JP2003022805A - Positive active material for lithium ion secondary battery - Google Patents

Positive active material for lithium ion secondary battery

Info

Publication number
JP2003022805A
JP2003022805A JP2001206951A JP2001206951A JP2003022805A JP 2003022805 A JP2003022805 A JP 2003022805A JP 2001206951 A JP2001206951 A JP 2001206951A JP 2001206951 A JP2001206951 A JP 2001206951A JP 2003022805 A JP2003022805 A JP 2003022805A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
battery
lico
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001206951A
Other languages
Japanese (ja)
Other versions
JP4168608B2 (en
Inventor
Atsushi Takeoka
篤志 武岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2001206951A priority Critical patent/JP4168608B2/en
Publication of JP2003022805A publication Critical patent/JP2003022805A/en
Application granted granted Critical
Publication of JP4168608B2 publication Critical patent/JP4168608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive active material which reduces generation of gases in a lithium ion secondary battery and enhancing battery characteristics (cycle characteristics and heavy load characteristic) and thermal stability. SOLUTION: This positive active material for the lithium ion secondary battery is represented by the general formula Liv Co1-w-x Alw Mx Oy Sz (M is at least one selected from among Mg and Ba; 0.95<=v<=1.05; 0<w<=0.10; 0<x<=0.10; 1<=y<=2.5; and 0<z<=0.015).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池に使用される正極活物質に係り、特に、ガス発生
が少なく、電池特性(サイクル特性、高負荷特性)及び
熱安定性に優れた正極活物質に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material used in a lithium ion secondary battery, and in particular, it has little gas generation and is excellent in battery characteristics (cycle characteristics, high load characteristics) and thermal stability. It relates to a positive electrode active material.

【0002】[0002]

【従来の技術】近年、携帯用のパソコン、ビデオカメラ
等の電子機器に内蔵される電池として、高エネルギー密
度を有するリチウムイオン二次電池が採用されている。
このリチウムイオン二次電池は、リチウムコバルト複合
酸化物等の正極活物質をその支持体である正極集電体に
保持してなる正極板、リチウム金属等の負極活物質をそ
の支持体である負極集電体に保持してなる負極板、Li
PF等のリチウム塩を溶解した有機溶媒からなる非水
電解液、及び正極板と負極板の間に介在して両極の短絡
を防止するセパレータからなっている。このうち、正極
板、負極板及びセパレータの薄いシート状に成形された
ものを巻回し、金属ラミネート樹脂フィルムの電池ケー
スに収納したラミネート電池、或いは薄型の金属ケース
に収納した電池は、従来の厚型の金属ケースに収納した
電池に比べ、電池内のガス発生、発熱又は外部からの加
熱により容易に膨張し、電池を格納した電池パックケー
スまでも膨張変形するという問題があった。
2. Description of the Related Art In recent years, lithium ion secondary batteries having a high energy density have been adopted as batteries incorporated in electronic equipment such as portable personal computers and video cameras.
This lithium ion secondary battery includes a positive electrode plate in which a positive electrode active material such as lithium cobalt composite oxide is held on a positive electrode current collector which is a support thereof, and a negative electrode active material such as lithium metal which is a negative electrode which is a support thereof. A negative electrode plate held by a current collector, Li
It is composed of a non-aqueous electrolytic solution composed of an organic solvent in which a lithium salt such as PF 6 is dissolved, and a separator interposed between the positive electrode plate and the negative electrode plate to prevent a short circuit between both electrodes. Among them, the positive electrode plate, the negative electrode plate, and the separator formed into a thin sheet are wound, and the laminated battery housed in the battery case of the metal laminated resin film or the battery housed in the thin metal case has the same thickness as the conventional one. As compared with a battery housed in a metal case of a mold, there is a problem that the battery easily expands due to gas generation in the battery, heat generation, or external heating, and the battery pack case housing the battery also expands and deforms.

【0003】従来、リチウムイオン二次電池の正極活物
質としてLiCoOを用いた場合、放電容量を向上す
る目的で充電電圧を上昇させると、正極活物質の結晶の
転移、或いは正極活物質の分解が起こり、コバルト酸か
らの酸素が放出され、この酸素は非水系電解液を酸化分
解し、その結果電池内でガスが発生し、ラミネート電池
等において上記問題が起きるため対策を必要とした。
Conventionally, when LiCoO 2 is used as the positive electrode active material of a lithium ion secondary battery, when the charging voltage is increased for the purpose of improving the discharge capacity, the crystals of the positive electrode active material are transferred or the positive electrode active material is decomposed. Then, oxygen from cobalt acid is released, and this oxygen oxidizes and decomposes the non-aqueous electrolyte solution, and as a result, gas is generated in the battery, which causes the above problem in a laminated battery or the like, and therefore a countermeasure is required.

【0004】同様に、放電容量を向上する目的で充電電
圧を上昇させると、正極活物質の結晶転移或いは分解に
伴い、電池特性(サイクル特性、高負荷特性)、熱安定
性も低下した。また、正極活物質のLiCoOは導電
性が低く、そのため導電性のあるカーボンを被覆するこ
とで導電性を改善しているが、カーボンとの接触が悪い
場合、サイクル劣化を引き起こす原因となっていた。
Similarly, when the charging voltage was increased for the purpose of improving the discharge capacity, the battery characteristics (cycle characteristics, high load characteristics) and thermal stability were also deteriorated due to crystal transition or decomposition of the positive electrode active material. In addition, LiCoO 2 as a positive electrode active material has low conductivity, and therefore conductivity is improved by coating conductive carbon. However, when contact with carbon is poor, it causes cycle deterioration. It was

【0005】[0005]

【発明が解決しようとする課題】本発明は、上述した事
情に鑑みなされたもので、リチウムイオン二次電池のガ
ス発生を低減し、電池特性(サイクル特性、高負荷特
性)及び熱安定性を向上できる正極活物質を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and reduces gas generation of a lithium ion secondary battery to improve battery characteristics (cycle characteristics, high load characteristics) and thermal stability. It is an object to provide a positive electrode active material that can be improved.

【0006】[0006]

【課題を解決するための手段】本発明者は上述した問題
を解決するために鋭意検討した結果、リチウムイオン二
次電池の正極活物質として一般式がLiCo
1−w−xAl(但し、MはMg、Ba
から選ばれた少なくとも1種であり、0.95≦v≦
1.05、0<w≦0.10、0<x≦0.10、1≦
y≦2.5、0<z≦0.015である。)で表される
正極活物質を用いることで、上記課題を解決することが
できることを見いだし本発明を完成させるに至った。
Means for Solving the Problems As a result of intensive studies for solving the above-mentioned problems, the present inventor has found that the general formula of Li v Co as a positive electrode active material of a lithium ion secondary battery is
1-w-x Al w M x O y S z (where M is Mg, Ba
At least one selected from 0.95 ≦ v ≦
1.05, 0 <w ≦ 0.10, 0 <x ≦ 0.10, 1 ≦
y ≦ 2.5 and 0 <z ≦ 0.015. It was found that the above problem can be solved by using the positive electrode active material represented by (4), and the present invention has been completed.

