JP4240853B2 - Positive electrode active material for lithium ion secondary battery - Google Patents

Positive electrode active material for lithium ion secondary battery Download PDF

Info

Publication number
JP4240853B2
JP4240853B2 JP2001206953A JP2001206953A JP4240853B2 JP 4240853 B2 JP4240853 B2 JP 4240853B2 JP 2001206953 A JP2001206953 A JP 2001206953A JP 2001206953 A JP2001206953 A JP 2001206953A JP 4240853 B2 JP4240853 B2 JP 4240853B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
battery
lico
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001206953A
Other languages
Japanese (ja)
Other versions
JP2003022807A (en
Inventor
武志 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2001206953A priority Critical patent/JP4240853B2/en
Publication of JP2003022807A publication Critical patent/JP2003022807A/en
Application granted granted Critical
Publication of JP4240853B2 publication Critical patent/JP4240853B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池に使用される正極活物質に係り、特に、ガス発生が少なく、電池特性(サイクル特性、高負荷特性)及び熱安定性に優れた正極活物質に関する。
【0002】
【従来の技術】
近年、携帯用のパソコン、ビデオカメラ等の電子機器に内蔵される電池として、高エネルギー密度を有するリチウムイオン二次電池が採用されている。このリチウムイオン二次電池は、リチウムコバルト複合酸化物等の正極活物質をその支持体である正極集電体に保持してなる正極板、リチウム金属等の負極活物質をその支持体である負極集電体に保持してなる負極板、LiPF等のリチウム塩を溶解した有機溶媒からなる非水電解液、及び正極板と負極板の間に介在して両極の短絡を防止するセパレータからなっている。このうち、正極板、負極板及びセパレータの薄いシート状に成形されたものを巻回し、金属ラミネート樹脂フィルムの電池ケースに収納したラミネート電池、或いは薄型の金属ケースに収納した電池は、従来の厚型の金属ケースに収納した電池に比べ、電池内のガス発生、発熱又は外部からの加熱により容易に膨張し、電池を格納した電池パックケースまでも膨張変形するという問題があった。
【0003】
従来、リチウムイオン二次電池の正極活物質としてLiCoOを用いた場合、放電容量を向上する目的で充電電圧を上昇させると、正極活物質の結晶の転移、或いは正極活物質の分解が起こり、コバルト酸からの酸素が放出され、この酸素は非水系電解液を酸化分解し、その結果電池内でガスが発生し、ラミネート電池等において上記問題が起きるため対策を必要とした。
【0004】
同様に、放電容量を向上する目的で充電電圧を上昇させると、正極活物質の結晶転移或いは分解に伴い、電池特性(サイクル特性、高負荷特性)、熱安定性も低下した。また、正極活物質のLiCoOは導電性が低く、そのため導電性のあるカーボンを被覆することで導電性を改善しているが、カーボンとの接触が悪い場合、サイクル劣化を引き起こす原因となっていた。
【0005】
【発明が解決しようとする課題】
本発明は、上述した事情に鑑みなされたもので、リチウムイオン二次電池のガス発生を低減し、電池特性(サイクル特性、高負荷特性)及び熱安定性を向上できる正極活物質を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者は上述した問題を解決するために鋭意検討した結果、リチウムイオン二次電池の正極活物質として一般式がLiCo1−x Ba (但し、0.95≦w≦1.05、0<x≦0.10、1≦y≦2.5、0<z≦0.015である。)で表される正極活物質を用いることで、上記課題を解決することができることを見いだし本発明を完成させるに至った。
【0007】
すなわち、本発明のリチウムイオン二次電池用正極活物質は、一般式がLiCo1−x Ba (但し、0.95≦w≦1.05、0<x≦0.10、1≦y≦2.5、0<z≦0.015である。)で表される正極活物質であって、組成中のLi量(w値)はリチウムイオン二次電池の放電容量及び高負荷容量に影響し、0.95≦w≦1.05の範囲が好ましい。また、組成中のM量(x値)及びS量(z値)は、リチウムイオン二次電池のガス発生及び電池特性(サイクル特性、高負荷特性)に非常に影響し、0<x≦0.10、0<z≦0.015の範囲が好ましく、さらに0.0001≦x≦0.05、0.003≦z≦0.009の範囲がより好ましい。組成中のO量(y値)については、S元素を正極活物質中に導入する方法等により異なり、1≦y≦2.5の範囲である。
【0008】
本発明のリチウムイオン二次電池用正極活物質は、その比表面積が0.2〜2.0m/gの範囲であることを特徴とする。正極活物質の比表面積はリチウムイオン二次電池のガス発生に非常に影響し、特に上記一般式で表される本発明の正極活物質の場合、比表面積が0.2〜2.0m/gの範囲でガス発生を大幅に低減することができる。より好ましくは0.4〜0.8m/gの範囲である。
【0009】
【発明の実施の形態】
本発明のリチウムイオン二次電池用正極活物質の合成は、下記に示すように、リチウム化合物、コバルト化合物及びMg、Baのうちの少なくとも1種の元素を含む化合物に硫黄又は硫黄化合物を混合した原料混合物を焼成した後、粉砕することによって行われる。
【0010】
リチウム化合物、コバルト化合物及びMg、Baのうちの少なくとも1種の元素を含む化合物としては、酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、酢酸塩、シュウ酸塩等を用いることができる。好ましくは、リチウム化合物として、LiO、LiOH、LiCO、LiHCO、LiNO、LiSO・HO、Li(CHCOO)、Li等、コバルト化合物として、Co、Co、Co(OH)、CoCO、Co(NO)・6HO、CoC等、Mg、Sr、Baのうちの少なくとも1種の元素を含む化合物として、MgO、Mg(OH)、MgCO、Mg(NO)・6HO、MgC・2HO、SrO、Sr(OH)、SrCO、Sr(NO)、SrC・HO、BaO、Ba(OH)・8HO、BaCO、Ba(NO)、BaC・HO等が使用できる。
【0011】
硫黄化合物としては、酸化物、硫化物、硫酸塩、硫酸水素塩、ピロ硫酸塩、亜硫酸塩、ペルオクソ硫酸塩、チオ硫酸塩、アルキル硫酸塩等を用いることができる。好ましくは、(NH)S、LiSO・HO、CoSO、(NH)SO、(NH)等が使用できる。
【0012】
これらの原料の混合は、粉末状の原料をそのまま混合しても良く、水又は有機溶媒を用いてスラリー状として混合しても良い。スラリー状の混合物は乾燥して原料混合物とする。
【0013】
このようにして得られる原料混合物を空気中或いは弱酸化雰囲気で、500〜1000℃の温度範囲で1〜24時間焼成する。好ましくは800〜1000℃の温度範囲で6〜12時間焼成する。焼成温度が500℃未満の場合、未反応の原料が正極活物質に残留し正極活物質の本来の特徴を生かせない。逆に、1000℃を越えると、正極活物質の粒径が大きくなり過ぎて電池特性が低下する。焼成時間は、1時間未満では原料粒子間の拡散反応が進行せず、24時間経過すると拡散反応はほとんど完了しているため、それ以上焼成する必要がない。
【0014】
