JPH05267840A - Forming method for adhesive layer of additive printed circuit board - Google Patents
Forming method for adhesive layer of additive printed circuit boardInfo
- Publication number
- JPH05267840A JPH05267840A JP6386192A JP6386192A JPH05267840A JP H05267840 A JPH05267840 A JP H05267840A JP 6386192 A JP6386192 A JP 6386192A JP 6386192 A JP6386192 A JP 6386192A JP H05267840 A JPH05267840 A JP H05267840A
- Authority
- JP
- Japan
- Prior art keywords
- adhesive layer
- solution
- layer
- surface roughness
- roughened
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/07—Treatments involving liquids, e.g. plating, rinsing
- H05K2203/0756—Uses of liquids, e.g. rinsing, coating, dissolving
- H05K2203/0773—Dissolving the filler without dissolving the matrix material; Dissolving the matrix material without dissolving the filler
Landscapes
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はプリント配線基板の製造
に使用されるアディティブ法用接着層の形成方法に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an adhesive layer for an additive method used for manufacturing a printed wiring board.
【0002】[0002]
【従来の技術】近年、電子機器の小型化、高性能化及び
多機能化が進められており、これに使用されるプリント
配線板においてもファインパターンによる高密度化及び
高信頼性が要求されている。2. Description of the Related Art In recent years, electronic devices have been reduced in size, increased in performance, and increased in functionality, and printed wiring boards used for these have been required to have high density and high reliability by fine patterns. There is.
【0003】従来、プリント配線板に導体回路を形成す
る方法としては、絶縁基板に銅箔を積層した後、フォト
エッチングすることにより導体回路を形成するサブトラ
クティブ法が広く行われている。この方法によれば絶縁
基板との密着性に優れた導体回路を形成することができ
るが、銅箔の厚みのためにエッチングにより所謂アンダ
ーカットが生じ高精度のファインパターンが得難く、高
密度化に対応することが難しいという問題がある。Conventionally, as a method of forming a conductor circuit on a printed wiring board, a subtractive method of forming a conductor circuit by laminating a copper foil on an insulating substrate and then photoetching is widely used. According to this method, it is possible to form a conductor circuit having excellent adhesion to the insulating substrate, but it is difficult to obtain a high-precision fine pattern due to so-called undercut due to the thickness of the copper foil, and it is possible to increase the density. There is a problem that it is difficult to deal with.
【0004】このため、サブトラクティブ法に代わる方
法として、絶縁基板に接着剤を塗布して接着層を形成
し、この接着層の表面を粗化した後、無電解メッキを施
して導体回路を形成するアディティブ法が注目されてい
る。Therefore, as an alternative method to the subtractive method, an adhesive is applied to an insulating substrate to form an adhesive layer, the surface of the adhesive layer is roughened, and then electroless plating is applied to form a conductor circuit. The active additive method is attracting attention.
【0005】このアディティブ法用接着剤として、硬化
処理により溶解液に対して難溶性となるマトリックス樹
脂液中に、溶解液に対して可溶でかつ前記マトリックス
樹脂液に難溶な平均粒径が異なる2種類のフィラーが分
散されてなる接着剤が本出願人により提案されている。
そして、絶縁基板上に接着層を形成する場合には、絶縁
基板上に前記樹脂混合液を所定厚に塗布し、塗布した樹
脂混合液を乾燥させて接着剤層を形成し、この接着剤層
を硬化処理して接着層を形成する。次に、この接着層を
溶解液に浸漬すると、溶解液に対して難溶性のマトリッ
クス樹脂と溶解液に対して可溶性のフィラーの溶解度の
差により粗化凹部が多数形成される。このとき、接着層
中に分散された可溶性のフィラーは粒径の異なる大小2
種類のフィラーから構成されているので、接着層に形成
された粗化凹部は複雑な形状となり、接着層と接着層に
施される無電解銅メッキ層との密着強度を強力なものに
している。The adhesive for use in the additive method has an average particle size which is soluble in the solution and hardly soluble in the matrix resin solution in the matrix resin solution which is hardly soluble in the solution by the curing treatment. The present applicant has proposed an adhesive in which two different types of fillers are dispersed.
When the adhesive layer is formed on the insulating substrate, the resin mixture is applied to the insulating substrate to a predetermined thickness, and the applied resin mixture is dried to form an adhesive layer. Is cured to form an adhesive layer. Next, when this adhesive layer is immersed in a solution, a large number of roughened recesses are formed due to the difference in solubility between the matrix resin that is hardly soluble in the solution and the filler that is soluble in the solution. At this time, the soluble fillers dispersed in the adhesive layer are different in size 2
Since it is composed of various types of fillers, the roughening recess formed in the adhesive layer has a complicated shape, which makes the adhesion strength between the adhesive layer and the electroless copper plating layer applied to the adhesive layer strong. ..