【0007】すなわち、本発明のリチウムイオン二次電
池用正極活物質は、一般式がLiCo1−wAl
(但し、MはMg、Baから選ばれた少なく
とも1種であり、0.95≦v≦1.05、0<w≦
0.10、0<x≦0.10、1≦y≦2.5、0<z
≦0.015である。)で表される正極活物質であっ
て、組成中のLi量(v値)はリチウムイオン二次電池
の放電容量及び高負荷容量に影響し、0.95≦v≦
1.05の範囲が好ましい。また、組成中のAl量(w
値)、M量(x値)及びS量(z値)は、リチウムイオ
ン二次電池のガス発生及び電池特性(サイクル特性、高
負荷特性)に非常に影響し、0<w≦0.10、0<x
≦0.10、0<z≦0.015の範囲が好ましく、さ
らに0.0001≦w≦0.05、0.0001≦x≦
0.05、0.003≦z≦0.009の範囲がより好
ましい。組成中のO量(y値)については、S元素を正
極活物質中に導入する方法等により異なり、1≦y≦
2.5の範囲である。
That is, the positive electrode active material for a lithium ion secondary battery of the present invention has a general formula of Li v Co 1-w Al w M
x O y S z (where M is at least one selected from Mg and Ba, and 0.95 ≦ v ≦ 1.05, 0 <w ≦
0.10, 0 <x ≦ 0.10, 1 ≦ y ≦ 2.5, 0 <z
≦ 0.015. ), The amount of Li (v value) in the composition affects the discharge capacity and the high load capacity of the lithium ion secondary battery, and 0.95 ≦ v ≦
The range of 1.05 is preferable. Also, the amount of Al in the composition (w
Value), M content (x value) and S content (z value) have a great influence on the gas generation and battery characteristics (cycle characteristics, high load characteristics) of the lithium ion secondary battery, and 0 <w ≦ 0.10. , 0 <x
The range of ≦ 0.10, 0 <z ≦ 0.015 is preferable, and 0.0001 ≦ w ≦ 0.05, 0.0001 ≦ x ≦
The range of 0.05 and 0.003 ≦ z ≦ 0.009 is more preferable. The amount of O (y value) in the composition varies depending on the method of introducing the S element into the positive electrode active material and the like, and 1 ≦ y ≦
It is in the range of 2.5.

【0008】本発明のリチウムイオン二次電池用正極活
物質は、その比表面積が0.2〜2.0m/gの範囲
であることを特徴とする。正極活物質の比表面積はリチ
ウムイオン二次電池のガス発生に非常に影響し、特に上
記一般式で表される本発明の正極活物質の場合、比表面
積が0.2〜2.0m/gの範囲でガス発生を大幅に
低減することができる。より好ましくは0.4〜0.8
/gの範囲である。
The positive electrode active material for a lithium ion secondary battery of the present invention is characterized by having a specific surface area of 0.2 to 2.0 m 2 / g. The specific surface area of the positive electrode active material has a great influence on the gas generation of the lithium ion secondary battery, and particularly in the case of the positive electrode active material of the present invention represented by the above general formula, the specific surface area is 0.2 to 2.0 m 2 / Gas generation can be significantly reduced in the range of g. More preferably 0.4 to 0.8
It is in the range of m 2 / g.

【0009】[0009]

【発明の実施の形態】本発明のリチウムイオン二次電池
用正極活物質の合成は、下記に示すように、リチウム化
合物、コバルト化合物、アルミニウム化合物及びMg、
Baのうちの少なくとも1種の元素を含む化合物に硫黄
又は硫黄化合物を混合した原料混合物を焼成した後、粉
砕することによって行われる。
BEST MODE FOR CARRYING OUT THE INVENTION The synthesis of the positive electrode active material for a lithium ion secondary battery of the present invention is carried out by the following method, as shown in the following: a lithium compound, a cobalt compound, an aluminum compound and Mg,
It is performed by firing a raw material mixture obtained by mixing sulfur or a sulfur compound with a compound containing at least one element of Ba, and then pulverizing the raw material mixture.

【0010】リチウム化合物、コバルト化合物、アルミ
ニウム化合物及びMg、Baのうちの少なくとも1種の
元素を含む化合物としては、酸化物、水酸化物、炭酸
塩、硝酸塩、硫酸塩、酢酸塩、シュウ酸塩等を用いるこ
とができる。好ましくは、リチウム化合物として、Li
O、LiOH、LiCO、LiHCO、LiN
、LiSO・HO、Li(CHCOO)、L
等、コバルト化合物として、Co
Co、Co(OH)、CoCO、Co(NO)
・6HO、CoC等、アルミニウム化合物と
して、Al 、Al(OH)、Al(NO)・9
O、Al(CHCOO)等、Mg、Baのうちの
少なくとも1種の元素を含む化合物として、MgO、M
g(OH) 、MgCO、Mg(NO)・6HO、
MgC・2HO、BaO、Ba(OH)・8H
O、BaCO、Ba(NO)、BaC・H
O等が使用できる。
Lithium compound, cobalt compound, aluminum
A nickel compound and at least one of Mg and Ba
Compounds containing elements include oxides, hydroxides and carbonic acid
Use salts, nitrates, sulfates, acetates, oxalates, etc.
You can Preferably, as the lithium compound, Li
TwoO, LiOH, LiTwoCOThree, LiHCOThree, LiN
OThree, LiTwoSOFour・ HTwoO, Li (CHThreeCOO), L
iTwoCTwoOFourAs a cobalt compound, CoThreeOFour,
CoTwoOThree, Co (OH)Two, CoCOThree, Co (NOThree)
Two・ 6HTwoO, CoCTwoOFourEtc. with aluminum compounds
And then AlTwoO Three, Al (OH)Three, Al (NOThree)Three・ 9
HTwoO, Al (CHThreeCOO)ThreeEtc. Of Mg, Ba
As a compound containing at least one element, MgO, M
g (OH) Two, MgCOThree, Mg (NOThree)Two・ 6HTwoO,
MgCTwoOFour・ 2HTwoO, BaO, Ba (OH)Two・ 8H
TwoO, BaCOThree, Ba (NOThree)Two, BaCTwoOFour・ H
TwoO etc. can be used.

【0011】硫黄化合物としては、酸化物、硫化物、硫
酸塩、硫酸水素塩、ピロ硫酸塩、亜硫酸塩、ペルオクソ
硫酸塩、チオ硫酸塩、アルキル硫酸塩等を用いることが
できる。好ましくは、(NH)S、LiSO
O、CoSO、(NH )SO、(NH)
等が使用できる。
Sulfur compounds include oxides, sulfides and sulfur compounds.
Acid salt, hydrogen sulfate, pyrosulfate, sulfite, peroxo
It is possible to use sulfates, thiosulfates, alkyl sulfates, etc.
it can. Preferably, (NHFour)TwoS, LiTwoSOFour
HTwoO, CoSOFour, (NH Four)TwoSOFour, (NHFour)Two
STwoO8Etc. can be used.

【0012】これらの原料の混合は、粉末状の原料をそ
のまま混合しても良く、水又は有機溶媒を用いてスラリ
ー状として混合しても良い。スラリー状の混合物は乾燥
して原料混合物とする。
The raw materials in powder form may be mixed as they are, or may be mixed in the form of a slurry using water or an organic solvent. The slurry-like mixture is dried to obtain a raw material mixture.

【0013】このようにして得られる原料混合物を空気
中或いは弱酸化雰囲気で、500〜1000℃の温度範
囲で1〜24時間焼成する。好ましくは800〜100
0℃の温度範囲で6〜12時間焼成する。焼成温度が5
00℃未満の場合、未反応の原料が正極活物質に残留し
正極活物質の本来の特徴を生かせない。逆に、1000
℃を越えると、正極活物質の粒径が大きくなり過ぎて電
池特性が低下する。焼成時間は、1時間未満では原料粒
子間の拡散反応が進行せず、24時間経過すると拡散反
応はほとんど完了しているため、それ以上焼成する必要
がない。
The raw material mixture thus obtained is fired in the air or in a weakly oxidizing atmosphere in the temperature range of 500 to 1000 ° C. for 1 to 24 hours. Preferably 800-100
Baking at a temperature range of 0 ° C. for 6 to 12 hours. Firing temperature is 5
When the temperature is lower than 00 ° C, unreacted raw materials remain in the positive electrode active material, and the original characteristics of the positive electrode active material cannot be utilized. Conversely, 1000
If the temperature exceeds ℃, the particle size of the positive electrode active material becomes too large and the battery characteristics deteriorate. If the firing time is less than 1 hour, the diffusion reaction between the raw material particles does not proceed, and after 24 hours, the diffusion reaction is almost completed. Therefore, it is not necessary to further fire.

