔を、上記プリプレグB 4枚の上下に配置し、200
℃、20kgf/cm2、30mmHg以下の真空下で2時間積層成形
し、絶縁層厚み400μmの両面銅張積層板Cを得た。 【0022】一方、金属粉として銅粉(平均粒子径:0.
8μm)800部を、ポリビニルアルコール粉体を水に溶解
したワニスに加え、均一に攪拌混合した(ワニスD)。
これを厚さ25μmのポリエチレンテレフタレートフィル
ム片面上に、厚さ60μmとなるように塗布し、110℃で3
0分間乾燥して、金属粉含有量65容積%の補助材料Eを
形成した。また、厚さ50μmのアルミニウムの片面にワ
ニスDを、樹脂層厚さ30μmとなるように塗布、乾燥し
てバックアップシートFを作製した。上記銅張積層板C
の上に補助材料Eを、下にバックアップシートFを、樹
脂面が銅箔側を向くように配置し、温度100℃のロール
にて、線圧15kgf/cmでラミネートし、密着性の良好な塗
膜を形成した。この上から間隔1mmで、孔径100μmの孔
を900個直接炭酸ガスレーザーで、パルスエネルギー30m
Jで6ショツト照射し、70ブロックのスルーホール用貫通
孔をあけた。デスミア処理後、SUEP法にて、孔周辺
の銅箔バリを溶解除去すると同時に、表面の銅箔も2μm
まで溶解した。この板に無電解銅メッキを厚さ0.4μm付
着させ、次いで電気銅メッキで厚さ1μmの銅層を付着さ
せた。この銅メッキ析出層の上の必要部分にパターン電
気銅メッキ用レジスト層を厚さ18μm形成し、メッキレ
ジストが形成されていない部分の銅面に電気銅メッキで
パターン銅メッキを15μm付着させた。この上に更にメ
ッキレジストを10μm付着させ、ニッケルメッキを7μ
m、その上に金メッキを0.5μm付着させた後、メッキレ
ジストを全て剥離し、全面をSUEP溶液でエッチングして
(フラッシュエッチング)、ライン/スペース=25/25μ
mのパターンを形成した。このパターン断面はエッチン
グによるアンダーカットもなく、良好な形状であった。
この上にUV永久保護レジストを定法にて金メッキを付着
させた箇所を除いて塗布し、硬化させた。このプリント
配線板の評価結果を表1に示す。 【0023】実施例2 エポキシ樹脂(商品名:エピコート5045)700部、及びエポ
キシ樹脂(商品名:ESCN220F)300部、ジシアンジアミド35
部、2-エチル-4-メチルイミダゾール1部をメチルエチル
ケトンとジメチルホルムアミドの混合溶剤に溶解し、さ
らに実施例1の焼成タルクを800部を加え、強制撹拌し
て均一分散し、ワニスGを得た。これを厚さ100μmのガ
ラス織布に含浸、乾燥して、ゲル化時間150秒、熱硬化
性樹脂組成物含有量45重量%のプリプレグ(プリプレグ
H)及び厚さ50μmのガラス織布に含浸、乾燥して、ゲル
化時間178秒、熱硬化性樹脂組成物含有量70重量%のプリ
プレグ(プリプレグI)を作成した。このプリプレグHを
2枚使用し、厚さ12μmの一般の電解銅箔を両面に置
き、190℃、20kgf/cm2、30mmHg以下の真空下で2時間積
層成形して両面銅張積層板Jを作製した。この両面にパ
ターンを形成し、黒色酸化銅処理を施し、この両外側に
上記プリプレグIを各1枚配置し、その外側に、厚さ3
μmの一般の電解銅箔のシャイニー面にコバルト合金処
理を施し、その上に35μmの銅板を保護補強して張った
銅箔(商品名:F3B-WS銅箔、古河サーキットフォイル<
株>製)を配置して同様に積層成形し、4層板を作製し
た。この表面の保護金属板を剥離し、表面の銅箔上に、
炭酸ガスレーザーパルスエネルギー12mJで1ショット照
射し、孔径100μmのブラインドビア孔を両面にあけた。
これをプラズマ装置の中に入れ、底部の残存樹脂を除去
し、表層のコバルト合金処理を薬液で溶解除去して銅箔
厚さ1μmとした後、全体に厚さ0.3μmの無電解銅メッキ
を施し、次いで厚さ2μmの電気銅メッキを施した後、電
気銅メッキ用のメッキレジストを15μm付着させ、メッ
キレジスト層が形成されていない銅面に電気銅メッキを
14μm付着させた。更にこの上にメッキレジストを付着
させ、ハンダメッキを10μm付着させてから、メッキレ
ジストを剥離除去し、全面をエッチングして、パターン
銅メッキ層及びハンダメッキ層が形成されていない部分
の薄い電気銅層、無電解銅層、及び極薄銅箔層を基板ま
で溶解除去してライン/スペース=20/20μmを有するプ
リント配線板を作製した。UV永久保護レジストで、定法
にてハンダメッキを付着させた以外の箇所を被覆し、プ
リント配線板とした(図1)。評価結果を表1に示す。 【0024】比較例1 実施例2のプリント配線板作製において、銅メッキを無
電解銅メッキだけ4μm施し、その次の電気銅メッキを施
さずに、直接無電解銅メッキ上にパネル電気銅メッキを
施した。これを同様にエッチングして、パターン銅メッ
キの付着していない薄い無電解銅層及び極薄銅箔層をエ
ッチング除去してプリント配線板とした。このパターン
の下側はアンダーカットが両側6.1μmあった。評価結果
を表1に示す。 【0025】比較例2 実施例2の4層銅張積層板の表層に金属板付き銅箔では
なく、12μmの一般の電解銅箔を張り、これを平均厚さ3
μmまでエッチングして表面に1μmの凹凸をつけた。
これをXYテーブルの上に置き、表面から15mJの炭酸ガス
レーザーパルスエネルギー1ショット照射してブライン
ドビア孔をあけ、同様にプラズマ処理後、無電解銅メッ
キを1μm施し、電気銅メッキを14μm付着させ、この上
にエッチングレジストを20μm付着させてから、常法に
てライン/スペース=20/20μmのパターンを形成した
が、形状は三角形となり、形状は良好でなかった。評価
結果を表1に示す。 【0026】比較例3 実施例1の銅張積層板の表層の銅箔をエッチング除去し
た後、炭酸ガスレーザー15mJで孔径100μmの貫通孔をあ
け、この表面をデスミア処理し、無電解銅メッキを0.9
μm施し、その上に電気銅メッキを16μm付着させた。
これを比較例2と同様にしてライン/スペース=20/20μ
mのパターンを形成した。これはアンダーカットが有
り、且つ形状は三角形となり、形状不良であった。評価
結果を表1に示す。 【0027】比較例4 実施例2において、ワニスGの固形分100部に対し、アク
リロニトリルーブタジエンゴム(商品名:N210S、JSR<
株>製)を3部添加し、均一に攪拌混合した後、同様にプ
リプレグを作製し、積層成形して4層板とした。この多
層銅張板の表層の銅箔をエッチング除去した後、炭酸ガ
スレーザー15mJで孔径100μmのブラインドビア孔をあ
け、この表面をデスミア処理し、全体に無電解銅メッキ
を1μm施し、電気銅メッキレジストを付着させ、メッ
キレジストの付着していない場所の無電解銅メッキの上
に電気銅メッキを16μm付着させた。メッキレジストを
剥離後、全面をエッチングして薄い無電解銅メッキ層を
溶解除去してライン/スペース=20/20μmのパターンを
形成した。これは少しアンダーカットがあった。評価結
果を表1に示す。 【0028】 (表1) 項目 実施例 比較例 1 2 1 2 3 4 アンタ゛ーカット (μm) < 1 < 1 6.1 < 1 3.3 1.9ハ゜ターン 断面形状 良好 良好 不良 三角形状 三角形状 ほぼ良好 銅箔接着力(kgf/cm) 1.35 1.17 0.61 0.90 0.43 0.77カ゛ラス 転移温度(℃) 235 160 235 160 235 154 耐マイグレーション性 常態 5x1014 6x1014 5x1014 4x1014 5x1014 5x1014 200hrs. 3x1011 4x108 2x1011 2x108 4x1011 <1x108 500hrs. 6x1010 <1x108 5x1010 <1x108 5x1010 ー 【0029】<測定方法> 1)アンダーカット及びパターン断面形状 : パターン断
面を100個観察し、平均値で表示した。設計値に対し、
片面のエッチングされた距離を示した。又、形状も観察
した。 2)銅箔接着力 : JIS C6481に準じて測定した。幅はパタ
ーン幅で測定し、kgf/cmに換算して表示した。 3)ガラス転移温度 : JIS C6481のDMA法に準じて測定
した。 4)耐マイグレーション性 : 各実施例、比較例におい
て、作製したパターン上に熱硬化型レジスト(商品名:
BT-M450 三菱ガス化学<株>製)を厚さ40μmとなるよう
に被覆し、硬化させて、これを85℃・85%RH・50VDC印加
し、パターン間の絶縁抵抗値を測定した。 【0030】 【発明の効果】貫通孔及び/又はブラインドビア孔を有
する、少なくとも2層以上の薄銅の層を外層に有する銅
張板に極細線パターンを作製する方法において、薄銅箔
の上に無電解銅メッキ及び電気銅メッキを施してからメ
ッキレジストを付着してパターン銅メッキを行い、更に
ニッケルメッキ及び金メッキ、又はハンダメッキを付着
する箇所以外にメッキレジストを付着させ、ニッケルメ
ッキ及び金メッキ、又はハンダメッキを付着させ、メッ
キレジストを剥離後、薄い電気銅層、無電解銅層及び薄
銅層をエッチング除去することにより、アンダーカット
の極めて少ない形状の良好なパターンを作製できた。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a printed wiring board having an extremely fine line / space pattern, for example, a pattern of 40/40 μm or less. The high-density printed wiring board having the obtained ultrafine line pattern is mainly used for a new semiconductor plastic package or the like. 2. Description of the Related Art Conventionally, in a high-density printed wiring board used for a semiconductor plastic package or the like, a method of forming a fine line pattern is 5 μm by a subtractive method.
Using the following ultra-thin copper foil, after forming through holes and / or blind via holes with a carbon dioxide laser, etc.,
Deposit about 15μm and remove the copper foil by etching using a plating resist, etc., or irradiate the carbon dioxide laser directly on the copper foil to remove the copper foil burrs generated in the holes after the formation of through holes and / or blind via holes. 12μ the surface layer of the copper foil and simultaneously dissolved and removed by SUEP (S urface U niform E tching P rocess)
A method of dissolving and removing from a thickness of 5 m or less to a thickness of 5 μm or less, and after desmearing, depositing a copper plating of about 15 μm and using a normal etching resist or the like to form a fine line pattern is known. In this method, the pattern becomes thinner than the bottom by etching, and the cross section becomes trapezoidal or triangular, which has caused a defect. There is also a method of producing a fine line pattern using an etching resist or the like after plating up by a semi-additive method. However, this method is also required when the thickness of copper plating is increased to about 18 μm. It has the same shape, and has problems in adhesion to copper, reliability and the like. Further, when copper plating is applied by the full additive method, there is a problem that even if the copper plating layer is thickened, the adhesive strength of copper is low. On the other hand, using an ultra-thin copper foil, applying electroless copper plating on this, then forming a pattern by the pattern copper plating method, and furthermore, applying a thin electroless copper layer on the substrate by the semi-additive method There is a method of forming a pattern by a pattern copper plating method using this, but the electroless copper layer is side-etched in the final flash etching, and there is a problem with copper adhesion in a fine pattern. . Further, the fine pattern has a problem in reliability such as migration resistance. [0004] The present invention has solved the above-mentioned problems by a subtractive method, that is, an ultrafine line pattern having a good pattern shape while maintaining the adhesive strength of a copper foil. It is intended to provide a method for manufacturing a printed wiring board on which is formed. SUMMARY OF THE INVENTION The present invention provides a high-density printed circuit having an extremely fine line pattern and excellent copper foil adhesion by manufacturing a printed wiring board in the following steps. A wiring board was obtained. That is, (1) a through-hole and / or a blind via hole is formed, the outermost copper foil thickness is 5 μm or less using an ultra-thin copper-clad plate, and the surface including the inside of the hole is 0.1 mm.
