JP2003243808A - Method of manufacturing printed wiring board equipped with very fine wire pattern - Google Patents

Method of manufacturing printed wiring board equipped with very fine wire pattern

Info

Publication number
JP2003243808A
JP2003243808A JP2002038155A JP2002038155A JP2003243808A JP 2003243808 A JP2003243808 A JP 2003243808A JP 2002038155 A JP2002038155 A JP 2002038155A JP 2002038155 A JP2002038155 A JP 2002038155A JP 2003243808 A JP2003243808 A JP 2003243808A
Authority
JP
Japan
Prior art keywords
layer
copper
nickel
cobalt
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002038155A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ikeguchi
信之 池口
Keiichi Iwata
恵一 岩田
Kenichi Shimizu
賢一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002038155A priority Critical patent/JP2003243808A/en
Priority to US10/170,614 priority patent/US7140103B2/en
Priority to TW091113994A priority patent/TW536928B/en
Priority to KR1020020037039A priority patent/KR100936446B1/en
Publication of JP2003243808A publication Critical patent/JP2003243808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Electroplating Methods And Accessories (AREA)
  • ing And Chemical Polishing (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-density printed wiring board equipped with a very fine wire pattern that is excellent in adhesion to a copper foil and superior in shape. <P>SOLUTION: A layer made of nickel and/or cobalt or an alloy of them is formed as thick as 0.1 to 3 μm on one surface of a carrier sheet, and a rugged layer made of nickel and/or cobalt or an alloy of them is formed as thick as 0.5 to 5 μm on the above layer for the formation of a metal foil with the carrier sheet. A double-sided copper plated board or a multilayer double-sided copper plated board is formed, using the above metal foil with the carrier sheet as its outermost layer, the carrier sheet is removed from the double-sided copper plated board or the multilayer double-sided copper plated board, a thin electroless plating copper layer and an electrolytic copper layer are provided to the residual layer of nickel metal, cobalt metal or an alloy layer of them, then a pattern plating resist layer is deposited thereon, a pattern electrolytic copper plating process is carried out, the plating resist layer is removed, the thin electroless plating copper layer and the electrolytic copper layer are selectively removed by dissolution, and then the layer of nickel metal, cobalt or an alloy of them is selectively removed by etching for the formation of the high-density printed wiring board. Therefore, the high-density wiring board which is equipped with the very fine wire pattern having almost no undercut and excellent in adhesion to the copper foil can be obtained. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ライン/スペースが極
細線パターン、例えば40/40μm以下、更には25/25μm以
下のパターンを有するプリント配線板の製造方法に関す
るものであり、得られた極細線パターンを有する高密度
プリント配線板は、新規な半導体プラスチックパッケー
ジ用等に主に使用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a printed wiring board having a fine line pattern having a line / space of, for example, 40/40 μm or less, further 25/25 μm or less. High density printed wiring boards having line patterns are mainly used for new semiconductor plastic packages and the like.

【0002】[0002]

【従来の技術】従来、半導体プラスチックパッケージ等
に用いられる高密度のプリント配線板において、細線の
パターンを作製する方法は、サブトラクティブ法で5μm
以下の極薄銅箔を使用し、貫通孔及び/又はブラインド
ビア孔を炭酸ガスレーザー等で形成した後、銅メッキを
15μm程度付着させ、メッキレジスト等を用いて銅箔を
エッチング除去するか、炭酸ガスレーザーを銅箔上に直
接照射して貫通孔及び/又はブラインドビア孔形成後に
孔部に発生した銅箔バリを溶解除去すると同時に表層の
銅箔をSUEP(Surface Uniform Etching Process )で12μ
mの厚みから5μm以下まで溶解除去し、デスミア処理
後、銅メッキを15μm程度付着させて通常のエッチング
レジスト等を用いて極細線のパターンを作製する方法等
が知られている。この方法は、エッチングによってパタ
ーン上が底部より細くなり、断面が台形となるか、三角
形となり、不良の発生の原因となっていた。
2. Description of the Related Art Conventionally, in a high-density printed wiring board used for semiconductor plastic packages and the like, a method of forming a fine line pattern is a subtractive method of 5 μm.
Using the following ultra-thin copper foil, after forming through-holes and / or blind via holes with carbon dioxide laser etc., then copper plating
Deposit about 15 μm and remove the copper foil by etching using a plating resist or directly irradiate carbon dioxide gas laser on the copper foil to remove copper foil burr generated in the hole after forming the through hole and / or blind via hole. At the same time as melting and removing, the surface copper foil is 12μ by SUEP (Surface Uniform Etching Process)
There is known a method of dissolving and removing from the thickness of m to 5 μm or less, performing desmear treatment, depositing copper plating to a thickness of about 15 μm, and forming an ultrafine wire pattern using a normal etching resist or the like. In this method, the pattern becomes thinner than the bottom by etching, and the cross section becomes trapezoidal or triangular, which causes the occurrence of defects.

【0003】また、セミアディティブ法でメッキアップ
してから同様にエッチングレジスト等を用いて極細線の
パターンを作製する方法もあるが、これも銅メッキの厚
さを18μm位に厚くした場合には同様の形状となり、又1
0μm位に薄くすると孔部の付着厚さが不足して信頼性に
劣る等の欠点があり、銅との接着力にも問題があった。
更に、フルアディティブ法で銅メッキがを付着する場
合、銅箔を厚くしても銅箔接着力が低い等の問題があっ
た。一方、極薄銅箔を使用し、この上に無電解銅メッキ
を施した後、パターン銅メッキ法にてパターンを形成す
る方法、更にはセミアディティブ法で薄く無電解銅層を
基板の上に付け、これを用いてパターン銅メッキ法にて
パターンを形成する方法があるが、最後のフラッシュエ
ッチングにて無電解銅層がサイドエッチングされ、銅接
着力に問題のあるものであった。
There is also a method of forming an ultrafine wire pattern by using an etching resist or the like in the same manner after plating up by the semi-additive method, but this is also done when the thickness of copper plating is increased to about 18 μm. Same shape, 1
When the thickness is reduced to about 0 μm, there is a defect that the adhesion thickness of the hole is insufficient and the reliability is poor, and there is a problem in the adhesive force with copper.
Further, when the copper plating adheres by the full additive method, there is a problem that the copper foil adhesion is low even if the copper foil is thickened. On the other hand, using an ultra-thin copper foil, after applying electroless copper plating on this, a method of forming a pattern by the pattern copper plating method, and further a thin electroless copper layer on the substrate by the semi-additive method There is a method of forming a pattern by a pattern copper plating method using this, but the electroless copper layer was side-etched by the final flash etching, and there was a problem in copper adhesion.

【0004】[0004]

【発明が解決しようとする課題】本発明は、サブトラク
ティブ法を用いて、以上の問題点を解決した、銅箔の接
着力を保持し、且つパターン形状の良好な極細線パター
ンを形成したプリント配線板の製造方法を提供するもの
である。
SUMMARY OF THE INVENTION The present invention solves the above problems by using a subtractive method, and holds the adhesive force of a copper foil and forms a fine line pattern having a good pattern shape. A method for manufacturing a wiring board is provided.

