JP4407680B2 - Copper foil with resin, printed wiring board using the same, and manufacturing method thereof - Google Patents

Copper foil with resin, printed wiring board using the same, and manufacturing method thereof Download PDF

Info

Publication number
JP4407680B2
JP4407680B2 JP2006251671A JP2006251671A JP4407680B2 JP 4407680 B2 JP4407680 B2 JP 4407680B2 JP 2006251671 A JP2006251671 A JP 2006251671A JP 2006251671 A JP2006251671 A JP 2006251671A JP 4407680 B2 JP4407680 B2 JP 4407680B2
Authority
JP
Japan
Prior art keywords
copper foil
metal foil
resin composition
resin
insulating resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006251671A
Other languages
Japanese (ja)
Other versions
JP2007022091A (en
Inventor
健次 高井
隆之 末吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2006251671A priority Critical patent/JP4407680B2/en
Publication of JP2007022091A publication Critical patent/JP2007022091A/en
Application granted granted Critical
Publication of JP4407680B2 publication Critical patent/JP4407680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、樹脂付き金属箔、金属張積層板、これを用いたプリント配線板、およびその製造方法に関し、特に、絶縁樹脂組成物上に金属箔が固着してなる金属張積層板の当該金属箔を給電層としてパターン電気めっきを行うことで導体回路が形成されるプリント配線板に好適な技術に関する。   The present invention relates to a metal foil with resin, a metal-clad laminate, a printed wiring board using the same, and a method for producing the same, and in particular, the metal of a metal-clad laminate in which a metal foil is fixed on an insulating resin composition. The present invention relates to a technique suitable for a printed wiring board on which a conductor circuit is formed by performing pattern electroplating using a foil as a power feeding layer.

近年、電子機器の小型化・軽量化・高速化の要求が高まり、プリント配線板の高密度化が進んでおり、電気めっきを用いたセミアディティブ法によるプリント配線板の製造方法が注目されている。このセミアディティブ法は、特許文献1にあるように、回路を形成したい樹脂表面にレーザー等でインターステイシャルバイアホール(以下、IVHと表す)となる穴を形成した後に、化学粗化やプラズマ処理等により数μmの凹凸を樹脂上に形成し、Pd触媒を付与し、1μm程度の無電解めっきを行い、パターン電気めっきレジストを形成し、パターン電気めっきにより回路形成を行った後にレジスト及び回路以外の部分に存在する給電層を除去する手法であり、サイドエッチングの大きいサブトラクティブ法に比べ、より微細な配線形成を可能とするものである。   In recent years, there has been an increasing demand for downsizing, weight reduction, and speeding up of electronic devices, and the density of printed wiring boards has been increasing. A method for manufacturing printed wiring boards using a semi-additive method using electroplating has attracted attention. . In this semi-additive method, as disclosed in Patent Document 1, after forming a hole to be an interstitial via hole (hereinafter referred to as IVH) with a laser or the like on a resin surface on which a circuit is to be formed, chemical roughening or plasma treatment is performed. Etc. by forming irregularities of several μm on the resin, applying a Pd catalyst, performing electroless plating of about 1 μm, forming a pattern electroplating resist, forming a circuit by pattern electroplating, and then other than resist and circuit This is a method for removing the power feeding layer existing in the portion, and enables finer wiring formation as compared with the subtractive method with large side etching.

さらに、樹脂付き金属箔上にセミアディティブ法により回路形成を行う方法もある。近年は金属箔の厚みを薄くするために、特許文献2や特許文献3にあるように支持金属箔上に5μm以下の厚みの金属箔が形成されている引き剥がし可能なタイプの金属箔が用いられる。この手法では、絶縁樹脂組成物層の表面に無電解めっきを施す必要がなく、より信頼性の高いプリント配線板を作製できる。   Further, there is a method of forming a circuit on a metal foil with resin by a semi-additive method. In recent years, in order to reduce the thickness of the metal foil, a peelable type metal foil in which a metal foil having a thickness of 5 μm or less is formed on a supporting metal foil as described in Patent Document 2 and Patent Document 3 is used. It is done. In this method, it is not necessary to perform electroless plating on the surface of the insulating resin composition layer, and a printed wiring board with higher reliability can be produced.

このように、樹脂付き金属箔上にセミアディティブ法により回路形成を行う場合は、金属箔が薄いほど微細配線形成に有利だが、実際には特許文献4にあるように金属箔と樹脂硬化物の引き剥がし強さを得るための数μmの粗化層が金属箔に設けられ、これは金属箔の薄箔化を妨げている。また、セミアディティブ法においては回路以外の部分に存在する給電層を電気めっき後にエッチング除去する必要があるが、粗化層に存在する凹凸のため、ショート不良の原因となるエッチング残りが起き易い。さらに、粗化層の凹凸は導体回路の電気抵抗を増大させるため、伝送損失を大きくしてしまう。この電気抵抗の増大は信号が高周波になるほど顕著となることが知られている。また、金属箔に粗化層があると導体回路形成時に過剰なエッチングが必要となり導体トップ幅がボトム幅と比較して細くなってしまうため、良好な回路形成を得ることができない。   As described above, when a circuit is formed on a metal foil with a resin by a semi-additive method, the thinner the metal foil is, the more advantageous for fine wiring formation. However, as disclosed in Patent Document 4, the metal foil and the resin cured product are actually used. A roughening layer of several μm is provided on the metal foil to obtain the peel strength, which hinders the thinning of the metal foil. Further, in the semi-additive method, it is necessary to etch away the power feeding layer existing in a portion other than the circuit after electroplating, but due to the unevenness present in the roughened layer, an etching residue that causes a short circuit failure is likely to occur. Furthermore, the unevenness of the roughened layer increases the electrical resistance of the conductor circuit, and thus increases transmission loss. It is known that this increase in electrical resistance becomes more pronounced as the signal becomes higher in frequency. Further, if the metal foil has a roughened layer, excessive etching is required at the time of forming the conductor circuit, and the conductor top width becomes narrower than the bottom width, so that a good circuit formation cannot be obtained.

上記のような課題を解決すべく、特許文献5には、粗化処理を施していない銅箔と、絶縁層となる過酸化物硬化性樹脂組成物とがシランカップリング剤またはチオール系カップリング剤よりなる接着下地を介して積層された銅張積層板が開示されている。これによれば銅箔と絶縁層とのピール強度を低下させることなく、前述の、金属箔を粗化処理することによって生じる種々の問題を解決することができる。
特開平11−186716号 特開平13−140090号 特開平13−89892号 特許第2927968号 特開平8−309918号
In order to solve the above problems, Patent Document 5 discloses that a copper foil that has not been subjected to a roughening treatment and a peroxide curable resin composition that serves as an insulating layer are a silane coupling agent or a thiol-based coupling. A copper-clad laminate laminated via an adhesive base made of an agent is disclosed. According to this, the above-described various problems caused by roughening the metal foil can be solved without reducing the peel strength between the copper foil and the insulating layer.
JP-A-11-186716 Japanese Patent Laid-Open No. 13-140090 Japanese Patent Laid-Open No. 13-89892 Japanese Patent No. 2927968 JP-A-8-309918

しかしながら、上記の方法では、絶縁層として過酸化物硬化性樹脂を用いることを必須としており、その場合、これを構成に含む銅張積層板を用いて製造されたプリント配線板の信頼性が低下する恐れがある。また、過酸化物硬化性樹脂自体が危険性の高い物質であるため、その取り扱いおよび保存が非常に困難であり、さらには一般的に使用されている絶縁樹脂と比較すると高価であるため、実用的であるとはいえない。   However, in the above method, it is essential to use a peroxide curable resin as an insulating layer, and in that case, the reliability of a printed wiring board manufactured using a copper clad laminate including the same is reduced. There is a fear. In addition, since the peroxide curable resin itself is a highly dangerous substance, it is very difficult to handle and store, and moreover, it is more expensive than a generally used insulating resin. It's not the right one.

本発明は、絶縁樹脂組成物層と金属箔との界面の密着性と平坦性を両立し、かつ、経済性や取扱い性等のプリント配線板製造時に係る実用的な要素をも満たす金属張積層板または樹脂付き金属箔を提供することを目的とし、さらに、該金属張積層板または樹脂付き金属箔を用い、信頼性および回路形成性に優れ、導体損失の非常に少ないプリント配線板およびその製造方法を提供することを目的とする。   The present invention is a metal-clad laminate that achieves both the adhesion and flatness of the interface between the insulating resin composition layer and the metal foil, and also satisfies practical elements relating to the production of printed wiring boards such as economy and handling properties. An object of the present invention is to provide a metal foil with a plate or a resin, and furthermore, using the metal-clad laminate or the metal foil with a resin, the printed wiring board having excellent reliability and circuit forming property and extremely low conductor loss, and its manufacture It aims to provide a method.

すなわち、本発明は以下の(1)〜(40)の記載に関する。   That is, the present invention relates to the following descriptions (1) to (40).

(1)絶縁樹脂組成物層と、絶縁樹脂組成物層の片面もしくは両面に固着してなる金属箔とを有する樹脂付き金属箔において、金属箔の少なくとも絶縁樹脂組成物層側が表面処理されており、かつ金属箔の両面が実質的に粗し処理されていないことを特徴とする樹脂付き金属箔。   (1) In a metal foil with a resin having an insulating resin composition layer and a metal foil fixed to one or both surfaces of the insulating resin composition layer, at least the insulating resin composition layer side of the metal foil is surface-treated. A metal foil with resin, characterized in that both surfaces of the metal foil are substantially roughened and not treated.

(2)金属箔の表面粗さ(Rz)が両面とも2.0μm以下であることを特徴とする上記(1)に記載の樹脂付き金属箔。   (2) The metal foil with resin as described in (1) above, wherein the surface roughness (Rz) of the metal foil is 2.0 μm or less on both sides.

(3)金属箔の厚みが3μm以下であることを特徴とする上記(1)または(2)に記載の樹脂付き金属箔。   (3) The metal foil with a resin as described in (1) or (2) above, wherein the thickness of the metal foil is 3 μm or less.

(4)絶縁樹脂組成物層と金属箔の界面粗さ(Rz)が2.0μm以下であることを特徴とする上記(1)〜(3)のいずれかに記載の樹脂付き金属箔。   (4) The resin-coated metal foil according to any one of (1) to (3) above, wherein the interface roughness (Rz) between the insulating resin composition layer and the metal foil is 2.0 μm or less.

(5)表面処理が防錆処理、クロメート処理、シランカップリング処理のいずれか、もしくはこれらの組み合わせであることを特徴とする上記(1)〜(4)のいずれかに記載の樹脂付き金属箔。   (5) The resin-coated metal foil according to any one of (1) to (4) above, wherein the surface treatment is any one of rust prevention treatment, chromate treatment, silane coupling treatment, or a combination thereof. .

(6)防錆処理がニッケル、錫、亜鉛、クロム、モリブデン、コバルトのいずれか、若しくはそれらの合金を用いて行われていることを特徴とする(5)に記載の樹脂付き金属箔。   (6) The resin-coated metal foil according to (5), wherein the antirust treatment is performed using any one of nickel, tin, zinc, chromium, molybdenum, cobalt, or an alloy thereof.

(7)絶縁樹脂組成物がシアネート樹脂を含み、かつ防錆処理がニッケルを主成分とする金属により行われていることを特徴とする上記(5)または(6)に記載の樹脂付き金属箔。   (7) The metal foil with a resin according to the above (5) or (6), wherein the insulating resin composition contains a cyanate resin, and the rust prevention treatment is performed with a metal mainly composed of nickel. .

(8)防錆処理上にクロメート処理が施されていることを特徴とする請求項(5)〜(7)のいずれかに記載の樹脂付き金属箔。   (8) The resin-coated metal foil according to any one of claims (5) to (7), wherein a chromate treatment is performed on the rust-proofing treatment.

(9)シランカップリング処理が金属箔の最外層に施されていることを特徴とする上記(5)〜(8)のいずれかに記載の樹脂付き金属箔。   (9) The resin-coated metal foil according to any one of the above (5) to (8), wherein the silane coupling treatment is applied to the outermost layer of the metal foil.

(10)シランカップリング処理に用いるシランカップリング剤が加熱により絶縁樹脂組成物と化学反応するものであることを特徴とする上記(5)〜(9)のいずれかに記載の樹脂付き金属箔。   (10) The resin-coated metal foil according to any one of (5) to (9) above, wherein the silane coupling agent used for the silane coupling treatment chemically reacts with the insulating resin composition by heating. .

(11)絶縁樹脂組成物がエポキシ樹脂を含み、かつシランカップリング処理に用いるシランカップリング剤がアミノ官能性シランを含むものであることを特徴とする(5)〜(10)のいずれかに記載の樹脂付き金属箔。   (11) The insulating resin composition contains an epoxy resin, and the silane coupling agent used for the silane coupling treatment contains an amino-functional silane. (5)-(10) Metal foil with resin.

(12)絶縁樹脂組成物が熱硬化性樹脂を含むことを特徴とする(1)〜(11)のいずれかに記載の樹脂付き金属箔。   (12) The resin-coated metal foil according to any one of (1) to (11), wherein the insulating resin composition contains a thermosetting resin.

(13)絶縁樹脂組成物が常温で液状のエポキシ樹脂を含むことを特徴とする上記(1)〜(12)のいずれかに記載の樹脂付き金属箔。   (13) The resin-coated metal foil according to any one of (1) to (12) above, wherein the insulating resin composition contains an epoxy resin that is liquid at normal temperature.

(14)絶縁樹脂組成物が潜在性硬化剤を含むことを特徴とする(1)〜(13)のいずれかに記載の樹脂付き金属箔。   (14) The resin-coated metal foil according to any one of (1) to (13), wherein the insulating resin composition contains a latent curing agent.

(15)硬化後の絶縁樹脂組成物の1GHzにおける比誘電率が3.0以下または誘電正接が0.01以下であることを特徴とする上記(1)〜(14)のいずれかに記載の樹脂付き金属箔。   (15) The insulating resin composition after curing has a relative dielectric constant at 1 GHz of 3.0 or less or a dielectric loss tangent of 0.01 or less, according to any one of (1) to (14) above Metal foil with resin.

(16)絶縁樹脂組成物層と、絶縁樹脂組成物層の片面もしくは両面に固着してなる金属箔とを有する金属張積層板において、金属箔の少なくとも絶縁樹脂組成物層側が表面処理されており、かつ金属箔の両面が実質的に粗し処理されていないことを特徴とする金属張積層板。   (16) In a metal-clad laminate having an insulating resin composition layer and a metal foil fixed to one or both surfaces of the insulating resin composition layer, at least the insulating resin composition layer side of the metal foil is surface-treated. The metal-clad laminate is characterized in that both surfaces of the metal foil are substantially roughened and not treated.

(17)金属箔の表面粗さ(Rz)が両面とも2.0μm以下であることを特徴とする上記(16)に記載の金属張積層板。   (17) The metal-clad laminate as described in (16) above, wherein the surface roughness (Rz) of the metal foil is 2.0 μm or less on both sides.

(18)金属箔の厚みが3μm以下であることを特徴とする上記(16)または(17)に記載の金属張積層板。   (18) The metal-clad laminate as described in (16) or (17) above, wherein the thickness of the metal foil is 3 μm or less.

(19)絶縁樹脂組成物層と金属箔の界面粗さ(Rz)が2.0μm以下であることを特徴とする上記(16)〜(18)のいずれかに記載の金属張積層板。   (19) The metal-clad laminate according to any one of (16) to (18) above, wherein the interface roughness (Rz) between the insulating resin composition layer and the metal foil is 2.0 μm or less.

(20)表面処理が防錆処理、クロメート処理、シランカップリング処理のいずれか、もしくはこれらの組み合わせであることを特徴とする上記(16)〜(19)のいずれかに記載の金属張積層板。   (20) The metal-clad laminate according to any one of (16) to (19) above, wherein the surface treatment is any one of rust prevention treatment, chromate treatment, silane coupling treatment, or a combination thereof. .

(21)防錆処理がニッケル、錫、亜鉛、クロム、モリブデン、コバルトのいずれか、若しくはそれらの合金を用いて行われていることを特徴とする上記(20)に記載の金属張積層板。   (21) The metal-clad laminate as described in (20) above, wherein the rust-proofing treatment is performed using any of nickel, tin, zinc, chromium, molybdenum, cobalt, or an alloy thereof.

(22)絶縁樹脂組成物がシアネート樹脂を含み、かつ防錆処理がニッケルを主成分とする金属により行われていることを特徴とする上記(20)または(21)に記載の金属張積層板。   (22) The metal-clad laminate as described in (20) or (21) above, wherein the insulating resin composition contains a cyanate resin, and the rust prevention treatment is performed with a metal containing nickel as a main component. .

(23)防錆処理上にクロメート処理が施されていることを特徴とする上記(20)〜(22)のいずれかに記載の金属張積層板。   (23) The metal-clad laminate as described in any one of (20) to (22) above, wherein a chromate treatment is performed on the rust prevention treatment.

(24)シランカップリング処理が金属箔の最外層に施されていることを特徴とする上記(20)〜(23)のいずれかに記載の金属張積層板。   (24) The metal-clad laminate according to any one of (20) to (23), wherein the silane coupling treatment is applied to the outermost layer of the metal foil.