Electroless copper plating of 1 to 1 μm is applied, (2) Then, an electrolytic copper plating layer having a thickness of 0.5 to 3 μm is formed using the electroless copper plating deposition layer as an electrode, and (3) the copper plating deposition layer Form a plating resist layer for pattern electroplating on the required part on the top, (4) On the copper surface where the plating resist layer is not formed,
Attach 6-30μm of pattern copper plating by electrolytic copper plating,
(5) Attach plating resist on it, (6) Attach nickel plating and gold plating, or solder plating, (7)
(8) Etch the entire surface, dissolve and remove the thin copper layer, electroless copper layer and ultra-thin copper foil layer at least where the pattern copper plating layer is not formed. A printed wiring board having a pattern is manufactured. DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention uses a copper-clad board laminated using a general thin copper foil of 5 μm or less, and has a line / space of 40/40 μm or less, and further 25/25 μm or less. A high-density printed wiring board is manufactured by the method of manufacturing a fine line pattern described above. The process is as follows: (1) First, an ultrathin copper-clad board having at least two or more layers of copper foil, in which a general electrolytic copper foil of 5 μm or less is provided on the outermost layer. Through holes and / or blind via holes are formed in the ultra-thin copper-clad plate by a generally known method. There is no particular limitation on the method of producing the ultra-thin copper foil clad laminate having a copper foil thickness of 5 μm or less as the outermost layer. Peeling off to make a copper-clad board, lamination molding using a copper foil with a thickness exceeding 5 μm, and removing it by etching before drilling
5μm or less, or carbon dioxide laser JP 11-22024
3.As shown in JP-A-11-346059, after drilling, the copper foil burr generated around the hole is removed by etching, and at the same time, a part of the copper foil in the thickness direction is removed by etching to leave a residual copper foil thickness of 5 μm.
A generally known method such as the following method can be used. An electroless copper plating of 0.1 to 1 μm is applied to the surface including the inside of the hole of the copper clad plate having the hole. (2) Next, an electrolytic copper plating layer having a thickness of 0.5 to 3 μm is formed using the electroless copper plating deposited layer as an electrode.
The type of copper plating is not particularly limited, and for example, copper sulfate plating, copper pyrophosphate plating, or the like can be used. (3) A plating resist layer for copper electroplating is formed on required portions of the copper plating deposition layer. This step is also performed by a generally known method. If the degree of curing of the plating resist by UV irradiation is insufficient, the degree of curing is improved by post-UV irradiation or post-heat curing so that the plating resist does not swell in the subsequent electroplating. (4) On the copper surface on which the plating resist layer is not formed, pattern copper plating is performed by electrolytic copper plating to 6 to 30 μm,
Preferably, 10 to 20 μm is deposited, (5) a plating resist is deposited thereon, (6) nickel plating and gold plating, or solder plating is deposited where necessary, (7) the plating resist is peeled off, (8) etching the entire surface, dissolving and removing at least the thin copper layer, the electroless copper layer and the ultra-thin copper foil layer at the portion where the pattern copper plating layer is not formed to form a printed wiring board having an ultra-fine line pattern To manufacture. By producing a fine pattern in this step, a pattern having a good shape could be formed without undercut as compared with a normal method, and a printed wiring board excellent in reliability could be manufactured. [0010] The copper-clad board used in the present invention is a copper-clad board having two or more layers of copper. Copper clad laminate,
Examples thereof include a multilayer copper-clad board having a generally known structure, such as a multilayer copper-clad board, a multilayer board using a copper foil sheet with a resin as a surface layer, and a copper-clad board of a base material such as a polyimide film or a polyparabanic acid film. The substrate-reinforced copper-clad laminate is first impregnated with a thermosetting resin composition and dried to form a B stage,
Create a prepreg. Next, a predetermined number of the prepregs are stacked, and a copper foil having a thickness of 3 to 5 μm for reinforcing a protective metal plate is arranged outside the prepreg, and laminated under heat and pressure to form a copper-clad laminate. The multilayer board is formed by processing the copper foil of the double-sided copper-clad laminate to form a pattern, treating the copper foil surface to produce an inner layer board,
Place the prepreg and B-stage resin sheet on the outside, place the protective metal plate reinforced thin copper foil on the outside, and laminate or form the B-stage resin sheet with the protective metal plate reinforced thin copper foil on the outside of the inner layer plate. And laminated to form a multilayer copper-clad board. Also, as the outermost layer of double-sided copper clad board and multilayer copper clad board
It is also possible to form a laminate using a copper foil of 7 μm or more, and to etch the copper foil to a thickness of 5 μm or less. In this case, it is also possible to perform etching so as to leave only the feet (knobs) of the copper foil. As the substrate, generally known organic and inorganic woven fabrics and nonwoven fabrics can be used. Specifically, examples of the inorganic fibers include fibers such as E, S, D, and NE glass. Examples of the organic fibers include generally known fibers such as wholly aromatic polyamide and liquid crystal polyester. These may be mixed. In addition, a film substrate is also used. As the resin of the thermosetting resin composition used in the present invention, generally known thermosetting resins are used.
Specifically, an epoxy resin, a polyfunctional cyanate ester resin, a polyfunctional maleimide-cyanate ester resin, a polyfunctional maleimide resin, an unsaturated group-containing polyphenylene ether resin, and the like, and one or more kinds Are used in combination. From the viewpoint of through-hole shape in processing by high-output carbon dioxide laser irradiation, a thermosetting resin composition having a glass transition temperature of 150 ° C or higher is preferable, and has moisture resistance, migration resistance, and electrical characteristics after moisture absorption. In view of the above, a polyfunctional cyanate resin composition is preferred. When the through hole and / or the blind via hole are formed by a carbon dioxide gas laser, a nickel metal, a cobalt metal, a nickel metal, a cobalt metal, or the like may be formed on the shiny surface of the copper foil in addition to the methods described in JP-A-11-220243 and JP-A-11-346059. Using a copper foil that has been subjected to an alloy treatment, a method of irradiating a carbon dioxide gas laser directly onto the copper foil to form holes, or on a copper foil that has been subjected to black copper oxide treatment, chemical treatment, etc. For example, a method of directly irradiating a carbon dioxide laser on the copper foil to form a hole can be used. The copper foil adhered to the protective metal plate used in the present invention is generally known. The thickness of the copper foil is