【0005】[0005]

【発明が解決するための手段】本発明は、以下の工程で
プリント配線板を製造することにより、極細線のパター
ンを有し、且つ銅箔の接着力に優れた高密度のプリント
配線板を得ることができた。即ち、(1)キャリアシート
の片面にニッケル及び/又はコバルト、或いはその合金
層を厚さ0.1〜3μm形成し、その上に更にニッケル及び
/又はコバルト、或いはその合金層で厚さ0.5〜5μmの
凹凸を形成して得られたキャリアシート付き金属箔を少
なくとも最外層に用いて作製した両面銅張板又は多層両
面銅張板の表層のキャリアシートを除去後、(2)孔内を
含む表面に0.1〜1μmの無電解銅メッキを施し、(3)該無
電解銅メッキ析出層を電極にして厚さ0.5〜3μmの電気
銅メッキ層を形成し、(4)この銅メッキ析出層の上の必
要部分にパターン電気メッキ用のメッキレジスト層を形
成し、(5)メッキレジスト層が形成されていない銅面
に、電気銅メッキでパターン銅メッキを6〜30μm付着さ
せ、(6)メッキレジストを剥離除去し、(7)少なくともパ
ターン銅メッキ層の形成されていない部分の薄い電気銅
層及び無電解銅層をニッケル又はコバルト、或いはその
合金層を殆ど溶解しない薬液で全面をエッチングしてニ
ッケル又はコバルト、或いはその合金層を残した後、
(8)銅を殆ど溶解しない薬液で全体をエッチングしてニ
ッケル又はコバルト、或いはその合金層を溶解除去して
極細線パターンを作製することにより、極細線で、形状
が良好で、接着力の優れたプリント配線板を製造するこ
とができた。
The present invention provides a high-density printed wiring board having an ultrafine wire pattern and excellent adhesive strength of copper foil by manufacturing the printed wiring board in the following steps. I was able to get it. That is, (1) nickel and / or cobalt, or an alloy layer thereof having a thickness of 0.1 to 3 μm is formed on one surface of the carrier sheet, and nickel and / or cobalt or an alloy layer thereof has a thickness of 0.5 to 5 μm. After removing the carrier sheet of the surface layer of the double-sided copper-clad plate or the multilayer double-sided copper-clad plate prepared by using the metal foil with a carrier sheet obtained by forming irregularities as at least the outermost layer, (2) on the surface including the hole 0.1 to 1 μm electroless copper plating is performed, (3) the electroless copper plating deposit layer is used as an electrode to form an electro copper plating layer having a thickness of 0.5 to 3 μm, and (4) on this copper plating deposit layer. Form a plating resist layer for pattern electroplating on the required part, and (5) attach a pattern copper plating of 6 to 30 μm by electrocopper plating to the copper surface where the plating resist layer is not formed. Strip and remove (7) at least patterned copper plating layer shape After etching the entire surface of the thin electrolytic copper layer and the electroless copper layer which are not formed with a chemical solution that hardly dissolves nickel or cobalt, or its alloy layer, leaving nickel or cobalt, or its alloy layer,
(8) By etching the whole with a chemical solution that hardly dissolves copper and removing nickel or cobalt or its alloy layer to form an ultrafine wire pattern, it is an ultrafine wire, has a good shape, and has excellent adhesive strength. It was possible to manufacture printed wiring boards.

【0006】[0006]

【発明の実施の形態】本発明は、キャリアシートの片面
にニッケル及び/又はコバルト、或いはその合金層を厚
さ0.1〜3μm形成し、その上に更にニッケル及び/又は
コバルト、或いはその合金層で厚さ0.5〜5μmの凹凸を
形成して得られたキャリアシート付き金属箔を少なくと
も最外層に用いて作製した両面銅張板又は多層両面銅張
板の表層のキャリアシートを除去してニッケル及び/又
はコバルト、或いはその合金層を残し、これを利用し
て、ライン/スペース=40/40μm以下、更には25/25μm
以下の細線パターンを有する高密度のプリント配線板を
作製する方法である。工程は、 (1)まずキャリアシートの片面にニッケル及び/又はコ
バルト、或いはその合金層を厚さ0.1〜3μm形成し、そ
の上に更にニッケル及び/又はコバルト、或いはその合
金層で厚さ0.5〜5μmの凹凸を形成して得られたキャリ
アシート付き金属箔を少なくとも最外層に用いて作製し
た両面銅張板又は多層両面銅張板の表層のキャリアシー
トを除去後、少なくともさせた電解銅箔を最外層に用い
て、少なくとも2層以上の銅箔を有する銅張板を作製す
る。この銅張板に、一般に公知の方法にて貫通孔及び/
又はブラインドビア孔を形成する。もちろん、表層のキ
ャリアシートを除去してから孔あけを行っても良いし、
キャリアシート付きのまま孔あけし、その後にキャリア
シートを剥離することも可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is to form a nickel and / or cobalt or alloy layer thereof having a thickness of 0.1 to 3 μm on one surface of a carrier sheet, and further form a nickel and / or cobalt or alloy layer thereof thereon. Nickel and / or by removing the carrier sheet of the surface layer of a double-sided copper-clad plate or a multilayer double-sided copper-clad plate prepared by using a metal foil with a carrier sheet obtained by forming irregularities having a thickness of 0.5 to 5 μm as at least the outermost layer Or, cobalt or its alloy layer is left, and using this, line / space = 40 / 40μm or less, further 25 / 25μm
This is a method for producing a high-density printed wiring board having the following fine line pattern. The process is as follows: (1) First, a nickel and / or cobalt or alloy layer thereof is formed to a thickness of 0.1 to 3 μm on one surface of a carrier sheet, and further nickel and / or cobalt or an alloy layer thereof is formed to a thickness of 0.5 to 3 μm. After removing the carrier sheet of the double-sided copper-clad plate or the surface layer of the double-sided copper-clad plate prepared by using the metal foil with a carrier sheet obtained by forming the unevenness of 5 μm as at least the outermost layer, at least an electrolytic copper foil made It is used as the outermost layer to prepare a copper clad plate having at least two layers of copper foil. This copper clad plate is provided with through holes and / or
Alternatively, blind via holes are formed. Of course, you may make holes after removing the carrier sheet on the surface layer,
It is also possible to open a hole with the carrier sheet attached and then peel the carrier sheet.

【0007】このキャリアシートは、この上にニッケル
及び/又はコバルト、或いはその合金層が形成できれば
良く、特に限定はないが、好ましくは銅箔、特に電解銅
箔を使う。まずこのキャリアシートの上に薄いニッケル
及び/又はコバルト、或いはその合金層を形成する。厚
さは特に限定はないが、好ましくは0.1〜3μmを形成
し、その後、この上にニッケル及び/又はコバルト、或
いはその合金層で好ましくは厚さ0.5〜5μm(Rz:10点
平均粗さ)の凹凸を形成し、キャリアシート付き金属箔
としたものを少なくとも最外層に配置し、公知の方法、
例えば加熱、加圧、好ましくは真空下で積層成形して両
面銅張板或いは多層両面銅張板を作製する。
The carrier sheet is not particularly limited as long as nickel and / or cobalt or an alloy layer thereof can be formed on the carrier sheet, but is preferably copper foil, particularly electrolytic copper foil. First, a thin nickel and / or cobalt or its alloy layer is formed on this carrier sheet. The thickness is not particularly limited, but preferably 0.1 to 3 μm is formed, and then nickel and / or cobalt, or an alloy layer thereof, preferably 0.5 to 5 μm (Rz: 10-point average roughness) The unevenness is formed, and the metal foil with a carrier sheet is arranged in at least the outermost layer, and a known method is used,
For example, a double-sided copper-clad board or a multi-layered double-sided copper-clad board is produced by laminating and molding under heating, pressurizing, and preferably vacuum.

【0008】この両面銅張板、多層両面銅張板の表層の
キャリアシートを剥離するかそのままで、レーザー、メ
カニカルドリル等で貫通孔及び/又はブラインドビア孔
を形成する。最終的にはキャリアシートを剥離する。
A through hole and / or a blind via hole is formed with a laser, a mechanical drill or the like by peeling the carrier sheet on the surface layer of the double-sided copper-clad plate or the multilayer double-sided copper-clad plate or leaving it as it is. Finally, the carrier sheet is peeled off.

【0009】(2)次いで、この孔があいた両面板の孔内
を含む表面に0.1〜1μmの無電解銅メッキを施す。 (3)次に、該無電解銅メッキ析出層を電極にして厚さ0.5
〜3μmの電気銅メッキ層を形成する。銅メッキの種類は
特に限定はなく、例えば硫酸銅メッキ、ピロ燐酸銅メッ
キ等が使用できる。 (4)この銅メッキ析出層の上の必要部分にパターン電気
銅メッキ用のメッキレジスト層を形成する。この工程も
一般に公知の方法で実施する。
(2) Next, the surface of the double-sided plate having the holes including the inside of the holes is subjected to electroless copper plating of 0.1 to 1 μm. (3) Next, using the electroless copper plating deposition layer as an electrode, a thickness of 0.5
Form ~ 3μm electrolytic copper plating layer. The type of copper plating is not particularly limited, and for example, copper sulfate plating, copper pyrophosphate plating, etc. can be used. (4) A plating resist layer for pattern electric copper plating is formed on a necessary portion on the copper plating deposit layer. This step is also performed by a generally known method.