【0014】上記焼成により得られる焼成品をらいかい
機を用いて粉砕して、比表面積が0.2〜2.0m
g、平均粒径が1.0〜12.0μmの範囲の本発明の
正極活物質を得る。
The calcined product obtained by the above calcining is pulverized by using a raider to give a specific surface area of 0.2 to 2.0 m 2 /
g, the positive electrode active material of the present invention having an average particle size of 1.0 to 12.0 μm is obtained.

【0015】本発明の正極活物質を用いたリチウムイオ
ン二次電池は、電解液の酸化分解反応が抑制され、電池
内で発生するガス量が低減されるため、膨張変形が非常
に少なく、電池特性(サイクル特性、高負荷特性)及び
熱安定性も向上する。
In the lithium ion secondary battery using the positive electrode active material of the present invention, the oxidative decomposition reaction of the electrolytic solution is suppressed and the amount of gas generated in the battery is reduced. The characteristics (cycle characteristics, high load characteristics) and thermal stability are also improved.

【0016】次に、本発明の正極活物質を用いてリチウ
ムイオン二次電池を作製し、ガス発生、電池特性(サイ
クル特性、高負荷特性)及び熱安定性について測定した
結果を説明する。
Next, the results of measuring a gas generation, battery characteristics (cycle characteristics, high load characteristics) and thermal stability by producing a lithium ion secondary battery using the positive electrode active material of the present invention will be described.

【0017】(リチウムイオン二次電池の作製)正極活
物質粉末90重量部と、導電剤(例えば、天然黒鉛、鱗
片状黒鉛、人造黒鉛、膨張黒鉛等のグラファイト類、ア
セチレンブラック、ケッチェンブラック、チャンネルブ
ラック、ファーネスブラック、ランプブラック、サーマ
ルブラック等のカーボンブラック類、炭素繊維、金属繊
維等の導電性繊維類などを単独で又は混合して用い
る。)5重量部と、ポリフッ化ビニリデン5重量部とを
混練してペーストを調製し、これを正極集電体に塗布、
乾燥して正極板とする。また、負極にカーボン(例え
ば、天然黒鉛、人造黒鉛、難黒鉛炭素等)、セパレータ
に多孔性プロピレンフィルムを用い、電解液としてエチ
レンカーボネート:ジエチルカーボネイト=1:1(体
積比)の混合溶媒にLiPFを1mol/lの濃度で
溶解した溶液を用いてリチウムイオン二次電池を作製す
る。ここでは、正極板、負極板及びセパレータの薄いシ
ート状に成形されたものを巻回し、金属ラミネート樹脂
フィルムの電池ケースに収納したラミネート電池を作製
する。
(Production of Lithium Ion Secondary Battery) 90 parts by weight of a positive electrode active material powder, a conductive agent (for example, graphite such as natural graphite, flake graphite, artificial graphite, expanded graphite, acetylene black, Ketjen black, 5 parts by weight of carbon black such as channel black, furnace black, lamp black, thermal black and the like, or conductive fibers such as carbon fiber and metal fiber are used alone or in combination, and 5 parts by weight of polyvinylidene fluoride. And kneading to prepare a paste, which is applied to the positive electrode current collector,
It is dried to obtain a positive electrode plate. Further, carbon (for example, natural graphite, artificial graphite, non-graphite carbon, etc.) is used for the negative electrode, a porous propylene film is used for the separator, and LiPF is used as an electrolytic solution in a mixed solvent of ethylene carbonate: diethyl carbonate = 1: 1 (volume ratio). A lithium ion secondary battery is produced using a solution in which 6 is dissolved at a concentration of 1 mol / l. Here, a positive electrode plate, a negative electrode plate, and a separator, which are formed into a thin sheet shape, are wound, and a laminated battery housed in a battery case of a metal laminated resin film is manufactured.

【0018】(ガス発生の評価)一般式がLiCo
0.989Al0.01Mg0.001、Li
Co 0.99Al0.01、LiCo
0.999Mg0.001及びLiCoO
で表される種々の正極活物質を用いてラミネート電池
を作製し、充電負荷0.5Cで4.2Vまで定電流充電
後、80℃で2日間保存し、ガス発生による電池の膨張
率(%)を下記の式から求める(ここで1Cは、1時間
で充電又は放電が終了する電流負荷である)。 電池の膨張率={(80℃保存後の電池の厚み−測定前
の電池の厚み)/測定前の電池の厚み}×100
(Evaluation of Gas Generation) The general formula is LiCo
0.989Al0.01Mg0.001OTwoSz, Li
Co 0.99Al0.01OTwoSz, LiCo
0.999Mg0.001OTwoSzAnd LiCoOTwoS
zLaminated battery using various positive electrode active materials represented by
Created and charged at constant current up to 4.2V with a charging load of 0.5C
Then, store at 80 ° C for 2 days to expand the battery due to gas generation.
Calculate the rate (%) from the following formula (where 1C is 1 hour
It is a current load that ends charging or discharging.) Expansion coefficient of battery = {(battery thickness after storage at 80 ° C-before measurement
Thickness of battery) / thickness of battery before measurement} × 100

【0019】図1に、上記正極活物質中のS量(z値)
と電池の膨張率の関係を示す。この図から明らかなよう
に、本発明の正極活物質LiCo0.989Al
0.01Mg0.001(1a)を用いた電池
の膨張率は、z値が0<z≦0.015の範囲で低く、
特に0.003≦z≦0.009の範囲で非常に低くな
っており、電池内で発生するガス量が低減されることが
わかる。また、Mg元素を含有しない正極活物質LiC
0.99Al0.01(1b)、Al元素を
含有しない正極活物質LiCo0.999Mg
0.001(1c)及びMg元素とAl元素を
共に含有しない正極活物質LiCoO(1d)を
用いた電池に比べて、膨張率が非常に低いことがわか
る。このように、正極活物質中にAl元素、Mg元素、
S元素の3種類の元素を全て含むことによって、電池の
膨張率は非常に低減される。
FIG. 1 shows the amount of S (z value) in the positive electrode active material.
And the expansion coefficient of the battery is shown. As is clear from this figure, the positive electrode active material of the present invention LiCo 0.989 Al
The expansion coefficient of the battery using 0.01 Mg 0.001 O 2 S z (1a) is low in the range of z value 0 <z ≦ 0.015,
Particularly, it is extremely low in the range of 0.003 ≦ z ≦ 0.009, and it can be seen that the amount of gas generated in the battery is reduced. In addition, the positive electrode active material LiC containing no Mg element
o 0.99 Al 0.01 O 2 S z (1b), positive electrode active material containing no Al element LiCo 0.999 Mg
It can be seen that the expansion coefficient is extremely low as compared with the battery using 0.001 O 2 S z (1c) and the positive electrode active material LiCoO 2 S z (1d) that does not contain both Mg element and Al element. Thus, in the positive electrode active material, Al element, Mg element,
By including all three types of S elements, the coefficient of expansion of the battery is greatly reduced.