3-5μm, untreated on the shiny side of copper foil,
Alternatively, a nickel metal, a cobalt metal, or an alloy thereof is used. If metal treatment is applied, copper foil is laminated on the surface and stretched, and after removing the protective metal plate on the surface, relatively low energy 5-20m directly from above
The hole can be formed by irradiating the carbon dioxide laser of J. or,
A thin nickel foil can be used instead of the thin copper foil. When drilling through holes and / or blind via holes, a copper-clad board is prepared by using a copper foil exceeding 5 μm for the surface layer, and the copper foil on the surface layer is dissolved to 5 μm or less with a chemical solution and directly A method in which a copper foil is processed by irradiating a gas laser to form through holes and / or blind via holes can also be used.
A method of drilling through holes using a metal drill of 100 to 150 μm can also be used. A carbon dioxide laser is irradiated by pulse oscillation at an output of 5 to 60 mJ to form a through hole and / or
Alternatively, when a blind via hole is formed, burrs are generated around the hole. Therefore, after the carbon dioxide laser irradiation, both surfaces of the copper foil are planarly etched in the thickness direction, preferably with a chemical solution, and by removing a part of the thickness of the original metal foil, burrs are simultaneously formed. The removed and obtained thinned copper foil is suitable for forming a fine pattern, and forms a through hole and / or a blind via hole in which the copper foil around the hole suitable for a high-density printed wiring board remains. . In the case of removing burrs, etching is more preferable than mechanical polishing in terms of removing burrs from holes and dimensional change due to polishing. The method of the present invention for removing the copper burrs generated in the holes and part of the copper foil in the thickness direction by etching is as follows.
Although not particularly limited, for example, JP-A-02-22887, JP-A-02-228
96, 02-25089, 02-25090, 02-59337, 02-6018
9, 02-166789, 03-25995, 03-60183, 03-9449
1, a method of dissolving and removing a metal surface with a chemical (referred to as a SUEP method) disclosed in JP-A-04-199592 and JP-A-04-263488. The etching rate is 0.02 to 1.0 μm / sec. The carbon dioxide laser is in the infrared wavelength range.
Wavelengths between 9.3 and 10.6 μm are commonly used. Energy is
The copper foil is processed by pulse oscillation at 5 to 60 mJ, preferably 7 to 45 mJ, and holes are made. Energy is processed on the surface copper foil,
It is appropriately selected according to the thickness of the copper foil. Of course, hole formation with an excimer laser or a YAG laser can be used or used together. After the entire surface is finally electroplated with copper, the thin copper layer is etched until it reaches the substrate to form a pattern. The etchant is not particularly limited, and a generally known method such as the above-mentioned SUEP method, a method using a ferric chloride, copper chloride, or ammonium persulfate solution can be used, but the SUEP method is preferably used. The present invention will be specifically described below with reference to examples and comparative examples. Unless otherwise specified, “parts” indicates parts by weight. Example 1 900 parts of 2,2-bis (4-cyanatophenyl) propane,
100 parts of (maleimidophenyl) methane are melted at 150 ° C,
The mixture was reacted for 4 hours with stirring to obtain a prepolymer. This was dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide. Add bisphenol A type epoxy resin (trade name: Epicoat 1001, Yuka Shell Epoxy Co., Ltd.)
) And 600 parts of a cresol novolak type epoxy resin (trade name: ESCN-220F, manufactured by Sumitomo Chemical Co., Ltd.) were uniformly mixed and dissolved. Further, as a catalyst, zinc octylate 0.4
Was added and dissolved and mixed. To this, 2000 parts of an inorganic filler (trade name: calcined talc, manufactured by Nippon Talc Co., Ltd.) was added, and the mixture was uniformly stirred and mixed to obtain Varnish A. This varnish is impregnated with a glass woven fabric having a thickness of 100 μm, dried at 150 ° C., and subjected to a gelation time (at 170
C) for 120 seconds to prepare a prepreg (prepreg B) having a thermosetting resin composition content of 44% by weight. A general electrolytic copper foil having a thickness of 12 μm is arranged above and below the four prepregs B, and 200
The laminate was subjected to lamination molding under a vacuum of 20 ° C., 20 kgf / cm 2 and 30 mmHg for 2 hours to obtain a double-sided copper-clad laminate C having an insulating layer thickness of 400 μm. On the other hand, copper powder (average particle diameter: 0.
8 μm) of 800 parts was added to a varnish prepared by dissolving polyvinyl alcohol powder in water, and uniformly mixed by stirring (varnish D).
This was coated on one side of a 25 μm-thick polyethylene terephthalate film to a thickness of 60 μm,
After drying for 0 minutes, an auxiliary material E having a metal powder content of 65% by volume was formed. A varnish D was applied to one side of a 50 μm-thick aluminum so as to have a resin layer thickness of 30 μm, and dried to prepare a backup sheet F. The copper clad laminate C
An auxiliary material E is placed on top, and a backup sheet F is placed below, with the resin surface facing the copper foil side, and laminated with a roll at a temperature of 100 ° C. at a linear pressure of 15 kgf / cm to obtain good adhesion. A coating was formed. 900 holes with a hole diameter of 1 μm and a diameter of 100 μm are directly irradiated with a direct carbon dioxide laser at a pulse energy of 30 m from above.
Irradiation was performed with J for 6 shots, and 70 blocks of through holes were made. After the desmear treatment, the copper foil burrs around the hole are dissolved and removed by the SUEP method, and the copper foil on the surface is also 2 μm.
Until dissolved. An electroless copper plating was applied to the plate at a thickness of 0.4 μm, and then a copper layer having a thickness of 1 μm was applied by electrolytic copper plating. A resist layer for pattern copper electroplating was formed to a thickness of 18 μm on a required portion on the copper plating deposition layer, and a pattern copper plating of 15 μm was applied to the copper surface of the portion where the plating resist was not formed by copper electroplating. A plating resist of 10 μm is further adhered on this, and nickel plating is
m, after depositing gold plating 0.5μm on it, stripping off all plating resist, etching the whole surface with SUEP solution (flash etching), line / space = 25 / 25μ
m pattern was formed. This pattern cross section had a good shape without undercut due to etching.
A UV permanent protection resist was applied thereon and cured by a conventional method except for a portion where gold plating was adhered. Table 1 shows the evaluation results of the printed wiring board. Example 2 Epoxy resin (trade name: Epicoat 5045) 700 parts, epoxy resin (trade name: ESCN220F) 300 parts, dicyandiamide 35