【0010】(5)メッキレジスト層が形成されていない
銅面に、電気銅メッキでパターン銅メッキを6〜30μm付
着させ、 (6)メッキレジストを剥離除去し、 (7)少なくともパターン銅メッキ層の形成されていない
部分の薄い電気銅層及び無電解銅層を、ニッケル又はコ
バルト、或いはその合金層を殆ど溶解しない薬液で全面
をエッチングしてニッケル又はコバルト、或いはその合
金層を残した後、(8)銅を殆ど溶解しない薬液で全体を
エッチングしてニッケル又はコバルト、或いはその合金
層を溶解除去して極細線パターンを作製することによ
り、極細線で、形状が良好で、接着力の優れたプリント
配線板を製造する。この工程で細密パターンを作製する
ことにより、通常の方法に比べてアンダーカットが発生
せず、形状の良好なパターンが形成でき、信頼性に優れ
たプリント配線板が製造できた。
(5) A pattern copper plating of 6 to 30 μm is deposited on the copper surface on which the plating resist layer is not formed by electrolytic copper plating, (6) the plating resist is peeled off, and (7) at least the pattern copper plating layer After the thin electrolytic copper layer and the electroless copper layer of the portion where is not formed, the entire surface is etched with a chemical solution that hardly dissolves nickel or cobalt, or an alloy layer thereof to leave nickel or cobalt, or an alloy layer thereof, (8) By etching the whole with a chemical solution that hardly dissolves copper and removing nickel or cobalt or its alloy layer to form an ultrafine wire pattern, it is an ultrafine wire, has a good shape, and has excellent adhesive strength. To manufacture printed wiring boards. By producing a fine pattern in this step, an undercut was not generated as compared with a usual method, a pattern with a good shape could be formed, and a highly reliable printed wiring board could be manufactured.

【0011】銅だけを選択的にエッチング除去し、ニッ
ケル金属、コバルト金属、或いはこれらの合金を殆ど溶
解しない薬液としては、一般に公知のものが使用でき
が、ニッケル金属等の溶解速度が遅いアルカリ性エッチ
ング液が好適に使用される。
As the chemical solution which selectively removes only copper and hardly dissolves nickel metal, cobalt metal or alloys thereof, generally known ones can be used, but alkaline etching having a slow dissolution rate of nickel metal or the like can be used. A liquid is preferably used.

【0012】また、ニッケル金属、コバルト金属、或い
はこれらの合金のエッチング速度が速く、銅のエッチン
グ速度が遅い薬液も、一般に公知のものが使用できる。
例えば、硫酸/過酸化水素/添加剤を主体としたもの、フ
ッ化アンモニウム/過酸化水素/添加剤を主体としたもの
等が挙げられる。市販品としては、三菱ガス化学<株>の
商品名ピュータックス、メルテックス<株>のメルストリ
ップN-950等が使用される。
As the chemical liquid having a high etching rate for nickel metal, cobalt metal, or an alloy thereof, and a low etching rate for copper, generally known chemicals can be used.
For example, those mainly containing sulfuric acid / hydrogen peroxide / additive, those mainly containing ammonium fluoride / hydrogen peroxide / additive and the like can be mentioned. Commercially available products include Mitsubishi Gas Chemical Co., Ltd.'s trade name Pyutax, Meltex's Melstrip N-950, and the like.

【0013】本発明で使用する銅張板は、2層以上の銅
の層を有する銅張板であり、熱硬化性樹脂銅張積層板と
しては、無機、有機基材の公知の熱硬化性両面銅張積層
板、その多層両面銅張積層板、表層に樹脂付き銅箔シー
トを使用した多層板等、一般に公知の構成の多層銅張
板、また、ポリイミドフィルム、ポリパラバン酸フィル
ム、全芳香族ポリアミドフィルム、液晶ポリエステルフ
ィルム等の基材の銅張板が挙げられる。
The copper-clad board used in the present invention is a copper-clad board having two or more copper layers. The thermosetting resin copper-clad laminate is a known thermosetting resin for inorganic and organic base materials. Double-sided copper-clad laminate, its multilayer double-sided copper-clad laminate, a multilayered board using a resin-coated copper foil sheet as the surface layer, etc., a multilayered copper-clad board having a generally known structure, a polyimide film, a polyparabanic acid film, and a wholly aromatic resin. Examples thereof include a copper clad plate as a base material such as a polyamide film and a liquid crystal polyester film.

【0014】基材補強銅張積層板は、まず補強基材に熱
硬化性樹脂組成物を含浸、乾燥させてBステージとし、
プリプレグを作成する。次に、このプリプレグを所定枚
数重ね、最外層にキャリアシートの片面にニッケル及び
/又はコバルト、或いはその合金を凹凸を形成して作成
されたキャリアシート付き金属箔を、金属箔が樹脂側を
向くように両面に配置して、加熱、加圧、好ましくは真
空下に積層成形し、両面銅張積層板とする。多層板は、
上記両面板又は公知の電解銅箔を両面に使用して作製し
た両面銅張積層板の銅箔を加工してパターンを形成し、
必要により金属箔表面を化学処理して内層板を作製し、
この外側にプリプレグ、Bステージ樹脂シート等を置い
て、上記キャリアシート付きニッケル及び/又はコバル
ト、或いはその合金箔を両面に配置して、加熱、加圧、
好ましくは真空下に同様に積層成形するか、或いはニッ
ケル及び/又はコバルト、又はその合金をキャリアシー
トの片面に付着させた上記キャリアシート付き金属箔の
マット面にBステージ樹脂シートを付着させたものを内
層板の両側に配置し、積層成形して多層銅張板とする
等、一般に公知の方法で両面銅張多層板を作製する。
The base material-reinforced copper-clad laminate is prepared by first impregnating a reinforcing base material with a thermosetting resin composition and drying it to form B stage,
Create a prepreg. Next, a predetermined number of the prepregs are stacked, and a metal foil with a carrier sheet is formed by forming unevenness of nickel and / or cobalt or its alloy on one surface of the carrier sheet as the outermost layer, and the metal foil faces the resin side. As described above, they are placed on both sides and laminated under heat, pressure, and preferably under vacuum to form a double-sided copper clad laminate. The multilayer board is
Form a pattern by processing the copper foil of the double-sided copper clad laminate prepared by using the double-sided plate or known electrolytic copper foil on both sides,
If necessary, chemically process the metal foil surface to produce an inner layer board,
A prepreg, a B-stage resin sheet or the like is placed on the outer side of this, and nickel and / or cobalt with the carrier sheet, or an alloy foil thereof is placed on both sides, and heating, pressing,
Preferably, it is similarly laminated under vacuum, or the B-stage resin sheet is attached to the mat surface of the above-mentioned metal foil with a carrier sheet in which nickel and / or cobalt or its alloy is attached to one side of the carrier sheet. Is placed on both sides of the inner layer board and laminated to form a multilayer copper clad board. A double-sided copper clad multilayer board is produced by a generally known method.

【0015】基材としては、一般に公知の、有機、無機
の織布、不織布が使用できる。無機の繊維としては、具
体的にはE、S、D、NEガラス等の繊維等が挙げられ
る。又、有機繊維としては、全芳香族ポリアミド、液晶
ポリエステル等一般に公知の繊維等が挙げられる。これ
らは、混抄でも良い。また、フィルム基材のBステージ
樹脂組成物シートも挙げられる。
As the substrate, generally known organic and inorganic woven fabrics and nonwoven fabrics can be used. Specific examples of the inorganic fiber include fibers such as E, S, D and NE glass. Examples of the organic fiber include generally known fibers such as wholly aromatic polyamide and liquid crystal polyester. These may be mixed papers. Moreover, the B stage resin composition sheet of a film base material is also mentioned.