(25)シランカップリング処理に用いるシランカップリング剤が加熱により絶縁樹脂組成物と化学反応するものであることを特徴とする(20)〜(24)のいずれかに記載の金属張積層板。   (25) The metal-clad laminate according to any one of (20) to (24), wherein the silane coupling agent used for the silane coupling treatment is a chemical reaction with the insulating resin composition by heating.

(26)絶縁樹脂組成物がエポキシ樹脂を含み、かつシランカップリング処理に用いるシランカップリング剤がアミノ官能性シランを含むものであることを特徴とする上記(20)〜(25)のいずれかに記載の金属張積層板。   (26) The insulating resin composition contains an epoxy resin, and the silane coupling agent used for the silane coupling treatment contains an amino-functional silane. Metal-clad laminate.

(27)絶縁樹脂組成物が熱硬化性樹脂を含むことを特徴とする上記(16)〜(26)のいずれかに記載の金属張積層板。   (27) The metal-clad laminate as described in any one of (16) to (26) above, wherein the insulating resin composition contains a thermosetting resin.

(28)絶縁樹脂組成物が常温で液状のエポキシ樹脂を含むことを特徴とする上記(16)〜(27)のいずれかに記載の金属張積層板。   (28) The metal-clad laminate as described in any one of (16) to (27) above, wherein the insulating resin composition contains an epoxy resin that is liquid at normal temperature.

(29)絶縁樹脂組成物が潜在性硬化剤を含むことを特徴とする(16)〜(28)のいずれかに記載の金属張積層板。   (29) The metal-clad laminate according to any one of (16) to (28), wherein the insulating resin composition contains a latent curing agent.

(30)硬化後の絶縁樹脂組成物の1GHzにおける比誘電率が3.0以下または誘電正接が0.01以下であることを特徴とする(16)〜(29)のいずれかに記載の金属張積層板。   (30) The metal according to any one of (16) to (29), wherein the cured dielectric resin composition has a relative dielectric constant at 1 GHz of 3.0 or less or a dielectric loss tangent of 0.01 or less. Tension laminate.

(31)上記(1)〜(15)のいずれかに記載の樹脂付き金属箔および/または上記(16)〜(30)のいずれかに記載の金属張積層板を用いて製造されることを特徴とするプリント配線板。   (31) It is manufactured using the metal foil with a resin according to any one of the above (1) to (15) and / or the metal-clad laminate according to any one of the above (16) to (30). Characteristic printed wiring board.

(32)導体回路の表面粗さ(Rz)が2.0μm以下であることを特徴とする上記(31)に記載のプリント配線板。   (32) The printed wiring board according to the above (31), wherein the surface roughness (Rz) of the conductor circuit is 2.0 μm or less.

(33)絶縁樹脂組成物層と1mm幅の導体回路の引き剥がし強さが0.6kN/m以上であることを特徴とする上記(31)または(32)に記載のプリント配線板。   (33) The printed wiring board as described in (31) or (32) above, wherein the peel strength between the insulating resin composition layer and the 1 mm-width conductor circuit is 0.6 kN / m or more.

(34)150℃で240時間加熱した後の絶縁樹脂組成物層と1mm幅の導体回路の引き剥がし強さが0.4kN/m以上であることを特徴とする(31)〜(33)のいずれかに記載のプリント配線板。   (34) The peeling strength between the insulating resin composition layer after heating at 150 ° C. for 240 hours and the 1 mm width conductor circuit is 0.4 kN / m or more, (31) to (33) The printed wiring board in any one.

(35)上記(1)〜(15)のいずれかに記載の樹脂付き金属箔および/または上記(16)〜(30)のいずれかに記載の金属張積層板の金属箔を給電層としたパターン電気めっきにより導体回路を作製する工程を有するプリント配線板の製造方法。   (35) The metal foil with resin according to any one of (1) to (15) and / or the metal foil of the metal-clad laminate according to any one of (16) to (30) above is used as a power feeding layer. A method for producing a printed wiring board, comprising a step of producing a conductor circuit by pattern electroplating.

(36)金属箔上に無電解めっき層を形成することを特徴とする(35)に記載のプリント配線板の製造方法。   (36) The method for producing a printed wiring board according to (35), wherein an electroless plating layer is formed on the metal foil.

(37)導体回路形成後、給電層である金属箔をエッチング除去する際、化学反応律速となるエッチング液を用いることを特徴とする上記(35)または(36)に記載のプリント配線板の製造方法。   (37) The printed wiring board according to the above (35) or (36), wherein an etching solution that is controlled by a chemical reaction is used when the metal foil as the power feeding layer is removed by etching after the conductor circuit is formed. Method.

(38)エッチング液がハロゲン元素を含まない酸と過酸化水素とを主成分として含むことを特徴とする上記(37)に記載のプリント配線板の製造方法。   (38) The method for producing a printed wiring board according to (37), wherein the etching solution contains an acid not containing a halogen element and hydrogen peroxide as main components.

(39)ハロゲン元素を含まない酸が硫酸であることを特徴とする上記(38)に記載のプリント配線板の製造方法。   (39) The method for producing a printed wiring board according to the above (38), wherein the acid containing no halogen element is sulfuric acid.

(40)硫酸の濃度が5〜300g/L、過酸化水素の濃度が5〜200g/Lであることを特徴とする上記(39)に記載のプリント配線板の製造方法。   (40) The method for producing a printed wiring board according to (39), wherein the concentration of sulfuric acid is 5 to 300 g / L, and the concentration of hydrogen peroxide is 5 to 200 g / L.

以上より、本発明によれば、絶縁樹脂組成物層と金属箔との界面の密着性と平坦性を両立し、かつ、経済性や取扱い性等のプリント配線板製造時に係る実用的な要素をも満たす金属張積層板、または樹脂付き金属箔を提供することが可能であり、さらに、該金属張積層板または樹脂付き金属箔を用いて、信頼性および回路形成性に優れ、導体損失の非常に少ないプリント配線板およびその製造方法を提供することが可能となる。   As described above, according to the present invention, practical factors related to the production of a printed wiring board such as economy and handleability, which are compatible with the adhesion and flatness of the interface between the insulating resin composition layer and the metal foil, are achieved. In addition, it is possible to provide a metal-clad laminate or a resin-coated metal foil that satisfies the above requirements. It is possible to provide a small number of printed wiring boards and a manufacturing method thereof.

以下、本発明の金属張積層板について詳細に説明する。   Hereinafter, the metal-clad laminate of the present invention will be described in detail.

本発明の金属張積層板は、例えば、図1(a)に示すように、プリプレグ1の両側に、その両面が実質的に粗し処理されていない金属箔2が積層一体化してなる金属張積層板である。   As shown in FIG. 1A, for example, the metal-clad laminate of the present invention is a metal-clad laminate in which metal foils 2 that are substantially roughened and not treated on both sides of a prepreg 1 are laminated and integrated. It is a laminated board.

プリプレグは基材に絶縁樹脂組成物のワニスを含浸又は塗工してなるものであり、基材としては各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。基材の材質の例としては、Eガラス,Dガラス,Sガラス又はQガラス等の無機物繊維、ポリイミド、ポリエステル又はテトラフルオロエチレン等の有機繊維、及びそれらの混合物等が挙げられる。これらの基材は、例えば織布、不織布、ロービンク、チョップドストランドマット、サーフェシングマット等の形状を有するが、材質及び形状は、目的とする成形物の用途や性能により選択され必要により単独もしくは2種類以上の材質及び形状からの使用が可能である。基材の厚みには特に制限はないが、通常0.03〜0.5mm程度のものを使用し、シランカップリング剤等で表面処理したものや機械的に開繊処理を施したものは耐熱性や耐湿性、加工性の面から好適である。また、プリプレグは、通常、その樹脂含有率が乾燥後で20〜90重量%となるように基材に樹脂を含浸又は塗工し、100〜200℃の温度で1〜30分加熱乾燥し、半硬化状態(Bステージ状態)とすることで得ることができる。さらに、このプリプレグを通常1〜20枚重ね、さらにその両面に金属箔を配置した構成で加熱加圧して積層することで、本願のような金属張積層板を得ることができる。複数枚のプリプレグ層の厚みは用途によって異なるが、通常0.1〜5mmの厚みのものが良い。積層方法としては通常の積層板の手法が適用でき、例えば多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、通常、温度100〜250℃、圧力0.2〜10MPa、加熱時間0.1〜5時間の条件で積層したり、真空ラミネート装置などを用いてラミネート条件50〜150℃、0.1〜5MPa、真空圧1.0〜760mmHgの条件でラミネートすることができる。   The prepreg is obtained by impregnating or coating a base material with a varnish of an insulating resin composition. As the base material, well-known materials used for various laminates for electrical insulating materials can be used. Examples of the material of the substrate include inorganic fibers such as E glass, D glass, S glass, and Q glass, organic fibers such as polyimide, polyester, and tetrafluoroethylene, and mixtures thereof. These base materials have shapes such as woven fabric, non-woven fabric, low-ink, chopped strand mat, surfacing mat, etc., and the material and shape are selected depending on the intended use and performance of the molded product, and may be single or 2 as required. It can be used from more than a variety of materials and shapes. There is no particular limitation on the thickness of the base material, but usually about 0.03 to 0.5 mm is used, and the surface treated with a silane coupling agent or the like or mechanically opened is heat resistant. From the viewpoint of properties, moisture resistance, and workability. Moreover, the prepreg is usually impregnated or coated with a resin so that the resin content thereof is 20 to 90% by weight after drying, and is heated and dried at a temperature of 100 to 200 ° C. for 1 to 30 minutes. A semi-cured state (B stage state) can be obtained. Furthermore, a metal-clad laminate as in the present application can be obtained by laminating 1 to 20 sheets of this prepreg and laminating them by heating and pressing in a configuration in which metal foils are arranged on both sides thereof. The thickness of the plurality of prepreg layers varies depending on the application, but a thickness of 0.1 to 5 mm is usually preferable. As a laminating method, a normal laminating method can be applied, for example, using a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, etc., usually at a temperature of 100 to 250 ° C., a pressure of 0.2 to 10 MPa, and a heating time. Lamination can be performed for 0.1 to 5 hours, or lamination can be performed using a vacuum laminator or the like under conditions of lamination conditions of 50 to 150 ° C., 0.1 to 5 MPa, and vacuum pressure of 1.0 to 760 mmHg.

本発明の絶縁樹脂組成物に用いる絶縁樹脂は、プリント配線板の絶縁材料として用いられる公知慣例の一般的な絶縁樹脂を用いることができ、通常、耐熱性、耐薬品性の良好な熱硬化性樹脂がベースとして用いられる。熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、シアネート樹脂、マレイミド樹脂、イソシアネート樹脂、ベンゾシクロブテン樹脂、ビニル樹脂などが例示されるが、これらに限定されるわけではない。熱硬化性樹脂は、1種類のものを単独で用いても良いし、2種類以上を混合して用いても良い。   As the insulating resin used in the insulating resin composition of the present invention, a well-known and commonly used insulating resin used as an insulating material for a printed wiring board can be used. Usually, thermosetting with good heat resistance and chemical resistance. Resin is used as a base. Examples of the thermosetting resin include, but are not limited to, a phenol resin, an epoxy resin, a cyanate resin, a maleimide resin, an isocyanate resin, a benzocyclobutene resin, and a vinyl resin. One type of thermosetting resin may be used alone, or two or more types may be mixed and used.

上記熱硬化性樹脂の中でも、エポキシ樹脂は耐熱性、耐薬品性、電気特性に優れ、比較的安価であることから、絶縁樹脂として広く用いられており特に重要である。エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などのビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、ビフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール類のジグリシジルエーテル化物、アルコール類のジグリシジルエーテル化物、及びこれらのアルキル置換体、ハロゲン化物、水素添加物などが例示さ
れる。エポキシ樹脂は、1種類のものを単独で用いても良いし、2種類以上を混合して用いても良い。また、このエポキシ樹脂とともに用いる硬化剤はエポキシ樹脂を硬化させるものであれば、限定することなく使用でき、例えば、多官能フェノール類、多官能アルコール類、アミン類、イミダゾール化合物、酸無水物、有機リン化合物及びこれらのハロゲン化物などがある。これらのエポキシ樹脂硬化剤は、1種類のものを単独で用いても良いし、2種類以上を混合して用いても良い。
Among the above thermosetting resins, epoxy resins are particularly important because they are widely used as insulating resins because they are excellent in heat resistance, chemical resistance and electrical properties and are relatively inexpensive. Epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, and other bisphenol type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, and bisphenol A novolak type epoxy resins. Type epoxy resin, cycloaliphatic epoxy resin, aliphatic chain epoxy resin, diglycidyl etherified product of biphenol, diglycidyl etherified product of naphthalenediol, diglycidyl etherified product of phenol, diglycidyl etherified product of alcohol, and the like And alkyl-substituted products, halides, hydrogenated products, and the like. One type of epoxy resin may be used alone, or two or more types may be mixed and used. The curing agent used together with the epoxy resin can be used without limitation as long as it cures the epoxy resin. For example, polyfunctional phenols, polyfunctional alcohols, amines, imidazole compounds, acid anhydrides, organic There are phosphorus compounds and their halides. These epoxy resin curing agents may be used alone or in combination of two or more.

上記シアネート樹脂は、加熱によりトリアジン環を繰り返し単位とする硬化物を生成する樹脂であり、硬化物は誘電特性に優れるため、特に高周波特性が要求される場合などに用いられることが多い。シアネート樹脂としては、例えば、2,2−ビス(4−シアナトフェニル)プロパン、ビス(4−シアナトフェニル)エタン、2,2−ビス(3,5−ジメチル−4−シアナトフェニル)メタン、2,2−ビス(4−シアナトフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、α,α’−ビス(4−シアナトフェニル)−m−ジイソプロピルベンゼン、フェノールノボラック及びアルキルフェノールノボラックのシアネートエステル化物等が挙げられる。中でも、2,2−ビス(4−シアナトフェニル)プロパンは硬化物の誘電特性と硬化性のバランスが特に良好であり、コスト的に
も安価であるため好ましい。ここで用いられるシアネート樹脂は、1種類を単独で用いてもよく、2種類以上を混合して用いてもよく、また、予め一部が三量体や五量体にオリゴマー化されていても構わない。
The cyanate resin is a resin that generates a cured product having a triazine ring as a repeating unit by heating, and the cured product is excellent in dielectric characteristics, and is often used particularly when high-frequency characteristics are required. Examples of the cyanate resin include 2,2-bis (4-cyanatophenyl) propane, bis (4-cyanatophenyl) ethane, and 2,2-bis (3,5-dimethyl-4-cyanatophenyl) methane. 2,2-bis (4-cyanatophenyl) -1,1,1,3,3,3-hexafluoropropane, α, α′-bis (4-cyanatophenyl) -m-diisopropylbenzene, phenol And cyanate esterified products of novolak and alkylphenol novolak. Among them, 2,2-bis (4-cyanatophenyl) propane is preferable because it has a particularly good balance between the dielectric properties and curability of the cured product and is inexpensive. As the cyanate resin used here, one kind may be used alone, two or more kinds may be mixed and used, or a part may be oligomerized in advance to a trimer or a pentamer. I do not care.

さらに、上記シアネート樹脂に対して硬化触媒や硬化促進剤を入れても良い。硬化触媒としては、マンガン、鉄、コバルト、ニッケル、銅、亜鉛等の金属類が用いられ、具体的には、2−エチルヘキサン酸塩、ナフテン酸塩、オクチル酸塩等の有機金属塩及びアセチルアセトン錯体などの有機金属錯体として用いられる。これらは、単独で使用しても良いし、二種類以上を混合して使用しても良い。硬化促進剤としてはフェノール類を使用することが好ましく、ノニルフェノール、パラクミルフェノールなどの単官能フェノールや、ビスフェノールA、ビスフェノールF、ビスフェノールSなどの二官能フェノールあるいはフェノールノボラック、クレゾールノボラックなどの多官能フェノールなどを用いることができる。これらは、単独で使用しても良いし、二種類以上を混合して使用しても良い。   Furthermore, a curing catalyst or a curing accelerator may be added to the cyanate resin. As the curing catalyst, metals such as manganese, iron, cobalt, nickel, copper, and zinc are used. Specifically, organic metal salts such as 2-ethylhexanoate, naphthenate, octylate, and acetylacetone are used. Used as organometallic complexes such as complexes. These may be used alone or in combination of two or more. Phenols are preferably used as the curing accelerator, and monofunctional phenols such as nonylphenol and paracumylphenol, bifunctional phenols such as bisphenol A, bisphenol F, and bisphenol S, or polyfunctional phenols such as phenol novolac and cresol novolac. Etc. can be used. These may be used alone or in combination of two or more.

本発明に用いる絶縁樹脂組成物には、誘電特性、耐衝撃性、フィルム加工性などを考慮して、熱可塑性樹脂がブレンドされてあっても良い。熱可塑性樹脂としては、フッ素樹脂、ポリフェニレンエーテル、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリカーボネート、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリアリレート、ポリアミド、ポリアミドイミド、ポリブタジエンなどが例示されるが、これらに限定されるわけではない。熱可塑性樹脂は、1種類のものを単独で用いても良いし、2種類以上を混合して用いても良い。   The insulating resin composition used in the present invention may be blended with a thermoplastic resin in consideration of dielectric properties, impact resistance, film processability, and the like. Examples of the thermoplastic resin include, but are not limited to, fluororesin, polyphenylene ether, modified polyphenylene ether, polyphenylene sulfide, polycarbonate, polyether imide, polyether ether ketone, polyarylate, polyamide, polyamide imide, and polybutadiene. I don't mean. One type of thermoplastic resin may be used alone, or two or more types may be mixed and used.