【0020】次に、比表面積が異なる種々の正極活物質
を用いてラミネート電池を作製し、同様に電池の膨張率
(%)を求める。図2に、一般式がLiCo0.989
Al 0.01Mg0.0010.005で表され
る正極活物質の比表面積と電池の膨張率の関係を示す。
この図から明らかなように、本発明の正極活物質を用い
た電池の膨張率は、比表面積が2.0m/g以下で少
なく、特に0.8m/g以下で非常に少なくなってお
り、電池内で発生するガス量が低減されることがわか
る。比表面積が2.0m/gより大きくなると、正極
活物質表面或いはその近傍で起こる電解液の酸化分解反
応の反応性が増し、その結果電池内で発生するガス量が
増えるものと考えられる。比表面積が0.2m/gよ
り小さいと、正極活物質の粒径が大きくなり過ぎて電池
特性が低下するため、比表面積は0.2〜2.0m
gの範囲が好ましく、0.4〜0.8m/gの範囲が
より好ましい。
Next, various positive electrode active materials having different specific surface areas
Laminated battery is manufactured using
Calculate (%). In FIG. 2, the general formula is LiCo0.989
Al 0.01Mg0.001OTwoS0.005Represented by
2 shows the relationship between the specific surface area of the positive electrode active material and the expansion coefficient of the battery.
As is clear from this figure, the positive electrode active material of the present invention was used.
The expansion rate of the battery has a specific surface area of 2.0 mTwoLess than / g
None, especially 0.8 mTwo/ G or less is very low
It can be seen that the amount of gas generated in the battery is reduced.
It Specific surface area is 2.0mTwo/ G, the positive electrode
Oxidative decomposition reaction of the electrolyte that occurs on or near the surface of the active material
Reaction, which increases the amount of gas generated in the battery.
It is expected to increase. Specific surface area is 0.2mTwo/ G
If it is too small, the particle size of the positive electrode active material will become too large and
The specific surface area is 0.2-2.0 m because the characteristics are deteriorated.Two/
The range of g is preferable, and 0.4 to 0.8 mTwoThe range of / g
More preferable.

【0021】(サイクル特性の評価)一般式がLiCo
0.999−wAlMg0.001
0.005、LiCo1−wAl
0.005、LiCo0.999−wAlMg0.
001及びLiCo1−wAlで表される種
々の正極活物質を用いてラミネート電池を作製し、常温
(25℃)で、充電負荷0.5Cで4.2Vまで定電流
充電後、1.0Cで2.75Vまで放電する充放電を5
00サイクル行い、500サイクル目の容量維持率
(%)を下記の式から求める。 容量維持率=(500サイクル目の放電容量/1サイク
ル目の放電容量)×100
(Evaluation of cycle characteristics) The general formula is LiCo.
0.999-w Al w Mg 0.001 O
2 S 0.005 , LiCo 1-w Al w O 2 S
0.005 , LiCo 0.999-w Al w Mg 0.
Laminated batteries were made using various positive electrode active materials represented by 001 O 2 and LiCo 1-w Al w O 2 , and were charged at a constant current at room temperature (25 ° C.) with a charging load of 0.5 C to 4.2 V. After that, charge and discharge to discharge to 2.75V at 1.0C is 5
After carrying out 00 cycles, the capacity retention rate (%) at the 500th cycle is obtained from the following formula. Capacity retention rate = (500th cycle discharge capacity / first cycle discharge capacity) × 100

【0022】図3に、上記正極活物質中のAl量(w
値)と容量維持率の関係を示す。図3から、本発明の正
極活物質LiCo0.999−wAlMg0.001
0.005(3a)を用いた電池の容量維持率
は、w値が0<w≦0.05の範囲で高く、特に0.0
001≦w≦0.05の範囲で非常に高くなっているこ
とがわかる。また、Mg元素を含有しない正極活物質L
iCo1−wAl 0.005(3b)、S元素
を含有しない正極活物質LiCo0.999−wAl
Mg0.001(3c)及びMg元素とS元素を共
に含有しない正極活物質LiCo1−wAl(3
d)を用いた電池に比べて、容量維持率が非常に高いこ
とがわかる。このように、正極活物質中にAl元素、M
g元素、S元素の3種類の元素を全て含むことによっ
て、電池のサイクル特性は非常に向上する。
FIG. 3 shows the amount of Al (w in the positive electrode active material).
Value) and capacity retention rate. According to FIG.
Very active material LiCo0.999-wAlwMg0.001
OTwoS 0.005Capacity retention rate of battery using (3a)
Has a high w value in the range of 0 <w ≦ 0.05, and is particularly 0.0
It is extremely high in the range of 001 ≦ w ≦ 0.05.
I understand. In addition, the positive electrode active material L containing no Mg element
iCo1-wAlwOTwoS 0.005(3b), S element
-Free positive electrode active material LiCo0.999-wAlw
Mg0.001OTwo(3c) and Mg element and S element together
Positive electrode active material not containing LiCo1-wAlwOTwo(3
The capacity retention rate is much higher than that of the battery using d).
I understand. Thus, in the positive electrode active material, Al element, M
By including all three elements of g element and S element
Thus, the cycle characteristics of the battery are greatly improved.

【0023】(高負荷特性の評価)一般式がLiCo
0.99−xAl0.01Mg0.005、L
iCo1−xMg0.005、LiCo
0.99−xAl0.01Mg 及びLiCo
1−xMgで表される種々の正極活物質を用いて
ラミネート電池を作製し、充電負荷2.0Cで4.2V
まで定電流充電後、2.0Cで2.75Vまで放電した
ときの放電容量を高負荷容量(mAh/g)として求め
る。
(Evaluation of high load characteristics) The general formula is LiCo.
0.99-xAl0.01MgxOTwoS0.005, L
iCo1-xMgxOTwoS0.005, LiCo
0.99-xAl0.01MgxO TwoAnd LiCo
1-xMgxOTwoUsing various positive electrode active materials represented by
Produce a laminated battery, 4.2V at a charging load of 2.0C
After constant current charging up to, discharged at 2.0C to 2.75V
The discharge capacity at this time was calculated as the high load capacity (mAh / g)
It

【0024】図4に、上記正極活物質中のMg量(x
値)と高負荷容量の関係を示す。図4から、本発明の正
極活物質LiCo0.99−xAl0.01Mg
0. 005(4a)を用いた電池の高負荷容量は、x
値が0<x≦0.10の範囲で高く、特に0.0001
≦x≦0.05の範囲で非常に高くなっていることがわ
かる。また、Al元素を含有しない正極活物質LiCo
1−xMg0. 005(4b)、S元素を含有
しない正極活物質LiCo0.99−xAl0. 01
(4c)及びAl元素とS元素を共に含有しな
い正極活物質LiCo1−xMg(4d)を用い
た電池に比べて、高負荷容量が非常に高いことがわか
る。このように、正極活物質中にAl元素、Mg元素、
S元素の3種類の元素を全て含むことによって、電池の
高負荷特性は非常に向上する。
FIG. 4 shows the amount of Mg (x
Value) and high load capacity. From FIG. 4, the positive electrode active material of the present invention LiCo 0.99-x Al 0.01 Mg x O 2
S 0. The high load capacity of the battery using 005 (4a) is x
Values are high in the range of 0 <x ≦ 0.10, especially 0.0001
It can be seen that the value is extremely high in the range of ≦ x ≦ 0.05. In addition, the positive electrode active material LiCo containing no Al element
1-x Mg x O 2 S 0. 005 (4b), positive electrode active material LiCo 0.99-x Al 0. 01 M
It can be seen that the high load capacity is much higher than that of the battery using g x O 2 (4c) and the positive electrode active material LiCo 1-x Mg x O 2 (4d) that does not contain both Al element and S element. Thus, in the positive electrode active material, Al element, Mg element,
By including all three types of S elements, the high load characteristics of the battery are greatly improved.