上記焼成により得られる焼成品をらいかい機を用いて粉砕して、比表面積が0.2〜2.0m/g、平均粒径が1.0〜12.0μmの範囲の本発明の正極活物質を得る。
【0015】
本発明の正極活物質を用いたリチウムイオン二次電池は、電解液の酸化分解反応が抑制され、電池内で発生するガス量が低減されるため、膨張変形が非常に少なく、電池特性(サイクル特性、高負荷特性)及び熱安定性も向上する。
【0016】
次に、本発明の正極活物質を用いてリチウムイオン二次電池を作製し、ガス発生、電池特性(サイクル特性、高負荷特性)及び熱安定性について測定した結果を説明する。
【0017】
(リチウムイオン二次電池の作製)
正極活物質粉末90重量部と、導電剤(例えば、天然黒鉛、鱗片状黒鉛、人造黒鉛、膨張黒鉛等のグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維、金属繊維等の導電性繊維類などを単独で又は混合して用いる。)5重量部と、ポリフッ化ビニリデン5重量部とを混練してペーストを調製し、これを正極集電体に塗布、乾燥して正極板とする。また、負極にカーボン(例えば、天然黒鉛、人造黒鉛、難黒鉛炭素等)、セパレータに多孔性プロピレンフィルムを用い、電解液としてエチレンカーボネート:ジエチルカーボネイト=1:1(体積比)の混合溶媒にLiPFを1mol/lの濃度で溶解した溶液を用いてリチウムイオン二次電池を作製する。ここでは、正極板、負極板及びセパレータの薄いシート状に成形されたものを巻回し、金属ラミネート樹脂フィルムの電池ケースに収納したラミネート電池を作製する。
【0018】
(ガス発生の評価)
一般式がLiCo0.999Mg0.001及びLiCoOで表される種々の正極活物質を用いてラミネート電池を作製し、充電負荷0.5Cで4.2Vまで定電流充電後、80℃で2日間保存し、ガス発生による電池の膨張率(%)を下記の式から求める(ここで1Cは、1時間で充電又は放電が終了する電流負荷である)。
電池の膨張率={(80℃保存後の電池の厚み−測定前の電池の厚み)/測定前の電池の厚み}×100
【0019】
図1に、上記正極活物質中のS量(z値)と電池の膨張率の関係を示す。この図から明らかなように、本発明の正極活物質LiCo0.999Mg0.001(実線)を用いた電池の膨張率は、z値が0<z≦0.015の範囲で低く、特に0.003≦z≦0.009の範囲で非常に低くなっており、電池内で発生するガス量が低減されることがわかる。また、Mg元素を含有しない正極活物質LiCoO(点線)を用いた電池に比べて、膨張率が非常に低いことがわかる。このように、正極活物質中にMg元素とS元素を両方含むことによって、S元素のみを含む場合に比べ、電池の膨張率は非常に低減される。
【0020】
次に、比表面積が異なる種々の正極活物質を用いてラミネート電池を作製し、同様に電池の膨張率(%)を求める。図2に、一般式がLiCo0.999Mg0.0010.005(太い実線)、LiCoO0.005(太い点線)、LiCo0.999Mg0.001(細い実線)及びLiCoO(細い点線)で表される正極活物質の比表面積と電池の膨張率の関係を示す。この図から明らかなように、本発明の正極活物質LiCo0.999Mg0.0010.005を用いた電池の膨張率は、比表面積が2.0m/g以下で少なく、特に0.8m/g以下で非常に少なくなっており、電池内で発生するガス量が低減されることがわかる。比表面積が2.0m/gより大きくなると、正極活物質表面或いはその近傍で起こる電解液の酸化分解反応の反応性が増し、その結果電池内で発生するガス量が増えるものと考えられる。比表面積が0.2m/gより小さいと、正極活物質の粒径が大きくなり過ぎて電池特性が低下するため、比表面積は0.2〜2.0m/gの範囲が好ましく、0.4〜0.8m/gの範囲がより好ましい。また、この図から、本発明の正極活物質LiCo0.999Mg0.0010.005を用いた電池は、Mg元素を含有しない正極活物質LiCoO0.005、S元素を含有しない正極活物質LiCo0.999Mg0.001及びMg元素、S元素のいずれも含有しない正極活物質LiCoOを用いた電池に比べて、膨張率が非常に低くなっており、正極活物質中にMg元素とS元素を両方含むことによって、電池の膨張率が非常に低減されることがわかる。
【0021】
(サイクル特性の評価)
一般式がLiCo1−xMg0.005、LiCo1−xMg、LiCo0.999Mg0.001及びLiCoOで表される種々の正極活物質を用いてラミネート電池を作製し、常温(25℃)で、充電負荷0.5Cで4.2Vまで定電流充電後、1.0Cで2.75Vまで放電する充放電を500サイクル行い、500サイクル目の容量維持率(%)を下記の式から求める。
容量維持率=(500サイクル目の放電容量/1サイクル目の放電容量)×100
【0022】
図3に、一般式がLiCo1−xMg0.005(実線)及びLiCo1−xMg(点線)で表される正極活物質のMg量(x値)と容量維持率の関係を、図4に、一般式がLiCo0.999Mg0.001(実線)及びLiCoO(点線)で表される正極活物質のS量(z値)と容量維持率の関係を示す。図3から、本発明の正極活物質LiCo1−xMg0.005を用いた電池の容量維持率は、x値が0<x≦0.10の範囲で高く、特に0.0001≦x≦0.05の範囲で非常に高くなっていることがわかる。また、図4から、本発明の正極活物質LiCo0.999Mg0.001を用いた電池の容量維持率は、z値が0<z≦0.015の範囲で容量維持率が高く、特に0.003≦z≦0.009の範囲で非常に高くなっていることがわかる。図3と図4から明らかなように、本発明の正極活物質を用いた電池は、正極活物質中にMg元素とS元素を両方含有しているため、いずれか一方の元素のみを含む場合に比べ、容量維持率が高く、サイクル特性が優れている。
【0023】
(高負荷特性の評価)
一般式がLiCo1−xMg0.005、LiCo1−xMg、LiCo0.999Mg0.001及びLiCoOで表される種々の正極活物質を用いてラミネート電池を作製し、充電負荷2.0Cで4.2Vまで定電流充電後、2.0Cで2.75Vまで放電したときの放電容量を高負荷容量(mAh/g)として求める。
【0024】
図5に、一般式がLiCo1−xMg0.005(実線)及びLiCo1−xMg(点線)で表される正極活物質のMg量(x値)と高負荷容量の関係を、図6に、一般式がLiCo0.999Mg0.001(実線)及びLiCoO(点線)で表される正極活物質のS量(z値)と高負荷容量の関係を示す。図5から、、本発明の正極活物質LiCo1−xMg0.005を用いた電池の高負荷容量は、x値が0<x≦0.10の範囲で高く、特に0.0001≦x≦0.05の範囲で非常に高くなっていることがわかる。また、図6から、本発明の正極活物質LiCo0.999Mg0.001を用いた電池の高負荷容量は、z値が0<z≦0.015の範囲で高負荷容量が高く、特に0.003≦z≦0.009の範囲で非常に高くなっていることがわかる。図5と図6から明らかなように、本発明の正極活物質を用いた電池は、正極活物質中にMg元素とS元素を両方含有しているため、いずれか一方の元素のみを含む場合に比べ、高負荷容量が高く、高負荷特性が優れている。
【0025】
このように、正極活物質中にMg元素とS元素を共に含むことによって、相乗効果として正極活物質の結晶転移或いは分解がさらに抑制される結果、電池の膨張率は著しく低減し、電池特性(サイクル特性、高負荷特性)は非常に向上する。また、Mg元素の代わりに、Mg、Baのうちの少なくとも1種の元素を導入した場合も同様な効果が得られる。
【0026】
同様に、一般式がLiCo0.999Mg0.0010.005で表される種々の正極活物質を用いてラミネート電池を作製し、高負荷容量(mAh/g)を求める。図7に、正極活物質中のLi量(a値)と高負荷容量の関係を示す。この図から、高負荷容量はw値が1.05より大きくなると低下していることがわかる。
【0027】
また、通常の電流密度で放電させた場合(0.25C)について、図8に正極活物質中のLi量(w値)と放電容量の関係を示す。この図から、放電容量はw値が0.95より小さくなると低下していることがわかる。
【0028】
従って、高負荷容量と通常時の放電容量のいずれも考慮すると、w値は0.95≦w≦1.05の範囲に設定する必要がある。
【0029】
以下、本発明の実施例について説明するが、本発明は具体的実施例のみに限定されるものではないことは言うまでもない。