【0016】本発明使用される熱硬化性樹脂組成物の樹
脂としては、一般に公知の熱硬化性樹脂が使用される。
具体的には、エポキシ樹脂、多官能性シアン酸エステル
樹脂、 多官能性マレイミドーシアン酸エステル樹脂、
多官能性マレイミド樹脂、不飽和基含有ポリフェニレン
エーテル樹脂等が挙げられ、1種或いは2種類以上が組み
合わせて使用される。出力の高い炭酸ガスレーザー照射
による加工でのスルーホール形状の点からは、ガラス転
移温度が150℃以上の熱硬化性樹脂組成物が好ましく、
耐湿性、耐マイグレーション性、吸湿後の電気的特性等
の点から多官能性シアン酸エステル樹脂組成物が好適で
ある。
As the resin of the thermosetting resin composition used in the present invention, generally known thermosetting resins are used.
Specifically, epoxy resin, polyfunctional cyanate ester resin, polyfunctional maleimide-cyanate ester resin,
Examples thereof include polyfunctional maleimide resins and unsaturated group-containing polyphenylene ether resins, and they may be used alone or in combination of two or more. From the viewpoint of through-hole shape in processing by high-power carbon dioxide laser irradiation, a thermosetting resin composition having a glass transition temperature of 150 ° C. or higher is preferable,
A polyfunctional cyanate ester resin composition is preferable from the viewpoints of moisture resistance, migration resistance, electrical characteristics after moisture absorption, and the like.

【0017】貫通孔及び/又はブラインドビア孔を炭酸
ガスレーザーで形成する場合、特開平11-220243、特開
平11-346059 の方法、また電解銅箔上に黒色酸化銅処
理、薬液処理等を行ったものの上から炭酸ガスレーザー
を直接銅箔の上に照射して孔を形成する方法等が使用で
きる。その後に表層の電解銅箔をエッチング除去する
か、最初に電解銅箔をエッチング除去して薄いニッケル
金属、コバルト金属、或いはこれらの合金処理層を露出
させてから、この上から直接炭酸ガスレーザーを照射し
て孔を形成する方法等で形成する。しかしながら、孔部
のバリ発生の点からは、後者が好ましい。更には、UV-Y
AGレーザーでも孔あけ可能である。また、100μm以上の
貫通孔は、一般にメカニカルドリルで、公知の方法で孔
あけする。
When the through holes and / or the blind via holes are formed by a carbon dioxide gas laser, the method of JP-A-11-220243 and JP-A-11-346059 is used, and black copper oxide treatment, chemical treatment, etc. are performed on the electrolytic copper foil. A method of directly irradiating the copper foil with a carbon dioxide gas laser on the copper foil to form the holes can be used. After that, the electrolytic copper foil on the surface layer is removed by etching, or the electrolytic copper foil is first removed by etching to expose the thin nickel metal, cobalt metal, or alloy treatment layer thereof, and then a carbon dioxide laser is directly applied from above. It is formed by a method of forming holes by irradiation. However, the latter is preferable from the viewpoint of generation of burrs in the holes. Furthermore, UV-Y
Holes can be drilled with an AG laser. A through hole having a diameter of 100 μm or more is generally formed by a mechanical drill by a known method.

【0018】本発明で使用する、ニッケル金属、コバル
ト金属、或いはこれらの合金処理層をキャリアシート、
好ましくは電解銅箔の上に形成する方法は、一般に公知
の方法が使用できる。厚さは0.1〜3μm、好ましくは0.5
〜2μmである。この上に形成する凹凸の大きさは特に限
定はないが、細密パターン作製上から、好ましくは凹凸
は、平均粗度(Rz)で0.5〜5μm、更に好ましくは1〜4μm
のものが使用される。キャリアシートの銅箔のニッケル
金属、コバルト金属、或いはこれらの合金処理層を形成
するのとは反対の面は、従来公知の処理が可能である。
例えば表面凹凸がなく、この表面に防錆処理したもの、
表層にニッケル金属、コバルト金属、或いはこれらの合
金処理層を付着させたもの等が使用される。
The nickel metal, cobalt metal, or an alloy treatment layer thereof used in the present invention is used as a carrier sheet,
As a method for forming on the electrolytic copper foil, a generally known method can be preferably used. Thickness is 0.1-3 μm, preferably 0.5
~ 2 μm. The size of the unevenness formed on this is not particularly limited, but from the viewpoint of forming a fine pattern, preferably the unevenness is 0.5 to 5 μm in average roughness (Rz), more preferably 1 to 4 μm.
Used. The surface of the copper foil of the carrier sheet opposite to the surface on which the nickel metal layer, the cobalt metal layer, or the alloy treatment layer thereof is formed can be treated by a conventionally known method.
For example, there are no surface irregularities, and this surface has been rust-proofed,
A nickel metal, a cobalt metal, or an alloy treatment layer of these metals attached to the surface layer is used.

【0019】孔あけに使用する炭酸ガスレーザーは、赤
外線波長域にある9.3〜10.6μmの波長が一般に使用され
る。表層のキャリアーシートである銅箔をエッチング除
去後に孔あけする場合、エネルギーは5〜30mJ、好適に
は6〜20mJ にてパルス発振で銅箔を加工し、孔をあけ
る。エネルギーは表層のニッケル金属、コバルト金属、
或いはこれらの合金処理層上に直接照射して孔あけす
る。
The carbon dioxide gas laser used for drilling generally has a wavelength of 9.3 to 10.6 μm in the infrared wavelength range. When the copper foil, which is the carrier sheet on the surface layer, is punched after being removed by etching, the copper foil is processed by pulse oscillation at an energy of 5 to 30 mJ, preferably 6 to 20 mJ, and the holes are punched. Energy is surface nickel metal, cobalt metal,
Alternatively, a hole is formed by directly irradiating the alloy-treated layer.

【0020】エキシマレーザー、Nd-YAGレーザー等のUV
レーザーでの孔形成も使用できる。UVレーザーは、UV波
長のレーザー光を照射して孔あけするものであり、波長
は特に限定はないが、一般に200〜400nm、1.06μm の波
長が使用される。特にソリッドステートUVレーザーが使
用される。これは、有機物に極力熱の影響を与えない
で、有機物を構成している分子結合を断ち切るメカニズ
ムで加工するものである。孔の中は炭酸ガスレーザーに
比べて炭素が発生せず、クリーンなために、その後の銅
メッキも特に前処理がなくても信頼性良く付着させるこ
とができる。UVレーザー波長は短いために、銅にも吸収
され、孔あけ補助材料を使用しないでも銅箔の上にレー
ザーを照射することにより、銅箔への孔あけ、更には絶
縁層の孔あけが可能である。
UV such as excimer laser and Nd-YAG laser
Hole formation with a laser can also be used. The UV laser is used to irradiate a laser beam having a UV wavelength to make a hole. The wavelength is not particularly limited, but a wavelength of 200 to 400 nm and a wavelength of 1.06 μm are generally used. Especially solid state UV lasers are used. In this method, the organic substance is processed by a mechanism of breaking the molecular bond constituting the organic substance without giving the influence of heat to the utmost. Carbon is not generated in the holes as compared with the carbon dioxide laser, and the holes are clean, so that the copper plating thereafter can be adhered with high reliability without any special pretreatment. Since the UV laser wavelength is short, it is also absorbed by copper, and by irradiating a laser on the copper foil without using a drilling auxiliary material, it is possible to drill holes in the copper foil and even in the insulating layer. Is.

【0021】全面を最後に電気銅メッキした後、パター
ン作製用メッキレジストを剥離除去し、全体を、ニッケ
ル金属、コバルト金属、或いはこれらの合金処理層を殆
ど溶解しないエッチング液でエッチングして薄い電気銅
層、無電解銅層をエッチング除去後、銅を殆ど溶解しな
いエッチング薬液に変えて、ニッケル金属、コバルト金
属、或いはこれらの合金処理層の部分を基板に到達する
までエッチングしてパターンを作製する。このエッチン
グ液は特に限定はなく、適宜選択する。
After electrolytic copper plating on the entire surface lastly, the plating resist for pattern formation is peeled and removed, and the entire surface is etched with an etching solution that hardly dissolves nickel metal, cobalt metal, or an alloy treatment layer thereof to obtain a thin electric layer. After etching away the copper layer and electroless copper layer, change the copper to an etchant that hardly dissolves and etch the nickel metal, cobalt metal, or an alloy treatment layer thereof until reaching the substrate to form a pattern. . This etching liquid is not particularly limited and is appropriately selected.