【0006】[0006]
【発明が解決しようとする課題】接着層に対する無電解
銅メッキ層の密着強度を所定の値以上に確保するには、
溶解液による粗化後の接着層の表面粗度が所定の値以上
となるようにする必要がある。ところが、接着層は溶解
液に対して難溶性のマトリックス樹脂中に溶解液に対し
て可溶性のフィラーが分散した構造となっている。そし
て、接着層が溶解液に浸漬されると、溶解液に対して難
溶性のマトリックス樹脂中に分散したフィラーが溶解さ
れて凹所が形成され、この凹所が経時的に複数繋がって
粗化凹部が形成される。従って、粗化凹部が形成される
過程は、フィラーのマトリックスとして存在する難溶性
のマトリックス樹脂の溶解を伴う。このため、難溶性の
マトリックス樹脂の溶解を伴う粗化工程には長時間が必
要であった。In order to secure the adhesion strength of the electroless copper plating layer to the adhesive layer to a predetermined value or more,
It is necessary that the surface roughness of the adhesive layer after being roughened by the solution be equal to or higher than a predetermined value. However, the adhesive layer has a structure in which a filler soluble in the solution is dispersed in a matrix resin that is hardly soluble in the solution. Then, when the adhesive layer is immersed in the solution, the filler dispersed in the matrix resin which is hardly soluble in the solution is dissolved to form a recess, and the recesses are connected to each other over time to roughen. A recess is formed. Therefore, the process of forming the roughened recesses involves the dissolution of the sparingly soluble matrix resin existing as the matrix of the filler. For this reason, a roughening process involving dissolution of the hardly soluble matrix resin requires a long time.
【0007】また、粗化工程では同じ溶解液が繰返し使
用されるため、溶解液の粗化処理回数が増えるにつれて
溶解液は徐々に劣化し、その溶解力は低下してゆく。こ
のため、溶解液の粗化処理回数が増えるにつれて粗化工
程にはさらに長時間が必要となり、プリント配線基板の
生産性を著しく低下させていた。そして、粗化工程の処
理能力を向上させるため、一度に多数の絶縁基板につい
て接着層の粗化を行うには、溶解液の浴槽を大型にする
必要がある。また、劣化した溶解液と新液との交換ある
いは酸化剤の補給サイクルを長くする場合にも浴槽の大
型化が必要となる。Further, since the same solution is repeatedly used in the roughening step, the solution gradually deteriorates as the number of times of roughening of the solution increases, and its dissolving power decreases. Therefore, as the number of times of the roughening treatment of the solution increases, the roughening process requires a longer time, which significantly reduces the productivity of the printed wiring board. Then, in order to improve the processing capacity of the roughening step, in order to roughen the adhesive layer for a large number of insulating substrates at once, it is necessary to make the bath of the dissolution liquid large. Further, it is necessary to increase the size of the bath when replacing the deteriorated solution with a new solution or extending the replenishment cycle of the oxidant.
【0008】本発明は上記問題点を解決するためになさ
れたものであって、その目的は絶縁基板に形成した接着
層の表面を短時間で粗化するとともに、粗化に必要な溶
解量を低減して溶解液の劣化速度を小さくすることがで
き、さらに溶解液の浴槽の小型化を図ることができるア
ディティブプリント配線板用接着層の形成方法を提供す
ることにある。The present invention has been made to solve the above problems, and its purpose is to roughen the surface of an adhesive layer formed on an insulating substrate in a short time and to adjust the amount of dissolution required for roughening. It is an object of the present invention to provide a method for forming an adhesive layer for an additive printed wiring board, which can reduce the deterioration rate of the solution and reduce the size of the bath of the solution.
【0009】[0009]
【課題を解決するための手段】本発明は上記問題点を解
決するため、溶解液に対して硬化処理により難溶性とな
る未硬化のマトリックス樹脂と、前記溶解液に対して可
溶で且つ未硬化の前記マトリックス樹脂に難溶なフィラ
ーとからなる接着剤層を絶縁基板上に形成した後、接着
剤層を硬化処理して接着層を形成し、次いで、同接着層
の表面を機械的な表面処理により粗した後、前記溶解液
により前記接着層の表面部分の溶解処理を行い、多数の
粗化凹部を形成するようにした。In order to solve the above problems, the present invention provides an uncured matrix resin which is hardly soluble in a solution by a curing treatment, and an uncured matrix resin which is soluble in the solution. After forming an adhesive layer made of a filler that is hardly soluble in the matrix resin for curing on the insulating substrate, the adhesive layer is cured to form an adhesive layer, and then the surface of the adhesive layer is mechanically treated. After roughening by surface treatment, the surface portion of the adhesive layer was dissolved by the dissolving solution to form a large number of roughened recesses.