And 1 part of 2-ethyl-4-methylimidazole was dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide. 800 parts of the calcined talc of Example 1 was further added, and the mixture was uniformly dispersed by forced stirring to obtain Varnish G. . This is impregnated into a 100 μm thick glass woven fabric, dried, and impregnated into a prepreg (prepreg H) having a gelling time of 150 seconds, a thermosetting resin composition content of 45% by weight and a 50 μm thick glass woven fabric, After drying, a prepreg (prepreg I) having a gelling time of 178 seconds and a thermosetting resin composition content of 70% by weight was prepared. Using two sheets of this prepreg H, a general electrolytic copper foil having a thickness of 12 μm is placed on both sides, and laminated and molded at 190 ° C., 20 kgf / cm 2 , and a vacuum of 30 mmHg or less for 2 hours to form a double-sided copper-clad laminate J. Produced. A pattern is formed on both surfaces, black copper oxide treatment is performed, and one prepreg I is disposed on both outer sides, and a thickness of 3
A copper foil (product name: F3B-WS copper foil, Furukawa Circuit Foil) that is treated with a cobalt alloy on the shiny surface of a general electrolytic copper foil of μm, and overlaid with a protective and reinforced 35 μm copper plate
Co., Ltd.) was arranged and laminated and molded in the same manner to produce a four-layer plate. Peel off the protective metal plate on this surface, and on the copper foil on the surface,
One shot was irradiated with a carbon dioxide laser pulse energy of 12 mJ, and blind via holes with a hole diameter of 100 μm were made on both sides.
Put this in a plasma device, remove the residual resin at the bottom, dissolve and remove the surface cobalt alloy treatment with a chemical solution to make the copper foil thickness 1 μm, and then electroless copper plating with a thickness of 0.3 μm on the whole. After applying a 2μm-thick electrolytic copper plating, a plating resist for electrolytic copper plating is adhered to 15μm, and an electrolytic copper plating is applied to the copper surface on which the plating resist layer is not formed.
14 μm was attached. Further, a plating resist is deposited thereon, and solder plating is deposited to a thickness of 10 μm. Then, the plating resist is peeled off, and the entire surface is etched to obtain a thin copper layer where the pattern copper plating layer and the solder plating layer are not formed. The layer, the electroless copper layer, and the ultra-thin copper foil layer were dissolved and removed up to the substrate to produce a printed wiring board having line / space = 20/20 μm. The printed wiring board was covered with a UV permanent protection resist except for the portions where solder plating was applied by a standard method (FIG. 1). Table 1 shows the evaluation results. COMPARATIVE EXAMPLE 1 In the production of the printed wiring board of Example 2, copper plating was applied only to the electroless copper plating by 4 μm, and the panel electrolytic copper plating was directly applied on the electroless copper plating without applying the subsequent electrolytic copper plating. gave. This was similarly etched to remove the thin electroless copper layer and the ultra-thin copper foil layer to which the pattern copper plating was not adhered, to obtain a printed wiring board. The underside of this pattern had an undercut of 6.1 μm on both sides. Table 1 shows the evaluation results. Comparative Example 2 A 12 μm general electrolytic copper foil was applied to the surface of the four-layer copper-clad laminate of Example 2 instead of a copper foil with a metal plate on the surface layer.
Etching was performed down to μm to form 1 μm irregularities on the surface.
Place this on an XY table, irradiate one shot of 15mJ carbon dioxide laser pulse energy from the surface to make a blind via hole, similarly apply plasma treatment, apply 1μm of electroless copper plating, and attach 14μm of electrolytic copper plating After depositing an etching resist of 20 μm thereon, a pattern of line / space = 20/20 μm was formed by a conventional method, but the shape was triangular and the shape was not good. Table 1 shows the evaluation results. Comparative Example 3 After removing the copper foil on the surface layer of the copper-clad laminate of Example 1 by etching, a through hole having a hole diameter of 100 μm was made with a carbon dioxide gas laser of 15 mJ, and the surface was desmeared to perform electroless copper plating. 0.9
μm, and electrolytic copper plating was adhered thereon to 16 μm.
This is performed in the same manner as in Comparative Example 2, and the line / space is 20 / 20μ.
m pattern was formed. This had an undercut, the shape was triangular, and the shape was poor. Table 1 shows the evaluation results. Comparative Example 4 In Example 2, acrylonitrile butadiene rubber (trade name: N210S, JSR <
Co., Ltd.) was added, and the mixture was uniformly stirred and mixed. Then, a prepreg was prepared in the same manner, and laminated and formed into a four-layer plate. After etching and removing the copper foil on the surface layer of this multilayer copper clad board, a blind via hole with a hole diameter of 100 μm is made with a carbon dioxide gas laser 15 mJ, the surface is desmeared, the entire surface is electroless copper plated 1 μm, and the electrolytic copper plating is performed. A resist was adhered, and an electrolytic copper plating was applied to a thickness of 16 μm on the electroless copper plating where no plating resist was attached. After stripping the plating resist, the entire surface was etched to dissolve and remove the thin electroless copper plating layer to form a line / space = 20/20 μm pattern. This had a little undercut. Table 1 shows the evaluation results. (Table 1) Item Example Comparative Example 1 2 1 2 3 4 Ant-cut (μm) <1 <1 6.1 <1 3.3 1.9 Polyester cross-sectional shape Good Good Bad Triangular Triangular Almost good Copper foil adhesion (kgf / cm) 1.35 1.17 0.61 0.90 0.43 0.77 Ca Bu glass transition temperature (℃) 235 160 235 160 235 154 migration resistance normal 5x10 14 6x10 14 5x10 14 4x10 14 5x10 14 5x10 14 200hrs. 3x10 11 4x10 8 2x10 11 2x10 8 4x10 11 < . 1x10 8 500hrs 6x10 10 <1x10 8 5x10 10 <1x10 8 5x10 10 over [0029] <measurement method> 1) undercut and a pattern cross-sectional shape: a pattern section was 100 observed and expressed as mean values. For the design value,
The etched distance on one side is shown. The shape was also observed. 2) Copper foil adhesion: Measured according to JIS C6481. The width was measured by the pattern width and converted to kgf / cm and displayed. 3) Glass transition temperature: Measured according to the DMA method of JIS C6481. 4) Migration resistance: In each of Examples and Comparative Examples, a thermosetting resist (trade name:
BT-M450 (Mitsubishi Gas Chemical Co., Ltd.) was coated to a thickness of 40 μm, cured, and applied at 85 ° C./85% RH / 50 VDC to measure the insulation resistance between the patterns. According to the method for producing an ultrafine wire pattern on a copper-clad board having at least two or more thin copper layers on its outer layer, having through holes and / or blind via holes, After applying electroless copper plating and electro copper plating, apply a plating resist and perform pattern copper plating, then attach nickel plating and gold plating, or plating resist to places other than where solder plating is applied, nickel plating and gold plating Alternatively, by applying solder plating and stripping the plating resist, the thin electric copper layer, the electroless copper layer and the thin copper layer were removed by etching, whereby a good pattern having a shape with very few undercuts could be produced.