上記熱可塑性樹脂の中で、ポリフェニレンエーテルおよび変性ポリフェニレンエーテルを配合すると、硬化物の誘電特性が向上するので有用である。ポリフェニレンエーテルおよび変性ポリフェニレンエーテルとしては、例えば、ポリ(2,6−ジメチル−1,4−フェニレン)エーテル、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルとポリスチレンのアロイ化ポリマ、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルとスチレン−ブタジエンコポリマのアロイ化ポリマ、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルとスチレン−無水マレイン酸コポリマのアロイ化ポリマ、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルとポリアミドのアロイ化ポリマ、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルとスチレン−ブタジエン−アクリロニトリルコポリマのアロイ化ポリマなどが挙げられる。また、ポリフェニレンエーテルに反応性、重合性を付与するために、ポリマー鎖末端にアミノ基、エポキシ基、カルボキシル基、スチリル基、メタクリル基などの官能基を導入したり、ポリマー鎖側鎖にアミノ基、エポキシ基、カルボキシル基、スチリル基、メタクリル基などの官能基を導入したりしてもよい。   Of the above thermoplastic resins, blending polyphenylene ether and modified polyphenylene ether is useful because it improves the dielectric properties of the cured product. Examples of polyphenylene ether and modified polyphenylene ether include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2,6-dimethyl-1,4-phenylene) ether and polystyrene alloyed polymer, poly Alloyed polymer of (2,6-dimethyl-1,4-phenylene) ether and styrene-butadiene copolymer, Alloyed polymer of poly (2,6-dimethyl-1,4-phenylene) ether and styrene-maleic anhydride copolymer Alloyed polymer of poly (2,6-dimethyl-1,4-phenylene) ether and polyamide, alloyed polymer of poly (2,6-dimethyl-1,4-phenylene) ether and styrene-butadiene-acrylonitrile copolymer, etc. Is mentioned. In addition, in order to impart reactivity and polymerizability to polyphenylene ether, functional groups such as amino groups, epoxy groups, carboxyl groups, styryl groups, and methacryl groups are introduced at the ends of polymer chains, or amino groups are introduced into the side chains of polymer chains. In addition, a functional group such as an epoxy group, a carboxyl group, a styryl group, or a methacryl group may be introduced.

また、上記熱可塑性樹脂の中で、ポリアミドイミド樹脂は、耐熱性、耐湿性に優れることに加え、金属に対する接着性が良好であるので有用である。ポリアミドイミドの原料のうち、酸成分としては、無水トリメリット酸、無水トリメリット酸モノクロライド、アミン成分としては、メタフェニレンジアミン、パラフェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、ビス[4-(アミノフェノキシ)フェニル]スルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパンなどが例示されるが、これに限定されるわけではない。乾燥性を向上させるためにシロキサン変性としても良く、この場合、アミノ成分にシロキサンジアミンが用いられる。フィルム加工性を考慮すると、分子量は5万以上のものを用いるのが好ましい。   Among the above thermoplastic resins, the polyamideimide resin is useful because it has excellent heat resistance and moisture resistance and has good adhesion to metals. Among the raw materials of polyamideimide, trimellitic anhydride and trimellitic anhydride monochloride are used as acid components, and metaphenylenediamine, paraphenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′- as amine components. Examples include, but are not limited to, diaminodiphenylmethane, bis [4- (aminophenoxy) phenyl] sulfone, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, and the like. In order to improve drying property, it may be modified with siloxane. In this case, siloxane diamine is used as the amino component. In consideration of film processability, it is preferable to use a molecular weight of 50,000 or more.

本発明に用いる絶縁樹脂組成物には、無機フィラーが混合されてあっても良い。無機フィラーとしては、例えば、アルミナ、水酸化アルミニウム、水酸化マグネシウム、クレー、タルク、三酸化アンチモン、五酸化アンチモン、酸化亜鉛、溶融シリカ、ガラス粉、石英粉、シラスバルーンなどが挙げられる。これら無機フィラーは単独で使用しても良いし、2種類以上を混合して使用しても良い。   The insulating resin composition used in the present invention may be mixed with an inorganic filler. Examples of the inorganic filler include alumina, aluminum hydroxide, magnesium hydroxide, clay, talc, antimony trioxide, antimony pentoxide, zinc oxide, fused silica, glass powder, quartz powder, and shirasu balloon. These inorganic fillers may be used alone or in combination of two or more.

本発明に用いる絶縁樹脂組成物は、有機溶媒を含有しても良い。有機溶媒としては、例えば、ベンゼン、トルエン、キシレン、トリメチルベンゼンのような芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトンのようなケトン系溶媒;テトラヒドロフランのようなエーテル系溶媒;イソプロパノール、ブタノールのようなアルコール系溶媒;2−メトキシエタノール、2−ブトキシエタノールのようなエーテルアルコール系溶媒;N−メチルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドのようなアミド系溶媒などが挙げられ、これらは単独で用いても、2種以上を併用して用いても良い。プリプレグを作製する場合等に用いる絶縁樹脂組成物のワニス中の溶媒量は40〜80重量%の範囲とするのが好ましい。また、絶縁樹脂組成物ワニ
スの、25℃における粘度は20〜100cPの範囲とするのが好ましい。
The insulating resin composition used in the present invention may contain an organic solvent. Examples of the organic solvent include aromatic hydrocarbon solvents such as benzene, toluene, xylene, and trimethylbenzene; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ether solvents such as tetrahydrofuran; isopropanol, butanol Alcohol solvents such as 2-etherethanol solvents such as 2-methoxyethanol and 2-butoxyethanol; amide solvents such as N-methylpyrrolidone, N, N-dimethylformamide, and N, N-dimethylacetamide. These may be used alone or in combination of two or more. It is preferable that the amount of the solvent in the varnish of the insulating resin composition used for producing a prepreg is in the range of 40 to 80% by weight. Moreover, it is preferable that the viscosity at 25 degreeC of an insulating resin composition varnish shall be the range of 20-100 cP.

本発明に用いる絶縁樹脂組成物には、難燃剤が混合されてあっても良い。難燃剤としては、例えば、デカブロモジフェニルエーテル、テトラブロモビスフェノールA、テトラブロモ無水フタル酸、トリブロモフェノールなどの臭素化合物、トリフェニルフォスフェート、トリクレジルフォスフェート、トリキシリルフォスフェート、クレジルジフェニルフォスフェートなどのリン化合物、水酸化マグネシウム、水酸化アルミニウムなどの金属水酸化物、赤リン及びその変性物、三酸化アンチモン、五酸化アンチモンなどのアンチモン化合物、メラミン、シアヌール酸、シアヌール酸メラミンなどのトリアジン化合物など公知慣例の難燃剤を用いることができる。   A flame retardant may be mixed in the insulating resin composition used in the present invention. Examples of the flame retardant include bromine compounds such as decabromodiphenyl ether, tetrabromobisphenol A, tetrabromophthalic anhydride, tribromophenol, triphenyl phosphate, tricresyl phosphate, trixyl phosphate, cresyl diphenyl phosphate Phosphorus compounds such as metal hydroxides such as magnesium hydroxide and aluminum hydroxide, red phosphorus and its modified products, antimony compounds such as antimony trioxide and antimony pentoxide, triazine compounds such as melamine, cyanuric acid and melamine cyanurate A known and customary flame retardant can be used.

本発明に用いる絶縁樹脂組成物には、さらに必要に応じて硬化剤、硬化促進剤、熱可塑性粒子、着色剤、紫外線不透過剤、酸化防止剤、還元剤などの各種添加剤や充填剤を加えることができる。   The insulating resin composition used in the present invention may further contain various additives and fillers such as a curing agent, a curing accelerator, thermoplastic particles, a colorant, an ultraviolet opaquer, an antioxidant, and a reducing agent as necessary. Can be added.

また、本発明の絶縁樹脂組成物として、硬化後の1GHzにおける比誘電率が3.0以下または誘電正接が0.01以下であるものを用いると、配線における誘電体損失の低減が可能となり、より一層伝送損失の小さい回路形成が可能となる。このような誘電特性に優れる樹脂としてはポリフェニレンエーテル樹脂やシアネート樹脂が例示される。ポリフェニレンエーテルを配線板材料に用いる場合は、耐熱性や耐薬品性を向上させるために熱硬化性を付与する必要があるが、この一例として、ポリフェニレンエーテルにエポキシ樹脂、シアネート樹脂、トリアジン−ビスマレイミド樹脂などの熱硬化性樹脂をブレンドする方法、ポリフェニレンエーテルの分子鎖中に二重結合やエポキシ基などの重合性官能基を導入する方法がある。   In addition, when the insulating resin composition of the present invention has a dielectric constant at 1 GHz after curing of 3.0 or less or a dielectric loss tangent of 0.01 or less, it is possible to reduce dielectric loss in the wiring. A circuit with even smaller transmission loss can be formed. Examples of such resins having excellent dielectric properties include polyphenylene ether resins and cyanate resins. When polyphenylene ether is used as a wiring board material, it is necessary to impart thermosetting properties in order to improve heat resistance and chemical resistance. For example, polyphenylene ether may be epoxy resin, cyanate resin, triazine-bismaleimide. There are a method of blending a thermosetting resin such as a resin and a method of introducing a polymerizable functional group such as a double bond or an epoxy group into the molecular chain of polyphenylene ether.

本発明に用いる金属箔は、その表面にこぶ状の電着物層(俗にやけめっきといわれる:日本国特許公開第8−21618号参照)の形成や酸化処理、還元処理、エッチングなどによる粗し処理が実質的に施されていない。ここで「実質的に」という用語は、従来の、十分なピール強度が得られない程度に粗化処理された金属箔をも用いることができるという意味であり、好ましくは、粗し処理が全く施されていない金属箔を用いる。したがって、本発明に用いる金属箔の表面粗さはJIS B0601に示す10点平均粗さ(Rz)が両面とも2.0μm以下であることが好ましく、1.5μm以下であることがより好ましく、1.0μm以下であることが特に好ましい。   The metal foil used in the present invention is roughened by the formation, oxidation treatment, reduction treatment, etching, or the like of a hump-shaped electrodeposit layer (referred to as commonly used glazing: Japanese Patent Publication No. 8-21618) on the surface thereof. The treatment is not substantially applied. Here, the term “substantially” means that a conventional metal foil roughened to such an extent that a sufficient peel strength cannot be obtained can be used. Use metal foil that has not been applied. Therefore, as for the surface roughness of the metal foil used in the present invention, the 10-point average roughness (Rz) shown in JIS B0601 is preferably 2.0 μm or less on both sides, more preferably 1.5 μm or less. It is particularly preferable that the thickness is 0.0 μm or less.

また、本発明に用いる金属箔としては、例えば、銅箔、ニッケル箔、アルミ箔などを用いることができるが、通常は銅箔を使用する。本発明に用いる銅箔の製造方法としては、特に限定されず、例えば、キャリアを有するピーラブルタイプの銅箔を製造する場合、厚み10〜50μmのキャリア箔上に剥離層となる金属酸化物或いは有機物層を形成し、その上に硫酸銅浴であれば、硫酸50〜100g/L、銅30〜100g/L、液温20℃〜80℃、電流密度0.5〜100A/dmの条件で、ピロリン酸銅浴であれば、ピロリン酸カリウム100〜700g/L、銅10〜50g/L、液温30℃〜60℃、pH8〜12、電流密度1〜10A/dmの条件で製造することができ、銅箔の物性や平滑性を考慮して各種添加剤をいれる場合もある。なお、ピーラブルタイプの金属箔とは、キ
ャリアを有する金属箔であり、キャリアが引き剥がし可能な金属箔である。
Moreover, as metal foil used for this invention, although copper foil, nickel foil, aluminum foil, etc. can be used, normally copper foil is used, for example. The method for producing the copper foil used in the present invention is not particularly limited. For example, when producing a peelable type copper foil having a carrier, a metal oxide or a release layer on a carrier foil having a thickness of 10 to 50 μm or If an organic layer is formed and a copper sulfate bath is formed thereon, sulfuric acid 50-100 g / L, copper 30-100 g / L, liquid temperature 20 ° C.-80 ° C., current density 0.5-100 A / dm 2 In the case of a copper pyrophosphate bath, it is produced under the conditions of potassium pyrophosphate 100-700 g / L, copper 10-50 g / L, liquid temperature 30 ° C.-60 ° C., pH 8-12, current density 1-10 A / dm 2. Various additives may be added in consideration of the physical properties and smoothness of the copper foil. Note that the peelable type metal foil is a metal foil having a carrier and is a metal foil that can be peeled off by the carrier.

また、本発明に用いる金属箔の厚みとしては、特に限定されないが、3μm以下であることが好ましい。キャリアを有するピーラブルタイプの金属箔を用いる場合、キャリア引き剥がし後に金属箔が3μm以下になるものであることが好ましい。このような金属箔を給電層に用いた場合、後述するように配線形成性が良好なものを得ることができる。   The thickness of the metal foil used in the present invention is not particularly limited, but is preferably 3 μm or less. When using a peelable type metal foil having a carrier, the metal foil is preferably 3 μm or less after peeling off the carrier. When such a metal foil is used for the power feeding layer, it is possible to obtain a wire having good wiring formability as will be described later.

また、本発明に用いる金属箔の少なくとも絶縁樹脂組成物層側には、金属箔と絶縁樹脂組成物層との密着性を実用レベルもしくはそれ以上とするために表面処理が施される。金属箔上への表面処理としては、例えば、防錆処理、クロメート処理、シランカップリング処理のいずれか、もしくはこれらの組み合わせなどが挙げられ、どのような表面処理を施すかは絶縁樹脂組成物層に用いる樹脂系に合わせて適宜検討することが好ましい。   In addition, at least the insulating resin composition layer side of the metal foil used in the present invention is subjected to a surface treatment in order to bring the adhesion between the metal foil and the insulating resin composition layer to a practical level or higher. Examples of the surface treatment on the metal foil include rust prevention treatment, chromate treatment, silane coupling treatment, or a combination thereof. What kind of surface treatment is performed depends on the insulating resin composition layer. It is preferable to examine appropriately according to the resin system used in the above.

上記防錆処理は、例えば、ニッケル、錫、亜鉛、クロム、モリブデン、コバルトなどの金属のいずれか、若しくはそれらの合金を、スパッタや電気めっき、無電解めっきにより金属箔上に薄膜形成することで施すことができる。コストの面からは電気めっきが好ましい。金属イオンの析出を容易にするためにクエン酸塩、酒石酸塩、スルファミン酸等の錯化剤を必要量添加することも出来る。めっき液は通常酸性領域で用い、室温〜80℃の温度で行う。めっきは通常電流密度0.1〜10A/dm2、通電時間1〜60秒、好ましくは1〜30秒の範囲から適宜選択する。防錆処理金属の量は、金属の種類によって異なるが、合計で10〜2000μg/dm2が好適である。防錆処理が厚すぎるとエッチング阻害と電気特性の低下を引き起こし、薄すぎると樹脂とのピール強度低下の要因となり
うる。
The rust prevention treatment is performed by forming a thin film on a metal foil by sputtering, electroplating, or electroless plating, for example, any one of metals such as nickel, tin, zinc, chromium, molybdenum, and cobalt, or an alloy thereof. Can be applied. From the viewpoint of cost, electroplating is preferable. In order to facilitate the precipitation of metal ions, a complexing agent such as citrate, tartrate or sulfamic acid can be added in the required amount. The plating solution is usually used in an acidic region and is performed at a temperature of room temperature to 80 ° C. The plating is appropriately selected from a range of usually a current density of 0.1 to 10 A / dm 2 and a current application time of 1 to 60 seconds, preferably 1 to 30 seconds. The amount of the rust-proofing metal varies depending on the type of metal, but is preferably 10 to 2000 μg / dm 2 in total. If the rust preventive treatment is too thick, it may cause etching inhibition and deterioration of electrical characteristics, and if it is too thin, it may cause a reduction in peel strength with the resin.

また、絶縁樹脂組成物中にシアネート樹脂を含む場合には、防錆処理がニッケルを含む金属により行われていることが好ましい。この組み合わせにおいては、耐熱劣化試験や耐湿劣化試験におけるピール強度の低下が少なく有用である。   Moreover, when cyanate resin is included in an insulating resin composition, it is preferable that the antirust process is performed with the metal containing nickel. This combination is useful in that there is little reduction in peel strength in the heat resistance deterioration test and moisture resistance deterioration test.

上記クロメート処理として、好ましくは六価クロムイオンを含む水溶液を用いる。クロメート処理は単純な浸漬処理でも可能であるが、好ましくは陰極処理で行う。重クロム酸ナトリウム0.1〜50g/L、pH1〜13、浴温0〜60℃、電流密度0.1〜5A/dm、電解時間0.1〜100秒の条件で行うのことが好ましい。重クロム酸ナトリウムの代わりにクロム酸或いは重クロム酸カリウムを用いて行うことも出来る。また、上記クロメート処理は上記防錆処理上に施すことが好ましく、これにより絶縁樹脂組成物層と金属箔との密着性をより向上させることができる。 As the chromate treatment, an aqueous solution containing hexavalent chromium ions is preferably used. The chromate treatment can be performed by a simple immersion treatment, but is preferably performed by a cathode treatment. Sodium dichromate 0.1-50 g / L, pH 1-13, bath temperature 0-60 ° C., current density 0.1-5 A / dm 2 , electrolysis time 0.1-100 seconds are preferable. . It can also carry out using chromic acid or potassium dichromate instead of sodium dichromate. Moreover, it is preferable to perform the said chromate process on the said antirust process, and this can improve the adhesiveness of an insulating resin composition layer and metal foil more.