【0030】
【実施例】
参考例1〕炭酸リチウム(LiCO)、四三酸化コバルト(Co)、炭酸マグネシウム(MgCO)、硫酸リチウム(LiSO・HO)を、w=1.0、x=0.001、z=0.005になるように計量し、乾式混合する。得られた原料混合物を空気中、900℃で10時間焼成した後、らいかい機を用いて粉砕して、比表面積が0.63m/g、平均粒径が3.5μmの正極活物質粉末LiCo0.999Mg0.0010.005を得る。
【0031】
なお、比表面積は、窒素ガス吸着による定圧式BET一点法にて測定する。平均粒径は、空気透過法により比表面積を測定し、一次粒子の粒径の平均値を求めたものであり、フィッシャーサブシーブサイザー(F.S.S.S.)を用いて測定する。また、組成分析は次のような方法で測定する。すなわち、Liは炎光光度法、Coは滴定法、Mg、Ba及びSはICP発光分光分析法により測定する。
【0032】
参考例2]x=0.005にする以外は参考例1と同様にして、比表面積が0.62m/g、平均粒径が3.5μmの正極活物質粉末LiCo0.995Mg0.0050.005を得る。
【0033】
参考例3]x=0.01にする以外は参考例1と同様にして、比表面積が0.63m/g、平均粒径が3.5μmの正極活物質粉末LiCo0.99Mg0.010.005を得る。
【0034】
参考例4]z=0.003にする以外は参考例1と同様にして、比表面積が0.62m/g、平均粒径が3.5μmの正極活物質粉末LiCo0.999Mg0.0010.003を得る。
【0035】
参考例5]z=0.009にする以外は参考例1と同様にして、比表面積が0.63m/g、平均粒径が3.4μmの正極活物質粉末LiCo0.999Mg0.0010.009を得る。
【0036】
参考例6]z=0.012にする以外は参考例1と同様にして、比表面積が0.64m/g、平均粒径が3.4μmの正極活物質粉末LiCo0.999Mg0.0010.012を得る。
【0037】
参考例7]z=0.015にする以外は参考例1と同様にして、比表面積が0.64m/g、平均粒径が3.4μmの正極活物質粉末LiCo0.999Mg0.0010.015を得る。
【0038】
参考例8]炭酸マグネシウム(MgCO)の代わりに水酸化マグネシウム(Mg(OH))を使用する以外は参考例1と同様にして、比表面積が0.63m/g、平均粒径が3.5μmの正極活物質粉末LiCo0.999Mg0.0010.005を得る。
【0039】
参考例9]炭酸マグネシウム(MgCO)の代わりに硝酸マグネシウム(Mg(NO)・6HO)を使用する以外は参考例1と同様にして、比表面積が0.63m/g、平均粒径が3.5μmの正極活物質粉末LiCo0.999Mg0.0010.005を得る。
【0040】
参考例10]炭酸マグネシウム(MgCO)の代わりにシュウ酸マグネシウム(MgC・2HO)を使用する以外は参考例1と同様にして、比表面積が0.64m/g、平均粒径が3.4μmの正極活物質粉末LiCo0.999Mg0.0010.005を得る。
【0041】
参考例11]硫酸リチウム(LiSO・HO)の代わりに硫黄(S)を使用する以外は参考例1と同様にして、比表面積が0.64m/g、平均粒径が3.4μmの正極活物質粉末LiCo0.999Mg0.0010.005を得る。
【0042】
参考例12]硫酸リチウム(LiSO・HO)の代わりに硫化アンモニウム((NHS)を使用する以外は参考例1と同様にして、比表面積が0.63m/g、平均粒径が3.5μmの正極活物質粉末LiCo0.999Mg0.0010.005を得る。
【0043】
参考例13]硫酸リチウム(LiSO・HO)の代わりにペルオクソ二硫酸アンモニウム((NH)を使用する以外は参考例1と同様にして、比表面積が0.63m/g、平均粒径が3.5μmの正極活物質粉末LiCo0.999Mg0.0010.005を得る。
【0044】
実施例1]炭酸マグネシウム(MgCO)の代わりに炭酸バリウム(BaCO)を使用する以外は参考例1と同様にして、比表面積が0.64m/g、平均粒径が3.4μmの正極活物質粉末LiCo0.999Ba0.0010.005を得る。
【0045】
[比較例1]炭酸マグネシウム(MgCO)、硫酸リチウム(LiSO・HO)を使用しない以外は参考例1と同様にして、比表面積が0.61m/g、平均粒径が3.6μmの正極活物質粉末LiCoOを得る。
【0046】
[比較例2]炭酸マグネシウム(MgCO)を使用しない以外は参考例1と同様にして、比表面積が0.61m/g、平均粒径が3.6μmの正極活物質粉末LiCoO0.005を得る。
【0047】
[比較例3]硫酸リチウム(LiSO・HO)を使用しない以外は参考例1と同様にして、比表面積が0.61m/g、平均粒径が3.6μmの正極活物質粉末LiCo0.999Mg0.001を得る。
【0048】
[比較例4]硫酸リチウム(LiSO・HO)を使用しない以外は参考例14と同様にして、比表面積が0.63m/g、平均粒径が3.5μmの正極活物質粉末LiCo0.999Ba0.001を得る。
【0049】
(評価)参考例1〜13、実施例1及び比較例1〜4で得られた正極活物質粉末を用いてラミネート電池を作製し、ガス発生、電池特性(サイクル特性、高負荷特性)及び熱安定性について測定した結果を表1にまとめる。電池の膨張率、常温(25℃)での容量維持率及び高負荷容量は前記と同様に測定する。高温(60℃)での容量維持率は、60℃高温槽中で測定する以外は常温(25℃)での容量維持率と同様に測定する。熱安定性については、次のように示差走査熱量測定を行い、発熱開始温度により評価する。
【0050】
(熱安定性の評価)
▲1▼正極活物質粉末90重量部と、導電剤としてのカーボン5重量部と、ポリフッ化ビニリデン5重量部とを混練してペーストを調製し、これを単極評価可能なデマンタブル式のセル正極集電体に塗布し、電解液にエチレンカーボネートを用いて二次電池を作製する。
▲2▼定電流による充放電を行いなじませた後、一定電流の下で電池電圧が4.3Vになるまで充電を行う。
▲3▼充電後、二次電池から正極を取り出し、洗浄、乾燥を行い、正極活物質を削り取る。
▲4▼正極から削り取った正極活物質5mgとエチレンカーボネート2mgをAlセルに入れ、示差走査熱量分析を行い、発熱開始温度を求める。
【0051】
示差走査熱量分析とは、基準物質と試料とを同時に一定の速度で加熱しながら両者の間に生じる温度差を測定し、試料物質の熱的特性を解析する方法であり、正極活物質について測定すると、低温部では示差走査熱量は変化しないが、ある温度以上で示差走査熱量が大きく増大する。この時の温度を発熱開始温度とし、この温度が高いほど熱安定性が良いといえる。
【0052】
表1から、比較例1〜3に比べ、参考例1〜13は正極活物質中にMg元素とS元素を両方含むことによって、電池の膨張率が低減し、容量維持率、高負荷容量が高く、電池特性(サイクル特性、高負荷特性)が優れていることがわかる。サイクル特性については、常温(25℃)でのサイクル特性だけでなく高温(60℃)でのサイクル特性も優れており、電池の使用環境が高温でも優れた電池特性を示すことがわかる。また、発熱開始温度は比較例に比べ高く、熱安定性にも優れていることがわかる。例えば、Mg元素、S元素のいずれも含まない比較例1、いずれか1種類の元素のみ含む比較例2、3に比べ、2種類の元素を全て含む参考例1の場合、電池の膨張率は低く、且つ容量維持率、高負荷容量が高くなっている。また、発熱開始温度も高くなっている。このように、正極活物質中にMg元素、S元素を共に含むことによって、相乗効果として正極活物質の結晶転移或いは分解がさらに抑制される結果、電池内のガス発生は著しく低減し、電池特性(サイクル特性、高負荷特性)及び熱安定性は非常に向上する。さらに、実施例1及び比較例4から、Mg元素の代わりにBa元素を導入した場合も同様な効果が得られることがわかる。
【0053】
【表1】

Figure 0004240853
【0054】
【発明の効果】
リチウムイオン二次電池の正極活物質として一般式がLiCo1−x Ba 05、0<x≦0.10、1≦y≦2.5、0<z≦0.015である。)で表される正極活物質を用いることにより、電池内のガス発生を低減し、電池特性(サイクル特性、高負荷特性)及び熱安定性を向上させることができる。
【図面の簡単な説明】
【図1】正極活物質中のS量(z値)と電池の膨張率の関係を示す特性図