【図面の簡単な説明】 【図1】実施例1の細線形成工程図。 【図2】比較例1の細線形成工程図。 【図3】比較例2の細線形成工程図。 【符号の説明】 a 表面コバルト合金層が形成された電解薄銅箔 b 内層銅箔 c 絶縁層 d 炭酸ガスレーザーで孔あけされたブラインドビア
孔 e 表面をエッチングした電解銅箔 f 無電解銅メッキ層 g 電気銅メッキ層 h メッキレジスト i パネルメッキで形成した電気銅メッキ j ハンダメッキ用レジスト k ハンダメッキ l エッチング除去された薄い銅箔層部分 m フラッシュエッチングして形成された細密パター
ン n 永久保護ソルダーレジスト
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a thin line forming step of Example 1. FIG. 2 is a view showing a thin line forming process of Comparative Example 1. FIG. 3 is a view showing a thin line forming process of Comparative Example 2. [Description of Signs] a Electrolytic thin copper foil with surface cobalt alloy layer formed b Inner layer copper foil c Insulating layer d Blind via hole drilled by carbon dioxide laser e Electrolytic copper foil with surface etched f Electroless copper plating Layer g Electroplated copper layer h Plating resist i Electroplated copper formed by panel plating j Solder plating resist k Solder plating l Thin copper foil layer part m removed by etching m Fine pattern formed by flash etching n Permanent protection solder Resist