【0010】[0010]
【作用】従って、本発明によれば、絶縁基板上に形成さ
れた接着剤層が硬化処理されて形成された接着層の表面
には、機械的な表面処理により予め凹部が形成される。
その後、接着層を溶解液に浸漬させると、溶解液に対し
て難溶性のマトックス樹脂と溶解液に対して可溶性のフ
ィラーとの溶解速度の差により複雑な形状の粗化凹部が
形成される。このとき、接着層の表面には予め凹部が形
成されているので、所定の表面粗度の粗化凹部を形成す
るのに必要なマトリックス樹脂及びフィラーの溶解量は
少量となる。また、接着層の表面は機械的な表面処理に
より粗されて接着層と溶解液との接触面積が増大するの
で、接着層の溶解速度は上昇する。よって、接着層を溶
解液に浸漬させると、接着層の表面には多数の複雑な形
状の粗化凹部が短時間のうちに形成される。Therefore, according to the present invention, a concave portion is previously formed by mechanical surface treatment on the surface of the adhesive layer formed by curing the adhesive layer formed on the insulating substrate.
After that, when the adhesive layer is dipped in the solution, a roughened recess having a complicated shape is formed due to the difference in the dissolution rate between the Matox resin that is hardly soluble in the solution and the filler that is soluble in the solution. At this time, since the concave portion is formed in advance on the surface of the adhesive layer, the amount of the matrix resin and the filler required to form the roughened concave portion having a predetermined surface roughness is small. Further, the surface of the adhesive layer is roughened by the mechanical surface treatment to increase the contact area between the adhesive layer and the solution, so that the dissolution rate of the adhesive layer is increased. Therefore, when the adhesive layer is immersed in the solution, a large number of roughened concave portions having a complicated shape are formed on the surface of the adhesive layer in a short time.
【0011】[0011]
【実施例】以下、本発明を具体化した一実施例を図1〜
図3に従って説明する。はじめに、マトリックス樹脂と
してのビスフェノールA型エポキシ樹脂(油化シェル
製、商品名:E−1001)40重量部と、マトリック
ス樹脂としてのフェノールノボラック型エポキシ樹脂
(油化シェル製、商品名:E−154)60重量部と、
イミダゾール型硬化剤(四国化成製、商品名:2PH
Z)10重量部と、フィラーとしてのエポキシ樹脂微粒
子(東レ製、商品名:トレパールEP−B、平均粒径
0.5μm)10重量部と、エポキシ樹脂微粒子(東レ
製、商品名:トレパールEP−B、平均粒径5.5μ
m)25重量部と、ブチルセロソルブアセテート75重
量部とを三本ローラーで攪拌混合してアディティブ法用
接着剤(以下、単に接着剤とよぶ)を調整した。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment embodying the present invention will now be described with reference to FIGS.
It will be described with reference to FIG. First, 40 parts by weight of a bisphenol A type epoxy resin (made by Yuka Shell, trade name: E-1001) as a matrix resin, and a phenol novolac type epoxy resin (made by Yuka Shell, trade name: E-154) as a matrix resin. ) 60 parts by weight,
Imidazole type curing agent (Shikoku Kasei, trade name: 2PH
Z) 10 parts by weight and 10 parts by weight of epoxy resin fine particles as a filler (manufactured by Toray, trade name: Trepearl EP-B, average particle size 0.5 μm), and epoxy resin fine particles (manufactured by Toray, trade name: Trepearl EP-). B, average particle size 5.5μ
m) 25 parts by weight and 75 parts by weight of butyl cellosolve acetate were mixed by stirring with a three-roller to prepare an adhesive for additive method (hereinafter, simply referred to as an adhesive).
【0012】次に、接着層の形成手順を図1に基づいて
説明する。ローラコータを使用して塗布厚が30μm程
度となるように絶縁基板としてのガラスエポキシ基板1
上に前記接着剤を塗布した。塗布した接着剤を乾燥処理
して接着剤中の溶剤を揮発させ、ガラスエポキシ基板1
上に接着剤層2を形成した(図1(a))。Next, the procedure for forming the adhesive layer will be described with reference to FIG. Glass epoxy substrate 1 as an insulating substrate so that the coating thickness is about 30 μm using a roller coater
The adhesive was applied on top. The applied adhesive is dried to volatilize the solvent in the adhesive, and the glass epoxy substrate 1
An adhesive layer 2 was formed on top (FIG. 1 (a)).
【0013】次に、120℃で1時間、さらに150℃
で1時間の加熱処理をして接着剤層2を熱硬化させ、接
着層3を形成した。熱硬化により接着層3はガラスエポ
キシ基板1と強固に密着する(図1(b))。Next, at 120 ° C. for 1 hour, then 150 ° C.