【図2】正極活物質の比表面積と電池の膨張率の関係を示す特性図
【図3】正極活物質中のMg量(x値)と容量維持率の関係を示す特性図
【図4】正極活物質中のS量(z値)と容量維持率の関係を示す特性図
【図5】正極活物質中のMg量(x値)と高負荷容量の関係を示す特性図
【図6】正極活物質中のS量(z値)と高負荷容量の関係を示す特性図
【図7】正極活物質中のLi量(w値)と高負荷容量の関係を示す特性図
【図8】正極活物質中のLi量(w値)と放電容量の関係を示す特性図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive electrode active material used for a lithium ion secondary battery, and more particularly, to a positive electrode active material that generates less gas and has excellent battery characteristics (cycle characteristics, high load characteristics) and thermal stability.
[0002]
[Prior art]
In recent years, lithium-ion secondary batteries having high energy density have been adopted as batteries incorporated in electronic devices such as portable personal computers and video cameras. The lithium ion secondary battery includes a positive electrode plate in which a positive electrode active material such as lithium cobalt composite oxide is held on a positive electrode current collector that is a support, and a negative electrode active material such as lithium metal that is a support. A negative electrode plate held on a current collector, LiPF6The non-aqueous electrolyte solution which consists of the organic solvent which melt | dissolved lithium salts, such as, and the separator which intervenes between a positive electrode plate and a negative electrode plate, and prevents a short circuit of both electrodes. Among these, a laminated battery stored in a battery case of a metal-laminated resin film or a battery stored in a thin metal case is wound with a positive electrode plate, a negative electrode plate, and a separator formed into a thin sheet shape. Compared with a battery housed in a metal case of a mold, there is a problem that it easily expands due to gas generation in the battery, heat generation or external heating, and the battery pack case storing the battery also expands and deforms.
[0003]
Conventionally, LiCoO as a positive electrode active material of a lithium ion secondary battery2When the charge voltage is increased for the purpose of improving the discharge capacity, crystal transition of the positive electrode active material or decomposition of the positive electrode active material occurs, releasing oxygen from cobalt acid, and this oxygen is non-aqueous The electrolyte solution was oxidized and decomposed. As a result, gas was generated in the battery, and the above problem occurred in the laminated battery.
[0004]
Similarly, when the charging voltage is increased for the purpose of improving the discharge capacity, the battery characteristics (cycle characteristics, high load characteristics) and thermal stability are also reduced along with the crystal transition or decomposition of the positive electrode active material. Also, the positive electrode active material LiCoO2Has low conductivity, and therefore, the conductivity is improved by coating the conductive carbon. However, when the contact with the carbon is poor, it causes cycle deterioration.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described circumstances, and provides a positive electrode active material that can reduce gas generation of a lithium ion secondary battery and improve battery characteristics (cycle characteristics, high load characteristics) and thermal stability. With the goal.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor has a general formula of Li as a positive electrode active material of a lithium ion secondary battery.wCo1-x Ba xOySz(However, 0.95 ≦ w ≦ 1.05, 0 <x ≦ 0.10, 1 ≦ y ≦ 2.5, 0 <z ≦ 0.015) is used. Thus, the inventors have found that the above problems can be solved and have completed the present invention.