【0022】[0022]

【実施例】以下に実施例、比較例で本発明を具体的に説
明する。尚、特に断らない限り、『部』は重量部を表
す。 実施例1 2,2-ビス(4-シアナトフェニル)プロパン900部、ビス(4-
マレイミドフェニル)メタン100部を150℃に熔融させ、
撹拌しながら4時間反応させ、プレポリマーを得た。こ
れをメチルエチルケトンとジメチルホルムアミドの混合
溶剤に溶解した。これにビスフェノールA型エポキシ樹
脂(商品名:エピコート1001、油化シェルエポキシ<株>
製)400部、クレゾールノボラック型エポキシ樹脂(商品
名:ESCN-220F、住友化学工業<株>製)600部を加え、均
一に溶解混合した。更に触媒としてオクチル酸亜鉛0.4
部を加え、溶解混合し、これに無機充填剤(商品名:焼成
タルク、日本タルク<株>製)2000部を加え、均一撹拌
混合してワニスAを得た。このワニスを厚さ100μmのガ
ラス織布に含浸し、150℃で乾燥して、ゲル化時間(at17
0℃)80秒、熱硬化性樹脂組成物含有量が44重量%のプリ
プレグ(プリプレグB)、及び厚さ50μmのガラス織布に含
浸し150℃で乾燥して、ゲル化時間(at170℃)120秒、熱
硬化性樹脂組成物含有量が70重量%のプリプレグCを作製
した。厚さ18μmの一般の電解銅箔を上記プリプレグB
4枚の上下に配置し、200℃、20kgf/cm2、30mmHg以下の
真空下で2時間積層成形し、絶縁層厚み0.4mmの両面
銅張積層板Dを得た。これにパターンを作製し、黒色酸
化銅処理を施した後、この上下にプリプレグCを各1枚
置き、その最外側に厚さ12μmの一般の電解銅箔の表層
にニッケル処理を2μm施し、更にその上にニッケルのこ
ぶ(凹凸Rz:4.2μm)を付けたものを、こぶ面がプリプ
レグ側を向くように配置し、同様に積層成形して4層両
面銅張積層板Eを作製した。この表裏の12μmの一般の電
解銅箔をアルカリエッチング溶液でエッチング除去して
ニッケル処理だけを残した4層両面金属張積層板Fとし
た。
The present invention will be specifically described below with reference to Examples and Comparative Examples. Unless otherwise specified, “part” means part by weight. Example 1 900 parts of 2,2-bis (4-cyanatophenyl) propane, bis (4-
Maleimide phenyl) 100 parts of methane is melted to 150 ℃,
The reaction was carried out for 4 hours with stirring to obtain a prepolymer. This was dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide. In addition to this, bisphenol A type epoxy resin (trade name: Epicoat 1001, Yuka Shell Epoxy Co., Ltd.)
400 parts of cresol novolac type epoxy resin (trade name: ESCN-220F, manufactured by Sumitomo Chemical Co., Ltd.) were added and uniformly mixed. Furthermore, zinc octylate 0.4 as a catalyst
2000 parts of an inorganic filler (trade name: calcined talc, manufactured by Nippon Talc Co., Ltd.) was added, and the mixture was stirred and mixed uniformly to obtain a varnish A. This varnish was impregnated into 100 μm thick glass woven cloth, dried at 150 ° C, and the gelation time (at17
(0 ° C) 80 seconds, thermosetting resin composition content of 44% by weight prepreg (prepreg B), and 50 μm thick glass woven cloth impregnated and dried at 150 ° C, gelation time (at 170 ° C) A prepreg C having a thermosetting resin composition content of 70% by weight was produced for 120 seconds. General electrolytic copper foil with a thickness of 18 μm is applied to the above prepreg B
Four sheets were placed on the upper and lower sides, and laminated and formed for 2 hours under a vacuum of 200 ° C., 20 kgf / cm 2 , and 30 mmHg or less to obtain a double-sided copper-clad laminate D having an insulating layer thickness of 0.4 mm. After making a pattern on this and applying a black copper oxide treatment, one prepreg C is placed on each of the upper and lower sides, and nickel treatment is applied to the outermost layer of a general electrolytic copper foil with a thickness of 12 μm to 2 μm, and further, A nickel hump (unevenness Rz: 4.2 μm) was placed thereon, and the hump surface was placed so as to face the prepreg side. Then, lamination molding was performed in the same manner to produce a 4-layer double-sided copper-clad laminate E. The 12 μm general electrolytic copper foils on the front and back were removed by etching with an alkaline etching solution to obtain a four-layer double-sided metal-clad laminate F in which only nickel treatment was left.

【0023】一方、ポリビニルアルコール粉体を水に溶
解し、厚さ50μmのアルミニウムの片面に樹脂層厚さ30
μmとなるように塗布、乾燥してバックアップシートG
を作製した。上記4層両面金属箔張積層板Fの下にバッ
クアップシートGを、樹脂面が銅箔側を向くように配置
し、温度100℃のロールにて、線圧15kgf/cmでラミネー
トした。このバックアップシートとは反対面から間隔1m
mで、孔径100μmの貫通孔を直接炭酸ガスレーザーで、
パルスエネルギー10mJで6ショット照射し貫通孔をあけ
た。また12mJ1ショット照射して孔径100μmのブライン
ドビア孔を作製した。デスミア処理後、これに無電解銅
メッキを厚さ0.4μm付着させ、次いで電気銅メッキで厚
さ1μmの銅層を付着させた。この銅メッキ析出層の上の
必要部分にパターン電気銅メッキ用レジスト層を厚さ18
μm形成し、メッキレジストが形成されていない部分の
銅面に電気銅メッキでパターン銅メッキを15μm付着さ
せた。メッキレジストを全て剥離し、全面をアルカリ性
エッチング液でエッチングして薄い電気銅層及び無電解
銅層をエッチング除去後、薬液としてニッケルを溶解す
る薬液(商品名:ピュータックス、三菱ガス化学<株>
製)で全体をエッチングしてニッケル層をエッチング除
去してライン/スペース=25/25μmのパターンを形成し
た。このパターン断面はエッチングによるアンダーカッ
トもなく、良好な形状であった。この上にUV選択熱硬化
永久保護レジストを付着させ、ニッケルメッキ、金メッ
キを付着させて高密度プリント配線板とした。このプリ
ント配線板の評価結果を表1に示す。
On the other hand, polyvinyl alcohol powder was dissolved in water to form a resin layer having a thickness of 30 on one side of aluminum having a thickness of 50 μm.
Backup sheet G after coating and drying
Was produced. A backup sheet G was placed under the 4-layer double-sided metal foil-clad laminate F with the resin surface facing the copper foil side, and laminated with a roll at a temperature of 100 ° C. at a linear pressure of 15 kgf / cm. Space 1m from the side opposite to this backup sheet
m through holes with a diameter of 100 μm directly with a carbon dioxide laser,
6 shots were irradiated with a pulse energy of 10 mJ to open a through hole. In addition, a blind via hole having a hole diameter of 100 μm was produced by irradiating 1 shot of 12 mJ. After desmearing, electroless copper plating was applied to this with a thickness of 0.4 μm, and then a copper layer with a thickness of 1 μm was applied with electrolytic copper plating. A resist layer for pattern copper electroplating is formed on the required portion of this copper plating deposit layer to a thickness of 18
Then, a pattern copper plating of 15 μm was deposited by electrolytic copper plating on the copper surface where the plating resist was not formed. A chemical solution that removes all plating resist, etches the entire surface with an alkaline etching solution to remove the thin electrolytic copper layer and electroless copper layer, and then dissolves nickel as a chemical solution (trade name: Pyutax, Mitsubishi Gas Chemical Co., Ltd.)
(Manufactured), and the nickel layer was removed by etching to form a pattern of line / space = 25/25 μm. The cross section of this pattern had a good shape without undercutting due to etching. A UV selective heat-curing permanent protection resist was adhered on this, and nickel plating and gold plating were adhered to obtain a high-density printed wiring board. Table 1 shows the evaluation results of this printed wiring board.