Was heat-treated for 1 hour to thermally cure the adhesive layer 2 to form the adhesive layer 3. The adhesive layer 3 is firmly adhered to the glass epoxy substrate 1 by thermosetting (FIG. 1 (b)).
【0014】次に、2連ロール式バフ研磨機を用いてバ
フ番定♯80、バフ回転数1800rpm、搬送スピー
ド4m/minの各条件で接着層3の表面をバフ研磨
し、接着層3の表面全体に多数の微細な凹部4を形成し
た。バフ研磨後の接着層3の表面粗度は約7μmであっ
た(図1(c))。Next, the surface of the adhesive layer 3 was buffed using a double roll buffing machine under the conditions of buff number # 80, buff rotation speed 1800 rpm, and conveying speed 4 m / min. Many fine recesses 4 were formed on the entire surface. The surface roughness of the adhesive layer 3 after buffing was about 7 μm (FIG. 1 (c)).
【0015】次に、バフ研磨処理後のガラスエポキシ基
板1をクロム酸水溶液(クロム酸800g/l)の新液
からなる溶解液に70℃で5分間浸漬した。接着層3の
表面には表面全体に複雑な形状の粗化凹部5が形成さ
れ、表面粗度12±2μmの接着層3を得た(図1
(d))。Next, the glass epoxy substrate 1 after the buffing treatment was immersed in a solution of a new chromic acid aqueous solution (chromic acid 800 g / l) at 70 ° C. for 5 minutes. A roughened concave portion 5 having a complicated shape is formed on the entire surface of the adhesive layer 3 to obtain an adhesive layer 3 having a surface roughness of 12 ± 2 μm (FIG. 1).
(D)).
【0016】この接着層3の粗化表面に通常の条件で3
5μm厚の無電解銅メッキを施し、接着層3と無電解銅
メッキ層との密着強度をJIS−C−6481の方法で
測定した。密着強度はピール強度で1.6kg/cmで
あった。Under the normal conditions, the roughened surface of this adhesive layer 3
The electroless copper plating having a thickness of 5 μm was applied, and the adhesion strength between the adhesive layer 3 and the electroless copper plating layer was measured by the method of JIS-C-6481. The adhesive strength was a peel strength of 1.6 kg / cm.
【0017】図2に示すように、前記接着層3は溶解液
に難溶性のマトリックス樹脂6中に溶解液に可溶性の平
均粒径5.5μmの大きいフィラー7aと平均粒径0.
5μmの小さいフィラー7bとが均一に分散されて構成
されている。そして、溶解液による処理に先立って接着
層3の表面には予めバフ研磨により表面粗度が約7μm
となる微細な凹部4が多数形成される。As shown in FIG. 2, the adhesive layer 3 has a large filler 7a having an average particle size of 5.5 .mu.m and an average particle size of 0.
The filler 7b having a small size of 5 μm is uniformly dispersed. Then, prior to the treatment with the solution, the surface of the adhesive layer 3 was buffed to a surface roughness of about 7 μm.
A large number of fine recesses 4 are formed.
【0018】従って、接着層3を溶解液に浸漬させる
と、接着層3を構成している難溶性のマトリックス樹脂
6と可溶性のフィラー7a,7bとの溶解速度の差から
図3に示すように複雑な形状の粗化凹部5が形成され
る。このとき、接着層3の表面には予め表面粗度約7μ
mの凹部4が形成されているので、所定の表面粗度(本
実施例では12±2μm)の粗化凹部5を形成するのに
必要な溶解量は少量でよい。また、接着層3と溶解液と
の接触面積が相対的に増大するので、接着層3の溶解速
度は相対的に上昇する。Therefore, when the adhesive layer 3 is immersed in the solution, as shown in FIG. 3, due to the difference in the dissolution rate between the hardly soluble matrix resin 6 and the soluble fillers 7a and 7b which form the adhesive layer 3. The roughened concave portion 5 having a complicated shape is formed. At this time, the surface of the adhesive layer 3 has a surface roughness of about 7 μm in advance.
Since the concave portions 4 of m are formed, the amount of dissolution required to form the roughened concave portions 5 having a predetermined surface roughness (12 ± 2 μm in this embodiment) may be small. Moreover, since the contact area between the adhesive layer 3 and the solution is relatively increased, the dissolution rate of the adhesive layer 3 is relatively increased.