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 3/24 H05K 3/24 B 3/42 620 3/42 620A 3/46 3/46 G N (72)発明者 小松 勝次 東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社東京工場内 Fターム(参考) 5E317 AA24 BB01 BB12 BB13 BB15 BB18 CC32 CC33 CC44 CC52 CD15 CD18 CD25 CD32 GG14 5E339 AB02 AC01 AD05 AE01 BC02 BD02 BD03 BD06 BD08 BD11 BE13 CD05 CD06 CE02 CE13 CE17 DD03 FF02 GG02 5E343 AA12 AA17 BB08 BB18 BB23 BB24 BB34 BB44 BB54 BB61 BB67 BB71 CC61 CC67 DD33 DD43 DD76 ER11 GG08 5E346 AA06 AA12 AA15 AA43 BB01 CC02 CC08 CC32 CC37 CC38 CC40 CC54 CC55 DD02 DD25 DD32 EE02 EE06 EE09 EE13 FF15 GG17 GG22 GG25 HH07 HH11 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05K 3/24 H05K 3/24 B 3/42 620 3/42 620A 3/46 3/46 GN (72 ) Inventor Katsuji Komatsu 6-1-1, Shinjuku, Katsushika-ku, Tokyo F-term in Tokyo Plant of Mitsubishi Gas Chemical Co., Ltd. AD05 AE01 BC02 BD02 BD03 BD06 BD08 BD11 BE13 CD05 CD06 CE02 CE13 CE17 DD03 FF02 GG02 5E343 AA12 AA17 BB08 BB18 BB23 BB24 BB34 BB44 BB54 BB61 BB67 BB71 CC61 CC67 DD33 DD43 DD76 ER11 CC18 CCA CCA CC CC CC55 DD02 DD25 DD32 EE02 EE06 EE09 EE13 FF15 GG17 GG22 GG25 HH07 HH11