【0024】実施例2 エポキシ樹脂(商品名:エピコート5045)700部、及びエポ
キシ樹脂(商品名:ESCN220F)300部、ジシアンジアミド35
部、2-エチル-4-メチルイミダゾール1部をメチルエチル
ケトンとジメチルホルムアミドの混合溶剤に溶解し、さ
らに実施例1の焼成タルクを800部を加え、強制撹拌し
て均一分散し、ワニスHを得た。これを厚さ100μmのガ
ラス織布に含浸、乾燥して、ゲル化時間150秒、熱硬化
性樹脂組成物含有量45重量%のプリプレグ(プリプレグI)
を作成した。このプリプレグIを6枚使用し、厚さ12μm
の一般の電解銅箔(マット面凹凸Rz:2.7μm)の表層に
ニッケル・コバルト合金処理を1.5μm付着したものの上
にニッケル・コバルト合金のこぶ(凹凸Rz:3.7μm)を
形成し、キャリア銅箔付き金属箔のこぶ面がプリプレグ
側を向くように両面に配置し、190℃、20kgf/cm2、30mm
Hg以下の真空下で2時間積層成形して両面銅張積層板J
を作製した。この両面のニッケル・コバルト合金処理層
を残して電解銅箔部分をエッチング除去した後に、裏面
に実施例1のバックアップシートGを配置して同様にラ
ミネートして接着させ、この表面から炭酸ガスレーザー
パルスエネルギー10mJで8ショット照射し、孔径100μm
の貫通孔をあけた。これをプラズマ装置の中に入れ、デ
スミア処理後に、全体に厚さ0.3μmの無電解銅メッキを
施し、次いで厚さ2μmの電気銅メッキを施した後、電気
銅メッキ用のメッキレジストを15μm付着させ、メッキ
レジスト層が形成されていない銅面に電気銅メッキを14
μm付着させた。メッキレジストを剥離除去し、全面を
アルカリエッチング液でフラッシュエッチングして、薄
い電気銅層及び無電解銅層をニッケル・コバルト合金層
まで溶解除去した。更に実施例1のニッケル系金属を溶
解する薬液で残存したニッケル・コバルト合金処理層を
溶解除去してライン/スペース=20/20μmを有する高密
度プリント配線板を作製した。UV選択熱硬化型永久保護
レジストで必要部分を被覆後、ニッケルメッキ、金メッ
キを付着させてプリント配線板とした。評価結果を表1
に示す。
Example 2 700 parts of epoxy resin (trade name: Epicoat 5045), 300 parts of epoxy resin (trade name: ESCN220F), dicyandiamide 35
Parts, 1 part of 2-ethyl-4-methylimidazole was dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide, 800 parts of the calcined talc of Example 1 was further added, and the mixture was forcibly stirred and uniformly dispersed to obtain a varnish H. . This is impregnated in a glass woven fabric having a thickness of 100 μm and dried, and a gelling time of 150 seconds, a prepreg having a thermosetting resin composition content of 45% by weight (prepreg I).
It was created. Using 6 sheets of this prepreg I, thickness 12 μm
Nickel-cobalt alloy hump (unevenness Rz: 3.7 μm) is formed on the surface of general electrolytic copper foil (matte surface irregularity Rz: 2.7 μm) with nickel-cobalt alloy treatment of 1.5 μm, and carrier copper Arrange on both sides so that the hump side of the metal foil with foil faces the prepreg side, 190 ℃, 20kgf / cm 2 , 30mm
Double-sided copper-clad laminate J after laminated molding under vacuum below Hg for 2 hours
Was produced. After the electrolytic copper foil portion is removed by etching leaving the nickel / cobalt alloy treatment layer on both surfaces, the backup sheet G of Example 1 is arranged on the back surface and similarly laminated and bonded, and a carbon dioxide laser pulse is applied from this surface. Irradiate 8 shots with energy of 10 mJ, pore size 100 μm
A through hole was opened. Put this in a plasma device, after desmearing, apply electroless copper plating with a thickness of 0.3 μm to the whole, then apply electrolytic copper plating with a thickness of 2 μm, and deposit a plating resist for electrolytic copper plating of 15 μm The electrolytic copper plating on the copper surface where the plating resist layer is not formed.
μm was attached. The plating resist was peeled and removed, and the entire surface was flash-etched with an alkaline etching solution to dissolve and remove the thin electrolytic copper layer and the electroless copper layer up to the nickel-cobalt alloy layer. Further, the remaining nickel-cobalt alloy treatment layer was dissolved and removed by the chemical solution for dissolving the nickel-based metal of Example 1 to produce a high-density printed wiring board having a line / space = 20/20 μm. After coating the necessary parts with a UV selective thermosetting permanent protection resist, nickel plating and gold plating were applied to form a printed wiring board. Table 1 shows the evaluation results
Shown in.

【0025】比較例1 実施例1のプリント配線板作製において、表層に厚さ12
μmの一般の電解銅箔を張り、これを平均厚さ3μmまで
エッチングして表面に1μmの凹凸をつけた。これをXY
テーブルの上に置き、表面から12mJの炭酸ガスレーザー
パルスエネルギー6ショット照射して孔径100μmの貫通
孔をあけ、また12mJ 1ショット照射して孔径100μmの
ブラインドビア孔を形成し、デスミア処理後に銅メッキ
を無電解銅メッキ3μmだけ施し、その次の電気銅メッキ
を施さずに、直接無電解銅メッキ上にパターン電気銅メ
ッキを施した。これを同様にエッチングして、パターン
銅メッキの付着していない薄い無電解銅層及び極薄銅箔
層をエッチング除去してプリント配線板とした。このパ
ターンの下側はアンダーカットが両側5.4μmあった。評
価結果を表1に示す。
Comparative Example 1 In the production of the printed wiring board of Example 1, a surface layer having a thickness of 12
A general electrolytic copper foil with a thickness of μm was applied, and this was etched to an average thickness of 3 μm to form irregularities of 1 μm on the surface. XY this
Place it on a table, irradiate 6 shots of carbon dioxide laser pulse energy of 12 mJ from the surface to open a through hole with 100 μm hole diameter, and irradiate 1 shot of 12 mJ to form a blind via hole with 100 μm hole diameter, then copper plating after desmearing Was electrolessly plated with copper to a thickness of 3 μm, and without subsequent electrolytic copper plating, pattern electrolytic copper plating was directly applied onto the electroless copper plating. This was similarly etched, and the thin electroless copper layer and the ultrathin copper foil layer to which the pattern copper plating did not adhere were removed by etching to obtain a printed wiring board. The underside of this pattern had undercuts of 5.4 μm on both sides. The evaluation results are shown in Table 1.

【0026】比較例2 実施例2の両面銅張積層板の表層に厚さ12μmの一般の
電解銅箔を張り、これを平均厚さ3μmまでエッチング
して表面に1μmの凹凸をつけた。これをXYテーブルの
上に置き、表面から10mJの炭酸ガスレーザーパルスエネ
ルギー8ショット照射して貫通孔をあけ、同様にプラズ
マ処理後、無電解銅メッキを0.3μm施し、電気銅メッ
キを14μm付着させ、この上に20μmのエッチングレジス
トを付着させ、定法にてライン/スペース=20/20μmの
パターンを形成したが、形状は三角形となり、形状は良
好でなかった。評価結果を表1に示す。
Comparative Example 2 A general electrolytic copper foil having a thickness of 12 μm was applied to the surface layer of the double-sided copper-clad laminate of Example 2, and this was etched to an average thickness of 3 μm to form irregularities of 1 μm on the surface. Place this on an XY table, irradiate 8 shots of carbon dioxide laser pulse energy of 10 mJ from the surface to open a through hole, perform plasma treatment in the same way, apply electroless copper plating to 0.3 μm, and attach electrolytic copper plating to 14 μm Then, an etching resist of 20 μm was deposited on this, and a pattern of line / space = 20/20 μm was formed by a conventional method, but the shape was a triangle and the shape was not good. The evaluation results are shown in Table 1.