[0007]
That is, the positive electrode active material for a lithium ion secondary battery of the present invention has a general formula of LiwCo1-x Ba xOySz(However, 0.95 ≦ w ≦ 1.05, 0 <x ≦ 0.10, 1 ≦ y ≦ 2.5, 0 <z ≦ 0.015) The Li amount (w value) in the composition affects the discharge capacity and high load capacity of the lithium ion secondary battery, and is preferably in the range of 0.95 ≦ w ≦ 1.05. Further, the amount of M (x value) and the amount of S (z value) in the composition greatly affect the gas generation and battery characteristics (cycle characteristics, high load characteristics) of the lithium ion secondary battery, and 0 <x ≦ 0. .10, 0 <z ≦ 0.015 is preferable, and 0.0001 ≦ x ≦ 0.05 and 0.003 ≦ z ≦ 0.009 are more preferable. The amount of O (y value) in the composition varies depending on the method of introducing the S element into the positive electrode active material, and is in the range of 1 ≦ y ≦ 2.5.
[0008]
The positive electrode active material for a lithium ion secondary battery of the present invention has a specific surface area of 0.2 to 2.0 m.2/ G range. The specific surface area of the positive electrode active material greatly affects the gas generation of the lithium ion secondary battery. In particular, in the case of the positive electrode active material of the present invention represented by the above general formula, the specific surface area is 0.2 to 2.0 m.2Gas generation can be greatly reduced in the range of / g. More preferably 0.4-0.8m2/ G.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The synthesis of the positive electrode active material for a lithium ion secondary battery of the present invention was performed by mixing sulfur or a sulfur compound with a compound containing at least one element selected from the group consisting of a lithium compound, a cobalt compound, and Mg and Ba, as shown below. It is performed by firing and then pulverizing the raw material mixture.
[0010]
As the lithium compound, cobalt compound, and compound containing at least one element of Mg and Ba, oxides, hydroxides, carbonates, nitrates, sulfates, acetates, oxalates, and the like can be used. . Preferably, as the lithium compound, Li2O, LiOH, Li2CO3, LiHCO3, LiNO3, Li2SO4・ H2O, Li (CH3COO), Li2C2O4As a cobalt compound, Co3O4, Co2O3, Co (OH)2, CoCO3, Co (NO3)2・ 6H2O, CoC2O4As a compound containing at least one element of Mg, Sr and Ba, MgO, Mg (OH)2, MgCO3, Mg (NO3)2・ 6H2O, MgC2O4・ 2H2O, SrO, Sr (OH)2, SrCO3, Sr (NO3)2, SrC2O4・ H2O, BaO, Ba (OH)2・ 8H2O, BaCO3, Ba (NO3)2, BaC2O4・ H2O or the like can be used.
[0011]
As the sulfur compound, oxides, sulfides, sulfates, hydrogen sulfates, pyrosulfates, sulfites, peroxosulfates, thiosulfates, alkyl sulfates, and the like can be used. Preferably, (NH4)2S, Li2SO4・ H2O, CoSO4, (NH4)2SO4, (NH4)2S2O8Etc. can be used.
[0012]
In mixing these raw materials, the powdery raw materials may be mixed as they are, or may be mixed as a slurry using water or an organic solvent. The slurry mixture is dried to obtain a raw material mixture.
[0013]
The raw material mixture thus obtained is fired in the temperature range of 500 to 1000 ° C. for 1 to 24 hours in air or in a weakly oxidizing atmosphere. Preferably, baking is performed at a temperature range of 800 to 1000 ° C. for 6 to 12 hours. When the firing temperature is less than 500 ° C., unreacted raw materials remain in the positive electrode active material, and the original characteristics of the positive electrode active material cannot be utilized. On the other hand, when the temperature exceeds 1000 ° C., the particle size of the positive electrode active material becomes too large and the battery characteristics deteriorate. When the firing time is less than 1 hour, the diffusion reaction between the raw material particles does not proceed. When 24 hours have elapsed, the diffusion reaction is almost completed, and therefore no further firing is necessary.
[0014]
The fired product obtained by the above firing is pulverized using a cracking machine to have a specific surface area of 0.2 to 2.0 m.2/ G, the positive electrode active material of the present invention having an average particle size in the range of 1.0 to 12.0 μm is obtained.
[0015]
In the lithium ion secondary battery using the positive electrode active material of the present invention, the oxidative decomposition reaction of the electrolytic solution is suppressed, and the amount of gas generated in the battery is reduced. Characteristics, high load characteristics) and thermal stability are also improved.
[0016]
Next, a lithium ion secondary battery is produced using the positive electrode active material of the present invention, and the results of measuring gas generation, battery characteristics (cycle characteristics, high load characteristics) and thermal stability will be described.
[0017]
(Production of lithium ion secondary battery)
90 parts by weight of the positive electrode active material powder and a conductive agent (for example, graphite such as natural graphite, scaly graphite, artificial graphite, expanded graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, etc. Carbon blacks, conductive fibers such as carbon fibers, metal fibers, etc. are used alone or in combination.) A paste is prepared by kneading 5 parts by weight and 5 parts by weight of polyvinylidene fluoride. A positive electrode current collector is coated and dried to form a positive electrode plate. Further, carbon (for example, natural graphite, artificial graphite, non-graphite carbon, etc.) is used for the negative electrode, a porous propylene film is used for the separator, and LiPF is used as a mixed solvent of ethylene carbonate: diethyl carbonate = 1: 1 (volume ratio) as the electrolyte.6A lithium ion secondary battery is manufactured using a solution in which is dissolved at a concentration of 1 mol / l. Here, a thin sheet of a positive electrode plate, a negative electrode plate and a separator is wound to produce a laminated battery housed in a battery case of a metal laminated resin film.
[0018]
(Evaluation of gas generation)
The general formula is LiCo0.999Mg0.001O2SzAnd LiCoO2SzA laminate battery is manufactured using various positive electrode active materials represented by the following formula, and is charged at a constant current up to 4.2 V at a charging load of 0.5 C, and then stored at 80 ° C. for 2 days. ) Is obtained from the following equation (where 1C is a current load that completes charging or discharging in one hour).
Expansion coefficient of battery = {(battery thickness after storage at 80 ° C.−battery thickness before measurement) / battery thickness before measurement} × 100
[0019]
FIG. 1 shows the relationship between the amount of S (z value) in the positive electrode active material and the expansion coefficient of the battery. As is apparent from this figure, the positive electrode active material LiCo of the present invention0.999Mg0.001O2SzThe expansion rate of the battery using the (solid line) is low in the range of z <0 <z ≦ 0.015, particularly very low in the range of 0.003 ≦ z ≦ 0.009. It can be seen that the amount of gas generated is reduced. Further, the positive electrode active material LiCoO containing no Mg element2SzIt can be seen that the expansion coefficient is very low compared to the battery using (dotted line). Thus, by including both Mg element and S element in the positive electrode active material, the expansion coefficient of the battery is greatly reduced as compared with the case where only the S element is included.