【0019】従って、接着層3の表面には複雑な形状の
粗化凹部5が短時間のうちに多数形成される。また、所
定の粗化凹部5の形成に必要な接着層3の溶解量が少量
でよいことから、接着層3の溶解に伴う溶解液の劣化速
度が低減されるので、溶解液の粗化処理能力が長期間所
定の水準以上に保持される。さらに、接着層3の粗化時
間の短縮により粗化工程の処理能力が向上することか
ら、溶解液の浴槽を小型化することができる。 (比較例)バフ研磨無しの接着層3をクロム酸水溶液
(クロム酸800g/l)の新液からなる70℃の溶解
液に浸漬して表面の粗化を行ったところ、表面粗度12
±2μmの粗化表面を得るのに15分間要した。そし
て、この接着層3の粗化表面にメッキ厚35μmの無電
解銅メッキを施して前記と同様に密着強度を測定した。
密着強度はピール強度で1.6kg/cmであった。す
なわち、粗化後の表面粗度が同じであれば、粗化前にバ
フ研磨した場合と粗化前にバフ研磨無しの場合で同程度
の無電解銅メッキ層との密着強度が得られた。Therefore, a large number of roughened concave portions 5 having a complicated shape are formed on the surface of the adhesive layer 3 in a short time. Further, since the dissolution amount of the adhesive layer 3 necessary for forming the predetermined roughened recess 5 is small, the deterioration rate of the dissolution liquid accompanying the dissolution of the adhesive layer 3 is reduced, and therefore the dissolution liquid roughening treatment is performed. Ability is maintained above a predetermined level for a long time. Furthermore, since the processing capacity of the roughening process is improved by shortening the roughening time of the adhesive layer 3, the bath of the solution can be downsized. (Comparative Example) The adhesive layer 3 without buffing was immersed in a solution of a new chromic acid aqueous solution (chromic acid 800 g / l) at 70 ° C to roughen the surface.
It took 15 minutes to obtain a roughened surface of ± 2 μm. Then, the roughened surface of the adhesive layer 3 was subjected to electroless copper plating with a plating thickness of 35 μm, and the adhesion strength was measured as described above.
The adhesive strength was a peel strength of 1.6 kg / cm. That is, if the surface roughness after roughening is the same, the adhesion strength with the electroless copper-plated layer is similar when buffed before roughening and without buffed before roughening. ..
【0020】粗化前に予め表面粗度が約7μmになるよ
うにバフ研磨することにより、接着層3の表面に所定の
粗化凹部5を形成させる粗化時間が3分の1になった。
また、接着層3の粗化時間は溶解液の新旧に大きく左右
されるが、バフ研磨された接着層3の粗化時間は溶解液
の新旧にかかわらずバフ研磨無しの接着層3の粗化時間
の常に約3分の1となっていた。 (別の実施例)次に、接着層3の研磨条件を変更した場
合について説明する。バフ番定を種々変更してバフ回転
数を一定とし、搬送スピードを変えて接着層3の表面を
2連ロール式バフ研磨機を用いてバフ研磨した。表面粗
度の異なるこれらの接着層3をクロム酸水溶液(クロム
酸800g/l)の新液からなる70℃の溶解液に浸漬
して、接着層3の表面粗度が12±2μmになるまで粗
化させた。そして、接着層3の粗化表面にメッキ厚35
μmの無電解銅メッキを施して密着強度を測定した。Prior to roughening, buffing was performed so that the surface roughness became approximately 7 μm, so that the roughening time for forming the predetermined roughening concave portion 5 on the surface of the adhesive layer 3 was reduced to 1/3. ..
Further, the roughening time of the adhesive layer 3 largely depends on the old and new of the dissolving liquid, but the roughening time of the buff-polished adhesive layer 3 is the roughening of the adhesive layer 3 without buffing regardless of the old and new of the dissolving liquid. It was always about one-third of the time. (Another Example) Next, a case where the polishing conditions for the adhesive layer 3 are changed will be described. The buffing number was variously changed to keep the buffing speed constant, and the conveying speed was changed to buff the surface of the adhesive layer 3 using a double roll buffing machine. These adhesive layers 3 having different surface roughness are immersed in a solution of a new chromic acid aqueous solution (chromic acid 800 g / l) at 70 ° C. until the surface roughness of the adhesive layer 3 becomes 12 ± 2 μm. Roughened. Then, a plating thickness of 35 is formed on the roughened surface of the adhesive layer 3.
Adhesion strength was measured by applying electroless copper plating of μm.