Claims (1)

【特許請求の範囲】 【請求項1】(1)貫通孔及び/又はブラインドビア孔が
形成されている、最外層の銅箔厚さが5μm以下の極薄銅
箔張板を用い、孔内を含む表面に0.1〜1μmの無電解銅
メッキを施し、(2)次いで、該無電解銅メッキ析出層の
上に厚さ0.5〜3μmの電気銅メッキ層を形成し、(3)この
銅メッキ析出層の上の必要部分にパターン電気メッキ用
のメッキレジスト層を形成し、(4)メッキレジスト層が
形成されていない銅面に、電気銅メッキでパターン銅メ
ッキを6〜30μm付着させ、(5)その上にメッキレジスト
を付着させ、(6)ニッケルメッキ及び金メッキ、又はハ
ンダメッキを付着させ、(7)メッキレジストを剥離除去
し、(8)全面をエッチングして、少なくともパターン銅
メッキ層の形成されていない部分の薄い電気銅層、無電
解銅層及び極薄銅箔層を溶解除去して製造することを特
徴とする極細線パターンを有するプリント配線板の製造
方法。
Claims (1) (1) Using an ultra-thin copper foil clad board having a through-hole and / or a blind via hole and having an outermost copper foil thickness of 5 μm or less, A surface containing 0.1 to 1 μm of electroless copper plating is applied, (2) Then, a 0.5 to 3 μm thick electrolytic copper plating layer is formed on the electroless copper plating deposition layer, and (3) the copper plating A plating resist layer for pattern electroplating is formed on the required portion on the deposited layer, and (4) a pattern copper plating is adhered to the copper surface on which the plating resist layer is not formed by 6 to 30 μm by electrocopper plating, 5) Attach plating resist on it, (6) Attach nickel plating and gold plating, or solder plating, (7) Peel and remove plating resist, (8) Etch entire surface, at least pattern copper plating layer Of the thin copper layer, electroless copper layer and ultra-thin copper foil layer A method for producing a printed wiring board having an ultrafine line pattern, which is produced by dissolving and removing.
JP2001238861A 2001-08-07 2001-08-07 Method for manufacturing printed circuit substrate having ultra fine wiring pattern Pending JP2003051657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001238861A JP2003051657A (en) 2001-08-07 2001-08-07 Method for manufacturing printed circuit substrate having ultra fine wiring pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238861A JP2003051657A (en) 2001-08-07 2001-08-07 Method for manufacturing printed circuit substrate having ultra fine wiring pattern