[0020]
Next, a laminated battery is produced using various positive electrode active materials having different specific surface areas, and the expansion coefficient (%) of the battery is similarly obtained. In FIG. 2, the general formula is LiCo0.999Mg0.001O2S0.005(Thick solid line), LiCoO2S0.005(Thick dotted line), LiCo0.999Mg0.001O2(Thin solid line) and LiCoO2The relationship between the specific surface area of the positive electrode active material represented by (thin dotted line) and the expansion coefficient of the battery is shown. As is apparent from this figure, the positive electrode active material LiCo of the present invention0.999Mg0.001O2S0.005The specific surface area is 2.0m2/ G or less, especially 0.8m2/ G or less, the amount of gas generated in the battery is reduced. Specific surface area is 2.0m2If it exceeds / g, the reactivity of the oxidative decomposition reaction of the electrolytic solution occurring on or near the surface of the positive electrode active material is increased, and as a result, the amount of gas generated in the battery is considered to increase. Specific surface area is 0.2m2If it is smaller than / g, the particle size of the positive electrode active material becomes too large and the battery characteristics deteriorate, so the specific surface area is 0.2 to 2.0 m.2/ G is preferred, 0.4 to 0.8 m2The range of / g is more preferable. Also, from this figure, the positive electrode active material LiCo of the present invention0.999Mg0.001O2S0.005The battery using the positive electrode active material LiCoO containing no Mg element2S0.005, Cathode active material LiCo containing no S element0.999Mg0.001O2And positive electrode active material LiCoO containing neither Mg element nor S element2The expansion coefficient is very low as compared with the battery using, and it can be seen that the expansion coefficient of the battery is greatly reduced by including both the Mg element and the S element in the positive electrode active material.
[0021]
(Evaluation of cycle characteristics)
The general formula is LiCo1-xMgxO2S0.005LiCo1-xMgxO2LiCo0.999Mg0.001O2SzAnd LiCoO2SzA laminate battery is manufactured using various positive electrode active materials represented by the following, and at a normal temperature (25 ° C.), after being charged with constant current to 4.2 V at a charging load of 0.5 C, it is discharged to 2.75 V at 1.0 C. Charging / discharging is performed 500 cycles, and the capacity retention rate (%) at the 500th cycle is obtained from the following equation.
Capacity retention rate = (discharge capacity at 500th cycle / discharge capacity at the first cycle) × 100
[0022]
In FIG. 3, the general formula is LiCo1-xMgxO2S0.005(Solid line) and LiCo1-xMgxO2The relationship between the Mg amount (x value) of the positive electrode active material represented by (dotted line) and the capacity retention rate is shown in FIG.0.999Mg0.001O2Sz(Solid line) and LiCoO2SzThe relationship between the S amount (z value) of the positive electrode active material represented by (dotted line) and the capacity retention rate is shown. From FIG. 3, the positive electrode active material LiCo of the present invention1-xMgxO2S0.005It can be seen that the capacity retention rate of the battery using the battery is high when the x value is in the range of 0 <x ≦ 0.10, and particularly high in the range of 0.0001 ≦ x ≦ 0.05. Also, from FIG. 4, the positive electrode active material LiCo of the present invention0.999Mg0.001O2SzThe capacity retention rate of the battery using the battery is high when the z value is in the range of 0 <z ≦ 0.015, and particularly high in the range of 0.003 ≦ z ≦ 0.009. Recognize. As is clear from FIG. 3 and FIG. 4, the battery using the positive electrode active material of the present invention contains both Mg element and S element in the positive electrode active material, and therefore includes only one of the elements. Compared to the above, the capacity retention rate is high and the cycle characteristics are excellent.
[0023]
(Evaluation of high load characteristics)
The general formula is LiCo1-xMgxO2S0.005LiCo1-xMgxO2LiCo0.999Mg0.001O2SzAnd LiCoO2SzA laminate battery is manufactured using various positive electrode active materials represented by the following, and after a constant current charge to 4.2 V at a charge load of 2.0 C, the discharge capacity when discharged to 2.75 V at 2.0 C is a high load. Obtained as a capacity (mAh / g).
[0024]
In FIG. 5, the general formula is LiCo1-xMgxO2S0.005(Solid line) and LiCo1-xMgxO2The relationship between the Mg amount (x value) of the positive electrode active material represented by (dotted line) and the high load capacity is shown in FIG.0.999Mg0.001O2Sz(Solid line) and LiCoO2SzThe relationship between the S amount (z value) of the positive electrode active material represented by (dotted line) and the high load capacity is shown. From FIG. 5, the positive electrode active material LiCo of the present invention1-xMgxO2S0.005It can be seen that the high load capacity of the battery using the battery is high when the x value is in the range of 0 <x ≦ 0.10, and particularly high in the range of 0.0001 ≦ x ≦ 0.05. Also, from FIG. 6, the positive electrode active material LiCo of the present invention0.999Mg0.001O2SzThe high load capacity of the battery using the battery is high when the z value is in the range of 0 <z ≦ 0.015, particularly very high in the range of 0.003 ≦ z ≦ 0.009. Recognize. As is clear from FIGS. 5 and 6, the battery using the positive electrode active material of the present invention contains both the Mg element and the S element in the positive electrode active material, and therefore includes only one of the elements. Compared with, high load capacity is high and high load characteristics are excellent.
[0025]
Thus, by including both Mg element and S element in the positive electrode active material, the crystal transition or decomposition of the positive electrode active material is further suppressed as a synergistic effect. As a result, the expansion coefficient of the battery is remarkably reduced, and the battery characteristics ( Cycle characteristics, high load characteristics) are greatly improved. The same effect can be obtained when at least one element of Mg and Ba is introduced instead of Mg element.
[0026]
Similarly, the general formula is LiwCo0.999Mg0.001O2S0.005A laminate battery is produced using various positive electrode active materials represented by the following formula, and a high load capacity (mAh / g) is obtained. FIG. 7 shows the relationship between the amount of Li (a value) in the positive electrode active material and the high load capacity. From this figure, it can be seen that the high load capacity decreases when the w value becomes larger than 1.05.
[0027]
FIG. 8 shows the relationship between the Li amount (w value) in the positive electrode active material and the discharge capacity in the case of discharging at a normal current density (0.25 C). From this figure, it can be seen that the discharge capacity decreases when the w value becomes smaller than 0.95.
[0028]
Therefore, in consideration of both the high load capacity and the normal discharge capacity, the w value needs to be set in a range of 0.95 ≦ w ≦ 1.05.
[0029]
Examples of the present invention will be described below, but it goes without saying that the present invention is not limited to specific examples.