上記シランカップリング処理に用いるシランカップリング剤としては、例えば、3-グリシドキシプロピルトリメトキシシラン、2-(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ官能性シラン、3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)3−アミノプロピルメチルジメトキシシラン等のアミノ官能性シラン、ビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン等のオレフィン官能性シラン、3−アクリロキシプロピルトリメトキシシラン等のアクリル官能性シラン、3−メタクリロキシプロピルトリメトキシシラン等のメタクリル官能性シラン、3−メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランなどが用いられる。これらは単独で用いても良いし、複数を混合して用いても良い。これらのカップリング剤は、水などの溶媒に0.1〜15g/Lの濃度で溶解させて室温〜50℃の温度で金属箔に塗布したり、電着させたりして吸着させる。これらのシランカップリング剤は金属箔表面の防錆処理金属の水酸基と縮合結合することで皮膜を形成する。シランカップリング処理後は加熱、紫外線照射等によって安定的結合を形成する。加熱であれば100〜200℃の温度で2〜60秒乾燥させる。紫外線照射であれば200〜400nm、200〜2500mJ/cmの範囲で行う。また、シランカップリング処理は金属箔の最外層に行うことが好ましい。 Examples of the silane coupling agent used for the silane coupling treatment include epoxy-functional silanes such as 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 3-amino. Amino-functional silanes such as propyltrimethoxysilane, N-2- (aminoethyl) 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) 3-aminopropylmethyldimethoxysilane, vinyltrimethoxysilane, vinylphenyl Olefin functional silanes such as trimethoxysilane and vinyltris (2-methoxyethoxy) silane, acrylic functional silanes such as 3-acryloxypropyltrimethoxysilane, and methacrylic functional silanes such as 3-methacryloxypropyltrimethoxysilane, 3 −Me And mercapto-functional silanes such as mercaptopropyltrimethoxysilane is used. These may be used alone or in combination. These coupling agents are dissolved in a solvent such as water at a concentration of 0.1 to 15 g / L and applied to a metal foil at a temperature of room temperature to 50 ° C. or electrodeposited to be adsorbed. These silane coupling agents form a film by condensation bonding with the hydroxyl group of the rust-proofing metal on the surface of the metal foil. After the silane coupling treatment, a stable bond is formed by heating, ultraviolet irradiation or the like. If it is heating, it is dried at a temperature of 100 to 200 ° C. for 2 to 60 seconds. In the case of ultraviolet irradiation, it is performed in the range of 200 to 400 nm and 200 to 2500 mJ / cm 2 . The silane coupling treatment is preferably performed on the outermost layer of the metal foil.

また、シランカップリング処理に用いるシランカップリング剤としては、好ましくは60〜200℃、より好ましくは80〜150℃の加熱により上記絶縁樹脂組成物と化学反応するものであることが好ましい。これによれば、絶縁樹脂組成物中の官能基とシランカップリング剤の官能基が化学反応し、より優れた密着性を得ることが可能となる。例えば、エポキシ基が含まれる絶縁樹脂組成物に対しては、アミノ官能性シランを含むシランカップリング剤を用いることが好ましい。これは、熱によりエポキシ基とアミノ基が容易に強固な化学結合を形成し、この結合が熱や水分に対して極めて安定であることに起因する。このように化学結合を形成する組み合わせとして、エポキシ基−アミノ基、エポキシ基−エポキシ基、エポキシ基−メルカプト基、エポキシ基−水酸基、エポキシ基−カルボキシル基、エポキシ基−シアナト基、アミノ基−水酸基、アミノ基−カルボキシル基、アミノ基−シアナト基などが例示される。   Moreover, as a silane coupling agent used for a silane coupling process, it is preferable that it reacts with the said insulating resin composition preferably by heating at 60-200 degreeC, More preferably, 80-150 degreeC. According to this, the functional group in the insulating resin composition and the functional group of the silane coupling agent chemically react, and it becomes possible to obtain better adhesion. For example, it is preferable to use a silane coupling agent containing an amino-functional silane for an insulating resin composition containing an epoxy group. This is because the epoxy group and amino group easily form a strong chemical bond by heat, and this bond is extremely stable against heat and moisture. As a combination for forming a chemical bond in this manner, epoxy group-amino group, epoxy group-epoxy group, epoxy group-mercapto group, epoxy group-hydroxyl group, epoxy group-carboxyl group, epoxy group-cyanato group, amino group-hydroxyl group , Amino group-carboxyl group, amino group-cyanato group and the like.

また、本発明に用いる絶縁樹脂組成物の絶縁樹脂として、常温で液状のエポキシ樹脂を用いることが好ましく、この場合、溶融時の粘度が大幅に低下するため、接着界面における濡れ性が向上し、エポキシ樹脂とシランカップリング剤の化学反応が起こりやすくなり、その結果、強固なピール強度が得られる。具体的にはエポキシ当量200程度のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂が好ましい。   Further, as the insulating resin of the insulating resin composition used in the present invention, it is preferable to use an epoxy resin that is liquid at room temperature.In this case, since the viscosity at the time of melting is greatly reduced, the wettability at the adhesion interface is improved, A chemical reaction between the epoxy resin and the silane coupling agent easily occurs, and as a result, a strong peel strength is obtained. Specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, and phenol novolac type epoxy resin having an epoxy equivalent of about 200 are preferable.

また、絶縁樹脂組成物が硬化剤を含む場合、硬化剤としては、特に加熱硬化型潜在性硬化剤を用いることが好ましい。すなわち、絶縁樹脂組成物中の官能基とシランカップリング剤の官能基が化学反応する場合は、絶縁樹脂組成物中の官能基とシランカップリング剤の官能基の反応温度が絶縁樹脂組成物の硬化反応が開始される温度より低くなるように硬化剤を選択することが好ましい。これにより、絶縁樹脂組成物中の官能基とシランカップリング剤の官能基の反応が優先的、選択的に行われ、金属箔と絶縁樹脂組成物の密着性がより高くなる。エポキシ樹脂を含む絶縁樹脂組成物に対する熱硬化型潜在性硬化剤としては、ジシアンジアミド、ジヒドラジド化合物、イミダゾール化合物、アミン−エポキシアダクトなどの固体分散−加熱溶解型硬化剤や尿素化合物、オニウム塩類、ボロントリクロライド・アミン塩類、ブロックカルボン酸化合物などの反応性基ブロック型硬化剤が挙げられる。   Moreover, when the insulating resin composition contains a curing agent, it is particularly preferable to use a thermosetting latent curing agent as the curing agent. That is, when the functional group in the insulating resin composition and the functional group of the silane coupling agent chemically react, the reaction temperature of the functional group in the insulating resin composition and the functional group of the silane coupling agent is the same as that of the insulating resin composition. It is preferable to select the curing agent so that it is lower than the temperature at which the curing reaction is initiated. Thereby, the reaction of the functional group in the insulating resin composition and the functional group of the silane coupling agent is preferentially and selectively performed, and the adhesion between the metal foil and the insulating resin composition becomes higher. Thermosetting latent curing agents for insulating resin compositions containing epoxy resins include solid dispersion-heat-dissolving curing agents such as dicyandiamide, dihydrazide compounds, imidazole compounds, amine-epoxy adducts, urea compounds, onium salts, boron tri Examples thereof include reactive group block type curing agents such as chloride / amine salts and block carboxylic acid compounds.

以上のような絶縁樹脂組成物を含有するプリプレグと、その表面が実質的に粗し処理されておらず、なおかつ上記表面処理が施された金属箔とを前述の方法により積層一体化することで、図1(a)に示すような本発明の金属張積層板を得ることができる。   By laminating and integrating the prepreg containing the insulating resin composition as described above and the metal foil whose surface is not substantially roughened and subjected to the surface treatment by the above-described method. The metal-clad laminate of the present invention as shown in FIG. 1 (a) can be obtained.

また、本発明の樹脂付き金属箔は、上記のような絶縁樹脂組成物のワニスを上記のような金属箔上に塗布、加熱、乾燥して得ることができる。塗布方法としては、例えば、キスコーター、ロールコーター、コンマコーター等を用いて行うことができ、加熱、乾燥条件は、100〜200℃の温度で1〜30分とすることが好ましく、加熱、乾燥後の絶縁樹脂組成物中における残留溶剤量は、0.2〜10%程度であることが好ましい。また、樹脂付き金属箔を作成する場合の絶縁樹脂組成物ワニス中の溶媒量は30〜70重量%の範囲とするのが好ましく、25℃におけるワニスの粘度は100〜500cPの範囲とするのが好ましい。また、フィルム状の絶縁樹脂組成物を金属箔にラミネートして本発明の樹脂付き金属箔とすることもでき、その場合には、50〜150℃、0.1〜5MPaの条件で樹脂フィルムを金属箔上にラミネートするのが適当である。   Moreover, the metal foil with resin of this invention can be obtained by apply | coating the varnish of the above insulating resin compositions on the above metal foil, heating, and drying. As a coating method, for example, a kiss coater, a roll coater, a comma coater, or the like can be used. The heating and drying conditions are preferably 100 to 200 ° C. for 1 to 30 minutes, and after heating and drying The amount of residual solvent in the insulating resin composition is preferably about 0.2 to 10%. In addition, the amount of solvent in the insulating resin composition varnish when forming a metal foil with resin is preferably in the range of 30 to 70% by weight, and the viscosity of the varnish at 25 ° C. is in the range of 100 to 500 cP. preferable. Moreover, a film-like insulating resin composition can be laminated on a metal foil to obtain a metal foil with a resin of the present invention. In that case, the resin film is formed under conditions of 50 to 150 ° C. and 0.1 to 5 MPa. It is appropriate to laminate on a metal foil.

また、本発明の金属張積層板、または樹脂付き金属箔の絶縁樹脂組成物層と金属箔の界面粗さ(Rz)は2.0以下であることが好ましく、1.5μm以下であることがより好ましい。なお、本発明において、絶縁樹脂組成物層と金属箔の界面粗さとは、金属張積層板、樹脂付き金属箔又はプリント配線板の導体金属をエッチングし、現れた樹脂面の粗さをJIS−B−0601に基づき測定した数値である。   Further, the interface roughness (Rz) between the metal-clad laminate of the present invention or the insulating resin composition layer of the metal foil with resin and the metal foil is preferably 2.0 or less, and preferably 1.5 μm or less. More preferred. In the present invention, the interface roughness between the insulating resin composition layer and the metal foil refers to the roughness of the resin surface that appears after etching the conductor metal of the metal-clad laminate, the resin-attached metal foil, or the printed wiring board. It is a numerical value measured based on B-0601.

次に、上記のようにして得た本発明の金属張積層板を用いてプリント配線板を製造する方法の一例を説明する。   Next, an example of a method for producing a printed wiring board using the metal-clad laminate of the present invention obtained as described above will be described.

まず、図1(a)の金属張積層板に層間接続用の貫通スルーホール3を形成し、金属箔2上及びスルーホール3内部に触媒核を付与する。(図1(b))。スルーホール径が100μm以上であればドリルによる加工が適しており、スルーホール径が100μm以下であればCOやCO、エキシマ等の気体レーザーやYAG等の固体レーザーが適している。また、触媒核の付与には、貴金属イオンやパラジウムコロイドを使用する。 First, through-holes 3 for interlayer connection are formed in the metal-clad laminate of FIG. 1A, and catalyst nuclei are provided on the metal foil 2 and inside the through-holes 3. (FIG. 1 (b)). If the through hole diameter is 100 μm or more, processing by a drill is suitable, and if the through hole diameter is 100 μm or less, a gas laser such as CO 2 , CO, or excimer, or a solid laser such as YAG is suitable. In addition, noble metal ions or palladium colloids are used for imparting catalyst nuclei.

次に図1(c)に示すように触媒核を付与した金属箔2上及びスルーホール3内部に薄付けの無電解めっき層4を形成する。この無電解めっきには、CUST2000(日立化成工業株式会社製、商品名)やCUST201(日立化成工業株式会社製、商品名)等の市販の無電解銅めっきが使用できる。これらの無電解銅めっきは硫酸銅、ホルマリン、錯化剤、水酸化ナトリウムを主成分とする。めっきの厚さは次の電気めっきが行うことができる厚さであればよく、0.1〜1μm程度で十分である。   Next, as shown in FIG. 1C, a thin electroless plating layer 4 is formed on the metal foil 2 provided with catalyst nuclei and in the through hole 3. For this electroless plating, commercially available electroless copper plating such as CUST2000 (manufactured by Hitachi Chemical Co., Ltd., trade name) or CUST201 (product name of Hitachi Chemical Co., Ltd.) can be used. These electroless copper platings are mainly composed of copper sulfate, formalin, complexing agent and sodium hydroxide. The thickness of the plating is not limited as long as the next electroplating can be performed, and about 0.1 to 1 μm is sufficient.

次に図1(d)に示すように無電解めっきを行った上にめっきレジスト5を形成する。めっきレジストの厚さは、その後めっきする導体の厚さと同程度かより厚い膜厚にするのが好適である。めっきレジストに使用できる樹脂には、PMER P−LA900PM(東京応化株式会社製、商品名)のような液状レジストや、HW−425(日立化成工業株式会社、商品名)、RY−3025(日立化成工業株式会社、商品名)等のドライフィルムがある。ビアホール上と導体回路となるべき個所はめっきレジストを形成しない。   Next, as shown in FIG. 1D, electroless plating is performed and a plating resist 5 is formed. The thickness of the plating resist is preferably set to a thickness that is about the same as or thicker than the conductor to be subsequently plated. Resins that can be used for plating resist include liquid resists such as PMER P-LA900PM (trade name, manufactured by Tokyo Ohka Co., Ltd.), HW-425 (trade name, Hitachi Chemical Co., Ltd.), RY-3025 (Hitachi Chemical). There are dry films such as Kogyo Co., Ltd. (trade name). A plating resist is not formed on the via hole and the portion to be a conductor circuit.

次に図1(e)に示すように電気めっきにより回路パターン6を形成する。電気めっきには、通常プリント配線板で使用される硫酸銅電気めっきが使用できる。めっきの厚さは、回路導体として使用できればよく、1〜100μmの範囲である事が好ましく、5〜50μmの範囲である事がより好ましい。   Next, as shown in FIG. 1E, a circuit pattern 6 is formed by electroplating. For the electroplating, copper sulfate electroplating usually used for printed wiring boards can be used. The plating thickness may be used as a circuit conductor, and is preferably in the range of 1 to 100 μm, and more preferably in the range of 5 to 50 μm.

次にアルカリ性剥離液や硫酸あるいは市販のレジスト剥離液を用いてレジストの剥離を行い、パターン部以外の銅をエッチング除去する(図1(f))。本発明に用いるエッチング液としては、特に限定されないが、従来の拡散律速タイプのエッチング液を用いた場合、配線の微細な部分はどうしても液の交換が悪くなるため回路形成性が悪化してしまう傾向がある。そこで、銅とエッチング液の反応が拡散律速ではなく、反応律速で進行するタイプのエッチング液を用いることが望ましい。銅とエッチング液の反応が反応律速であれば、拡散をそれ以上強めたとしてもエッチング速度は変わらない。即ち液交換の良い場所と悪い場所でのエッチング速度差が生じない。このような反応律速エッチング液としては、例えば、過酸化水素とハロゲン元素を含まない酸とを主成分とするものが挙げられる。酸化剤として過酸化水素を用いるので、その濃度を管理することで厳密なエッチング速度制御が可能になる。尚、エッチング液にハロゲン元素が混入すると、溶解反応が拡散律速になりやすい。ハロゲンを含まない酸としては、硝酸、硫酸、有機酸等が使用できるが、硫酸であることが安価で好ましい。更に硫酸と過酸化水素が主成分である場合には、それぞれの濃度を5〜300g/L,5〜200g/Lとする事がエッチング速度、液の安定性の面から好ましい。   Next, the resist is stripped using an alkaline stripping solution, sulfuric acid or a commercially available resist stripping solution, and copper other than the pattern portion is removed by etching (FIG. 1 (f)). The etching solution used in the present invention is not particularly limited. However, when a conventional diffusion-controlled etching solution is used, the circuit forming properties tend to deteriorate because the exchange of the solution is inevitably worsened for fine portions of the wiring. There is. Therefore, it is desirable to use an etching solution of a type in which the reaction between copper and the etching solution proceeds not at a diffusion rate but at a reaction rate. If the reaction between copper and the etchant is reaction-controlled, the etching rate does not change even if diffusion is further increased. That is, there is no difference in etching rate between a place where the liquid exchange is good and a place where the liquid exchange is bad. As such a reaction-limited etching solution, for example, one containing hydrogen peroxide and an acid not containing a halogen element as main components can be mentioned. Since hydrogen peroxide is used as the oxidizing agent, strict etching rate control becomes possible by managing the concentration. If a halogen element is mixed in the etching solution, the dissolution reaction tends to be diffusion-limited. As the acid not containing halogen, nitric acid, sulfuric acid, organic acid, and the like can be used, but sulfuric acid is preferable because it is inexpensive. Furthermore, when sulfuric acid and hydrogen peroxide are the main components, the respective concentrations are preferably 5 to 300 g / L and 5 to 200 g / L from the viewpoints of etching rate and liquid stability.