【0025】上述したように、正極活物質中にAl元
素、Mg元素、S元素の3種類の元素を全て含むことに
よって、相乗効果として正極活物質の結晶転移或いは分
解がさらに抑制される結果、電池の膨張率は著しく低減
し、電池特性(サイクル特性、高負荷特性)は非常に向
上する。
As described above, by including all three elements of Al element, Mg element, and S element in the positive electrode active material, the crystal transition or decomposition of the positive electrode active material is further suppressed as a synergistic effect. The expansion coefficient of the battery is significantly reduced, and the battery characteristics (cycle characteristics, high load characteristics) are greatly improved.

【0026】同様に、一般式がLiCo0.989
0.01Mg0.001 .005で表される
種々の正極活物質を用いてラミネート電池を作製し、高
負荷容量(mAh/g)を求める。図5に、正極活物質
中のLi量(v値)と高負荷容量の関係を示す。この図
から、高負荷容量はv値が1.05より大きくなると低
下していることがわかる。
Similarly, the general formula is Li v Co 0.989 A
l 0.01 Mg 0.001 O 2 S 0 . Laminated batteries are manufactured using various positive electrode active materials represented by 005 , and high load capacity (mAh / g) is determined. FIG. 5 shows the relationship between the amount of Li (v value) in the positive electrode active material and the high load capacity. From this figure, it can be seen that the high load capacity decreases as the v value becomes larger than 1.05.

【0027】また、通常の電流密度で放電させた場合
(0.25C)について、図6に正極活物質中のLi量
(v値)と放電容量の関係を示す。この図から、放電容
量はv値が0.95より小さくなると低下していること
がわかる。
FIG. 6 shows the relationship between the Li amount (v value) in the positive electrode active material and the discharge capacity when discharged at a normal current density (0.25 C). From this figure, it can be seen that the discharge capacity decreases when the v value becomes smaller than 0.95.

【0028】従って、高負荷容量と通常時の放電容量の
いずれも考慮すると、v値は0.95≦v≦1.05の
範囲に設定する必要がある。
Therefore, considering both the high load capacity and the discharge capacity under normal conditions, it is necessary to set the v value within the range of 0.95≤v≤1.05.

【0029】以下、本発明の実施例について説明する
が、本発明は具体的実施例のみに限定されるものではな
いことは言うまでもない。
Examples of the present invention will be described below, but it goes without saying that the present invention is not limited to specific examples.

【0030】[0030]

【実施例】[実施例1]炭酸リチウム(Li
)、四三酸化コバルト(Co)、酸化アルミ
ニウム(Al)、炭酸マグネシウム(MgC
)、硫酸リチウム(LiSO・HO)を、v
=1.0、w=0.01、x=0.001、z=0.0
05になるように計量し、乾式混合する。得られた原料
混合物を空気中、900℃で10時間焼成した後、らい
かい機を用いて粉砕して、比表面積が0.62m
g、平均粒径が3.5μmの正極活物質粉末LiCo
0.989Al .01Mg0.001
0.005を得る。
EXAMPLES Example 1 Lithium carbonate (Li 2 C
O 3 ), cobalt trioxide (Co 3 O 4 ), aluminum oxide (Al 2 O 3 ), magnesium carbonate (MgC
O 3 ), lithium sulfate (Li 2 SO 4 .H 2 O), v
= 1.0, w = 0.01, x = 0.001, z = 0.0
Weigh to 05 and dry mix. The obtained raw material mixture was fired in air at 900 ° C. for 10 hours and then pulverized using a raider to give a specific surface area of 0.62 m 2 /
positive electrode active material powder LiCo having an average particle size of 3.5 μm
0.989 Al 0 . 01 Mg 0.001 O 2 S
We get 0.005 .

【0031】なお、比表面積は、窒素ガス吸着による定
圧式BET一点法にて測定する。平均粒径は、空気透過
法により比表面積を測定し、一次粒子の粒径の平均値を
求めたものであり、フィッシャーサブシーブサイザー
(F.S.S.S.)を用いて測定する。また、組成分析は次の
ような方法で測定する。すなわち、Liは炎光光度法、
Coは滴定法、Al、Mg、Ba及びSはICP発光分
光分析法により測定する。
The specific surface area is measured by a constant pressure BET one-point method using nitrogen gas adsorption. The average particle diameter is obtained by measuring the specific surface area by the air permeation method and determining the average value of the particle diameter of primary particles, and is measured using a Fisher subsieve sizer (FSSS). The composition analysis is measured by the following method. That is, Li is a flame photometric method,
Co is measured by a titration method, and Al, Mg, Ba and S are measured by ICP emission spectroscopy.

【0032】[実施例2]w=0.001にする以外は
実施例1と同様にして、比表面積が0.62m/g、
平均粒径が3.5μmの正極活物質粉末LiCo
0.998Al0.00 Mg0.001
0.005を得る。
Example 2 The specific surface area is 0.62 m 2 / g in the same manner as in Example 1 except that w = 0.001.
Positive electrode active material powder LiCo having an average particle size of 3.5 μm
0.998 Al 0.00 1 Mg 0.001 O 2 S
We get 0.005 .

【0033】[実施例3]w=0.05にする以外は実
施例1と同様にして、比表面積が0.62m/g、平
均粒径が3.5μmの正極活物質粉末LiCo
0.949Al0.05Mg0.001
0.005を得る。
Example 3 A positive electrode active material powder LiCo having a specific surface area of 0.62 m 2 / g and an average particle size of 3.5 μm was prepared in the same manner as in Example 1 except that w = 0.05.
0.949 Al 0.05 Mg 0.001 O 2 S
We get 0.005 .

【0034】[実施例4]x=0.005にする以外は
実施例1と同様にして、比表面積が0.64m/g、
平均粒径が3.3μmの正極活物質粉末LiCo
0.985Al0.01Mg0.005
0.005を得る。
[Example 4] The specific surface area was 0.64 m 2 / g in the same manner as in Example 1 except that x = 0.005.
Positive electrode active material powder LiCo having an average particle size of 3.3 μm
0.985 Al 0.01 Mg 0.005 O 2 S
We get 0.005 .

【0035】[実施例5]x=0.01にする以外は実
施例1と同様にして、比表面積が0.65m/g、平
均粒径が3.3μmの正極活物質粉末LiCo0.98
Al0.01Mg 0.010.005を得る。
[Embodiment 5] Except that x = 0.01
Similar to Example 1, specific surface area is 0.65 mTwo/ G, flat
Positive electrode active material powder LiCo having a uniform particle size of 3.3 μm0.98
Al0.01Mg 0.01OTwoS0.005To get

【0036】[実施例6]z=0.003にする以外は
実施例1と同様にして、比表面積が0.63m/g、
平均粒径が3.5μmの正極活物質粉末LiCo
0.989Al0.01Mg0.001
0.003を得る。
Example 6 The specific surface area is 0.63 m 2 / g in the same manner as in Example 1 except that z = 0.003.
Positive electrode active material powder LiCo having an average particle size of 3.5 μm
0.989 Al 0.01 Mg 0.001 O 2 S
We get 0.003 .