[0030]
【Example】
[referenceExample 1] Lithium carbonate (Li2CO3), Cobalt trioxide (Co3O4), Magnesium carbonate (MgCO3), Lithium sulfate (Li2SO4・ H2O) is weighed so that w = 1.0, x = 0.001, z = 0.005 and dry mixed. The obtained raw material mixture was baked in the air at 900 ° C. for 10 hours, and then pulverized using a roughing machine to obtain a specific surface area of 0.63 m.2/ G, positive active material powder LiCo with an average particle size of 3.5 μm0.999Mg0.001O2S0.005Get.
[0031]
The specific surface area is measured by a constant pressure BET one-point method using nitrogen gas adsorption. The average particle diameter is a value obtained by measuring the specific surface area by the air permeation method and obtaining the average value of the particle diameters of the primary particles, and is measured using a Fisher sub-sieve sizer (F.S.S.S.). The composition analysis is measured by the following method. That is, Li is measured by flame photometry, Co is titrated, and Mg, Ba, and S are measured by ICP emission spectroscopy.
[0032]
[referenceExample 2] Except x = 0.005referenceSimilar to Example 1, the specific surface area is 0.62 m.2/ G, positive active material powder LiCo with an average particle size of 3.5 μm0.995Mg0.005O2S0.005Get.
[0033]
[referenceExample 3] Except x = 0.01referenceSimilar to Example 1, the specific surface area is 0.63 m.2/ G, positive active material powder LiCo with an average particle size of 3.5 μm0.99Mg0.01O2S0.005Get.
[0034]
[referenceExample 4] Except z = 0.003referenceSimilar to Example 1, the specific surface area is 0.62 m.2/ G, positive active material powder LiCo with an average particle size of 3.5 μm0.999Mg0.001O2S0.003Get.
[0035]
[referenceExample 5] Except z = 0.0099referenceSimilar to Example 1, the specific surface area is 0.63 m.2/ G, positive active material powder LiCo with an average particle size of 3.4 μm0.999Mg0.001O2S0.009Get.
[0036]
[referenceExample 6] Except for z = 0.012.referenceSimilar to Example 1, the specific surface area is 0.64 m.2/ G, positive active material powder LiCo with an average particle size of 3.4 μm0.999Mg0.001O2S0.012Get.
[0037]
[referenceExample 7] Except z = 0.015referenceSimilar to Example 1, the specific surface area is 0.64 m.2/ G, positive active material powder LiCo with an average particle size of 3.4 μm0.999Mg0.001O2S0.015Get.
[0038]
[referenceExample 8] Magnesium carbonate (MgCO3) Instead of magnesium hydroxide (Mg (OH)2) Except usingreferenceSimilar to Example 1, the specific surface area is 0.63 m.2/ G, positive active material powder LiCo with an average particle size of 3.5 μm0.999Mg0.001O2S0.005Get.
[0039]
[referenceExample 9] Magnesium carbonate (MgCO3) Instead of magnesium nitrate (Mg (NO3)2・ 6H2Except using O)referenceSimilar to Example 1, the specific surface area is 0.63 m.2/ G, positive active material powder LiCo with an average particle size of 3.5 μm0.999Mg0.001O2S0.005Get.
[0040]
[referenceExample 10] Magnesium carbonate (MgCO3) Instead of magnesium oxalate (MgC2O4・ 2H2Except using O)referenceSimilar to Example 1, the specific surface area is 0.64 m.2/ G, positive active material powder LiCo with an average particle size of 3.4 μm0.999Mg0.001O2S0.005Get.
[0041]
[referenceExample 11] Lithium sulfate (Li2SO4・ H2Except that sulfur (S) is used instead of O)referenceSimilar to Example 1, the specific surface area is 0.64 m.2/ G, positive active material powder LiCo with an average particle size of 3.4 μm0.999Mg0.001O2S0.005Get.
[0042]
[referenceExample 12] Lithium sulfate (Li2SO4・ H2Ammonium sulfide ((NH4)2Except using S)referenceSimilar to Example 1, the specific surface area is 0.63 m.2/ G, positive active material powder LiCo with an average particle size of 3.5 μm0.999Mg0.001O2S0.005Get.
[0043]
[referenceExample 13] Lithium sulfate (Li2SO4・ H2Ammonium peroxodisulfate ((NH4)2S2O8) Except usingreferenceSimilar to Example 1, the specific surface area is 0.63 m.2/ G, positive active material powder LiCo with an average particle size of 3.5 μm0.999Mg0.001O2S0.005Get.
[0044]
[Example 1] Magnesium carbonate (MgCO3) Instead of barium carbonate (BaCO)3) Except usingreferenceSimilar to Example 1, the specific surface area is 0.64 m.2/ G, positive active material powder LiCo with an average particle size of 3.4 μm0.999Ba0.001O2S0.005Get.
[0045]
[Comparative Example 1] Magnesium carbonate (MgCO3), Lithium sulfate (Li2SO4・ H2Except not using O)referenceSimilar to Example 1, the specific surface area is 0.61 m.2/ G, cathode active material powder LiCoO having an average particle size of 3.6 μm2Get.
[0046]
[Comparative Example 2] Magnesium carbonate (MgCO3) Except not usingreferenceSimilar to Example 1, the specific surface area is 0.61 m.2/ G, cathode active material powder LiCoO having an average particle size of 3.6 μm2S0.005Get.
[0047]
[Comparative Example 3] Lithium sulfate (Li2SO4・ H2Except not using O)referenceSimilar to Example 1, the specific surface area is 0.61 m.2/ G, cathode active material powder LiCo with an average particle size of 3.6 μm0.999Mg0.001O2Get.
[0048]
[Comparative Example 4] Lithium sulfate (Li2SO4・ H2Except not using O)referenceIn the same manner as in Example 14, the specific surface area is 0.63 m.2/ G, positive active material powder LiCo with an average particle size of 3.5 μm0.999Ba0.001O2Get.
[0049]
(Evaluation)referenceExamples 1-13. Example 1And the laminated battery was produced using the positive electrode active material powder obtained by Comparative Examples 1-4, and the result measured about gas generation, a battery characteristic (cycle characteristic, high load characteristic), and thermal stability is put together in Table 1. The expansion coefficient of the battery, the capacity retention ratio at normal temperature (25 ° C.), and the high load capacity are measured in the same manner as described above. The capacity maintenance rate at high temperature (60 ° C.) is measured in the same manner as the capacity maintenance rate at room temperature (25 ° C.) except that measurement is performed in a 60 ° C. high temperature bath. About thermal stability, differential scanning calorimetry is performed as follows, and it evaluates with heat generation start temperature.
[0050]
(Evaluation of thermal stability)
(1) A demountable cell positive electrode capable of preparing a paste by kneading 90 parts by weight of a positive electrode active material powder, 5 parts by weight of carbon as a conductive agent, and 5 parts by weight of polyvinylidene fluoride, and capable of evaluating this as a single electrode A secondary battery is manufactured by applying to a current collector and using ethylene carbonate as an electrolytic solution.