Publications (1)

Publication Number Publication Date
JP2003051657A true JP2003051657A (en) 2003-02-21

Family

ID=19069713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238861A Pending JP2003051657A (en) 2001-08-07 2001-08-07 Method for manufacturing printed circuit substrate having ultra fine wiring pattern

Country Status (1)

Country Link
JP (1) JP2003051657A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005159330A (en) * 2003-11-05 2005-06-16 Hitachi Chem Co Ltd Method of manufacturing multilayer circuit board and multilayer circuit board manufactured by the same, and board with semiconductor chip mounted thereon and semiconductor package using the same
JP2009060076A (en) * 2007-08-31 2009-03-19 Samsung Electro Mech Co Ltd Method of manufacturing multilayer printed circuit board
CN109362188A (en) * 2018-12-11 2019-02-19 健鼎(湖北)电子有限公司 A method of preventing gold-plated lateral erosion and the golden finger dew copper of printed circuit board
CN114390792A (en) * 2022-01-06 2022-04-22 东莞市龙谊电子科技有限公司 Manufacturing method of flexible circuit board and flexible circuit board
CN114928945A (en) * 2022-05-27 2022-08-19 珠海达汉电子科技有限公司 Manufacturing process of superfine circuit printed circuit board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481296A (en) * 1987-09-22 1989-03-27 Hitachi Ltd Manufacture of printed-circuit board
JPH0316296A (en) * 1989-03-04 1991-01-24 Contraves Ag Manufacture of thin-film circuit having tin structure
JPH0469992A (en) * 1990-07-11 1992-03-05 Hitachi Ltd Manufacture of circuit board
JP2000114693A (en) * 1998-10-06 2000-04-21 Hitachi Chem Co Ltd Manufacture of wiring board
JP2002016356A (en) * 2000-06-28 2002-01-18 Ibiden Co Ltd Method of manufacturing patter using very thin copper foil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481296A (en) * 1987-09-22 1989-03-27 Hitachi Ltd Manufacture of printed-circuit board
JPH0316296A (en) * 1989-03-04 1991-01-24 Contraves Ag Manufacture of thin-film circuit having tin structure
JPH0469992A (en) * 1990-07-11 1992-03-05 Hitachi Ltd Manufacture of circuit board
JP2000114693A (en) * 1998-10-06 2000-04-21 Hitachi Chem Co Ltd Manufacture of wiring board
JP2002016356A (en) * 2000-06-28 2002-01-18 Ibiden Co Ltd Method of manufacturing patter using very thin copper foil

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005159330A (en) * 2003-11-05 2005-06-16 Hitachi Chem Co Ltd Method of manufacturing multilayer circuit board and multilayer circuit board manufactured by the same, and board with semiconductor chip mounted thereon and semiconductor package using the same
JP2009060076A (en) * 2007-08-31 2009-03-19 Samsung Electro Mech Co Ltd Method of manufacturing multilayer printed circuit board
CN109362188A (en) * 2018-12-11 2019-02-19 健鼎(湖北)电子有限公司 A method of preventing gold-plated lateral erosion and the golden finger dew copper of printed circuit board
CN114390792A (en) * 2022-01-06 2022-04-22 东莞市龙谊电子科技有限公司 Manufacturing method of flexible circuit board and flexible circuit board
CN114390792B (en) * 2022-01-06 2023-07-04 东莞市龙谊电子科技有限公司 Manufacturing method of flexible circuit board and flexible circuit board thereof
CN114928945A (en) * 2022-05-27 2022-08-19 珠海达汉电子科技有限公司 Manufacturing process of superfine circuit printed circuit board
CN114928945B (en) * 2022-05-27 2024-02-06 珠海达汉电子科技有限公司 Manufacturing process of superfine circuit printed circuit board

Similar Documents

Publication Publication Date Title
JP4241098B2 (en) Metal-clad laminate, printed wiring board using the same, and manufacturing method thereof
KR100936446B1 (en) Process for the production of high-density printed wiring board
JP2009239295A (en) Printed wiring board, and method of manufacturing the same
JP3142270B2 (en) Manufacturing method of printed wiring board
US6866919B2 (en) Heat-resistant film base-material-inserted B-stage resin composition sheet for lamination and use thereof
JP2003304068A (en) Resin-attached metal foil for printed wiring board and multilayer printed wiring board using the same
JP2003051657A (en) Method for manufacturing printed circuit substrate having ultra fine wiring pattern
JP4407680B2 (en) Copper foil with resin, printed wiring board using the same, and manufacturing method thereof
JP4300870B2 (en) Method for manufacturing printed wiring board
JP3874076B2 (en) A method for producing a printed wiring board having an extra fine wire pattern.
JP4349082B2 (en) Printed wiring board manufacturing method and printed wiring board
JP2003243810A (en) Method of manufacturing printed wiring board equipped with very fine wire pattern
JP4395295B2 (en) Manufacturing method of printed wiring board and printed wiring board
US20220051958A1 (en) Method for producing package substrate for mounting semiconductor device
JP2003283141A (en) B-stage resin composition sheet with metal foil for additive
JP2003249764A (en) Manufacturing method for b-stage resin composition sheet containing base for additive
JP5116231B2 (en) Printed wiring board, method for manufacturing printed wiring board, and multilayer printed wiring board
JP2003060341A (en) Method of manufacturing printed wiring board having minute pattern
JP2003332735A (en) Wiring board, its manufacturing method, and conductor- laminated board
JP4978820B2 (en) Manufacturing method of high-density printed wiring board.
JP3815765B2 (en) Manufacturing method of multilayer printed wiring board
JP2004259940A (en) Method for manufacturing printed wiring board and copper foil for laser punching
JP2009170948A (en) Manufacturing method of extra-fine wire circuit printed wiring board
JP2003069218A (en) Method for manufacturing printed wiring board having extra-fine pattern
JP2003243808A (en) Method of manufacturing printed wiring board equipped with very fine wire pattern

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080714

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A02 Decision of refusal

Effective date: 20110315

Free format text: JAPANESE INTERMEDIATE CODE: A02