【0037】[実施例7]z=0.009にする以外は
実施例1と同様にして、比表面積が0.64m/g、
平均粒径が3.4μmの正極活物質粉末LiCo
0.989Al0.01Mg0.001
0.009を得る。
[Embodiment 7] The specific surface area is 0.64 m 2 / g in the same manner as in Embodiment 1 except that z = 0.09.
Positive electrode active material powder LiCo having an average particle size of 3.4 μm
0.989 Al 0.01 Mg 0.001 O 2 S
We get 0.009 .

【0038】[実施例8]z=0.012にする以外は
実施例1と同様にして、比表面積が0.64m/g、
平均粒径が3.4μmの正極活物質粉末LiCo
0.989Al0.01Mg0.001
0.012を得る。
Example 8 The specific surface area is 0.64 m 2 / g in the same manner as in Example 1 except that z = 0.0012.
Positive electrode active material powder LiCo having an average particle size of 3.4 μm
0.989 Al 0.01 Mg 0.001 O 2 S
0.012 is obtained.

【0039】[実施例9]z=0.015にする以外は
実施例1と同様にして、比表面積が0.65m/g、
平均粒径が3.4μmの正極活物質粉末LiCo
0.989Al0.01Mg0.001
0.015を得る。
[Embodiment 9] A specific surface area of 0.65 m 2 / g was obtained in the same manner as in Embodiment 1 except that z = 0.015.
Positive electrode active material powder LiCo having an average particle size of 3.4 μm
0.989 Al 0.01 Mg 0.001 O 2 S
To obtain 0.015 .

【0040】[実施例10]酸化アルミニウム(Al
)の代わりに水酸化アルミニウム(Al(OH)
を使用する以外は実施例1と同様にして、比表面積が
0.63m/g、平均粒径が3.5μmの正極活物質
粉末LiCo0.989Al0.01Mg0. 001
0.005を得る。
[Example 10] Aluminum oxide (AlTwo
OThree) Instead of aluminum hydroxide (Al (OH) Three)
In the same manner as in Example 1 except that
0.63mTwo/ G, positive electrode active material with an average particle size of 3.5 μm
Powder LiCo0.989Al0.01Mg0. 001O
TwoS0.005To get

【0041】[実施例11]酸化アルミニウム(Al
)の代わりに硝酸アルミニウム(Al(NO)
9HO)を使用する以外は実施例1と同様にして、比
表面積が0.63m /g、平均粒径が3.5μmの正
極活物質粉末LiCo0.989Al0.0 Mg
0.0010.005を得る。
Example 11 Aluminum oxide (AlTwo
OThree) Instead of aluminum nitrate (Al (NOThree) Three
9HTwoO) was used in the same manner as in Example 1, except that
Surface area is 0.63m Two/ G, average particle size 3.5μm positive
Extremely active material powder LiCo0.989Al0.0 1Mg
0.001OTwoS0.005To get

【0042】[実施例12]酸化アルミニウム(Al
)の代わりに酢酸アルミニウム(Al(CHCO
O))を使用する以外は実施例1と同様にして、比表
面積が0.64m/g、平均粒径が3.4μmの正極
活物質粉末LiCo0.989Al0.01Mg
0.0010.005を得る。
Example 12 Aluminum oxide (Al 2
Instead of O 3 ), aluminum acetate (Al (CH 3 CO
O) 3 ) except that the positive electrode active material powder LiCo 0.989 Al 0.01 Mg having a specific surface area of 0.64 m 2 / g and an average particle diameter of 3.4 μm was prepared in the same manner as in Example 1.
0.001 O 2 S 0.005 is obtained.

【0043】[実施例13]硫酸リチウム(LiSO
・HO)の代わりに硫黄(S)を使用する以外は実
施例1と同様にして、比表面積が0.64m/g、平
均粒径が3.4μmの正極活物質粉末LiCo
0.989Al0.01Mg0.0010.0
05を得る。
Example 13 Lithium Sulfate (Li 2 SO
Positive electrode active material powder LiCo having a specific surface area of 0.64 m 2 / g and an average particle diameter of 3.4 μm in the same manner as in Example 1 except that sulfur (S) is used instead of 4 · H 2 O).
0.989 Al 0.01 Mg 0.001 O 2 S 0.0
Get 05 .

【0044】[実施例14]硫酸リチウム(LiSO
・HO)の代わりに硫化アンモニウム((NH )
S)を使用する以外は実施例1と同様にして、比表面
積が0.63m/g、平均粒径が3.5μmの正極活
物質粉末LiCo0.989Al0.01Mg
0.0010.005を得る。
Example 14 Lithium Sulfate (LiTwoSO
Four・ HTwoO) instead of ammonium sulfide ((NH Four)
TwoThe specific surface is the same as in Example 1 except that S) is used.
Product is 0.63mTwo/ G, positive electrode active material with an average particle size of 3.5 μm
Substance powder LiCo0.989Al0.01Mg
0.001OTwoS0.005To get

【0045】[実施例15]硫酸リチウム(LiSO
・HO)の代わりにペルオクソ二硫酸アンモニウム
((NH))を使用する以外は実施例1と
同様にして、比表面積が0.63m/g、平均粒径が
3.5μmの正極活物質粉末LiCo0.9 89Al
0.01Mg0.0010.005を得る。
Example 15 Lithium Sulfate (Li 2 SO
But using ammonium peroxodisulfate in place of 4 · H 2 O) (( NH 4) 2 S 2 O 8) in the same manner as in Example 1, a specific surface area of 0.63 m 2 / g, average particle size 3.5 μm positive electrode active material powder LiCo 0.9 89 Al
0.01 Mg 0.001 O 2 S 0.005 is obtained.

【0046】[実施例16]炭酸マグネシウム(MgC
)の代わりに炭酸バリウム(BaCO)を使用す
る以外は実施例1と同様にして、比表面積が0.64m
/g、平均粒径が3.4μmの正極活物質粉末LiC
0.989Ba0.01Mg0.001
0.005を得る。
[Example 16] Magnesium carbonate (MgC)
OThree) Instead of barium carbonate (BaCOThree)
The specific surface area is 0.64 m in the same manner as in Example 1 except that
Two/ G, positive electrode active material powder LiC having an average particle size of 3.4 μm
o0.989Ba0.01Mg0.001O TwoS
0.005To get

【0047】[比較例1]酸化アルミニウム(Al
)、炭酸マグネシウム(MgCO)、硫酸リチウム
(LiSO・HO)を使用しない以外は実施例1
と同様にして、比表面積が0.61m/g、平均粒径
が3.6μmの正極活物質粉末LiCoO を得る。
[Comparative Example 1] Aluminum oxide (AlTwoO
Three), Magnesium carbonate (MgCOThree), Lithium sulfate
(LiTwoSOFour・ HTwoExample 1 except that O) is not used
The specific surface area is 0.61mTwo/ G, average particle size
Positive electrode active material powder LiCoO 3 having a particle size of 3.6 μm TwoTo get

【0048】[比較例2]炭酸マグネシウム(MgCO
)、硫酸リチウム(LiSO・HO)を使用し
ない以外は実施例1と同様にして、比表面積が0.61
/g、平均粒径が3.6μmの正極活物質粉末Li
Co0.99Al0.01を得る。
[Comparative Example 2] Magnesium carbonate (MgCO)
3 ) and a specific surface area of 0.61 in the same manner as in Example 1 except that lithium sulfate (Li 2 SO 4 .H 2 O) is not used.
m 2 / g, positive electrode active material powder Li having an average particle size of 3.6 μm
Co 0.99 Al 0.01 O 2 is obtained.