次に上記図1(f)を内層回路基板として、その両側に、片面金属張積層板または樹脂付き金属箔をラミネートとする(図1(g))。ここで用いる片面金属張積層板または樹脂付き金属箔は、前述した本発明の金属張積層板または樹脂付き金属箔と同様のものであることが好ましい。また、ここでは、絶縁層7の厚みは10〜100μmであることが好ましく、20〜60μmであることがより好ましい。さらに、金属箔8の厚みは0.3〜3μmが好適である。   Next, using FIG. 1 (f) as an inner circuit board, a single-sided metal-clad laminate or a metal foil with resin is laminated on both sides thereof (FIG. 1 (g)). The single-sided metal-clad laminate or resin-attached metal foil used here is preferably the same as the metal-clad laminate or resin-attached metal foil of the present invention described above. In addition, here, the thickness of the insulating layer 7 is preferably 10 to 100 μm, and more preferably 20 to 60 μm. Furthermore, the thickness of the metal foil 8 is preferably 0.3 to 3 μm.

次いで図1(h)に示す様に金属箔8の上から絶縁層7にIVH9を形成した後、その内部の樹脂残さの除去を行う。IVHを形成する方法としては、レーザーを用いるのが好適である。ここで用いることが出来るレーザーとしては、COやCO、エキシマ等の気体レーザーやYAG等の固体レーザーがある。COレーザーが容易に大出力を得られる事からφ50μm以上のIVHの加工に適している。φ50μm以下の微細なIVHを加工する場合は、より短波長で集光性のよいYAGレーザーが適している。また、樹脂残さの除去に用いる酸化剤としては、例えば、過マンガン酸塩、クロム酸塩、クロム酸などの酸化剤が挙げられる。 Next, as shown in FIG. 1 (h), IVH9 is formed on the insulating layer 7 from above the metal foil 8, and then the resin residue inside is removed. As a method of forming IVH, it is preferable to use a laser. Examples of the laser that can be used here include gas lasers such as CO 2 , CO, and excimer, and solid lasers such as YAG. Since a CO 2 laser can easily obtain a large output, it is suitable for processing IVH of φ50 μm or more. When processing a fine IVH of φ50 μm or less, a YAG laser with a shorter wavelength and good condensing property is suitable. Moreover, as an oxidizing agent used for removal of a resin residue, oxidizing agents, such as a permanganate, chromate, chromic acid, are mentioned, for example.

次いで金属箔8上及びIVH9内部に触媒核を付与し、金属箔8上及びIVH9内部に薄付けの無電解めっき層10を形成する。触媒核の付与には、貴金属イオンやパラジウムコロイドを使用することができる。無電解めっきには、CUST2000(日立化成工業株式会社製、商品名)やCUST201(日立化成工業株式会社製、商品名)等の市販の無電解銅めっきが使用できる。これらの無電解銅めっきは硫酸銅、ホルマリン、錯化剤、水酸化ナトリウムを主成分とする。めっきの厚さは次の電気めっきが行うことができる厚さであればよく、0.1〜1μm程度で十分である。   Next, catalyst nuclei are provided on the metal foil 8 and inside the IVH 9, and a thin electroless plating layer 10 is formed on the metal foil 8 and inside the IVH 9. Noble metal ions or palladium colloids can be used for imparting catalyst nuclei. For electroless plating, commercially available electroless copper plating such as CUST2000 (manufactured by Hitachi Chemical Co., Ltd., trade name) or CUST201 (product name of Hitachi Chemical Co., Ltd.) can be used. These electroless copper platings are mainly composed of copper sulfate, formalin, complexing agent and sodium hydroxide. The thickness of the plating is not limited as long as the next electroplating can be performed, and about 0.1 to 1 μm is sufficient.

次に図1(j)に示すように無電解めっき層10を形成した上にめっきレジスト11を形成する。めっきレジストの厚さは、その後めっきする導体の厚さと同程度かより厚い膜厚にするのが好適である。めっきレジストに使用できる樹脂には、PMER P−LA900PM(東京応化株式会社製、商品名)のような液状レジストや、HW−425(日立化成工業株式会社、商品名)、RY−3025(日立化成工業株式会社、商品名)等のドライフィルムがある。ビアホール上と導体回路となるべき個所はめっきレジストを形成しない。   Next, a plating resist 11 is formed on the electroless plating layer 10 as shown in FIG. The thickness of the plating resist is preferably set to a thickness that is about the same as or thicker than the conductor to be subsequently plated. Resins that can be used for plating resist include liquid resists such as PMER P-LA900PM (trade name, manufactured by Tokyo Ohka Co., Ltd.), HW-425 (trade name, Hitachi Chemical Co., Ltd.), RY-3025 (Hitachi Chemical). There are dry films such as Kogyo Co., Ltd. (trade name). A plating resist is not formed on the via hole and the portion to be a conductor circuit.

次に図1(k)に示すように電気めっきにより導体回路パターン12を形成する。電気めっきには、通常プリント配線板で使用される硫酸銅電気めっきが使用できる。めっきの厚さは、回路導体として使用できればよく、1〜100μmの範囲である事が好ましく、5〜50μmの範囲である事がより好ましい。   Next, as shown in FIG. 1 (k), a conductor circuit pattern 12 is formed by electroplating. For the electroplating, copper sulfate electroplating usually used for printed wiring boards can be used. The plating thickness may be used as a circuit conductor, and is preferably in the range of 1 to 100 μm, and more preferably in the range of 5 to 50 μm.

次にアルカリ性剥離液や硫酸あるいは市販のレジスト剥離液を用いてレジストの剥離を行い、さらに導体回路パターン部以外の銅を、好ましくは反応律速である前述のエッチング液により除去することで回路形成を行う(図1(l))。   Next, the resist is stripped using an alkaline stripping solution, sulfuric acid, or a commercially available resist stripping solution, and copper is formed by removing the copper other than the conductor circuit pattern portion with the above-described etching solution, which is preferably reaction-controlled. Perform (FIG. 1 (l)).

さらに、図1(l)の基板の導体回路上に金めっきを行うことも出来る。金めっきの方法としては、従来公知の方法でよく、特に限定されないが、例えば、SA―100(日立化成工業株式会社製、商品名)のような活性化処理液で導体界面の活性化処理を行い、NIPS―100(日立化成工業株式会社製、商品名)のような無電解ニッケルめっきを1〜10μm程度行い、HGS―100(日立化成工業株式会社製、商品名)のような置換金めっきを0.01〜0.1μm程度行った後にHGS―2000(日立化成工業株式会社製、商品名)のような無電解金めっきを0.1〜1μm程度行うなどの方法がある。   Further, gold plating can be performed on the conductor circuit of the substrate shown in FIG. The gold plating method may be a conventionally known method, and is not particularly limited. For example, the conductor interface activation treatment is performed with an activation treatment solution such as SA-100 (trade name, manufactured by Hitachi Chemical Co., Ltd.). And electroless nickel plating such as NIPS-100 (manufactured by Hitachi Chemical Co., Ltd., trade name) to about 1 to 10 μm, and substitution gold plating such as HGS-100 (trade name, manufactured by Hitachi Chemical Co., Ltd.) There is a method of performing electroless gold plating such as HGS-2000 (manufactured by Hitachi Chemical Co., Ltd., trade name) for about 0.1 to 1 μm after performing about 0.01 to 0.1 μm.

以上のように本発明の金属張積層板を用い、場合によっては樹脂付き金属箔を併用することで、信頼性および回路形成性に優れ、なおかつ導体損失の非常に少ないプリント配線板およびその製造方法を提供することが可能となる。勿論、樹脂付き金属箔のみを用いて本発明のプリント配線板を製造することも可能である。また、絶縁樹脂組成物層と導体回路となる金属箔の密着性も実用上十分な値を満たすため、プリント配線板の製造工程においてライン剥がれによる不良も少ない。本発明のプリント配線板において、絶縁樹脂組成物層と1mm幅の導体回路の引き剥がし強さは0.6kN/m以上であることが好ましく、0.8kN/m以上であることがより好ましい。さらに、150℃で240時間加熱した後の絶縁樹脂組成物層と1mm幅の導体回路の引き剥がし強さは0.4kN/m以上であることが好ましく、0.6kN/m以上であることがより好ましい。   As described above, by using the metal-clad laminate of the present invention, and optionally using a metal foil with a resin, a printed wiring board having excellent reliability and circuit forming property and having very little conductor loss and a method for producing the same Can be provided. Of course, it is also possible to manufacture the printed wiring board of this invention using only metal foil with resin. Moreover, since the adhesiveness between the insulating resin composition layer and the metal foil serving as the conductor circuit also satisfies a practically sufficient value, there are few defects due to line peeling in the printed wiring board manufacturing process. In the printed wiring board of the present invention, the peel strength between the insulating resin composition layer and the 1 mm-width conductor circuit is preferably 0.6 kN / m or more, and more preferably 0.8 kN / m or more. Furthermore, the peel strength between the insulating resin composition layer after heating at 150 ° C. for 240 hours and the 1 mm-width conductor circuit is preferably 0.4 kN / m or more, and preferably 0.6 kN / m or more. More preferred.

以下、実施例により本発明をより詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to this.

(金属箔1の作製)
幅510mm、厚み35μmの電解銅箔(キャリア銅箔)の光択面に下記の条件でクロムめっきを連続的に行って1.0mg/dmの厚さのクロムめっき層(剥離層)を形成した。クロムめっき形成後の表面粗さRz=0.5μmであった。なお、表面粗さはJIS−B−0601に基づき測定した。
クロムめっき条件
・液組成:三酸化クロム250g/L、硫酸2.5g/L
・浴温:25℃
・アノード:鉛
・電流密度20A/dm
(Preparation of metal foil 1)
A chromium plating layer (peeling layer) having a thickness of 1.0 mg / dm 2 is formed by continuously performing chromium plating on the light selective surface of an electrolytic copper foil (carrier copper foil) having a width of 510 mm and a thickness of 35 μm under the following conditions. did. The surface roughness after chromium plating formation was Rz = 0.5 μm. The surface roughness was measured based on JIS-B-0601.
Chromium plating conditions / solution composition: chromium trioxide 250 g / L, sulfuric acid 2.5 g / L
・ Bath temperature: 25 ° C
・ Anode: Lead ・ Current density 20A / dm 2

次に下記に示す光択めっき条件で厚さ1.0μmの電気銅めっきを行った。電気銅めっき終了後の金属箔表面粗さRz=0.6μmであった。
硫酸銅めっき条件
・液組成:硫酸銅5水和物100g/L、硫酸150g/L、塩化物イオン30ppm
・浴温:25℃
・アノード:鉛
・電流密度:10A/dm
Next, electrolytic copper plating with a thickness of 1.0 μm was performed under the photoselective plating conditions shown below. The surface roughness of the metal foil after completion of the electrolytic copper plating was Rz = 0.6 μm.
Copper sulfate plating conditions / solution composition: copper sulfate pentahydrate 100 g / L, sulfuric acid 150 g / L, chloride ion 30 ppm
・ Bath temperature: 25 ° C
・ Anode: Lead ・ Current density: 10 A / dm 2

次に下記に示すように電気めっきにより亜鉛防錆処理を行った。
・液組成:亜鉛20g/L,硫酸70g/L
・浴温:40℃
・アノード:鉛
・電流密度:15A/dm
・電解時間:10秒
Next, as shown below, zinc rust prevention treatment was performed by electroplating.
・ Liquid composition: Zinc 20 g / L, sulfuric acid 70 g / L
・ Bath temperature: 40 ℃
・ Anode: Lead ・ Current density: 15 A / dm 2
・ Electrolysis time: 10 seconds

次に引き続き下記に示すクロメート処理を行った。
・液組成:クロム酸5.0g/L
・pH:11.5
・浴温:55℃
・アノード:鉛
・浸漬時間:5秒
Next, the following chromate treatment was performed.
Liquid composition: chromic acid 5.0 g / L
・ PH: 11.5
・ Bath temperature: 55 ℃
・ Anode: Lead ・ Immersion time: 5 seconds

次に下記に示すシランカップリング処理を行った。
・液組成:3−アミノプロピルトリメトキシシラン5.0g/L
・液温:25℃
・浸漬時間:10秒
Next, the following silane coupling treatment was performed.
Liquid composition: 3-aminopropyltrimethoxysilane 5.0 g / L
・ Liquid temperature: 25 ° C
・ Immersion time: 10 seconds

シランカップリング処理後、金属箔を120℃で乾燥してカップリング剤を金属箔表面に吸着させた。そのときの金属箔表面粗さはRz=0.6μmであった。   After the silane coupling treatment, the metal foil was dried at 120 ° C. to adsorb the coupling agent on the surface of the metal foil. The metal foil surface roughness at that time was Rz = 0.6 μm.

(金属箔2の作製)
金属箔1の亜鉛防錆処理の代わりに下記に示す電気ニッケルめっきで防錆処理を行った以外は金属箔1と同様に金属箔を作製した。そのときの金属箔表面粗さRz=0.6μmであった。
電気ニッケルめっき
・液組成:亜鉛20g/L,硫酸70g/L
・浴温:40℃
・アノード:鉛
・電流密度:15A/dm
・電解時間:10秒
(Preparation of metal foil 2)
A metal foil was prepared in the same manner as the metal foil 1 except that the metal foil 1 was subjected to a rust prevention treatment by electro nickel plating shown below instead of the zinc rust prevention treatment. The metal foil surface roughness at that time was Rz = 0.6 μm.
Electro nickel plating ・ Liquid composition: Zinc 20g / L, sulfuric acid 70g / L
・ Bath temperature: 40 ℃
・ Anode: Lead ・ Current density: 15 A / dm 2
・ Electrolysis time: 10 seconds

(金属箔3の作製)
金属箔1のシランカップリング剤にγ−グリシドキシプロピルトリメトキシシランを用いた以外は金属箔1と同様に金属箔を作製した。そのときの金属箔表面粗さはRz=0.6μmであった。
(Preparation of metal foil 3)
A metal foil was prepared in the same manner as the metal foil 1 except that γ-glycidoxypropyltrimethoxysilane was used as the silane coupling agent of the metal foil 1. The metal foil surface roughness at that time was Rz = 0.6 μm.

(金属箔4の作製)
金属箔2のシランカップリング剤にγ−グリシドキシプロピルトリメトキシシランを用いた以外は金属箔2と同様に金属箔を作製した。そのときの金属箔表面粗さはRz=0.6μmであった。
(Preparation of metal foil 4)
A metal foil was prepared in the same manner as the metal foil 2 except that γ-glycidoxypropyltrimethoxysilane was used as the silane coupling agent for the metal foil 2. The metal foil surface roughness at that time was Rz = 0.6 μm.

(金属箔5の作製)
金属箔1のクロメート処理を行わなかった他は金属箔1と同様に金属箔を作製した。そのときの金属箔表面粗さはRz=0.6μmであった。
(Preparation of metal foil 5)
A metal foil was prepared in the same manner as the metal foil 1 except that the chromate treatment of the metal foil 1 was not performed. The metal foil surface roughness at that time was Rz = 0.6 μm.

(金属箔6の作製)
金属箔1のカップリング剤処理を行わなかった他は金属箔1と同様に金属箔を作製した。そのときの金属箔表面粗さはRz=0.6μmであった。
(Preparation of metal foil 6)
A metal foil was prepared in the same manner as the metal foil 1 except that the metal foil 1 was not treated with the coupling agent. The metal foil surface roughness at that time was Rz = 0.6 μm.

(金属箔7の作製)
金属箔1の亜鉛防錆処理を行わなかった他は金属箔1と同様に金属箔を作製した。そのときの金属箔表面粗さはRz=0.6μmであった。
(Preparation of metal foil 7)
A metal foil was prepared in the same manner as the metal foil 1 except that the metal foil 1 was not subjected to the zinc rust prevention treatment. The metal foil surface roughness at that time was Rz = 0.6 μm.

(金属箔8の作製)
光沢銅めっき後に下記に示すやけめっき条件で厚さ2.0μmの電気銅めっきを行った他は金属箔1と同様に金属箔を作製した。そのときの金属箔表面粗さはRz=2.7μmであった。
やけめっき条件
・液組成:硫酸銅5水和物50g/L、硫酸100g/L、塩化物イオン30ppm
・浴温:25℃
・アノード:鉛
・電流密度:10A/dm
(Preparation of metal foil 8)
A metal foil was prepared in the same manner as the metal foil 1 except that after the bright copper plating, electrolytic copper plating with a thickness of 2.0 μm was performed under the burnt plating conditions shown below. At that time, the surface roughness of the metal foil was Rz = 2.7 μm.
Burn plating conditions / solution composition: copper sulfate pentahydrate 50 g / L, sulfuric acid 100 g / L, chloride ion 30 ppm
・ Bath temperature: 25 ° C
・ Anode: Lead ・ Current density: 10 A / dm 2

(絶縁樹脂組成物1の作製)
常温で液状であるビスフェノールA型エポキシ樹脂(エピコート828EL、油化シェル株式会社製商品名)30重量%、クレゾールノボラック型エポキシ樹脂(エピクロンN−673、大日本インキ株式会社製商品名)30重量%、臭素化ビスフェノールA型エポキシ樹脂(YDB−500、東都化成株式会社製商品名)30重量%をメチルエチルケトンに攪拌しながら80℃で加熱溶解させ、そこに潜在性エポキシ硬化剤である2、4−ジアミノ−6−(2−メチル−1−イミダゾリルエチル)−1、3、5−トリアジン・イソシアヌル酸付加物4重量%、更に微粉砕シリカ2重量%、三酸化アンチモン4重量%を添加し、エポキシ系絶縁樹脂組成物ワニスを作製した。
(Preparation of insulating resin composition 1)
Bisphenol A type epoxy resin (Epicoat 828EL, product name manufactured by Yuka Shell Co., Ltd.) 30% by weight, cresol novolac type epoxy resin (Epicron N-673, product name manufactured by Dainippon Ink Co., Ltd.) 30% by weight Then, brominated bisphenol A type epoxy resin (YDB-500, trade name, manufactured by Tohto Kasei Co., Ltd.) 30% by weight is stirred and dissolved in methyl ethyl ketone at 80 ° C., and there is a latent epoxy curing agent 2,4- Diamino-6- (2-methyl-1-imidazolylethyl) -1,3,5-triazine / isocyanuric acid adduct 4% by weight, finely pulverized silica 2% by weight, antimony trioxide 4% by weight, and epoxy An insulating resin composition varnish was prepared.