【0021】バフ研磨後の表面粗度と所定の表面粗度
(12±2μm)を得るのに必要なエッチング時間との
関係を図4に示す。図中2点鎖線はバラツキ範囲を示
す。バフ研磨無しの接着層3のエッチング時間は15分
であった。バフ研磨後の表面粗度が大きい程、所定の表
面粗度となるまでのエッチング時間は短時間となる傾向
がある。バフ研磨後の表面粗度がほぼ5μmのとき、エ
ッチング時間は10分となりバフ研磨無しのときの3分
の2であった。また、バフ研磨後の表面粗度がほぼ6μ
mのとき、エッチング時間は8分となりバフ研磨無しの
ときの約2分の1であった。さらに、バフ研磨後の表面
粗度がほぼ7μmのとき、エッチング時間は5分となり
バフ研磨無しのときの3分の1であった。そして、この
エッチング時間の短縮効果は溶解液の新旧に左右される
ことなくいつも同等の割合で効果が認められた。このよ
うにバフ研磨により接着層3の表面粗度を5〜7μmと
することによりエッチング時間をバフ研磨無しの3分の
2以下に短縮することができた。FIG. 4 shows the relationship between the surface roughness after buffing and the etching time required to obtain a predetermined surface roughness (12 ± 2 μm). In the figure, the two-dot chain line shows the range of variation. The etching time of the adhesive layer 3 without buffing was 15 minutes. The higher the surface roughness after buffing, the shorter the etching time until the surface roughness reaches a predetermined value. When the surface roughness after buffing was about 5 μm, the etching time was 10 minutes, which was two-thirds of that without buffing. Also, the surface roughness after buffing is about 6μ.
At m, the etching time was 8 minutes, which was about one half of that without buffing. Furthermore, when the surface roughness after buffing was approximately 7 μm, the etching time was 5 minutes, which was one-third of that without buffing. The effect of shortening the etching time was always recognized at the same rate regardless of whether the solution was old or new. In this way, by setting the surface roughness of the adhesive layer 3 to 5 to 7 μm by buffing, the etching time could be shortened to ⅔ or less of that without buffing.
【0022】また、各接着層3とその粗化表面に施され
た無電解銅メッキ層との密着強度は、バフ研磨後の表面
粗度に左右されることなくピール強度でどれも1.6k
g/cmと同等の値が得られた。すなわち、粗化後の表
面粗度が同じであれば、粗化前のバフ研磨処理の違いに
よらず同程度の無電解銅メッキ層との密着強度が得られ
た。Further, the adhesion strength between each adhesive layer 3 and the electroless copper plating layer applied to the roughened surface thereof is not affected by the surface roughness after buffing, and the peel strength is 1.6 k.
A value equivalent to g / cm was obtained. That is, if the surface roughness after roughening was the same, the same degree of adhesion strength with the electroless copper plating layer was obtained regardless of the difference in the buffing treatment before roughening.
【0023】次に、バフ回転速度を1800rpmとし
た場合のバフ番定♯80,♯120,♯180における
基板の搬送速度(m/min)と接着層の研磨後の表面
粗度(μm)との関係を説明する。図5に示すように、
バフ番定が小さい程接着層3の表面粗度は大きくなり、
どのバフ番定においても搬送速度が上昇するにつれて研
磨後の表面粗度が大きくなる傾向がみられた。搬送速度
が4m/min以上になると、接着層3の表面粗度は大
きくなるが、接着層3の表面全体に一様に凹部4が形成
されない状態となる。一方、搬送速度が2m/min以
下になると、接着層3の表面全体に一様に凹部4が形成
されるが、過度の研磨により凸部が丸くなり表面粗度が
小さくなるとともにスクラッチが入り易くなる。従っ
て、接着層3の表面全体に支障なく一様に凹部4を形成
するためには搬送速度を3〜4m/minに設定するこ
とが好ましいまた、研磨後の接着層3の表面には所定の
表面粗度をもつ微細な凹部4が多数、均一に形成される
ことが望ましい。バフ番定が♯80より小さくなると5
μm以上の表面粗度は得られるが微細な凹部4が得られ
にくく、バフ番定が♯180より大きくなると微細な凹
部4は得られるが、5μm以上の表面粗度が得られにく
い。従って、5μm〜7μmの適度な表面粗度をもち、
できるだけ微細な凹部4を得るためにはバフ番定♯80
〜♯180を使用することが適当である。Next, the transfer speed (m / min) of the substrate and the surface roughness (μm) of the adhesive layer after polishing in the buff numbers # 80, # 120, and # 180 when the buff rotation speed is 1800 rpm. The relationship will be explained. As shown in FIG.
The smaller the buff number, the higher the surface roughness of the adhesive layer 3,
In all the buff numbers, the surface roughness after polishing tended to increase as the conveying speed increased. When the transportation speed is 4 m / min or more, the surface roughness of the adhesive layer 3 increases, but the recesses 4 are not uniformly formed on the entire surface of the adhesive layer 3. On the other hand, when the conveying speed is 2 m / min or less, the concave portions 4 are uniformly formed on the entire surface of the adhesive layer 3, but excessive polishing causes the convex portions to be rounded to reduce the surface roughness and easily cause scratches. Become. Therefore, in order to uniformly form the recesses 4 on the entire surface of the adhesive layer 3 without any trouble, it is preferable to set the transport speed to 3 to 4 m / min. It is desirable that a large number of fine recesses 4 having a surface roughness be uniformly formed. 5 if the buff rating is less than # 80
Although the surface roughness of μm or more can be obtained, it is difficult to obtain the fine recesses 4. When the buff number is larger than # 180, the fine recesses 4 can be obtained, but the surface roughness of 5 μm or more is difficult to obtain. Therefore, it has an appropriate surface roughness of 5 μm to 7 μm,
Buffing # 80 to get the finest possible recess 4
It is appropriate to use ~ # 180.