【0049】[比較例3]酸化アルミニウム(Al
)、硫酸リチウム(LiSO・HO)を使用し
ない以外は実施例1と同様にして、比表面積が0.61
/g、平均粒径が3.6μmの正極活物質粉末Li
Co0.999Mg0.001を得る。
Comparative Example 3 Aluminum oxide (Al 2 O
3 ) and a specific surface area of 0.61 in the same manner as in Example 1 except that lithium sulfate (Li 2 SO 4 .H 2 O) is not used.
m 2 / g, positive electrode active material powder Li having an average particle size of 3.6 μm
Co 0.999 Mg 0.001 O 2 is obtained.

【0050】[比較例4]酸化アルミニウム(Al
)、炭酸マグネシウム(MgCO)を使用しない以
外は実施例1と同様にして、比表面積が0.61m
g、平均粒径が3.6μmの正極活物質粉末LiCoO
0.005を得る。
[Comparative Example 4] Aluminum oxide (Al 2 O
3 ) and magnesium carbonate (MgCO 3 ) in the same manner as in Example 1 except that the specific surface area is 0.61 m 2 /
g, positive electrode active material powder LiCoO 2 having an average particle size of 3.6 μm
2 S 0.005 is obtained.

【0051】[比較例5]硫酸リチウム(LiSO
・HO)を使用しない以外は実施例1と同様にして、
比表面積が0.61m/g、平均粒径が3.6μmの
正極活物質粉末LiCo0.989Al0.01Mg
0.001を得る。
[Comparative Example 5] Lithium sulfate (Li 2 SO 4
.H 2 O) in the same manner as in Example 1 except that
Positive electrode active material powder LiCo 0.989 Al 0.01 Mg having a specific surface area of 0.61 m 2 / g and an average particle diameter of 3.6 μm
0.001 O 2 is obtained.

【0052】[比較例6]炭酸マグネシウム(MgCO
)を使用しない以外は実施例1と同様にして、比表面
積が0.61m/g、平均粒径が3.6μmの正極活
物質粉末LiCo 0.99Al0.01
0.005を得る。
Comparative Example 6 Magnesium carbonate (MgCO
Three) Was used in the same manner as in Example 1 except that
Product is 0.61mTwo/ G, positive electrode active material with an average particle size of 3.6 μm
Substance powder LiCo 0.99Al0.01OTwoS
0.005To get

【0053】[比較例7]酸化アルミニウム(Al
)を使用しない以外は実施例1と同様にして、比表面
積が0.61m/g、平均粒径が3.6μmの正極活
物質粉末LiCo 0.999Mg0.001
0.005を得る。
[Comparative Example 7] Aluminum oxide (AlTwoO
Three) Was used in the same manner as in Example 1 except that
Product is 0.61mTwo/ G, positive electrode active material with an average particle size of 3.6 μm
Substance powder LiCo 0.999Mg0.001OTwoS
0.005To get

【0054】(評価)実施例1〜16及び比較例1〜7
で得られた正極活物質粉末を用いてラミネート電池を作
製し、ガス発生、電池特性(サイクル特性、高負荷特
性)及び熱安定性について測定した結果を表1にまとめ
る。電池の膨張率、常温(25℃)での容量維持率及び
高負荷容量は前記と同様に測定する。高温(60℃)で
の容量維持率は、60℃高温槽中で測定する以外は常温
(25℃)での容量維持率と同様に測定する。熱安定性
については、次のように示差走査熱量測定を行い、発熱
開始温度により評価する。
(Evaluation) Examples 1 to 16 and Comparative Examples 1 to 7
Table 1 shows the results of measurements of gas generation, battery characteristics (cycle characteristics, high load characteristics), and thermal stability of a laminated battery prepared using the positive electrode active material powder obtained in the above. The expansion coefficient, capacity retention rate at room temperature (25 ° C.) and high load capacity of the battery are measured in the same manner as above. The capacity retention rate at high temperature (60 ° C.) is measured in the same manner as the capacity retention rate at room temperature (25 ° C.) except that it is measured in a 60 ° C. high temperature tank. Regarding the thermal stability, differential scanning calorimetry is performed as follows, and the heat generation start temperature is evaluated.

【0055】(熱安定性の評価) 正極活物質粉末90重量部と、導電剤としてのカーボ
ン5重量部と、ポリフッ化ビニリデン5重量部とを混練
してペーストを調製し、これを単極評価可能なデマンタ
ブル式のセル正極集電体に塗布し、電解液にエチレンカ
ーボネートを用いて二次電池を作製する。 定電流による充放電を行いなじませた後、一定電流の
下で電池電圧が4.3Vになるまで充電を行う。 充電後、二次電池から正極を取り出し、洗浄、乾燥を
行い、正極活物質を削り取る。 正極から削り取った正極活物質5mgとエチレンカー
ボネート2mgをAlセルに入れ、示差走査熱量分析を
行い、発熱開始温度を求める。
(Evaluation of Thermal Stability) 90 parts by weight of the positive electrode active material powder, 5 parts by weight of carbon as a conductive agent, and 5 parts by weight of polyvinylidene fluoride were kneaded to prepare a paste, and the paste was unipolarly evaluated. It is applied to a possible demantable cell positive electrode current collector, and ethylene carbonate is used as an electrolytic solution to prepare a secondary battery. After charging and discharging with a constant current and acclimatizing, the battery is charged with a constant current until the battery voltage becomes 4.3V. After charging, the positive electrode is taken out from the secondary battery, washed and dried to scrape off the positive electrode active material. 5 mg of the positive electrode active material scraped off from the positive electrode and 2 mg of ethylene carbonate are put into an Al cell, and a differential scanning calorimetric analysis is performed to determine the heat generation start temperature.

【0056】示差走査熱量分析とは、基準物質と試料と
を同時に一定の速度で加熱しながら両者の間に生じる温
度差を測定し、試料物質の熱的特性を解析する方法であ
り、正極活物質について測定すると、低温部では示差走
査熱量は変化しないが、ある温度以上で示差走査熱量が
大きく増大する。この時の温度を発熱開始温度とし、こ
の温度が高いほど熱安定性が良いといえる。
The differential scanning calorimetry is a method of analyzing the thermal characteristics of the sample substance by measuring the temperature difference between the reference substance and the sample while heating them simultaneously at a constant rate, and analyzing the thermal characteristics of the sample substance. When the substance is measured, the differential scanning calorific value does not change in the low temperature part, but the differential scanning calorific value greatly increases at a certain temperature or higher. The temperature at this time is taken as the heat generation start temperature, and it can be said that the higher this temperature, the better the thermal stability.