(絶縁樹脂組成物2の作製)
ポリフェニレンエーテル樹脂(PKN4752、日本ジーイープラスチックス株式会社製商品名)20重量%、2,2−ビス(4−シアナトフェニル)プロパン(ArocyB−10、旭チバ株式会社製商品名)40重量%、リン含有フェノール化合物(HCA−HQ、三光化学株式会社製商品名)8重量%、ナフテン酸マンガン(Mn含有量=6重量%、日本化学産業株式会社製)0.1重量%、2,2−ビス(4−グリシジルフェニル)プロパン(DER331L、ダウケミカル日本株式会社製商品名)32重量%をトルエンに80℃で加熱溶解させ、ポリフェニレンエーテル−シアネート系絶縁樹脂組成物ワニスを作製した。
(Preparation of insulating resin composition 2)
20% by weight of polyphenylene ether resin (PKN4752, trade name manufactured by Nippon GE Plastics Co., Ltd.), 40% by weight of 2,2-bis (4-cyanatophenyl) propane (ArocyB-10, trade name of Asahi Ciba Co., Ltd.), Phosphorus-containing phenol compound (HCA-HQ, trade name, manufactured by Sanko Chemical Co., Ltd.) 8% by weight, manganese naphthenate (Mn content = 6% by weight, manufactured by Nippon Chemical Industry Co., Ltd.) 0.1% by weight, 2,2- Bis (4-glycidylphenyl) propane (DER331L, trade name, manufactured by Dow Chemical Japan Co., Ltd.) 32% by weight was dissolved in toluene at 80 ° C. to prepare a polyphenylene ether-cyanate insulating resin composition varnish.

(絶縁樹脂組成物3の作製)
シロキサン変性ポリアミドイミド樹脂(KS−6600、日立化成工業株式会社製商品名)80重量%、クレゾールノボラック型エポキシ樹脂(YDCN−703、東都化成株式会社商品名)20重量%をNMP(N―メチルピロリドン)に80℃で溶解させ、シロキサン変性ポリアミドイミド系絶縁樹脂組成物ワニスを作製した。
(Preparation of insulating resin composition 3)
80% by weight of siloxane-modified polyamideimide resin (KS-6600, trade name, manufactured by Hitachi Chemical Co., Ltd.), 20% by weight of cresol novolac type epoxy resin (YDCN-703, trade name of Toto Kasei Co., Ltd.) is added to NMP (N-methylpyrrolidone) ) Was dissolved at 80 ° C. to prepare a siloxane-modified polyamideimide insulating resin composition varnish.

(実施例1)
絶縁樹脂組成物1のワニスを0.2mm厚のガラス布(坪量210g/m)に含浸させ120℃で5分間乾燥してプリプレグを得た。このプリプレグ4枚と上下に金属箔1を積層し、170℃、2.45MPaの条件で1時間プレス成形し、キャリア銅箔を剥離し、図2(a)に示すような絶縁層13と銅箔14よりなる銅張積層板を製造した。
Example 1
The varnish of the insulating resin composition 1 was impregnated into a 0.2 mm thick glass cloth (basis weight 210 g / m 2 ) and dried at 120 ° C. for 5 minutes to obtain a prepreg. The metal foil 1 is laminated on the top and bottom of the four prepregs, press-formed at 170 ° C. and 2.45 MPa for 1 hour, the carrier copper foil is peeled off, and the insulating layer 13 and the copper as shown in FIG. A copper clad laminate made of the foil 14 was produced.

図2(b)に示すように、金属箔上から炭酸ガスインパクトレーザー穴あけ機L−500(住友重機械工業株式会社製、商品名)により、直径80μmの貫通スルーホール15をあけ、過マンガン酸カリウム65g/リットルと水酸化ナトリウム40g/リットルの混合水溶液に、液温70℃で20分間浸漬し、スミアの除去を行った。   As shown in FIG. 2 (b), a through-hole 15 having a diameter of 80 μm was drilled from a metal foil with a carbon dioxide impact laser drilling machine L-500 (trade name, manufactured by Sumitomo Heavy Industries, Ltd.), and permanganate. Smear was removed by immersing in a mixed aqueous solution of potassium 65 g / liter and sodium hydroxide 40 g / liter at a liquid temperature of 70 ° C. for 20 minutes.

その後、パラジウム溶液であるHS−202B(日立化成工業株式会社製、商品名)に、25℃で15分間浸漬し、触媒を付与した後、CUST−201(日立化成工業株式会社製、商品名)を使用し、液温25℃、30分の条件で無電解銅めっきを行い、図2(c)に示すように厚さ0.3μmの無電解銅めっき層16を形成した。   Then, after immersing in HS-202B (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a palladium solution, at 25 ° C. for 15 minutes to give a catalyst, CUST-201 (trade name, manufactured by Hitachi Chemical Co., Ltd.) Was used, and electroless copper plating was carried out at a liquid temperature of 25 ° C. for 30 minutes to form an electroless copper plating layer 16 having a thickness of 0.3 μm as shown in FIG.

図2(d)に示すように、ドライフィルムフォトレジストであるRY−3025(日立化成工業株式会社製、商品名)を、無電解めっき層16の表面にラミネートし、電解銅めっきを行う箇所をマスクしたフォトマスクを介して紫外線を露光し、現像してめっきレジスト17を形成した。   As shown in FIG.2 (d), the location which laminates the dry film photoresist RY-3025 (made by Hitachi Chemical Co., Ltd., brand name) on the surface of the electroless plating layer 16, and performs electrolytic copper plating. The plating resist 17 was formed by exposing and developing ultraviolet rays through the masked photomask.

図2(e)に示すように、硫酸銅浴を用いて、液温25℃、電流密度1.0A/dmの条件で、電解銅めっきを20μmほど行い、最小回路導体幅/回路導体間隔(L/S)=25/15μmとなるようにパターン電気銅めっき18を形成した。 As shown in FIG. 2 (e), using a copper sulfate bath, electrolytic copper plating is performed for about 20 μm under conditions of a liquid temperature of 25 ° C. and a current density of 1.0 A / dm 2 , and the minimum circuit conductor width / circuit conductor interval. Patterned electrolytic copper plating 18 was formed so that (L / S) = 25/15 μm.

次に図2(f)に示すように、レジスト剥離液であるHTO(ニチゴー・モートン株式会社製、商品名)でドライフィルムの除去を行った後にHSO20g/L、H10g/Lの組成のエッチング液を用いてパターン部以外の銅をエッチング除去した。エッチング時は基板を片面1dmの小片に切断した後、1Lビーカーに入れ、マグネティックスターラーを用いて40℃で5分間エッチングを行った。 Next, as shown in FIG. 2F, after removing the dry film with HTO (trade name, manufactured by Nichigo Morton Co., Ltd.) which is a resist stripping solution, H 2 SO 4 20 g / L, H 2 O 2. Copper other than the pattern portion was removed by etching using an etching solution having a composition of 10 g / L. At the time of etching, the substrate was cut into small pieces of 1 dm 2 on one side, placed in a 1 L beaker, and etched at 40 ° C. for 5 minutes using a magnetic stirrer.

最後に表1に示す条件で導体回路にニッケルめっき層19と金めっき層20を形成した(図2(g))。回路形成後の最小回路導体幅/回路導体間隔(L/S)=20/20μmであった(ボトム幅)。   Finally, a nickel plating layer 19 and a gold plating layer 20 were formed on the conductor circuit under the conditions shown in Table 1 (FIG. 2 (g)). The minimum circuit conductor width / circuit conductor interval (L / S) after circuit formation was 20/20 μm (bottom width).

(実施例2)
絶縁樹脂組成物1のワニスを0.2mm厚のガラス布(坪量210g/m)に含浸させ120℃で5分間乾燥してプリプレグを得た。このプリプレグ4枚と上下に金属箔2を積層し、170℃、2.45MPaの条件で1時間プレス成形し、図2(a)に示すような銅張積層板を製造したこと以外は実施例1と同様に基板を作製した。
(Example 2)
The varnish of the insulating resin composition 1 was impregnated into a 0.2 mm thick glass cloth (basis weight 210 g / m 2 ) and dried at 120 ° C. for 5 minutes to obtain a prepreg. Example 4 Except that four prepregs and metal foil 2 were laminated on the top and bottom and press molded at 170 ° C. and 2.45 MPa for 1 hour to produce a copper-clad laminate as shown in FIG. A substrate was prepared in the same manner as in 1.

(実施例3)
絶縁樹脂組成物2のワニスを0.2mm厚のガラス布(坪量210g/m)に含浸させ160℃で5分間乾燥してプリプレグを得た。このプリプレグ4枚と上下に金属箔2を積層し、170℃、2.45MPaの条件で1時間プレス成形し、図2(a)に示すような銅張積層板を製造したこと以外は実施例1と同様に基板を作製した。
(Example 3)
A glass cloth having a thickness of 0.2 mm (basis weight 210 g / m 2 ) was impregnated with the varnish of the insulating resin composition 2 and dried at 160 ° C. for 5 minutes to obtain a prepreg. Example 4 Except that four prepregs and metal foil 2 were laminated on the top and bottom and press molded at 170 ° C. and 2.45 MPa for 1 hour to produce a copper-clad laminate as shown in FIG. A substrate was prepared in the same manner as in 1.

(実施例4)
絶縁樹脂組成物2のワニスを0.2mm厚のガラス布(坪量210g/m)に含浸させ160℃で5分間乾燥してプリプレグを得た。このプリプレグ4枚と上下に金属箔4を積層し、170℃、2.45MPaの条件で1時間プレス成形し、図2(a)に示すような銅張積層板を製造したこと以外は実施例1と同様に基板を作製した。
Example 4
A glass cloth having a thickness of 0.2 mm (basis weight 210 g / m 2 ) was impregnated with the varnish of the insulating resin composition 2 and dried at 160 ° C. for 5 minutes to obtain a prepreg. Example 4 Except that four prepregs and metal foil 4 were laminated on top and bottom and press-molded at 170 ° C. and 2.45 MPa for 1 hour to produce a copper-clad laminate as shown in FIG. A substrate was prepared in the same manner as in 1.

(実施例5)
絶縁樹脂組成物3のワニスを0.2mm厚のガラス布(坪量210g/m)に含浸させ160℃で5分間乾燥してプリプレグを得た。このプリプレグ4枚と上下に金属箔1を積層し、170℃、2.45MPaの条件で1時間プレス成形し、図2(a)に示すような銅張積層板を製造したこと以外は実施例1と同様に基板を作製した。
(Example 5)
A glass cloth having a thickness of 0.2 mm (basis weight 210 g / m 2 ) was impregnated with the varnish of the insulating resin composition 3 and dried at 160 ° C. for 5 minutes to obtain a prepreg. Example 4 Except that four prepregs and a metal foil 1 were laminated on the top and bottom and press-molded at 170 ° C. and 2.45 MPa for 1 hour to produce a copper-clad laminate as shown in FIG. A substrate was prepared in the same manner as in 1.

(実施例6)
絶縁樹脂組成物3のワニスを0.2mm厚のガラス布(坪量210g/m)に含浸させ160℃で5分間乾燥してプリプレグを得た。このプリプレグ4枚と上下に金属箔2を積層し、170℃、2.45MPaの条件で1時間プレス成形し、図2(a)に示すような銅張積層板を製造したこと以外は実施例1と同様に基板を作製した。
(Example 6)
A glass cloth having a thickness of 0.2 mm (basis weight 210 g / m 2 ) was impregnated with the varnish of the insulating resin composition 3 and dried at 160 ° C. for 5 minutes to obtain a prepreg. Example 4 Except that four prepregs and metal foil 2 were laminated on the top and bottom and press molded at 170 ° C. and 2.45 MPa for 1 hour to produce a copper-clad laminate as shown in FIG. A substrate was prepared in the same manner as in 1.

(実施例7)
絶縁樹脂組成物3のワニスを0.2mm厚のガラス布(坪量210g/m)に含浸させ160℃で5分間乾燥してプリプレグを得た。このプリプレグ4枚と上下に金属箔3を積層し、170℃、2.45MPaの条件で1時間プレス成形し、図2(a)に示すような銅張積層板を製造したこと以外は実施例1と同様に基板を作製した。
(Example 7)
A glass cloth having a thickness of 0.2 mm (basis weight 210 g / m 2 ) was impregnated with the varnish of the insulating resin composition 3 and dried at 160 ° C. for 5 minutes to obtain a prepreg. Example 4 Except that four prepregs and metal foil 3 were laminated on the top and bottom and press-molded at 170 ° C. and 2.45 MPa for 1 hour to produce a copper-clad laminate as shown in FIG. A substrate was prepared in the same manner as in 1.

(実施例8)
絶縁樹脂組成物3のワニスを0.2mm厚のガラス布(坪量210g/m)に含浸させ160℃で5分間乾燥してプリプレグを得た。このプリプレグ4枚と上下に金属箔4を積層し、170℃、2.45MPaの条件で1時間プレス成形し、図2(a)に示すような銅張積層板を製造したこと以外は実施例1と同様に基板を作製した。
(Example 8)
A glass cloth having a thickness of 0.2 mm (basis weight 210 g / m 2 ) was impregnated with the varnish of the insulating resin composition 3 and dried at 160 ° C. for 5 minutes to obtain a prepreg. Example 4 Except that four prepregs and metal foil 4 were laminated on top and bottom and press-molded at 170 ° C. and 2.45 MPa for 1 hour to produce a copper-clad laminate as shown in FIG. A substrate was prepared in the same manner as in 1.

(実施例9)
絶縁樹脂組成物1のワニスを0.2mm厚のガラス布(坪量210g/m)に含浸させ120℃で5分間乾燥してプリプレグを得た。このプリプレグ4枚と上下に金属箔3を積層し、170℃、2.45MPaの条件で1時間プレス成形し、図2(a)に示すような銅張積層板を製造したこと以外は実施例1と同様に基板を作製した。
Example 9
The varnish of the insulating resin composition 1 was impregnated into a 0.2 mm thick glass cloth (basis weight 210 g / m 2 ) and dried at 120 ° C. for 5 minutes to obtain a prepreg. Example 4 Except that four prepregs and metal foil 3 were laminated on the top and bottom and press-molded at 170 ° C. and 2.45 MPa for 1 hour to produce a copper-clad laminate as shown in FIG. A substrate was prepared in the same manner as in 1.

(実施例10)
絶縁樹脂組成物1のワニスを0.2mm厚のガラス布(坪量210g/m)に含浸させ120℃で5分間乾燥してプリプレグを得た。このプリプレグ4枚と上下に金属箔4を積層し、170℃、2.45MPaの条件で1時間プレス成形し、図2(a)に示すような銅張積層板を製造したこと以外は実施例1と同様に基板を作製した。
(Example 10)
The varnish of the insulating resin composition 1 was impregnated into a 0.2 mm thick glass cloth (basis weight 210 g / m 2 ) and dried at 120 ° C. for 5 minutes to obtain a prepreg. Example 4 Except that four prepregs and metal foil 4 were laminated on top and bottom and press-molded at 170 ° C. and 2.45 MPa for 1 hour to produce a copper-clad laminate as shown in FIG. A substrate was prepared in the same manner as in 1.

(実施例11)
絶縁樹脂組成物2のワニスを0.2mm厚のガラス布(坪量210g/m)に含浸させ160℃で5分間乾燥してプリプレグを得た。このプリプレグ4枚と上下に金属箔1を積層し、170℃、2.45MPaの条件で1時間プレス成形し、図2(a)に示すような銅張積層板を製造したこと以外は実施例1と同様に基板を作製した。
(Example 11)
A glass cloth having a thickness of 0.2 mm (basis weight 210 g / m 2 ) was impregnated with the varnish of the insulating resin composition 2 and dried at 160 ° C. for 5 minutes to obtain a prepreg. Example 4 Except that four prepregs and a metal foil 1 were laminated on the top and bottom and press-molded at 170 ° C. and 2.45 MPa for 1 hour to produce a copper-clad laminate as shown in FIG. A substrate was prepared in the same manner as in 1.