【0024】尚、本発明は上記実施例に限定されるもの
ではなく、例えば、接着剤としてマトリックス樹脂6中
に分散されるフィラーの大きさが均一なものや、フィラ
ーの大きさが広い分布を有するものを使用したり、エポ
キシ樹脂−エポキシ樹脂以外の組み合わせのものを使用
してよい。また、接着剤として液状のものに代えてドラ
イフィルム化されたものを使用してもよい。また、接着
層3の表面をバフ研磨以外の機械的処理によって粗して
もよい。The present invention is not limited to the above embodiment, and for example, fillers dispersed in the matrix resin 6 as an adhesive may have a uniform size, or fillers may have a wide distribution. It is possible to use the ones that have, or the ones that are combinations other than the epoxy resin-epoxy resin. Also, a dry film adhesive may be used instead of the liquid adhesive. Further, the surface of the adhesive layer 3 may be roughened by a mechanical treatment other than buffing.
【0025】さらに、上記実施例では接着層3の表面粗
度を12±2μmとしたが、表面粗度は12±2μmに
限定されるものではなく、密着強度が得られる範囲で適
宜設定してもよい。Further, although the surface roughness of the adhesive layer 3 is set to 12 ± 2 μm in the above-mentioned embodiment, the surface roughness is not limited to 12 ± 2 μm, and may be appropriately set within the range where the adhesion strength can be obtained. Good.
【0026】[0026]
【発明の効果】以上詳述したように本発明によれば、絶
縁基板に形成された接着層の表面を短時間で所定の表面
粗度まで粗化できるとともに、粗化に必要な溶解量を低
減して溶解液の劣化速度を小さくすることができる。ま
た、接着層の表面を短時間で粗化することができること
から溶解液の浴槽を小型化することができるという優れ
た効果を奏する。As described in detail above, according to the present invention, the surface of the adhesive layer formed on the insulating substrate can be roughened to a predetermined surface roughness in a short time, and the amount of dissolution required for roughening can be reduced. It is possible to reduce the deterioration rate of the solution by reducing the deterioration rate. In addition, since the surface of the adhesive layer can be roughened in a short time, there is an excellent effect that the bath of the solution can be downsized.
【図1】接着層の形成手順を模式的に示す部分断面図で
ある。FIG. 1 is a partial cross-sectional view schematically showing a procedure for forming an adhesive layer.
【図2】本実施例におけるバフ研磨後の接着層の模式部
分断面図である。FIG. 2 is a schematic partial cross-sectional view of an adhesive layer after buffing in this example.
【図3】溶解液に浸漬して表面を粗化した後の接着層の
模式部分断面図である。FIG. 3 is a schematic partial cross-sectional view of an adhesive layer after being immersed in a solution to roughen the surface.
【図4】搬送速度と研磨後の表面粗度との関係を示すグ
ラフである。FIG. 4 is a graph showing the relationship between the transport speed and the surface roughness after polishing.
【図5】研磨後の表面粗度とエッチング時間との関係を
示すグラフである。FIG. 5 is a graph showing the relationship between the surface roughness after polishing and the etching time.
1…絶縁基板としてのガラスエポキシ基板、2…接着剤
層、3…接着層、4…凹部、5…粗化凹部、6…マトリ
ックス樹脂、7a,7b…フィラー。DESCRIPTION OF SYMBOLS 1 ... Glass epoxy substrate as an insulating substrate, 2 ... Adhesive layer, 3 ... Adhesive layer, 4 ... Recess, 5 ... Roughening recess, 6 ... Matrix resin, 7a, 7b ... Filler.
【手続補正書】[Procedure amendment]
【提出日】平成4年10月30日[Submission date] October 30, 1992
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図4[Name of item to be corrected] Fig. 4
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図4】研磨後の表面粗度とエッチング時間との関係を
示すグラフである。FIG. 4 is a graph showing the relationship between the surface roughness after polishing and the etching time.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図5[Name of item to be corrected] Figure 5
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図5】搬送速度と研磨後の表面粗度との関係を示すグ
ラフである。FIG. 5 is a graph showing the relationship between the transport speed and the surface roughness after polishing.