【0057】表1から、比較例1〜7に比べ、実施例1
〜15は正極活物質中にAl元素、Mg元素、S元素の
3種類の元素を全て含むことによって、電池の膨張率が
低減し、容量維持率、高負荷容量が高く、電池特性(サ
イクル特性、高負荷特性)が優れていることがわかる。
サイクル特性については、常温(25℃)でのサイクル
特性だけでなく高温(60℃)でのサイクル特性も優れ
ており、電池の使用環境が高温でも優れた電池特性を示
すことがわかる。また、発熱開始温度は比較例に比べ高
く、熱安定性にも優れていることがわかる。例えば、A
l元素、Mg元素、S元素の3種類の元素をいずれも含
まない比較例1、1種類の元素のみ含む比較例2〜4、
2種類の元素を含む比較例5〜7に比べ、3種類の元素
を全て含む実施例1の場合、電池の膨張率は低く、且つ
容量維持率、高負荷容量が高くなっている。また、発熱
開始温度も高くなっている。このように、正極活物質中
にAl元素、Mg元素、S元素の3種類の元素を全て含
むことによって、相乗効果として正極活物質の結晶転移
或いは分解がさらに抑制される結果、電池内のガス発生
は著しく低減し、電池特性(サイクル特性、高負荷特
性)及び熱安定性は非常に向上する。
From Table 1, as compared with Comparative Examples 1 to 7, Example 1
Nos. 15 to 15 include all three elements of Al element, Mg element, and S element in the positive electrode active material, so that the expansion coefficient of the battery is reduced, the capacity maintenance ratio and the high load capacity are high, and the battery characteristics (cycle characteristics , High load characteristics) are excellent.
Regarding the cycle characteristics, not only the cycle characteristics at room temperature (25 ° C.) but also the cycle characteristics at high temperature (60 ° C.) are excellent, and it can be seen that excellent battery characteristics are exhibited even when the operating environment of the battery is high. Further, it can be seen that the heat generation start temperature is higher than that of the comparative example, and the thermal stability is also excellent. For example, A
Comparative Example 1 containing none of three kinds of elements, ie, 1 element, Mg element, and S element, Comparative Examples 2 to 4 containing only one kind of element,
Compared with Comparative Examples 5 to 7 containing two kinds of elements, in the case of Example 1 containing all three kinds of elements, the expansion coefficient of the battery was low, and the capacity maintenance ratio and the high load capacity were high. Further, the heat generation start temperature is also high. As described above, by including all three elements of Al element, Mg element, and S element in the positive electrode active material, the crystal transition or decomposition of the positive electrode active material is further suppressed as a synergistic effect. The generation is remarkably reduced, and the battery characteristics (cycle characteristics, high load characteristics) and thermal stability are greatly improved.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【発明の効果】リチウムイオン二次電池の正極活物質と
して一般式がLiCo1−w−xAl
(但し、MはMg、Baから選ばれた少なくとも1種で
あり、0.95≦v≦1.05、0<w≦0.10、0
<x≦0.10、1≦y≦2.5、0<z≦0.015
である。)で表される正極活物質を用いることにより、
電池内のガス発生を低減し、電池特性(サイクル特性、
高負荷特性)及び熱安定性を向上させることができる。
As a positive electrode active material of a lithium ion secondary battery, the general formula is Li v Co 1-w-x Al w M x O y S z.
(However, M is at least one selected from Mg and Ba, and 0.95 ≦ v ≦ 1.05, 0 <w ≦ 0.10, 0
<X ≦ 0.10, 1 ≦ y ≦ 2.5, 0 <z ≦ 0.015
Is. By using the positive electrode active material represented by
Gas generation in the battery is reduced and battery characteristics (cycle characteristics,
It is possible to improve high load characteristics) and thermal stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】正極活物質中のS量(z値)と電池の膨張率の
関係を示す特性図
FIG. 1 is a characteristic diagram showing the relationship between the amount of S (z value) in a positive electrode active material and the expansion coefficient of a battery.

【図2】正極活物質の比表面積と電池の膨張率の関係を
示す特性図
FIG. 2 is a characteristic diagram showing the relationship between the specific surface area of the positive electrode active material and the expansion coefficient of the battery.

【図3】正極活物質中のAl量(w値)と容量維持率の
関係を示す特性図
FIG. 3 is a characteristic diagram showing the relationship between the amount of Al (w value) in the positive electrode active material and the capacity retention rate.

【図4】正極活物質中のMg量(x値)と高負荷容量の
関係を示す特性図
FIG. 4 is a characteristic diagram showing the relationship between the amount of Mg (x value) in the positive electrode active material and the high load capacity.

【図5】正極活物質中のLi量(v値)と高負荷容量の
関係を示す特性図
FIG. 5 is a characteristic diagram showing the relationship between the amount of Li (v value) in the positive electrode active material and the high load capacity.

【図6】正極活物質中のLi量(v値)と放電容量の関
係を示す特性図
FIG. 6 is a characteristic diagram showing the relationship between the amount of Li (v value) in the positive electrode active material and the discharge capacity.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AA05 AA07 AB05 AC06 AD04 AE05 5H029 AJ01 AJ05 AK03 AL06 AL07 AM03 AM05 AM07 EJ04 EJ12 HJ02 HJ07 5H050 AA01 AA08 BA17 CA08 CB07 CB08 EA02 EA09 EA10 HA02 HA07    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4G048 AA04 AA05 AA07 AB05 AC06                       AD04 AE05                 5H029 AJ01 AJ05 AK03 AL06 AL07                       AM03 AM05 AM07 EJ04 EJ12                       HJ02 HJ07                 5H050 AA01 AA08 BA17 CA08 CB07                       CB08 EA02 EA09 EA10 HA02                       HA07

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式がLiCo1−w−xAl
(但し、MはMg、Baから選ばれた少なく
とも1種であり、0.95≦v≦1.05、0<w≦
0.10、0<x≦0.10、1≦y≦2.5、0<z
≦0.015である。)で表されることを特徴とするリ
チウムイオン二次電池用正極活物質。
1. The general formula is Li v Co 1-w-x Al w M.
x O y S z (where M is at least one selected from Mg and Ba, and 0.95 ≦ v ≦ 1.05, 0 <w ≦
0.10, 0 <x ≦ 0.10, 1 ≦ y ≦ 2.5, 0 <z
≦ 0.015. ) A positive electrode active material for a lithium ion secondary battery, characterized in that
【請求項2】 比表面積が0.2〜2.0m/gの範
囲であることを特徴とする請求項1に記載のリチウムイ
オン二次電池用正極活物質。
2. The positive electrode active material for a lithium ion secondary battery according to claim 1, which has a specific surface area of 0.2 to 2.0 m 2 / g.
JP2001206951A 2001-07-06 2001-07-06 Positive electrode active material for lithium ion secondary battery Expired - Lifetime JP4168608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001206951A JP4168608B2 (en) 2001-07-06 2001-07-06 Positive electrode active material for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001206951A JP4168608B2 (en) 2001-07-06 2001-07-06 Positive electrode active material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2003022805A true JP2003022805A (en) 2003-01-24
JP4168608B2 JP4168608B2 (en) 2008-10-22

Family

ID=19043006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001206951A Expired - Lifetime JP4168608B2 (en) 2001-07-06 2001-07-06 Positive electrode active material for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4168608B2 (en)

Also Published As

Publication number Publication date
JP4168608B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
US8066913B2 (en) Li-Ni composite oxide particles for non-aqueous electrolyte secondary cell, process for producing the same, and non-aqueous electrolyte secondary cell
EP2581343B1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP3777988B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
KR20110094023A (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
JP3539223B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
CN101828286A (en) Coated positive electrode active material, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and their production methods
JP2004253174A (en) Positive pole active material for nonaqueous electrolytic secondary battery
JPH0950810A (en) Electrode active material for non-aqueous electrolytic battery and manufacture thereof
JP2004253169A (en) Lithium secondary battery and manufacturing method of positive electrode active material used therefor
JP4540041B2 (en) Nonaqueous electrolyte secondary battery
JP2000182618A (en) Positive electrode active material for lithium secondary battery
JPH11292547A (en) Lithium cobaltate, its production and lithium cell using that
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP2004014296A (en) Positive electrode active material for lithium ion secondary battery
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JPH11339802A (en) Manufacture of positive active material for lithium secondary battery
JPH1079250A (en) Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell
JP4168609B2 (en) Positive electrode active material for lithium ion secondary battery
JP2004284845A (en) Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery
JP4055414B2 (en) Positive electrode active material for lithium ion secondary battery
JPH11260368A (en) Positive electrode active material for lithium secondary battery
JP4240853B2 (en) Positive electrode active material for lithium ion secondary battery
US7829223B1 (en) Process for preparing lithium ion cathode material
JP2004356034A (en) Positive active material and lithium ion secondary battery using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4168608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term