{Circle around (2)} After charging and discharging with a constant current, the battery is charged under a constant current until the battery voltage becomes 4.3V.
(3) After charging, the positive electrode is taken out from the secondary battery, washed and dried, and the positive electrode active material is scraped off.
(4) 5 mg of the positive electrode active material and 2 mg of ethylene carbonate scraped from the positive electrode are placed in an Al cell, and differential scanning calorimetry is performed to determine the heat generation start temperature.
[0051]
Differential scanning calorimetry is a method for analyzing the thermal characteristics of a sample material by measuring the temperature difference between the reference material and the sample while simultaneously heating them at a constant rate. Then, the differential scanning calorific value does not change in the low temperature part, but the differential scanning calorific value greatly increases above a certain temperature. The temperature at this time is defined as the heat generation start temperature, and it can be said that the higher the temperature, the better the thermal stability.
[0052]
From Table 1, compared with Comparative Examples 1-3,referenceExamples 1 to 13 include both the Mg element and the S element in the positive electrode active material, thereby reducing the expansion coefficient of the battery, increasing the capacity retention rate and the high load capacity, and improving the battery characteristics (cycle characteristics and high load characteristics). It turns out that it is excellent. Regarding the cycle characteristics, not only the cycle characteristics at normal temperature (25 ° C.) but also the cycle characteristics at high temperature (60 ° C.) are excellent, and it can be seen that the battery characteristics are excellent even when the battery is used in a high temperature. Moreover, it can be seen that the heat generation start temperature is higher than that of the comparative example and is excellent in thermal stability. For example, compared with Comparative Example 1 that does not include any of Mg element and S element, and Comparative Examples 2 and 3 that include only one kind of element, all of the two kinds of elements are included.referenceIn the case of Example 1, the expansion coefficient of the battery is low, and the capacity maintenance ratio and the high load capacity are high. Moreover, the heat generation start temperature is also high. Thus, by including both Mg element and S element in the positive electrode active material, the crystal transition or decomposition of the positive electrode active material is further suppressed as a synergistic effect. (Cycle characteristics, high load characteristics) and thermal stability are greatly improved. further,Example 1And from Comparative Example 4, it can be seen that the same effect can be obtained when Ba element is introduced instead of Mg element.
[0053]
[Table 1]
Figure 0004240853
[0054]
【The invention's effect】
The general formula is Li as a positive electrode active material of a lithium ion secondary battery.wCo1-x Ba xOySz05, 0 <x ≦ 0.10, 1 ≦ y ≦ 2.5, and 0 <z ≦ 0.015. ), The generation of gas in the battery can be reduced, and battery characteristics (cycle characteristics, high load characteristics) and thermal stability can be improved.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing the relationship between the amount of S (z value) in a positive electrode active material and the expansion coefficient of a battery.
FIG. 2 is a characteristic diagram showing the relationship between the specific surface area of the positive electrode active material and the expansion coefficient of the battery.
FIG. 3 is a characteristic diagram showing the relationship between the amount of Mg (x value) in the positive electrode active material and the capacity retention rate.
FIG. 4 is a characteristic diagram showing the relationship between the amount of S (z value) in the positive electrode active material and the capacity retention rate.
FIG. 5 is a characteristic diagram showing the relationship between the amount of Mg (x value) in the positive electrode active material and a high load capacity.
FIG. 6 is a characteristic diagram showing the relationship between the amount of S (z value) in the positive electrode active material and high load capacity.
FIG. 7 is a characteristic diagram showing the relationship between the amount of Li (w value) in the positive electrode active material and the high load capacity.
FIG. 8 is a characteristic diagram showing the relationship between the Li amount (w value) in the positive electrode active material and the discharge capacity.

Claims (2)

一般式がLiCo1−x Ba (但し、0.95≦w≦1.05、0<x≦0.10、1≦y≦2.5、0<z≦0.015である。)で表されることを特徴とするリチウムイオン二次電池用正極活物質。The general formula is Li w Co 1-x Ba x O y S z (where 0.95 ≦ w ≦ 1.05, 0 <x ≦ 0.10, 1 ≦ y ≦ 2.5, 0 <z ≦ 0. 015)), a positive electrode active material for a lithium ion secondary battery. 比表面積が0.2〜2.0m/gの範囲であることを特徴とする請求項1に記載のリチウムイオン二次電池用正極活物質。 2. The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein the specific surface area is in the range of 0.2 to 2.0 m 2 / g.
JP2001206953A 2001-07-06 2001-07-06 Positive electrode active material for lithium ion secondary battery Expired - Lifetime JP4240853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001206953A JP4240853B2 (en) 2001-07-06 2001-07-06 Positive electrode active material for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001206953A JP4240853B2 (en) 2001-07-06 2001-07-06 Positive electrode active material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2003022807A JP2003022807A (en) 2003-01-24
JP4240853B2 true JP4240853B2 (en) 2009-03-18

Family

ID=19043008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001206953A Expired - Lifetime JP4240853B2 (en) 2001-07-06 2001-07-06 Positive electrode active material for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4240853B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2178800B1 (en) * 2007-08-10 2013-03-06 Umicore Doped lithium transition metal oxides containing sulfur

Also Published As

Publication number Publication date
JP2003022807A (en) 2003-01-24

Similar Documents

Publication Publication Date Title
US8066913B2 (en) Li-Ni composite oxide particles for non-aqueous electrolyte secondary cell, process for producing the same, and non-aqueous electrolyte secondary cell
US7235193B2 (en) Complex lithium metal oxides with enhanced cycle life and safety and a process for preparation thereof
JP3777988B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JPH07235292A (en) Nonaqueous electrolyte secondary battery
KR20110094023A (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
JP6650956B2 (en) Positive active material for lithium ion battery, lithium ion battery, and method for producing positive active material for lithium ion battery
JP2002175808A (en) Lithium/transition metal compound oxide for cathode active material of lithium secondary battery, and its manufacturing method
JP2004253169A (en) Lithium secondary battery and manufacturing method of positive electrode active material used therefor
JP2006344509A (en) Lithium secondary battery
JP2000182618A (en) Positive electrode active material for lithium secondary battery
JP3260282B2 (en) Non-aqueous electrolyte lithium secondary battery
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP2011249293A (en) Lithium transition metal compound and its manufacturing method, and lithium ion battery
JP2002042814A (en) Positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP2005332629A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method
JP4168609B2 (en) Positive electrode active material for lithium ion secondary battery
JP4240853B2 (en) Positive electrode active material for lithium ion secondary battery
JP4055414B2 (en) Positive electrode active material for lithium ion secondary battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP4168608B2 (en) Positive electrode active material for lithium ion secondary battery
JPH11260368A (en) Positive electrode active material for lithium secondary battery
JP3620744B2 (en) Method for producing active material for lithium secondary battery
JP2003217586A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4240853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term