Claims (1)
なる未硬化のマトリックス樹脂と、前記溶解液に対して
可溶で且つ未硬化の前記マトリックス樹脂に難溶なフィ
ラーとからなる接着剤層を絶縁基板上に形成した後、接
着剤層を硬化処理して接着層を形成し、次いで、同接着
層の表面を機械的な表面処理により粗した後、前記溶解
液により前記接着層の表面部分の溶解処理を行い、多数
の粗化凹部を形成するアディティブプリント配線板用接
着層の形成方法。1. An adhesive comprising an uncured matrix resin which is hardly soluble in a solution by a curing treatment, and a filler which is soluble in the solution and hardly soluble in the uncured matrix resin. After forming the layer on the insulating substrate, the adhesive layer is cured to form an adhesive layer, and then the surface of the adhesive layer is roughened by a mechanical surface treatment, and then the adhesive layer is formed by the dissolving solution. A method for forming an adhesive layer for an additive printed wiring board, which comprises dissolving a surface portion to form a large number of roughened recesses.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6386192A JPH05267840A (en) | 1992-03-19 | 1992-03-19 | Forming method for adhesive layer of additive printed circuit board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6386192A JPH05267840A (en) | 1992-03-19 | 1992-03-19 | Forming method for adhesive layer of additive printed circuit board |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05267840A true JPH05267840A (en) | 1993-10-15 |
Family
ID=13241538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6386192A Pending JPH05267840A (en) | 1992-03-19 | 1992-03-19 | Forming method for adhesive layer of additive printed circuit board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05267840A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003060341A (en) * | 2001-08-08 | 2003-02-28 | Mitsubishi Gas Chem Co Inc | Method of manufacturing printed wiring board having minute pattern |
JP2003069218A (en) * | 2001-08-23 | 2003-03-07 | Mitsubishi Gas Chem Co Inc | Method for manufacturing printed wiring board having extra-fine pattern |
WO2005104638A1 (en) * | 2004-04-23 | 2005-11-03 | Matsushita Electric Works, Ltd. | Wiring board and method for producing the same |
-
1992
- 1992-03-19 JP JP6386192A patent/JPH05267840A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003060341A (en) * | 2001-08-08 | 2003-02-28 | Mitsubishi Gas Chem Co Inc | Method of manufacturing printed wiring board having minute pattern |
JP2003069218A (en) * | 2001-08-23 | 2003-03-07 | Mitsubishi Gas Chem Co Inc | Method for manufacturing printed wiring board having extra-fine pattern |
WO2005104638A1 (en) * | 2004-04-23 | 2005-11-03 | Matsushita Electric Works, Ltd. | Wiring board and method for producing the same |
JPWO2005104638A1 (en) * | 2004-04-23 | 2008-03-13 | 松下電工株式会社 | Wiring board and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09298362A (en) | Manufacture of build-up multilayer printed-circuit board | |
JP3242009B2 (en) | Resin filler | |
JPH05267840A (en) | Forming method for adhesive layer of additive printed circuit board | |
JPH06268339A (en) | Flex-rigid multilayer printed wiring board and production thereof | |
JPH06260756A (en) | Manufacture of printed wiring board | |
JP3320432B2 (en) | Method for manufacturing multilayer wiring board | |
JPS61154096A (en) | Manufacture of multilayer printed wiring board | |
JP4497614B2 (en) | Manufacturing method of multilayer printed wiring board | |
JP3251971B2 (en) | Dry film adhesive for additive method | |
JP3261314B2 (en) | Method of manufacturing multilayer printed wiring board and multilayer printed wiring board | |
JPH10200265A (en) | Multilayer printed wiring board | |
JPH11289163A (en) | Manufacture of multilayer printed wiring board | |
JPH07188935A (en) | Adhesive having excellent anchor characteristic and printed circuit board formed by using this adhesive and its production | |
JPH05327228A (en) | Multilayer printed board provided with buried electronic circuit component | |
JP2945510B2 (en) | How to apply adhesive | |
JP3100689B2 (en) | Method of forming recess for mounting electronic components on printed wiring board | |
JP2826206B2 (en) | Printed wiring board | |
JP3861338B2 (en) | Method for manufacturing printed wiring board | |
JPH10224034A (en) | Resin-filling agent and multilayer printed wiring board | |
JP3124628B2 (en) | Adhesive sheet for wiring board | |
JPH0730259A (en) | Multilayer printed wiring board and adhesive sheet | |
JPH0851280A (en) | Multilayer printed wiring board | |
JP3469214B2 (en) | Build-up multilayer printed wiring board | |
JP3469146B2 (en) | Build-up multilayer printed wiring board | |
JPH09266375A (en) | Multilayer printed interconnection board manufacturing method |