【0027】比較例3 実施例1の両面銅張多層板の表層の銅箔及びニッケル金
属層をエッチング除去した後、炭酸ガスレーザー15mJで
孔径100μmの貫通孔をあけ、この表面をデスミア処理
し、無電解銅メッキを2μm施し、その上に電気銅メッ
キを16μm付着させた。これを比較例2と同様にしてラ
イン/スペース=25/25μmのパターンを形成した。これ
はアンダーカットが有り、且つ形状は三角形となり、形
状不良であった。評価結果を表1に示す。
Comparative Example 3 After removing the copper foil and the nickel metal layer on the surface of the double-sided copper-clad multilayer board of Example 1 by etching, a through hole having a hole diameter of 100 μm was opened with a carbon dioxide laser of 15 mJ, and the surface was desmeared, Electroless copper plating was applied to a thickness of 2 μm, and electrolytic copper plating was applied thereon to a thickness of 16 μm. In the same manner as in Comparative Example 2, a pattern of line / space = 25/25 μm was formed. This had an undercut, and the shape was a triangle, and the shape was poor. The evaluation results are shown in Table 1.

【0028】比較例4 実施例2において、ワニスHの固形分100部に対し、アク
リロニトリルーブタジエンゴム(商品名:N210S、JSR<
株>製)を3部添加し、均一に攪拌混合した後、同様にプ
リプレグを作製し、積層成形して両面銅張積層板とし
た。この銅張板の表層の銅箔及びニッケル・コバルト層
をエッチング除去した後、炭酸ガスレーザー10mJで孔径
100μmの貫通孔をあけ、この表面をデスミア処理し、全
体に無電解銅メッキを4μm施し、電気銅メッキレジス
トを付着させ、メッキレジストの付着していない場所の
無電解銅メッキの上に電気銅メッキを16μm付着させ
た。メッキレジストを剥離後、全面をエッチングして薄
い無電解銅メッキ層を溶解除去してライン/スペース=
20/20μmのパターンを形成した。これはアンダーカット
があった。評価結果を表1に示す。
Comparative Example 4 In Example 2, 100 parts of the solid content of the varnish H was added to acrylonitrile-butadiene rubber (trade name: N210S, JSR <
(Manufactured by K.K.> Co., Ltd.) was added and uniformly mixed with stirring, and then a prepreg was prepared in the same manner and laminated to form a double-sided copper-clad laminate. After removing the copper foil and nickel-cobalt layer on the surface of this copper-clad board by etching, the hole diameter was adjusted with a carbon dioxide laser of 10 mJ.
A 100 μm through-hole is opened, this surface is desmeared, electroless copper plating is applied to the whole surface to 4 μm, and an electrolytic copper plating resist is attached. Electrolytic copper plating is applied on the electroless copper plating where no plating resist is attached. The plating was deposited to 16 μm. After removing the plating resist, the entire surface is etched to dissolve and remove the thin electroless copper plating layer, and the line / space =
A 20/20 μm pattern was formed. This had an undercut. The evaluation results are shown in Table 1.

【0029】 (表1) 項目 実施例 比較例 1 2 1 2 3 4 アンダーカット(μm) <1 <1 5.5 <1 2.2 6.1 パターン断面形状 良好 良好 不良 三角形状 三角形状 不良 銅箔接着力(kgf/cm) 1.27 1.10 0.67 0.90 0.43 0.55 ガラス転移温度(℃) 235 160 235 160 235 154 耐マイグレーション性 常態 6x1014 4x1014 5x1014 4x1014 5x1014 5x10 14 200hrs. 2x1011 5x108 3x1011 2x108 4x1011 2x108 500hrs. 4x1010 <108 7x1010 <108 5x1010 <108 [0029] (Table 1) Item Example Comparative example  1 2 1 2 3 4 Undercut (μm) <1 <1 5.5 <1 2.2 6.1 Pattern cross-section shape Good Good Bad Triangular triangular Bad Copper foil adhesion (kgf / cm) 1.27 1.10 0.67 0.90 0.43 0.55 Glass transition temperature (℃) 235 160 235 160 235 154 Migration resistance    Normal 6x1014   4x1014   5x1014   4x1014   5x1014   5x10 14   200hrs. 2x1011   5x108  3x1011   2x108  4x1011   2x108   500hrs. 4x10Ten   <108   7x10Ten   <108   5x10Ten   <108

【0030】<測定方法> 1)アンダーカット及びパターン断面形状 パターン断面を100個観察し、平均値で表示した。設計
値に対し、片面のエッチングされた距離を示した。又、
形状も観察した。 2)銅箔接着力 JIS C6481に準じて測定した。幅はパターン幅で測定
し、kgf/cmに換算して表示した。 3)ガラス転移温度 JIS C6481のDMA法に準じて測定した。 4)耐マイグレーション性 各実施例、比較例において、作製したパターン上に熱硬
化型レジスト(商品名:BT-M450 三菱ガス化学<株>製)
を厚さ40μmとなるように被覆し、硬化させて、これを8
5℃・85%RH・50VDC印加し、パターン間の絶縁抵抗値を
測定した。
<Measurement method> 1) Undercut and pattern cross-sectional shape 100 pattern cross-sections were observed and displayed as an average value. The etched distance on one side is shown relative to the design value. or,
The shape was also observed. 2) Copper foil adhesive strength Measured according to JIS C6481. The width was measured by the pattern width and converted into kgf / cm for display. 3) Glass transition temperature It was measured according to the DMA method of JIS C6481. 4) Migration resistance In each of the examples and comparative examples, a thermosetting resist (trade name: BT-M450 manufactured by Mitsubishi Gas Chemical Co., Inc.) is formed on the formed pattern.
To a thickness of 40 μm and cured,
The insulation resistance between the patterns was measured by applying 5 ° C, 85% RH, 50VDC.

【0031】[0031]

【発明の効果】貫通孔及び/又はブラインドビア孔を有
する、少なくとも2層以上の薄銅の層を有する両面銅張
板に極細線パターンを作製する方法において、キャリア
シートの片面にニッケル及び/又はコバルト、或いはそ
の合金層を厚さ0.1〜3μm形成し、その上に更にニッケ
ル及び/又はコバルト、或いはその合金層で厚さ0.5〜5
μmの凹凸を形成したキャリアシート付き金属箔を少な
くとも最外層に用いて作製した両面銅張板又は多層両面
銅張板の表層のキャリアシートを除去後、残ったニッケ
ル金属、コバルト金属、或いはこれらの合金層の上に薄
い無電解銅メッキ及び電気銅メッキを施してからパター
ンメッキレジストを付着してパターン電気銅メッキを行
い、メッキレジストを除去後に全体を銅の溶解性が優
れ、ニッケル金属、コバルト金属、或いはこれらの合金
層の溶解性の低い薬液でエッチング除去して薄い電気銅
層及び無電解銅層を溶解除去してニッケル金属、コバル
ト金属、或いはこれらの合金層を露出し、その後にニッ
ケル金属、コバルト金属、或いはこれらの合金層の溶解
性が良好で銅の溶解性が低い薬液でエッチングすること
により、アンダーカットが極めて少なく、形状が良好
で、銅箔の密着力の優れた高密度プリント配線板を作製
できた。
INDUSTRIAL APPLICABILITY In a method for producing an ultrafine wire pattern on a double-sided copper clad plate having at least two or more thin copper layers having through holes and / or blind via holes, nickel and / or nickel is provided on one surface of a carrier sheet. Cobalt or its alloy layer is formed to a thickness of 0.1 to 3 μm, and further nickel and / or cobalt or its alloy layer is formed to a thickness of 0.5 to 5 μm.
After removing the carrier sheet of the surface layer of the double-sided copper-clad plate or the multilayer double-sided copper-clad plate prepared by using at least the outermost layer of the metal foil with a carrier sheet having irregularities of μm, nickel metal, cobalt metal, or these After applying thin electroless copper plating and electrolytic copper plating on the alloy layer, pattern electroplating resist is attached and pattern electrocopper plating is performed, and after the plating resist is removed, the overall solubility of copper is excellent, nickel metal, cobalt The thin electrolytic copper layer and the electroless copper layer are dissolved and removed by etching away the metal or these alloy layers with a low-solubility chemical solution to expose the nickel metal, cobalt metal, or these alloy layers, and then nickel. By etching with a chemical solution that has good solubility of metal, cobalt metal, or alloy layers of these and low solubility of copper, the undercut But very small, the shape is good, it could produce a superior high-density printed wiring board of adhesion of the copper foil.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 3/18 H05K 3/18 G J 3/46 3/46 S (72)発明者 清水 賢一 東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社東京工場内 Fターム(参考) 4E351 AA01 BB01 BB30 BB33 BB35 CC06 CC07 DD04 DD19 DD21 DD54 GG11 GG13 4K024 AA09 AB01 BA01 BA11 BB11 BC02 DA07 FA05 GA16 4K057 WA11 WB03 WC10 WE03 WE07 WE21 WE25 WN01 5E343 AA02 AA12 BB14 BB17 BB24 BB44 BB45 BB67 BB71 DD33 DD43 DD76 GG06 GG08 GG11 5E346 AA06 AA12 AA15 AA22 AA32 AA51 BB15 CC08 CC32 CC37 DD12 DD25 DD32 DD33 EE13 GG17 GG22 GG28 HH11 HH26 HH31 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) H05K 3/18 H05K 3/18 G J 3/46 3/46 S (72) Inventor Kenichi Shimizu 6 Shinjuku, Katsushika-ku, Tokyo 1-chome Mitsubishi Gas Chemical Co., Ltd. Tokyo factory F-term (reference) 4E351 AA01 BB01 BB30 BB33 BB35 CC06 CC07 DD04 DD19 DD21 DD54 GG11 GG13 4K024 AA09 AB01 BA01 BA11 BB11 BC02 DA07 FA05 GA16 4K057 WA11 WB03 WE10 WE03 WE10 WE03 WE25 WN01 5E343 AA02 AA12 BB14 BB17 BB24 BB44 BB45 BB67 BB71 DD33 DD43 DD76 GG06 GG08 GG11 5E346 AA06 AA12 AA15 AA22 AA32 AA51 BB15 CC08 CC32 CC37 DD12 DD25 DD32 DD33 EE13 HGG28H22H