(実施例12)
絶縁樹脂組成物2のワニスを0.2mm厚のガラス布(坪量210g/m)に含浸させ160℃で5分間乾燥してプリプレグを得た。このプリプレグ4枚と上下に金属箔3を積層し、170℃、2.45MPaの条件で1時間プレス成形し、図2(a)に示すような銅張積層板を製造したこと以外は実施例1と同様に基板を作製した。
Example 12
A glass cloth having a thickness of 0.2 mm (basis weight 210 g / m 2 ) was impregnated with the varnish of the insulating resin composition 2 and dried at 160 ° C. for 5 minutes to obtain a prepreg. Example 4 Except that four prepregs and metal foil 3 were laminated on the top and bottom and press-molded at 170 ° C. and 2.45 MPa for 1 hour to produce a copper-clad laminate as shown in FIG. A substrate was prepared in the same manner as in 1.

(実施例13)
絶縁樹脂組成物3のワニスを0.2mm厚のガラス布(坪量210g/m)に含浸させ160℃で5分間乾燥してプリプレグを得た。このプリプレグ4枚と上下に金属箔5を積層し、170℃、2.45MPaの条件で1時間プレス成形し、図2(a)に示すような銅張積層板を製造したこと以外は実施例1と同様に基板を作製した。
(Example 13)
A glass cloth having a thickness of 0.2 mm (basis weight 210 g / m 2 ) was impregnated with the varnish of the insulating resin composition 3 and dried at 160 ° C. for 5 minutes to obtain a prepreg. Example 4 Except that four prepregs and a metal foil 5 were laminated on the top and bottom and press-molded at 170 ° C. and 2.45 MPa for 1 hour to produce a copper-clad laminate as shown in FIG. A substrate was prepared in the same manner as in 1.

(実施例14)
絶縁樹脂組成物3のワニスを0.2mm厚のガラス布(坪量210g/m)に含浸させ160℃で5分間乾燥してプリプレグを得た。このプリプレグ4枚と上下に金属箔6を積層し、170℃、2.45MPaの条件で1時間プレス成形し、図2(a)に示すような銅張積層板を製造したこと以外は実施例1と同様に基板を作製した。
(Example 14)
A glass cloth having a thickness of 0.2 mm (basis weight 210 g / m 2 ) was impregnated with the varnish of the insulating resin composition 3 and dried at 160 ° C. for 5 minutes to obtain a prepreg. Example 4 Except that four prepregs and metal foil 6 were laminated on the top and bottom and press-molded at 170 ° C. and 2.45 MPa for 1 hour to produce a copper-clad laminate as shown in FIG. A substrate was prepared in the same manner as in 1.

(実施例15)
絶縁樹脂組成物3のワニスを0.2mm厚のガラス布(坪量210g/m)に含浸させ160℃で5分間乾燥してプリプレグを得た。このプリプレグ4枚と上下に金属箔7を積層し、170℃、2.45MPaの条件で1時間プレス成形し、図2(a)に示すような銅張積層板を製造したこと以外は実施例1と同様に基板を作製した。
(Example 15)
A glass cloth having a thickness of 0.2 mm (basis weight 210 g / m 2 ) was impregnated with the varnish of the insulating resin composition 3 and dried at 160 ° C. for 5 minutes to obtain a prepreg. Example 4 Except that four prepregs and metal foil 7 were laminated on the top and bottom and press-molded at 170 ° C. and 2.45 MPa for 1 hour to produce a copper-clad laminate as shown in FIG. A substrate was prepared in the same manner as in 1.

(比較例1)
金属箔8を用いた他は実施例1と同様に基板を作製した。
(Comparative Example 1)
A substrate was produced in the same manner as in Example 1 except that the metal foil 8 was used.

(実施例16)
金属箔1の表面に、樹脂組成物1を乾燥後の厚みが50μmとなるようにロールコーターにて塗布し、図3(a)に示すようなキャリア付の樹脂付き金属箔を得た。
(Example 16)
The resin composition 1 was applied to the surface of the metal foil 1 with a roll coater so that the thickness after drying was 50 μm, to obtain a metal foil with a resin with a carrier as shown in FIG.

その一方で、図3(b)に示すように、絶縁基材に、厚さ18μmの金属箔を両面に貼り合わせた厚さ0.2mmのガラス布基材エポキシ銅張積層板であるMCL−E−679(日立化成工業株式会社製、商品名)を用い、その不要な箇所の金属箔をエッチング除去し、スルーホール26を形成して、内層導体回路24を形成し、内層回路板25を作製した。   On the other hand, as shown in FIG. 3 (b), MCL-, which is a glass cloth base epoxy copper clad laminate having a thickness of 0.2 mm, in which a metal foil having a thickness of 18 μm is bonded to both sides of an insulating base. Using E-679 (manufactured by Hitachi Chemical Co., Ltd., trade name), the unnecessary portion of the metal foil is removed by etching, the through hole 26 is formed, the inner layer conductor circuit 24 is formed, and the inner layer circuit board 25 is formed. Produced.

その内層回路板25の内層導体回路24の処理を、MEC etch BOND CZ−8100(メック株式会社製、商品名)を用い、液温35℃、スプレー圧0.15MPの条件で、スプレー噴霧処理し、銅表面を粗面化して、粗さ3μm程度の凹凸を作り、MEC etch BOND CL−8300(メック株式会社製、商品名)を用いて、液温25℃、浸漬時間20秒間の条件で浸漬して、銅表面に防錆処理を行った。   The inner layer conductor circuit 24 of the inner layer circuit board 25 is subjected to a spray spraying process using a MEC etch BOND CZ-8100 (trade name, manufactured by MEC Co., Ltd.) at a liquid temperature of 35 ° C. and a spray pressure of 0.15 MP. The copper surface is roughened to create irregularities with a roughness of about 3 μm, and immersed using MEC etch BOND CL-8300 (trade name, manufactured by MEC Co., Ltd.) at a liquid temperature of 25 ° C. and an immersion time of 20 seconds. Then, a rust prevention treatment was performed on the copper surface.

図3(c)に示すように、図3(a)で作製したキャリア付の樹脂付き金属箔を、170℃30kgf/cmの条件で60分加熱加圧ラミネートした後、キャリアである銅箔を引き剥がした。 As shown in FIG. 3 (c), the resin-coated metal foil with a carrier prepared in FIG. 3 (a) was laminated by heating and pressing at 170 ° C. and 30 kgf / cm 2 for 60 minutes, and then the carrier copper foil. I peeled off.

図3(d)に示すように、銅箔上から炭酸ガスインパクトレーザー穴あけ機L−500(住友重機械工業株式会社製、商品名)により、直径80μmの非貫通穴27をあけ、過マンガン酸カリウム65g/リットルと水酸化ナトリウム40g/リットルの混合水溶液に、液温70℃で20分間浸漬し、スミアの除去を行った。   As shown in FIG. 3 (d), a non-through hole 27 having a diameter of 80 μm was formed on the copper foil by a carbon dioxide impact laser drilling machine L-500 (trade name, manufactured by Sumitomo Heavy Industries, Ltd.), and permanganate. Smear was removed by immersing in a mixed aqueous solution of potassium 65 g / liter and sodium hydroxide 40 g / liter at a liquid temperature of 70 ° C. for 20 minutes.

その後、パラジウム溶液であるHS−202B(日立化成工業株式会社製、商品名)に、25℃で15分間浸漬し、触媒を付与した後、CUST−201(日立化成工業株式会社製、商品名)を使用し、液温25℃、30分の条件で無電解銅めっきを行い、図3(e)に示すように厚さ0.3μmの無電解銅めっき層28を形成した。   Then, after immersing in HS-202B (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a palladium solution, at 25 ° C. for 15 minutes to give a catalyst, CUST-201 (trade name, manufactured by Hitachi Chemical Co., Ltd.) Was used and electroless copper plating was performed at a liquid temperature of 25 ° C. for 30 minutes to form an electroless copper plating layer 28 having a thickness of 0.3 μm as shown in FIG.

図3(f)に示すように、ドライフィルムフォトレジストであるRY−3025(日立化成工業株式会社製、商品名)を、無電解めっき層28の表面にラミネートし、電解銅めっきを行う箇所をマスクしたフォトマスクを介して紫外線を露光し、現像してめっきレジスト29を形成した。   As shown in FIG.3 (f), the place which laminates the dry film photoresist RY-3025 (made by Hitachi Chemical Co., Ltd., brand name) on the surface of the electroless-plating layer 28, and performs electrolytic copper plating. The plating resist 29 was formed by exposing and developing ultraviolet rays through the masked photomask.

図3(g)に示すように、硫酸銅浴を用いて、液温25℃、電流密度1.0A/dmの条件で、電解銅めっきを20μmほど行い、最小回路導体幅/回路導体間隔(L/S)=25/15μmとなるようにパターン電気めっき30を形成した。 As shown in FIG. 3 (g), electrolytic copper plating is carried out using a copper sulfate bath at a liquid temperature of 25 ° C. and a current density of 1.0 A / dm 2 for about 20 μm, and the minimum circuit conductor width / circuit conductor interval. Pattern electroplating 30 was formed so that (L / S) = 25/15 μm.

次に図3(h)に示すように、レジスト剥離液であるHTO(ニチゴー・モートン株式会社製、商品名)でドライフィルムの除去を行った後にHSO20g/L、H10g/Lの組成のエッチング液を用いてパターン部以外の銅をエッチング除去した。エッチング時は基板を片面1dmの小片に切断した後、1Lビーカーに入れ、マグネティックスターラーを用いて40℃で5分間エッチングを行った。 Next, as shown in FIG. 3 (h), after removing the dry film with HTO (trade name, manufactured by Nichigo-Morton Co., Ltd.), which is a resist stripping solution, H 2 SO 4 20 g / L, H 2 O 2 Copper other than the pattern portion was removed by etching using an etching solution having a composition of 10 g / L. At the time of etching, the substrate was cut into small pieces of 1 dm 2 on one side, placed in a 1 L beaker, and etched at 40 ° C. for 5 minutes using a magnetic stirrer.

最後に上記表1に示す条件で導体回路に金めっき31を行った(図3(i))。最小回路導体幅/回路導体間隔(L/S)=20/20μmであった。   Finally, gold plating 31 was performed on the conductor circuit under the conditions shown in Table 1 (FIG. 3 (i)). Minimum circuit conductor width / circuit conductor interval (L / S) = 20/20 μm.

(実施例17)
金属箔2の表面に樹脂組成物1を塗布し、キャリア付の樹脂付き金属箔を作製した他は実施例16と同様に基板を作製した。
(Example 17)
A substrate was prepared in the same manner as in Example 16 except that the resin composition 1 was applied to the surface of the metal foil 2 and a metal foil with a resin with a carrier was prepared.

(実施例18)
金属箔2の表面に樹脂組成物2を塗布し、キャリア付の樹脂付き金属箔を作製した他は実施例16と同様に基板を作製した。
(Example 18)
A substrate was prepared in the same manner as in Example 16 except that the resin composition 2 was applied to the surface of the metal foil 2 to produce a metal foil with a resin with a carrier.

(実施例19)
金属箔4の表面に樹脂組成物2を塗布し、キャリア付の樹脂付き金属箔を作製した他は実施例16と同様に基板を作製した。
(Example 19)
A substrate was prepared in the same manner as in Example 16 except that the resin composition 2 was applied to the surface of the metal foil 4 to produce a resin-attached metal foil with a carrier.

(実施例20)
金属箔1の表面に樹脂組成物3を塗布し、キャリア付の樹脂付き金属箔を作製した他は実施例16と同様に基板を作製した。
(Example 20)
A substrate was prepared in the same manner as in Example 16 except that the resin composition 3 was applied to the surface of the metal foil 1 to produce a metal foil with a resin with a carrier.

(実施例21)
金属箔2の表面に樹脂組成物3を塗布し、キャリア付の樹脂付き金属箔を作製した他は実施例16と同様に基板を作製した。
(Example 21)
A substrate was produced in the same manner as in Example 16 except that the resin composition 3 was applied to the surface of the metal foil 2 to produce a metal foil with a resin with a carrier.

(実施例22)
金属箔3の表面に樹脂組成物3を塗布し、キャリア付の樹脂付き金属箔を作製した他は実施例16と同様に基板を作製した。
(Example 22)
A substrate was produced in the same manner as in Example 16 except that the resin composition 3 was applied to the surface of the metal foil 3 to produce a metal foil with a resin with a carrier.

(実施例23)
金属箔4の表面に樹脂組成物3を塗布し、キャリア付の樹脂付き金属箔を作製した他は実施例16と同様に基板を作製した。
(Example 23)
A substrate was produced in the same manner as in Example 16 except that the resin composition 3 was applied to the surface of the metal foil 4 to produce a metal foil with a resin with a carrier.

(実施例24)
金属箔3の表面に樹脂組成物1を塗布し、キャリア付の樹脂付き金属箔を作製した他は実施例16と同様に基板を作製した。
(Example 24)
A substrate was produced in the same manner as in Example 16 except that the resin composition 1 was applied to the surface of the metal foil 3 to produce a resin-attached metal foil with a carrier.

(実施例25)
金属箔4の表面に樹脂組成物1を塗布し、キャリア付の樹脂付き金属箔を作製した他は実施例16と同様に基板を作製した。
(Example 25)
A substrate was produced in the same manner as in Example 16 except that the resin composition 1 was applied to the surface of the metal foil 4 to produce a metal foil with a resin with a carrier.

(実施例26)
金属箔1の表面に樹脂組成物2を塗布し、キャリア付の樹脂付き金属箔を作製した他は実施例16と同様に基板を作製した。
(Example 26)
A substrate was prepared in the same manner as in Example 16 except that the resin composition 2 was applied to the surface of the metal foil 1 to produce a metal foil with a resin with a carrier.

(実施例27)
金属箔3の表面に樹脂組成物2を塗布し、キャリア付の樹脂付き金属箔を作製した他は実施例16と同様に基板を作製した。
(Example 27)
A substrate was prepared in the same manner as in Example 16 except that the resin composition 2 was applied to the surface of the metal foil 3 to prepare a metal foil with a resin with a carrier.

(実施例28)
金属箔5の表面に樹脂組成物3を塗布し、キャリア付の樹脂付き金属箔を作製した他は実施例16と同様に基板を作製した。
(Example 28)
A substrate was produced in the same manner as in Example 16 except that the resin composition 3 was applied to the surface of the metal foil 5 to produce a metal foil with a resin with a carrier.

(実施例29)
金属箔6の表面に樹脂組成物3を塗布し、キャリア付の樹脂付き金属箔を作製した他は実施例16と同様に基板を作製した。
(Example 29)
A substrate was produced in the same manner as in Example 16 except that the resin composition 3 was applied to the surface of the metal foil 6 to produce a resin-attached metal foil with a carrier.

(実施例30)
金属箔7の表面に樹脂組成物3を塗布し、キャリア付の樹脂付き金属箔を作製した他は実施例16と同様に基板を作製した。
(Example 30)
A substrate was prepared in the same manner as in Example 16 except that the resin composition 3 was applied to the surface of the metal foil 7 and a metal foil with a resin with a carrier was prepared.

測定条件
(1) 導体表面粗さ
実施例および比較例で得られた基板の導体表面粗さをJIS−B−0601に基づき測定した。
Measurement conditions (1) Conductor surface roughness The conductor surface roughness of the board | substrate obtained by the Example and the comparative example was measured based on JIS-B-0601.

(2)引き剥がし強さ(ピール強度)
実施例および比較例で得られた基板の導体回路の引き剥がし強さを、引きはがし幅1mmとした以外は、JIS−C−6481に準拠した条件で測定した。測定は、基板作製後、150℃加熱試験後、PCT試験後の各3回行った。引き剥がし幅を細くすると、吸湿劣化が起こりやすく、引き剥がし強さは10mm幅で測定するよりも弱くなる傾向がある。
・150℃加熱試験用サンプル
実施例および比較例で得られた基板を150℃で240時間気相放置した。
・プレッシャークッカー試験(PCT試験)
実施例および比較例で得られた基板を121℃、2気圧、湿度100%の条件で72時間放置した。
(2) Peel strength (peel strength)
The peel strength of the conductor circuits of the substrates obtained in the examples and comparative examples was measured under the conditions based on JIS-C-6481, except that the peel width was 1 mm. The measurement was performed three times after the substrate preparation, after the 150 ° C. heating test and after the PCT test. When the peeling width is narrowed, moisture absorption deterioration is likely to occur, and the peeling strength tends to be weaker than that measured at a width of 10 mm.
Sample for heating test at 150 ° C. The substrates obtained in the examples and comparative examples were left in the gas phase at 150 ° C. for 240 hours.
・ Pressure cooker test (PCT test)
The substrates obtained in Examples and Comparative Examples were left for 72 hours under the conditions of 121 ° C., 2 atm, and humidity of 100%.

(3)比誘電率、誘電正接
絶縁樹脂組成物1〜3の硬化物を作製し、誘電特性を評価した。サンプルは実施例16、18、20で得た樹脂付き金属箔の樹脂側を重ね合わせてプレス硬化し、この後、金属箔をエッチングしたものを用いた。プレス条件は、昇温速度5℃/min、硬化温度180℃、硬化時間90min、圧力2.0MPaとした。得られた樹脂硬化物の1GHzにおける比誘電率及び誘電正接をヒューレットパッカード株式会社製インピーダンス−マテリアルアナライザHP4291Bで測定した。
(3) Dielectric constant, dielectric loss tangent Cured products of the insulating resin compositions 1 to 3 were produced, and dielectric properties were evaluated. The sample used was a metal foil with resin obtained in Examples 16, 18 and 20, which was laminated with the resin side and press cured, and then the metal foil was etched. The pressing conditions were a heating rate of 5 ° C./min, a curing temperature of 180 ° C., a curing time of 90 min, and a pressure of 2.0 MPa. The relative permittivity and dielectric loss tangent at 1 GHz of the obtained resin cured product were measured with an impedance-material analyzer HP4291B manufactured by Hewlett-Packard Co., Ltd.