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (1)キャリアシートの片面にニッケル及び
/又はコバルト、或いはその合金層を厚さ0.1〜3μm形
成し、その上に更にニッケル及び/又はコバルト、或い
はその合金層で厚さ0.5〜5μmの凹凸を形成して得られ
たキャリアシート付き金属箔を少なくとも最外層に用い
て作製した両面銅張板又は多層両面銅張板において表層
のキャリアシートを除去後、(2)孔内を含む表面に0.1〜
1μmの無電解銅メッキを施し、(3)該無電解銅メッキ析
出層を電極にして厚さ0.5〜3μmの電気銅メッキ層を形
成し、(4)この銅メッキ析出層の上の必要部分にパター
ン電気銅メッキ用のメッキレジスト層を形成し、(5)メ
ッキレジスト層が形成されていない銅面に、電気銅メッ
キでパターン銅メッキを6〜30μm付着させ、(6)メッキ
レジストを剥離除去し、(7)少なくともパターン銅メッ
キ層の形成されていない部分の薄い電気銅層及び無電解
銅層をニッケル又はコバルト、或いはその合金層を殆ど
溶解しない薬液で全面をエッチングしてニッケル又はコ
バルト、或いはその合金層を残した後、(8)銅を殆ど溶
解しない薬液で全体をエッチングしてニッケル又はコバ
ルト、或いはその合金層を溶解除去して製造することを
特徴とする極細線パターンを有するプリント配線板の製
造方法。
(1) A nickel and / or cobalt or alloy layer thereof having a thickness of 0.1 to 3 μm is formed on one surface of a carrier sheet, and a nickel and / or cobalt or alloy layer having a thickness of 0.5 is further formed thereon. After removing the carrier sheet of the surface layer in the double-sided copper-clad plate or the multilayer double-sided copper-clad plate prepared by using the metal foil with a carrier sheet obtained by forming irregularities of ~ 5 μm as at least the outermost layer, (2) inside the hole Including 0.1 to the surface
1μm electroless copper plating is applied, (3) the electroless copper plating deposition layer is used as an electrode to form an electrolytic copper plating layer having a thickness of 0.5 to 3 μm, and (4) a necessary portion on the copper plating deposition layer. Form a plating resist layer for pattern electro-copper plating on (5) Attach a pattern copper plating of 6 to 30 μm by electro-copper plating on the copper surface where the plating resist layer is not formed, and remove the (6) plating resist. (7) At least the thin electrolytic copper layer and the electroless copper layer in the portion where the patterned copper plating layer is not formed are entirely etched with a chemical solution that does not dissolve nickel or cobalt or its alloy layer, and nickel or cobalt is removed. Or, after leaving the alloy layer, (8) has an ultrafine wire pattern characterized by being manufactured by etching the whole with a chemical solution that hardly dissolves copper and nickel or cobalt, or by dissolving and removing the alloy layer. The Method of manufacturing cement wiring board.
【請求項2】 該キャリアシートが銅箔である請求項1
記載の極細線パターンを有するプリント配線板の製造方
法。
2. The carrier sheet is a copper foil.
A method for producing a printed wiring board having the described ultrafine wire pattern.
JP2002038155A 2001-06-29 2002-02-15 Method of manufacturing printed wiring board equipped with very fine wire pattern Pending JP2003243808A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002038155A JP2003243808A (en) 2002-02-15 2002-02-15 Method of manufacturing printed wiring board equipped with very fine wire pattern
US10/170,614 US7140103B2 (en) 2001-06-29 2002-06-14 Process for the production of high-density printed wiring board
TW091113994A TW536928B (en) 2001-06-29 2002-06-26 Process for the production of high-density printed wiring board
KR1020020037039A KR100936446B1 (en) 2001-06-29 2002-06-28 Process for the production of high-density printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002038155A JP2003243808A (en) 2002-02-15 2002-02-15 Method of manufacturing printed wiring board equipped with very fine wire pattern

Publications (1)

Publication Number Publication Date
JP2003243808A true JP2003243808A (en) 2003-08-29

Family

ID=27779543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002038155A Pending JP2003243808A (en) 2001-06-29 2002-02-15 Method of manufacturing printed wiring board equipped with very fine wire pattern

Country Status (1)

Country Link
JP (1) JP2003243808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114007343A (en) * 2021-10-22 2022-02-01 深圳明阳电路科技股份有限公司 Printed Circuit Board (PCB) electric thick gold, PCB and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114007343A (en) * 2021-10-22 2022-02-01 深圳明阳电路科技股份有限公司 Printed Circuit Board (PCB) electric thick gold, PCB and manufacturing method thereof
CN114007343B (en) * 2021-10-22 2024-05-17 深圳明阳电路科技股份有限公司 Printed circuit board electro-thick gold, printed circuit board and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6240636B1 (en) Method for producing vias in the manufacture of printed circuit boards
KR100936446B1 (en) Process for the production of high-density printed wiring board
WO2003092344A1 (en) Production of via hole in flexible circuit printable board
JP3142270B2 (en) Manufacturing method of printed wiring board
JP2009239295A (en) Printed wiring board, and method of manufacturing the same
JP2001168481A (en) Copper-clad laminate, and circuit substrate for printed wiring board and manufacturing method therefor
WO2004060660A1 (en) Sheet material and wiring board
JP3992225B2 (en) Metal foil with resin for printed wiring board and multilayer printed wiring board using the same
JP2004055618A (en) Process for producing multilayer printed wiring board
JP4300870B2 (en) Method for manufacturing printed wiring board
JP2003243810A (en) Method of manufacturing printed wiring board equipped with very fine wire pattern
JP2001135910A (en) Boring method for copper-plated multilayer board with carbon dioxide laser
JP2003051657A (en) Method for manufacturing printed circuit substrate having ultra fine wiring pattern
JP2003283134A (en) Printed-wiring board and method of manufacturing the same
JP2003243808A (en) Method of manufacturing printed wiring board equipped with very fine wire pattern
JPH1154914A (en) Manufacturing built-up multilayered printed wiring board
JP2001015919A (en) Multilayer printed wiring board, circuit-board therefor and its manufacture
JP3874076B2 (en) A method for producing a printed wiring board having an extra fine wire pattern.
JP2003332735A (en) Wiring board, its manufacturing method, and conductor- laminated board
JP2005136316A (en) Printed wiring board and method of manufacturing the same
JP2003060341A (en) Method of manufacturing printed wiring board having minute pattern
JP2003224367A (en) High frequency printed wiring board and its manufacturing method
JP4978820B2 (en) Manufacturing method of high-density printed wiring board.
JP3815765B2 (en) Manufacturing method of multilayer printed wiring board
JP2000036662A (en) Manufacture of build-up multilayer interconnection board