(4)導体トップ幅、スペース幅
実施例および比較例で得られた基板の回路形成後の回路導体幅/回路導体間隔(L/S)を光学顕微鏡にて上部から撮影し、画像処理を行ったデータ―を元に任意に20点測定し、平均を算術した。
(4) Conductor top width, space width The circuit conductor width / circuit conductor interval (L / S) after circuit formation of the substrates obtained in the examples and comparative examples was photographed from above with an optical microscope, and image processing was performed. Based on the data, 20 points were arbitrarily measured and the average was calculated.

(結果)
実施例1〜15および比較例1で得られた基板の導体表面粗さ、比誘電率、誘電正接、ピール強度、導体トップ幅およびスペース幅の結果を表2に示す。また、同様に実施例16〜30で得られた基板の導体表面粗さ、比誘電率、誘電正接、ピール強度、導体トップ幅およびスペース幅の結果を表3に示す。
(result)
Table 2 shows the results of the conductor surface roughness, relative dielectric constant, dielectric loss tangent, peel strength, conductor top width and space width of the substrates obtained in Examples 1 to 15 and Comparative Example 1. Similarly, Table 3 shows the results of the conductor surface roughness, relative dielectric constant, dielectric loss tangent, peel strength, conductor top width and space width of the substrates obtained in Examples 16 to 30.

表2および3より、実施例1〜30で得られた基板は、導体トップ幅とスペース幅が略同一であり、良好な回路を形成していることがわかる。図4、5および6は、それぞれ実施例の樹脂組成物1,2および3を用い、実施例1と同様にして作製された基板の回路のSEM写真であるが、L/S=20/20μm、25/25μm、30/30μmのいずれにおいても回路形成が良好であること分かる。また、特に、実施例1〜14、16〜29で作製した基板は初期ピール強度と平坦性が共に優れており、さらに、実施例1〜8、11、12、16〜23、26、27は、加熱後のピール強度にも優れ、実施例1〜8、16〜23は、吸湿後のピール強度にも優れる。また、実施例3、4、11、12、18、19、26および27は誘電率や誘電正接が低く、電気信号の低損失が要求される用途に好適であり、特に、実施例3、4、18および19は、誘電率、誘電正接及びピール強度に極めて優れる。   From Tables 2 and 3, it can be seen that the substrates obtained in Examples 1 to 30 have substantially the same conductor top width and space width, and form a good circuit. 4, 5 and 6 are SEM photographs of the circuit of the substrate produced in the same manner as in Example 1 using the resin compositions 1, 2 and 3 of the example, respectively. L / S = 20/20 μm , 25/25 μm and 30/30 μm indicate that the circuit formation is good. In particular, the substrates produced in Examples 1 to 14 and 16 to 29 are excellent in both initial peel strength and flatness, and Examples 1 to 8, 11, 12, 16 to 23, 26, and 27 are Moreover, it is excellent also in the peel strength after a heating, and Examples 1-8 and 16-23 are excellent also in the peel strength after moisture absorption. Further, Examples 3, 4, 11, 12, 18, 19, 26 and 27 are suitable for applications requiring a low dielectric constant and dielectric loss tangent and requiring low loss of electrical signals. , 18 and 19 are extremely excellent in dielectric constant, dielectric loss tangent and peel strength.

一方、比較例1は金属箔に粗化層があるために過剰なエッチングが必要となり導体トップ幅が細くなってしまい、また、導体表面が粗く、電気特性上好ましくない。   On the other hand, in Comparative Example 1, since the metal foil has a roughened layer, excessive etching is required, and the conductor top width becomes narrow, and the conductor surface is rough, which is not preferable in terms of electrical characteristics.

本発明の金属張積層板を用いてプリント配線板を製造する方法の一例を示す断面図である。It is sectional drawing which shows an example of the method of manufacturing a printed wiring board using the metal-clad laminated board of this invention. 実施例1〜15および比較例1の評価に用いる基板の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the board | substrate used for Examples 1-15 and evaluation of the comparative example 1. FIG. 実施例16〜30の評価に用いる基板の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the board | substrate used for evaluation of Examples 16-30. 実施例の樹脂組成物1を用いて作製された基板回路の写真。The photograph of the substrate circuit produced using the resin composition 1 of an Example. 実施例の樹脂組成物2を用いて作製された基板回路の写真。The photograph of the substrate circuit produced using the resin composition 2 of an Example. 実施例の樹脂組成物3を用いて作製された基板回路の写真。The photograph of the substrate circuit produced using the resin composition 3 of an Example.

符号の説明Explanation of symbols

1 プリプレグ
2 金属箔
3 貫通スルーホール
4 無電解めっき層
5 めっきレジスト
6 回路パターン
7 絶縁層
8 金属箔
9 IVH
10 無電解めっき層
11 めっきレジスト
12 回路パターン
13 絶縁層
14 銅箔
15 貫通スルーホール
16 無電解銅めっき層
17 めっきレジスト
18 パターン電気銅めっき
19 ニッケルめっき層
20 金めっき層
21 キャリア金属箔
22 金属箔
23 樹脂
24 内層導体回路
25 絶縁層
26 スルーホール
27 IVH
28 無電解銅めっき
29 レジスト
30 パターン電気めっき
31 Ni/Auめっき
DESCRIPTION OF SYMBOLS 1 Prepreg 2 Metal foil 3 Through-through hole 4 Electroless plating layer 5 Plating resist 6 Circuit pattern 7 Insulating layer 8 Metal foil 9 IVH
DESCRIPTION OF SYMBOLS 10 Electroless plating layer 11 Plating resist 12 Circuit pattern 13 Insulating layer 14 Copper foil 15 Through-through hole 16 Electroless copper plating layer 17 Plating resist 18 Pattern electrolytic copper plating 19 Nickel plating layer 20 Gold plating layer 21 Carrier metal foil 22 Metal foil 23 Resin 24 Inner layer conductor circuit 25 Insulating layer 26 Through hole 27 IVH
28 Electroless copper plating 29 Resist 30 Pattern electroplating 31 Ni / Au plating

Claims (22)

絶縁樹脂組成物層と、前記絶縁樹脂組成物層の片面もしくは両面に固着してな銅箔とを有する樹脂付き銅箔において、前記絶縁樹脂組成物層がシアネート樹脂を含有し、前記銅箔の絶縁樹脂組成物層と接する面又は前記銅箔の両面がニッケルによる防錆処理、クロメート処理及びシランカップリング処理されており、かつ前記銅箔の表面粗さ(Rz)が両面とも2.0μm以下であることを特徴とする樹脂付き銅箔An insulating resin composition layer, in one surface or a resin-coated copper foil having a copper foil such by fixing the both sides of the insulating resin composition layer, the insulating resin composition layer contains a cyanate resin, the copper foil The surface in contact with the insulating resin composition layer or both surfaces of the copper foil are subjected to rust prevention treatment with nickel, chromate treatment and silane coupling treatment, and the surface roughness (Rz) of the copper foil is 2.0 μm or less on both surfaces. The copper foil with resin characterized by being. 前記銅箔の厚みが3μm以下であることを特徴とする請求項1に記載の樹脂付き銅箔The copper foil with resin according to claim 1, wherein the copper foil has a thickness of 3 μm or less. 前記絶縁樹脂組成物層と前記銅箔の界面粗さ(Rz)が2.0μm以下であることを特徴とする請求項1又は2に記載の樹脂付き銅箔The copper foil with resin according to claim 1 or 2 insulating resin composition layer and the interface roughness of the copper foil (Rz) is equal to or is 2.0μm or less. 前記防錆処理上に前記クロメート処理が施されていることを特徴とする請求項1〜3のいずれかに記載の樹脂付き銅箔The copper foil with resin according to any one of claims 1 to 3, wherein the chromate treatment is performed on the rust prevention treatment. 前記シランカップリング処理が前記銅箔の最外層に施されていることを特徴とする請求項1〜4のいずれかに記載の樹脂付き銅箔 Copper foil with resin according to any one of claims 1 to 4, characterized in that said silane coupling treatment is performed on the outermost layer of the copper foil. 前記シランカップリング処理に用いるシランカップリング剤が加熱により前記絶縁樹脂組成物と化学反応するものであることを特徴とする請求項1〜5のいずれかに記載の樹脂付き銅箔The resin-coated copper foil according to claim 1, wherein the silane coupling agent used for the silane coupling treatment chemically reacts with the insulating resin composition by heating. 前記絶縁樹脂組成物がエポキシ樹脂を含み、かつ前記シランカップリング処理に用いるシランカップリング剤がアミノ官能性シランを含むものであることを特徴とする請求項1〜6のいずれかに記載の樹脂付き銅箔The resin-coated copper according to claim 1, wherein the insulating resin composition contains an epoxy resin, and the silane coupling agent used for the silane coupling treatment contains an amino-functional silane. Foil . 前記絶縁樹脂組成物が熱硬化性樹脂を含むことを特徴とする請求項1〜7のいずれかに記載の樹脂付き銅箔The said insulating resin composition contains a thermosetting resin, The copper foil with resin in any one of Claims 1-7 characterized by the above-mentioned. 前記絶縁樹脂組成物が常温で液状のエポキシ樹脂を含むことを特徴とする請求項1〜8のいずれかに記載の樹脂付き銅箔The said insulating resin composition contains a liquid epoxy resin at normal temperature, The resin-coated copper foil in any one of Claims 1-8 characterized by the above-mentioned. 前記絶縁樹脂組成物が潜在性硬化剤を含むことを特徴とする請求項1〜9のいずれかに記載の樹脂付き銅箔The said insulating resin composition contains a latent hardening | curing agent, Copper foil with resin in any one of Claims 1-9 characterized by the above-mentioned. 硬化後の前記絶縁樹脂組成物の1GHzにおける比誘電率が3.0以下または誘電正接が0.01以下であることを特徴とする請求項1〜10のいずれかに記載の樹脂付き銅箔
The resin-coated copper foil according to claim 1, wherein the insulating resin composition after curing has a relative dielectric constant at 1 GHz of 3.0 or less or a dielectric loss tangent of 0.01 or less.
請求項1〜11のいずれかに記載の樹脂付き銅箔を用いて製造されることを特徴とするプリント配線板。 It manufactures using the copper foil with resin in any one of Claims 1-11, The printed wiring board characterized by the above-mentioned. 導体回路の表面粗さ(Rz)が2.0μm以下であることを特徴とする請求項12に記載のプリント配線板。   The printed wiring board according to claim 12, wherein the surface roughness (Rz) of the conductor circuit is 2.0 μm or less. 前記絶縁樹脂組成物層と1mm幅の導体回路の引き剥がし強さが0.6kN/m以上であることを特徴とする請求項12又は13に記載のプリント配線板。   14. The printed wiring board according to claim 12, wherein a peel strength between the insulating resin composition layer and a 1 mm-width conductor circuit is 0.6 kN / m or more. 150℃で240時間加熱した後の前記絶縁樹脂組成物層と1mm幅の導体回路の引き剥がし強さが0.4kN/m以上であることを特徴とする請求項12〜14のいずれかに記載のプリント配線板。   The peel strength between the insulating resin composition layer after heating at 150 ° C for 240 hours and a 1 mm-wide conductor circuit is 0.4 kN / m or more, and the peel strength is 0.4 kN / m or more. Printed wiring board. 請求項1〜11のいずれかに記載の樹脂付き銅箔の前記銅箔を給電層としたパターン電気めっきにより導体回路を作製する工程を有するプリント配線板の製造方法。 The manufacturing method of a printed wiring board which has the process of producing a conductor circuit by the pattern electroplating which used the said copper foil of the copper foil with resin in any one of Claims 1-11 as the electric power feeding layer. 前記銅箔上に無電解めっき層を形成することを特徴とする請求項16に記載のプリント配線板の製造方法。 The method of manufacturing a printed wiring board according to claim 16, wherein an electroless plating layer is formed on the copper foil . 導体回路形成後、給電層である前記銅箔をエッチング除去する際、化学反応律速となるエッチング液を用いることを特徴とする請求項16又は17に記載のプリント配線板の製造方法。 18. The method of manufacturing a printed wiring board according to claim 16, wherein an etching solution that is controlled by a chemical reaction is used when the copper foil that is a power feeding layer is removed by etching after the conductor circuit is formed. 前記エッチング液がハロゲン元素を含まない酸と過酸化水素とを主成分として含むことを特徴とする請求項18に記載のプリント配線板の製造方法。   The method for manufacturing a printed wiring board according to claim 18, wherein the etching solution contains an acid not containing a halogen element and hydrogen peroxide as main components. 前記ハロゲン元素を含まない酸が硫酸であることを特徴とする請求項19に記載のプリント配線板の製造方法。   The method for manufacturing a printed wiring board according to claim 19, wherein the acid containing no halogen element is sulfuric acid. 前記硫酸の濃度が5〜300g/L、前記過酸化水素の濃度が5〜200g/Lであることを特徴とする請求項20に記載のプリント配線板の製造方法。   21. The method of manufacturing a printed wiring board according to claim 20, wherein the concentration of the sulfuric acid is 5 to 300 g / L, and the concentration of the hydrogen peroxide is 5 to 200 g / L. 請求項1〜11のいずれかに記載の樹脂付き銅箔の前記銅箔を給電層とし、前記銅箔上にパターン電気めっきにより導体回路を形成する工程、
前記導体回路形成後、該導体回路部以外の前記銅箔を、化学反応律速となるエッチング液によりエッチング除去する工程、及び
前記導体回路に無電解金めっきを施す工程、
を有することを特徴とするプリント配線板の製造方法。
The step of forming a conductor circuit by pattern electroplating on the copper foil , using the copper foil of the copper foil with resin according to any one of claims 1 to 11 as a power feeding layer,
After the conductor circuit is formed, the step of removing the copper foil other than the conductor circuit portion by etching with an etchant that is rate-controlled by chemical reaction, and the step of performing electroless gold plating on the conductor circuit,
A method for producing a printed wiring board, comprising:
JP2006251671A 2002-03-05 2006-09-15 Copper foil with resin, printed wiring board using the same, and manufacturing method thereof Expired - Fee Related JP4407680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006251671A JP4407680B2 (en) 2002-03-05 2006-09-15 Copper foil with resin, printed wiring board using the same, and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002058162 2002-03-05
JP2002091885 2002-03-28
JP2002136052 2002-05-10
JP2006251671A JP4407680B2 (en) 2002-03-05 2006-09-15 Copper foil with resin, printed wiring board using the same, and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003057957A Division JP4241098B2 (en) 2002-03-05 2003-03-05 Metal-clad laminate, printed wiring board using the same, and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009130116A Division JP2009239295A (en) 2002-03-05 2009-05-29 Printed wiring board, and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2007022091A JP2007022091A (en) 2007-02-01
JP4407680B2 true JP4407680B2 (en) 2010-02-03

Family

ID=37783448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006251671A Expired - Fee Related JP4407680B2 (en) 2002-03-05 2006-09-15 Copper foil with resin, printed wiring board using the same, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4407680B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907580B2 (en) * 2008-03-25 2012-03-28 新日鐵化学株式会社 Flexible copper clad laminate
JP6329727B2 (en) * 2013-03-06 2018-05-23 Jx金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6459279B2 (en) 2014-07-31 2019-01-30 味の素株式会社 Resin sheet
JP6488338B2 (en) * 2017-08-18 2019-03-20 株式会社有沢製作所 Laminate

Also Published As

Publication number Publication date
JP2007022091A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4656209B2 (en) Metal foil with resin, metal-clad laminate, printed wiring board using the same, and manufacturing method thereof
JP4241098B2 (en) Metal-clad laminate, printed wiring board using the same, and manufacturing method thereof
KR100710119B1 (en) Process for forming metal layer on resin layer, print distributing board and manufacturing method thereof
WO2006051864A1 (en) Metal foil provided with adhesion auxiliary material and printed wiring board using same
JP5002943B2 (en) Metal foil with adhesive aid and printed wiring board using the same
JP2008235923A (en) Method of producing printed wiring board and multilayer wiring board
JP4407680B2 (en) Copper foil with resin, printed wiring board using the same, and manufacturing method thereof
JP4913328B2 (en) Metal foil with adhesive aid and printed wiring board using the same
JP4300870B2 (en) Method for manufacturing printed wiring board
JP2005167173A (en) Method of forming insulating resin layer on metal, method of treating internal conductor circuit, method of manufacturing printed wiring board, and multilayered wiring board
JP4349082B2 (en) Printed wiring board manufacturing method and printed wiring board
JP2005167172A (en) Printed wiring board and its manufacturing method
JP4395295B2 (en) Manufacturing method of printed wiring board and printed wiring board
JP2009188429A (en) Printed wiring board, and method of manufacturing the same
JP2009188429A5 (en)
JP2004259940A (en) Method for manufacturing printed wiring board and copper foil for laser punching
JP2005223052A (en) Manufacturing method for printed-wiring board
JP2005216902A (en) Method of manufacturing printed circuit board and printed circuit board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R151 Written notification of patent or utility model registration

Ref document number: 4407680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees