JP2002348630A - Aluminum forged component and manufacturing method therefor - Google Patents

Aluminum forged component and manufacturing method therefor

Info

Publication number
JP2002348630A
JP2002348630A JP2001150200A JP2001150200A JP2002348630A JP 2002348630 A JP2002348630 A JP 2002348630A JP 2001150200 A JP2001150200 A JP 2001150200A JP 2001150200 A JP2001150200 A JP 2001150200A JP 2002348630 A JP2002348630 A JP 2002348630A
Authority
JP
Japan
Prior art keywords
less
aluminum
temperature
forging
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001150200A
Other languages
Japanese (ja)
Other versions
JP4774630B2 (en
Inventor
Shoji Aoki
昇二 青木
Kiyoshi Takagi
潔 高木
Yukihiro Rokujo
幸弘 六條
Eiji Iguchi
栄二 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001150200A priority Critical patent/JP4774630B2/en
Publication of JP2002348630A publication Critical patent/JP2002348630A/en
Application granted granted Critical
Publication of JP4774630B2 publication Critical patent/JP4774630B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum forged component having a fine and uniform crystal structure, and superior mechanical properties free from spread, and to provide a method for manufacturing the same. SOLUTION: This manufacturing method comprises heating an aluminum alloy material which includes 0.40-1.30% Si, 0.60-1.20% Mg, 0.15-0.50% Cu, 0.04-0.35% Cr, 0.7% or less Fe, 0.25% or less Zn, 0.15% or less Ti, and 1.0% or less Mn, at a temperature (t) in a range of 450-560 deg.C, then hot-forging it while keeping the die at 50-400 deg.C, further making solution treatment for 0.5-12 hours at a temperature T in a range of 520-560 deg.C, having a relationship with (t) of T<=0.025t<2> -24t+6280, and then artificially aging it at 140-200 deg.C for 0.5-12 hours to make the crystal grain sizes so fine as 100 μm or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウム合金
の鍛造技術に係わり、より具体的には、優れた機械的性
質を備え、自動車用部品を始めとする各種の機械部品に
適用されるアルミニウム鍛造部品、およびこのようなア
ルミニウム鍛造部品野製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for forging aluminum alloys, and more specifically, to an aluminum forging having excellent mechanical properties and applicable to various mechanical parts such as automobile parts. The present invention relates to a component and a method for manufacturing such an aluminum forged component.

【0002】[0002]

【従来の技術】近年、自動車用部品においては、車両軽
量化の要請に応じてアルミニウム製部品への移行が進み
つつあり、とくにサスペンション部品においては、その
信頼性を考慮してアルミニウム鍛造部品の採用が増加し
つつある。このような鍛造部品のうちでは、高強度、高
耐食性の観点から、Al−Mg−Si系合金の熱間鍛造
品が多用されており、そして、従来のアルミニウム鍛造
における製造条件としては、鍛造時の材料加熱温度を4
50℃程度に設定するのが一般的であった。
2. Description of the Related Art In recent years, the shift to aluminum parts has been progressing for automobile parts in response to the demand for vehicle weight reduction, and especially for suspension parts, aluminum forged parts have been adopted in consideration of their reliability. Is increasing. Among such forged parts, from the viewpoint of high strength and high corrosion resistance, hot forged parts of Al-Mg-Si alloys are frequently used, and the conventional aluminum forging production conditions include: Material heating temperature of 4
Generally, the temperature was set to about 50 ° C.

【0003】[0003]

【発明が解決しようとする課題】しかし、鍛造時におけ
る材料の加熱温度を450℃程度としていた従来の鍛造
技術においては、熱間鍛造とその後の熱処理(T6処
理)時に、結晶粒の粗粒化が生じ、この粗粒化に起因す
る機械的性質の低下、ばらつきが発生するという問題が
ある。特に、0.2%耐力が300MPaを超える強
度、10%を超える伸び値を有する材料においては、安
定した品質を得ることが難しく、低い材料特性値に基づ
く部品設計をせざるを得ないのが現状であり、このよう
な問題点を解消して機械的性質を向上させると共に、安
定なものとすることが従来のアルミニウム鍛造部品ある
いは鍛造方法における課題となっていた。
However, in the conventional forging technique in which the heating temperature of the material at the time of forging is set to about 450 ° C., coarse grains are formed during hot forging and subsequent heat treatment (T6 treatment). This causes a problem that the mechanical properties are reduced and uneven due to the coarsening. Particularly, in a material having a 0.2% proof stress exceeding 300 MPa and an elongation value exceeding 10%, it is difficult to obtain stable quality, and it is necessary to design parts based on low material characteristic values. At present, it has been a problem in conventional aluminum forged parts or forging methods to solve such problems and to improve mechanical properties and to make them stable.

【0004】[0004]

【発明の目的】本発明は、従来のアルミニウム鍛造部品
における上記課題を解消するためになされたものであっ
て、微細で均一な結晶組織を有し、ばらつきのない優れ
た機械的性質を備えたアルミニウム鍛造部品およびその
製造方法を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in a conventional aluminum forged part, and has a fine and uniform crystal structure and excellent mechanical properties without variation. It is an object of the present invention to provide a forged aluminum part and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記課題を
解消すべく、Al−Mg−Si系合金の機械的性能に及
ぼす鍛造時の材料加熱温度、溶体化処理温度、鍛造圧下
率の影響を鋭意検討した結果、これらの間の相互依存性
を見出し、上記温度範囲と共にこれら相互関係の最適化
を図ることにより、時効処理後の結晶組織を微細かつ均
一なものとすることができ、ばらつきのない安定な機械
的性能を確保できることを見出すに至った。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventor has studied the effects of the material heating temperature during forging, the solution treatment temperature, and the forging reduction rate on the mechanical performance of an Al-Mg-Si alloy. As a result of intensive examination of the effects, the interdependencies between them were found, and by optimizing these relationships together with the above temperature range, the crystal structure after the aging treatment could be made fine and uniform, It has been found that stable mechanical performance without variation can be ensured.

【0006】本発明は、このような知見に基づくもので
あって、本発明に係わるアルミニウム鍛造部品は、質量
比で、Si:0.40〜1.30%、Mg:0.60〜
1.20%、Cu:0.15〜0.50%、Cr:0.
04〜0.35%、Fe:0.7%以下、Zn:0.2
5%以下、Ti:0.15%以下、Mn:1.0%以
下、残部アルミニウムおよび不可避的不純物を含有する
アルミニウム合金からなり、結晶粒径100μm以下の
微細組織を備えている構成としており、アルミニウム鍛
造部品におけるこのような構成を前述した従来の課題を
解決するための手段としたことを特徴としている。
The present invention is based on such findings, and the aluminum forged part according to the present invention has a mass ratio of Si: 0.40 to 1.30%, Mg: 0.60 to 0.60.
1.20%, Cu: 0.15 to 0.50%, Cr: 0.
04-0.35%, Fe: 0.7% or less, Zn: 0.2
5% or less, Ti: 0.15% or less, Mn: 1.0% or less, an aluminum alloy containing the balance of aluminum and unavoidable impurities, and has a microstructure with a crystal grain size of 100 μm or less; The present invention is characterized in that such a structure in an aluminum forged part is used as means for solving the above-mentioned conventional problems.

【0007】本発明に係わるアルミニウム鍛造部品の製
造方法は、上記アルミニウム鍛造部品の製造に好適なも
のであって、質量比で、Si:0.40〜1.30%、
Mg:0.60〜1.20%、Cu:0.15〜0.5
0%、Cr:0.04〜0.35%、Fe:0.7%以
下、Zn:0.25%以下、Ti:0.15%以下、M
n:1.0%以下、残部アルミニウムおよび不可避的不
純物を含有するアルミニウム合金材料を450℃以上5
60℃以下の温度tに加熱して熱間鍛造を行ない、52
0℃以上560℃以下の温度Tにおける溶体化処理のの
ち、人工時効を施す工程からなり、前記材料加熱温度t
と溶体化温度Tの間に、T≦0.025t−24t+
6280の関係を有する構成としたことを特徴としてお
り、当該製造方法の好適形態としては、前記アルミニウ
ム合金材料を温度tに加熱したのち、50〜400℃に
保持した金型を用いて粗鍛造から仕上げまでの熱間鍛造
を行ない、0.5〜12時間の溶体化処理ののち、14
0〜200℃における0.5〜12時間の人工時効を施
す構成としたことを特徴とし、さらに他の好適形態とし
ては、前記熱間鍛造における粗鍛造から仕上げ鍛造まで
の圧下率r(%)と加熱温度(t)と溶体化温度T
(℃)の間に、T≦0.025(t−r−410)
520の関係を有する構成としたことを特徴とし、アル
ミニウム鍛造部品の製造方法におけるこのような構成を
前述した従来の課題を解決するための手段としている。
The method for manufacturing an aluminum forged part according to the present invention is suitable for manufacturing the above-described aluminum forged part, and has a mass ratio of Si: 0.40 to 1.30%;
Mg: 0.60 to 1.20%, Cu: 0.15 to 0.5
0%, Cr: 0.04 to 0.35%, Fe: 0.7% or less, Zn: 0.25% or less, Ti: 0.15% or less, M
n: an aluminum alloy material containing 1.0% or less, the balance of aluminum and unavoidable impurities is 450 ° C. or more and 5
Hot forging is performed by heating to a temperature t of 60 ° C. or less, and 52
A solution heat treatment at a temperature T of 0 ° C. or more and 560 ° C. or less, followed by artificial aging, wherein the material heating temperature t
T ≦ 0.025t 2 −24t +
The manufacturing method is characterized in that the aluminum alloy material is heated to a temperature t, and then subjected to rough forging using a mold held at 50 to 400 ° C. After hot forging until finishing, and after solution treatment for 0.5 to 12 hours, 14
It is characterized by being subjected to artificial aging at 0 to 200 ° C. for 0.5 to 12 hours, and as still another preferred embodiment, a reduction ratio r (%) from rough forging to finish forging in the hot forging. , Heating temperature (t) and solution temperature T
(° C.), T ≦ 0.025 (tr−410) 2 +
520, and such a configuration in a method for manufacturing an aluminum forged part is a means for solving the above-mentioned conventional problem.

【0008】[0008]

【発明の作用】本発明に係わるアルミニウム鍛造部品
は、Al−Mg−Si系合金、すなわち鍛造用材料とし
て広く用いられている6000系合金をベースとするも
のであるから、熱処理(T6処理)を施すことによって
高強度が得られる。そして、MgおよびSiを始めとす
る成分組成を最適化すると共に、結晶粒径が100μm
以下である微細組織を備えたものであるから、0.2%
耐力が300MPa以上であるような高強度を備えた安
定な品質のものとなる。
The aluminum forged part according to the present invention is based on an Al-Mg-Si alloy, that is, a 6000 alloy widely used as a forging material. High strength is obtained by applying. And, while optimizing the component composition including Mg and Si, the crystal grain size is 100 μm.
0.2% because of the following microstructure
Stable quality having high strength such that the proof stress is 300 MPa or more is obtained.

【0009】また、本発明に係わるアルミニウム鍛造部
品の製造方法においては、前記成分を備えたAl−Mg
−Si系合金材料を所定温度t(℃)に加熱して熱間鍛
造を行ない、さらに鍛造時の前記加熱温度t(℃)との
間に所定の関係を有する所定温度T(℃)における溶体
化処理の後、人工時効を施すようにしている(T6処
理)ので、結晶粒径が100μm以下の微細なものとな
り、アルミニウム鍛造部品の強度がばらつきなく向上す
ることになる。
Further, in the method for manufacturing an aluminum forged part according to the present invention, the method comprises the steps of:
-Hot forging is performed by heating the Si-based alloy material to a predetermined temperature t (° C.), and a solution at a predetermined temperature T (° C.) having a predetermined relationship with the heating temperature t (° C.) during forging. After the aging treatment, artificial aging is performed (T6 treatment), so that the crystal grain size becomes as fine as 100 μm or less, and the strength of the aluminum forged part is improved without variation.

【0010】次に、本発明における合金成分や、鍛造条
件、鍛造後の熱処理条件などの限定理由について説明す
る。なお、合金成分の含有量は質量%を意味する。
Next, the reasons for limiting the alloy components, forging conditions, and heat treatment conditions after forging in the present invention will be described. In addition, the content of the alloy component means mass%.

【0011】Si:0.40〜1.30% Siは、次に述べるMgと共存してMgSi系析出物
を生成してアルミニウム合金の強度を向上させる成分で
あるが、0.40%に満たないと強度向上の効果が十分
に得られず、1.30%を超えると合金の鍛造性が損な
われることがあるので、0.40〜1.30%の範囲と
する。
Si: 0.40 to 1.30% Si is a component which coexists with Mg described below to form an Mg 2 Si-based precipitate to improve the strength of the aluminum alloy. If less than the above, the effect of improving the strength cannot be sufficiently obtained, and if it exceeds 1.30%, the forgeability of the alloy may be impaired.

【0012】Mg:0.60〜1.20% Mgは、上記のように、Siと共にMgSi系析出物
を生成して合金の強度を向上させるが、0.60%未満
ではこのような効果が十分に得られず、逆に1.20%
を超える加工性が劣化するので、0.60〜1.20%
の範囲とする必要がある。
Mg: 0.60 to 1.20% Mg, as described above, forms a Mg 2 Si-based precipitate together with Si to improve the strength of the alloy. The effect is not sufficiently obtained, and conversely 1.20%
0.60 to 1.20%
Must be within the range.

【0013】Cu:0.15〜0.50% Cuは、析出硬化によってマトリックス強度向上に寄与
すると共に、時効処理に際して析出物を微細均一に分散
させる働きがある。Cu含有量が0.15%に満たない
とこのような効果が得がたく、逆に0.50%を超える
と鍛造性、耐食性が劣化するので、0.15〜0.50
%の範囲とする。
Cu: 0.15 to 0.50% Cu not only contributes to the improvement of the matrix strength by precipitation hardening, but also has the function of finely and uniformly dispersing the precipitates during aging treatment. If the Cu content is less than 0.15%, such an effect is difficult to obtain, while if it exceeds 0.50%, forgeability and corrosion resistance are deteriorated.
% Range.

【0014】Cr:0.04〜0.35% Crは、結晶粒の粗大化を防止する効果を有し、当該ア
ルミニウム合金の高強度・高靭性化に寄与するが、0.
04%未満ではこのような効果が期待できず、0.35
%を超えると鍛造性を損なう恐れがあるので、0.04
〜0.35%の範囲とする。
Cr: 0.04 to 0.35% Cr has an effect of preventing the crystal grains from becoming coarse and contributes to high strength and high toughness of the aluminum alloy.
If it is less than 04%, such an effect cannot be expected, and 0.35%
%, The forgeability may be impaired.
0.30.35%.

【0015】Fe:0.7%以下 Feは、不純物として扱われ、0.7%を超えるとFe
系晶出物により延びが低下するため、0.7%以下とす
る。
Fe: 0.7% or less Fe is treated as an impurity.
Since the elongation is reduced by the system crystallization, the content is set to 0.7% or less.

【0016】Zn:0.25%以下 Znは不純物として扱われ、0.25%を超えると耐応
力腐食割れ性が悪化するため、0.25%以下とする。
Zn: 0.25% or less Zn is treated as an impurity, and if it exceeds 0.25%, the stress corrosion cracking resistance deteriorates.

【0017】Ti:0.15%以下 Tiは、結晶粒の微細化に寄与する元素であるが、多量
に含有すると靭性を損なうことになるので、その上限値
を0.15%とする。
Ti: 0.15% or less Ti is an element that contributes to the refinement of crystal grains, but if contained in a large amount, the toughness is impaired. Therefore, the upper limit is set to 0.15%.

【0018】Mn:1.0%以下 CrやFeと同様に、結晶粒の粗大化を抑制するのに有
効であるが、過剰に含有すると鍛造性が損なわれること
があるので、1.0%を超えない範囲で添加する必要が
ある。
Mn: 1.0% or less Like Cr and Fe, Mn is effective in suppressing the coarsening of crystal grains, but if contained excessively, the forgeability may be impaired. Must be added within a range not exceeding.

【0019】結晶粒径:100μm以下 上記合金成分を含有するアルミニウム合金の鍛造部品に
おいては、その結晶粒径を100μm以下とすることに
より、0.2%耐力が300MPaを超える機械的強度
が安定的に得られるようになる。
Crystal grain size: 100 μm or less In a forged part of an aluminum alloy containing the above alloy component, by setting the crystal grain size to 100 μm or less, the mechanical strength with 0.2% proof stress exceeding 300 MPa is stable. Will be obtained.

【0020】材料加熱温度t:450〜560℃ 鍛造時の材料加熱温度が高くなると、鍛造時の変形抵抗
が低下し、材料に導入される歪が低減されることから、
溶体化処理時などに生じる結晶粒の粗大化を抑制する効
果がある。このような効果は、450℃未満では得られ
ず、逆に560℃を超えると当該アルミニウム合金の局
部溶解が始まり、バーニングや延性低下などの問題を生
じるため、鍛造加熱温度tを450〜560℃の温度範
囲とすることが必要である。
Material heating temperature t: 450 to 560 ° C. As the material heating temperature during forging increases, the deformation resistance during forging decreases, and the strain introduced into the material is reduced.
This has the effect of suppressing the coarsening of crystal grains generated during the solution treatment. Such an effect cannot be obtained at a temperature lower than 450 ° C. Conversely, when the temperature exceeds 560 ° C., local melting of the aluminum alloy starts, causing problems such as burning and a decrease in ductility. Temperature range.

【0021】溶体化温度T:520〜560℃ 溶体化処理は、MgSiをアルミマトリックス中に固
溶させるため、520℃以上に昇温する必要があり、上
記同様に局部溶解を防止するために560℃以下とする
ことが必要である。また、この溶体化処理によって鍛造
時に材料に導入された歪が開放され、結晶粒の粗大化を
引き起こすため、後述するように材料加熱温度tに応じ
て、さらに望ましくは材料加熱温度tと鍛造圧下率r
(%)に応じて溶体化温度Tの上限を設定することが必
要である。なお、溶体化処理時間については、Mg
iをマトリックス中に十分に固溶させ、しかも無駄なエ
ネルギー消費を避ける観点から、0.5〜12時間程度
とすることが望ましい。
Solution treatment temperature T: 520-560 ° C. In the solution treatment, it is necessary to raise the temperature to 520 ° C. or higher in order to dissolve Mg 2 Si in the aluminum matrix. 560 ° C. or less. Further, since the strain introduced into the material at the time of forging is released by this solution treatment and the crystal grains are coarsened, the material heating temperature t and, more desirably, the material heating temperature t and the forging pressure as described later will be described later. Rate r
It is necessary to set the upper limit of the solution temperature T according to (%). Note that the solution treatment time was determined using Mg 2 S
From the viewpoint of sufficiently dissolving i in the matrix and avoiding wasteful energy consumption, it is desirable to set it to about 0.5 to 12 hours.

【0022】鍛造条件:金型温度、圧下率r 鍛造に用いる金型の温度は、金型寿命および結晶粒粗粒
化に影響することから、50〜400℃の温度範囲に保
持しておくことが望ましい。すなわち、金型温度が50
℃未満では、金型寿命低下および材料の実体温度低下に
より結晶粒が粗大化することとなり、400℃を超える
と、温度保持可能時間短縮による生産性低下という不都
合が生じる傾向があることによる。また、鍛造による圧
下率r(%)が高くなると、ファイバー組織が導入さ
れ、機械的性質が改善されるが、鍛造圧下率rが50〜
80%でも、材料加熱温度tが低いときには、鍛造時に
歪が生じて溶体化処理時に結晶の粗粒下を招く要因とな
る。なお、圧下率rは、次式のように定義される。 r(%)=(1−(鍛造後寸法)/(初期素材寸法))
×100
Forging conditions: mold temperature, reduction ratio r The temperature of the mold used for forging must be kept within a temperature range of 50 to 400 ° C., because it affects the life of the mold and coarsening of crystal grains. Is desirable. That is, when the mold temperature is 50
If the temperature is lower than 0 ° C., the crystal grains become coarse due to a decrease in the life of the mold and the actual temperature of the material. In addition, when the rolling reduction r (%) by forging increases, a fiber structure is introduced and the mechanical properties are improved, but the forging reduction r is 50 to 50%.
Even at 80%, when the material heating temperature t is low, strain is generated during forging, which is a factor of causing coarse grains of crystals during solution treatment. The rolling reduction r is defined as in the following equation. r (%) = (1- (dimension after forging) / (initial material dimension))
× 100

【0023】人工時効:140〜200℃×0.5〜1
2時間 人工時効は、MgSi系析出物を微細、かつ均一に析
出させて、マトリックスの強度を向上させるために行な
うものであり、加熱温度が140℃未満では析出に長時
間を要するので生産性が損なわれ、200℃を超えると
析出物が粗大化して強度の向上が困難となる可能性があ
る。また、保持時間が0.5時間に満たない場合にはM
Siを析出させることができず、12時間を超えた
場合には析出が進行し過ぎて、MgSi析出物が粗大
化し、同様に強度を安定に向上させることができなくな
る傾向がある。
Artificial aging: 140-200 ° C. × 0.5-1
The artificial aging for 2 hours is performed to improve the strength of the matrix by precipitating Mg 2 Si-based precipitates finely and uniformly, and if the heating temperature is lower than 140 ° C., it takes a long time for the precipitation. If the temperature exceeds 200 ° C., the precipitates may be coarsened, making it difficult to improve the strength. When the holding time is less than 0.5 hour, M
When g 2 Si cannot be precipitated, and when the time exceeds 12 hours, the precipitation proceeds excessively, and the Mg 2 Si precipitate tends to be coarsened, and similarly, there is a tendency that the strength cannot be stably improved. .

【0024】材料加熱温度t、圧下率r、溶体化温度T
の相互作用 上記したように、材料加熱温度t、圧下率rおよび溶体
化温度Tは、アルミニウム鍛造部品の強度、組織にそれ
ぞれ影響を及ぼすが、部品の製造過程においては一連の
工程で製造されることから、これらが独立して影響する
ばかりでなく、相互の影響が認められる。すなわち、結
晶粒の粗大化を防止して安定的に高強度が得られるよう
に、結晶粒径が100μm以下となる微細組織を実現す
るには、溶体化温度Tの上限値を材料加熱温度tから算
出されるTu1=0.025t−24t+6280の
値とする必要があり、さらには、材料加熱温度tおよび
圧下率r(%)から算出されるTu2=0.025(t
−r−410)+520の値とすることが望ましい。
これらの条件範囲を図1に示す。
Material heating temperature t, rolling reduction r, solution temperature T
As described above, the material heating temperature t, the rolling reduction r, and the solution temperature T each affect the strength and structure of the forged aluminum part, but are manufactured in a series of steps in the manufacturing process of the part. Therefore, these influence not only independently but also mutually. That is, in order to realize a fine structure having a crystal grain size of 100 μm or less so as to stably obtain high strength by preventing coarsening of the crystal grains, the upper limit value of the solution temperature T is set to the material heating temperature t. Must be calculated as Tu1 = 0.025t 2 −24t + 6280, and further, Tu2 = 0.025 (t) calculated from the material heating temperature t and the reduction ratio r (%).
-R-410) 2 +520 is desirable.
FIG. 1 shows these condition ranges.

【0025】[0025]

【実施例】以下、実施例に基づいて本発明をさらに具体
的に説明する。
EXAMPLES The present invention will be described below more specifically based on examples.

【0026】まず、表1に示す化学成分を有するアルミ
ニウム合金を溶解して半連続鋳造し、直径60mmのビ
レットを鋳造した。
First, an aluminum alloy having the chemical components shown in Table 1 was melted and semi-continuously cast to cast a billet having a diameter of 60 mm.

【0027】[0027]

【表1】 [Table 1]

【0028】このビレットに、470℃×7時間の均質
化処理を実施した後、所定長さに切断し、鋳造されたビ
レットの鋳肌近傍部の偏析組織を除去するために面削を
行ない、直径56mm、長さ447mmの丸棒とし、鍛
造用材料を得た。
This billet is subjected to a homogenization treatment at 470 ° C. × 7 hours, then cut to a predetermined length, and the billet is chamfered to remove a segregated structure near a casting surface of the cast billet. A round bar having a diameter of 56 mm and a length of 447 mm was obtained to obtain a forging material.

【0029】上記鍛造用材料を用いて、鍛造時の材料加
熱温度tを3水準、溶体化温度Tを2水準に変化させた
条件で熱間鍛造を行ない、人工時効を施した後の鍛造品
の機械的性能を試験すると共に、マクロ組織形態および
ミクロ組織を観察し、結晶粒径を測定した結果を表2に
示す。また、各鍛造品のマクロ組織を図2ないし図5に
示し、本発明に係わる試料1のミクロ組織を図6にそれ
ぞれ示す。
Using the above forging material, hot forging is performed under the conditions that the material heating temperature t during forging is changed to three levels and the solution heat temperature T is changed to two levels, and the forged product after artificial aging is performed. Table 2 shows the results obtained by examining the mechanical performance of the sample, observing the macrostructure and microstructure, and measuring the crystal grain size. 2 to 5 show the macrostructure of each forged product, and FIG. 6 shows the microstructure of Sample 1 according to the present invention.

【0030】[0030]

【表2】 [Table 2]

【0031】なお、1次鍛造工程における材料加熱時間
は55分、金型温度は175℃とした。1次鍛造では最
終部品形状を考慮して鍛造用材料を長さ方向に湾曲さ
せ、2次鍛造では175℃に加熱保持された金型を用い
て、平均70%の圧下率rで長さ方向に対して鍛造し
た。そして、3次鍛造において同様に175℃に加熱さ
れた金型により鍛造を行ない、最終製品形状を得た。ま
た、溶体化処理時間は2.5時間とし、人工時効は、1
80℃×6時間の条件を採用した。
The material heating time in the first forging step was 55 minutes, and the mold temperature was 175 ° C. In the first forging, the material for forging is bent in the length direction in consideration of the shape of the final part, and in the second forging, a mold heated and held at 175 ° C. is used, and the lengthwise direction is reduced at an average reduction rate r of 70%. Forged against. Then, in the third forging, forging was similarly performed using a mold heated to 175 ° C. to obtain a final product shape. The solution treatment time was 2.5 hours, and the artificial aging was 1 hour.
The condition of 80 ° C. × 6 hours was adopted.

【0032】材料加熱温度tを540℃、r=70%と
し(従って、0.025t−24t+6280=61
0、0.025(t−r−410)+520=61
0)、溶体化温度Tを550℃とした試料1において
は、前面微細かつ均一なマクロ組織を呈しており、機械
的性質、特に耐力−伸びバランスの優れた鍛造品である
ことが確認された。また、ミクロ組織についても、図6
に示すように微細な組織を示し、平均粒径は約80μm
であった。
The material heating temperature t is 540 ° C. and r = 70% (therefore, 0.025t 2 -24t + 6280 = 61)
0, 0.025 (tr-410) 2 + 520 = 61
0) In sample 1 in which the solution temperature T was 550 ° C., the front surface had a fine and uniform macrostructure, and it was confirmed that the forged product was excellent in mechanical properties, particularly in proof stress-elongation balance. . FIG. 6 also shows the microstructure.
Shows a fine structure as shown in FIG.
Met.

【0033】材料加熱温度tを500℃に低下させ、r
=70%とし(0.025t−24t+6280=5
30、0.025(t−r−410)+520=53
0)、鍛造時に歪を導入した試料2においては、再結晶
の成長した粗粒のマクロ組織を呈し、機械的性質、特に
伸び値の低い結果となった。さらに、材料加熱温度tを
450℃に低下させた(0.025t−24t+62
80=542.5、0.025(t−r−410)
520=542.5)試料3では、鍛造時の歪導入量が
さらに大きいことから、試料2と同様に再結晶の成長し
た粗粒のマクロ組織となり、機械的性質、特に伸び値の
低い鍛造品となった。
The material heating temperature t is reduced to 500 ° C., and r
= 70% (0.025t 2 -24t + 6280 = 5
30, 0.025 (tr−410) 2 + 520 = 53
0), Sample 2 in which strain was introduced during forging exhibited a macrostructure of coarse grains grown by recrystallization, and resulted in low mechanical properties, particularly low elongation values. Further, the material heating temperature t was lowered to 450 ° C. (0.025 t 2 −24 t + 62).
80 = 542.5, 0.025 (tr−410) 2 +
520 = 542.5) In sample 3, since the amount of strain introduced during forging is even larger, a macrostructure of coarse grains grown by recrystallization is obtained as in sample 2, and forged products having low mechanical properties, particularly low elongation values. It became.

【0034】材料加熱温度tを500℃とし(従って、
0.025t−24t+6280=530、0.02
5(t−r−410)+520=530)、上記試料
1〜3に対して、溶体化温度Tを510℃に低下させ、
鍛造時に導入された歪の解放を抑制した試料4において
は、前面微細かつ均一なマクロ組織を呈しているもの
の、機械的性質、特に引張強さおよび耐力が低下する結
果となった。これは、析出硬化に寄与する強化元素の固
溶が不十分であることが原因と考えられる。
The material heating temperature t is set to 500 ° C. (Accordingly,
0.025t 2 -24t + 6280 = 530, 0.02
5 (tr−410) 2 + 520 = 530), the solution temperature T was lowered to 510 ° C. with respect to the samples 1 to 3,
In Sample 4 in which the release of the strain introduced during forging was suppressed, although the front surface had a fine and uniform macrostructure, the mechanical properties, particularly the tensile strength and the proof stress, were reduced. This is considered to be due to insufficient solid solution of the strengthening element that contributes to precipitation hardening.

【0035】以上のように、材料加熱温度tと、溶体化
温度Tの条件とマクロ組織形態の関係から、r=70%
を想定して、T≦0.025t−24t+6280の
場合、マクロ組織が微細かつ均一な組織形態を示すこと
が確認された。
As described above, from the relationship between the material heating temperature t, the condition of the solution temperature T, and the macrostructure, r = 70%
In the case of T ≦ 0.025t 2 −24t + 6280, it was confirmed that the macrostructure exhibited a fine and uniform structure.

【0036】[0036]

【発明の効果】以上説明してきたように、本発明に係わ
るアルミニウム鍛造部品は、Si:0.40〜1.30
%、Mg:0.60〜1.20%、Cu:0.15〜
0.50%、Cr:0.04〜0.35%、Fe:0.
7%以下、Zn:0.25%以下、Ti:0.15%以
下、Mn:1.0%以下を含むアルミニウム合金からな
り、結晶粒径100μm以下の微細組織を備えたもので
あるから、0.2%耐力が300MPaを超える高強度
の部品をばらつきなく安定的に得ることができるという
きわめて優れた効果をもたらすものである。
As described above, the aluminum forged part according to the present invention has a Si content of 0.40 to 1.30.
%, Mg: 0.60 to 1.20%, Cu: 0.15
0.50%, Cr: 0.04 to 0.35%, Fe: 0.
It is made of an aluminum alloy containing 7% or less, Zn: 0.25% or less, Ti: 0.15% or less, and Mn: 1.0% or less, and has a fine structure with a crystal grain size of 100 μm or less. This is an extremely excellent effect that a high-strength component having a 0.2% proof stress exceeding 300 MPa can be stably obtained without variation.

【0037】本発明に係わるアルミニウム鍛造部品の製
造方法においては、前記成分を備えたAl−Mg−Si
系合金材料を450〜560℃の範囲内の温度tに加熱
して、望ましくは50〜400℃に保持した金型を用い
て熱間鍛造を行ない、さらに520〜560℃の範囲内
であって、鍛造時の前記加熱温度tとの間に所定の関係
(T≦0.025t−24t+6280)を有する温
度Tにおいて、望ましくは0.5〜12時間の溶体化処
理を行なった後、人工時効、望ましくは140〜200
℃における0.5〜12時間の人工時効を施すようにし
ている(T6処理)ので、結晶粒径を100μm以下の
微細なものとすることができ、アルミニウム鍛造部品の
強度をばらつきなく向上させることができるという優れ
た効果がもたらされる。
In the method for manufacturing an aluminum forged part according to the present invention, the Al-Mg-Si
The system alloy material is heated to a temperature t in the range of 450 to 560 ° C., and desirably hot forged using a mold maintained at 50 to 400 ° C., and further in a range of 520 to 560 ° C. At a temperature T having a predetermined relationship (T ≦ 0.025t 2 −24t + 6280) with the heating temperature t at the time of forging, the solution aging is preferably performed for 0.5 to 12 hours, and then the artificial aging is performed. , Preferably 140-200
Since artificial aging is performed at 0.5 ° C. for 0.5 to 12 hours (T6 treatment), the crystal grain size can be made as fine as 100 μm or less, and the strength of aluminum forged parts can be improved without variation. The excellent effect that it can do is brought.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるアルミニウム鍛造部品の製造方
法における材料加熱温度と溶体化温度の適正範囲を示す
説明図である。
FIG. 1 is an explanatory view showing an appropriate range of a material heating temperature and a solution heat temperature in a method for manufacturing an aluminum forged part according to the present invention.

【図2】本発明の実施例において得られた試料1のアル
ミニウム鍛造部品のマクロ組織を示す写真である。
FIG. 2 is a photograph showing a macrostructure of a forged aluminum part of Sample 1 obtained in an example of the present invention.

【図3】比較例において得られた試料2のアルミニウム
鍛造部品のマクロ組織を示す写真である。
FIG. 3 is a photograph showing a macrostructure of a forged aluminum part of Sample 2 obtained in a comparative example.

【図4】比較例において得られた試料3のアルミニウム
鍛造部品のマクロ組織を示す写真である。
FIG. 4 is a photograph showing a macrostructure of a forged aluminum part of Sample 3 obtained in a comparative example.

【図5】比較例において得られた試料4のアルミニウム
鍛造部品のマクロ組織を示す写真である。
FIG. 5 is a photograph showing a macrostructure of a forged aluminum part of Sample 4 obtained in a comparative example.

【図6】本発明の実施例において得られたアルミニウム
鍛造部品のミクロ組織を示す写真である。
FIG. 6 is a photograph showing a microstructure of an aluminum forged part obtained in an example of the present invention.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 604 C22F 1/00 604 610 610 630 630A 683 683 691 691B 691C 694 694A (72)発明者 六條 幸弘 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 井口 栄二 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 4E087 AA00 BA04 CA11 CB01 DB14 HA31 HA82 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C22F 1/00 604 C22F 1/00 604 610 610 630 630 630A 683 683 691 691B 691C 694 694A (72) Inventor Yukihiro Mujo Kanagawa Nissan Motor Co., Ltd. (2) Takaracho, Kanagawa-ku, Yokohama-shi (72) Inventor Eiji Eguchi 2, Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa F-term (reference) 4E087 AA00 BA04 CA11 CB01 DB14 HA31 HA82

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 質量比で、Si:0.40〜1.30
%、Mg:0.60〜1.20%、Cu:0.15〜
0.50%、Cr:0.04〜0.35%、Fe:0.
7%以下、Zn:0.25%以下、Ti:0.15%以
下、Mn:1.0%以下、残部アルミニウムおよび不可
避的不純物を含有するアルミニウム合金からなり、結晶
粒径100μm以下の微細組織を備えていることを特徴
とするアルミニウム鍛造部品。
1. A mass ratio of Si: 0.40 to 1.30.
%, Mg: 0.60 to 1.20%, Cu: 0.15
0.50%, Cr: 0.04 to 0.35%, Fe: 0.
7% or less, Zn: 0.25% or less, Ti: 0.15% or less, Mn: 1.0% or less, microstructure composed of aluminum alloy containing aluminum and unavoidable impurities, and having a crystal grain size of 100 μm or less An aluminum forged part comprising:
【請求項2】 質量比で、Si:0.40〜1.30
%、Mg:0.60〜1.20%、Cu:0.15〜
0.50%、Cr:0.04〜0.35%、Fe:0.
7%以下、Zn:0.25%以下、Ti:0.15%以
下、Mn:1.0%以下、残部アルミニウムおよび不可
避的不純物を含有するアルミニウム合金材料を450℃
以上560℃以下の温度tに加熱して熱間鍛造を行な
い、520℃以上560℃以下の温度Tにおける溶体化
処理ののち、人工時効を施す工程からなり、前記材料加
熱温度tと溶体化温度Tの間に、 T≦0.025t−24t+6280 の関係を有することを特徴とする請求項1記載のアルミ
ニウム鍛造部品の製造方法。
2. The mass ratio of Si: 0.40 to 1.30.
%, Mg: 0.60 to 1.20%, Cu: 0.15
0.50%, Cr: 0.04 to 0.35%, Fe: 0.
Aluminum alloy material containing 7% or less, Zn: 0.25% or less, Ti: 0.15% or less, Mn: 1.0% or less, aluminum and inevitable impurities at 450 ° C.
A hot forging by heating to a temperature t of not less than 560 ° C. and a solution heat treatment at a temperature T of not less than 520 ° C. and not more than 560 ° C., followed by artificial aging. 2. The method for manufacturing an aluminum forged part according to claim 1, wherein T has a relationship of T ≦ 0.025t 2 −24t + 6280.
【請求項3】 前記アルミニウム合金材料を温度tに加
熱したのち、50〜400℃に保持した金型を用いて粗
鍛造から仕上げまでの熱間鍛造を行ない、0.5〜12
時間の溶体化処理ののち、140〜200℃における
0.5〜12時間の人工時効を施すことを特徴とする請
求項2記載のアルミニウム鍛造部品の製造方法。
3. After the aluminum alloy material is heated to a temperature t, hot forging from rough forging to finishing is performed using a mold held at 50 to 400 ° C.
The method for producing an aluminum forged part according to claim 2, wherein after the solution treatment for a time, artificial aging is performed at 140 to 200C for 0.5 to 12 hours.
【請求項4】 前記熱間鍛造における粗鍛造から仕上げ
鍛造までの圧下率r(%)と加熱温度(t)と溶体化温
度(T)の間に、 T≦0.025(t−r−410)+520 の関係を有することを特徴とする請求項2記載のアルミ
ニウム鍛造部品の製造方法。
4. A method according to claim 1, wherein: T ≦ 0.025 (t−r−) between the reduction ratio r (%) from the rough forging to the finish forging in the hot forging, the heating temperature (t) and the solution temperature (T). 410) The method for manufacturing an aluminum forged part according to claim 2, wherein the method has a relationship of 2 + 520.
JP2001150200A 2001-05-18 2001-05-18 Manufacturing method of aluminum forged parts Expired - Lifetime JP4774630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001150200A JP4774630B2 (en) 2001-05-18 2001-05-18 Manufacturing method of aluminum forged parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001150200A JP4774630B2 (en) 2001-05-18 2001-05-18 Manufacturing method of aluminum forged parts

Publications (2)

Publication Number Publication Date
JP2002348630A true JP2002348630A (en) 2002-12-04
JP4774630B2 JP4774630B2 (en) 2011-09-14

Family

ID=18995250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001150200A Expired - Lifetime JP4774630B2 (en) 2001-05-18 2001-05-18 Manufacturing method of aluminum forged parts

Country Status (1)

Country Link
JP (1) JP4774630B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031424A1 (en) * 2002-10-01 2004-04-15 Asahi Tec Corporation Aluminum alloy for casting-forging, aluminum cast/forged article, and method for manufacture thereof
WO2007114078A1 (en) 2006-03-31 2007-10-11 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy forging member and process for producing the same
JP2009084698A (en) * 2003-11-10 2009-04-23 Showa Denko Kk Molding production method
DE112008000587T5 (en) 2007-03-14 2010-01-07 Kabushiki Kaisha Kobe Seiko Sho Forgings made of an aluminum alloy and process for their production
CN102330041A (en) * 2011-07-30 2012-01-25 湖南晟通科技集团有限公司 Aging heat treatment method for aluminium alloy section
CN102335704A (en) * 2011-09-22 2012-02-01 哈尔滨哈飞工业有限责任公司 Method for forging and forming structural parts of wheel chair rack
CN102844456A (en) * 2010-04-16 2012-12-26 昭和电工株式会社 Process for production of forged aluminum alloy member
US20170247782A1 (en) * 2016-02-29 2017-08-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Forged aluminum alloy having excellent strength and ductility and method for producing the same
CN109402539A (en) * 2018-11-29 2019-03-01 四川航天长征装备制造有限公司 A method of it improving rods and bars of aluminium alloy and radially extends rate
US20190218647A1 (en) * 2018-01-12 2019-07-18 Accuride Corporation Aluminum alloys for applications such as wheels and methods of manufacture
CN112355214A (en) * 2020-10-20 2021-02-12 湖南金天钛业科技有限公司 Preparation method of large-size forging for heavy rocket binding support
CN114346137A (en) * 2021-12-06 2022-04-15 中国科学院金属研究所 Hot processing preparation method of large-size titanium alloy bar with uniform thin banded structure
CN114799002A (en) * 2022-03-22 2022-07-29 西安聚能高温合金材料科技有限公司 Forging method of super-large-specification high-temperature alloy cake blank
CN115595518A (en) * 2022-11-30 2023-01-13 昆明冶金研究院有限公司(Cn) Forging heat treatment process for 7-series extruded aluminum alloy bar

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109371266B (en) * 2018-12-05 2020-08-18 中南大学 Production method of high-strength corrosion-resistant weldable Al-Mg-Si series alloy extrusion material
CN111304501A (en) * 2020-02-25 2020-06-19 广东吉源铝业有限公司 Production method of 6061 medium-thickness aluminum alloy plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249953A (en) * 1996-03-12 1997-09-22 Nippon Light Metal Co Ltd Production of aluminum extruded material forged product
JPH09249951A (en) * 1996-03-12 1997-09-22 Nippon Light Metal Co Ltd Production of aluminum forged product having fine structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249953A (en) * 1996-03-12 1997-09-22 Nippon Light Metal Co Ltd Production of aluminum extruded material forged product
JPH09249951A (en) * 1996-03-12 1997-09-22 Nippon Light Metal Co Ltd Production of aluminum forged product having fine structure

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031424A1 (en) * 2002-10-01 2004-04-15 Asahi Tec Corporation Aluminum alloy for casting-forging, aluminum cast/forged article, and method for manufacture thereof
JP2009084698A (en) * 2003-11-10 2009-04-23 Showa Denko Kk Molding production method
JP2013151754A (en) * 2003-11-10 2013-08-08 Showa Denko Kk Molding production method
WO2007114078A1 (en) 2006-03-31 2007-10-11 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy forging member and process for producing the same
US8152940B2 (en) 2006-03-31 2012-04-10 Kobe Steel, Ltd. Aluminum alloy forging member and process for producing the same
DE112008000587T5 (en) 2007-03-14 2010-01-07 Kabushiki Kaisha Kobe Seiko Sho Forgings made of an aluminum alloy and process for their production
US8372220B2 (en) 2007-03-14 2013-02-12 Kobe Steel, Ltd. Aluminum alloy forgings and process for production thereof
CN102844456A (en) * 2010-04-16 2012-12-26 昭和电工株式会社 Process for production of forged aluminum alloy member
CN102330041A (en) * 2011-07-30 2012-01-25 湖南晟通科技集团有限公司 Aging heat treatment method for aluminium alloy section
CN102335704A (en) * 2011-09-22 2012-02-01 哈尔滨哈飞工业有限责任公司 Method for forging and forming structural parts of wheel chair rack
US20170247782A1 (en) * 2016-02-29 2017-08-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Forged aluminum alloy having excellent strength and ductility and method for producing the same
KR20200106037A (en) * 2018-01-12 2020-09-10 애큐라이드코포레이션 Aluminum alloys and manufacturing methods for applications such as wheels
US11420249B2 (en) 2018-01-12 2022-08-23 Accuride Corporation Aluminum wheels and methods of manufacture
US10646914B2 (en) 2018-01-12 2020-05-12 Accuride Corporation Aluminum alloys for applications such as wheels and methods of manufacture
CN111770840B (en) * 2018-01-12 2023-04-07 阿库莱德公司 Aluminum wheel and method of manufacture
CN111770840A (en) * 2018-01-12 2020-10-13 阿库莱德公司 Aluminum wheel and method of manufacture
CN111770809A (en) * 2018-01-12 2020-10-13 阿库莱德公司 Aluminum alloy for applications such as wheels and method of manufacture
CN115198148A (en) * 2018-01-12 2022-10-18 阿库莱德公司 Aluminum alloy for applications such as wheels and method of manufacture
EP3737527A4 (en) * 2018-01-12 2021-10-20 Accuride Corporation Aluminum alloys for applications such as wheels and methods of manufacture
EP3737565A4 (en) * 2018-01-12 2021-10-20 Accuride Corporation Aluminum wheels and methods of manufacture
US20190218647A1 (en) * 2018-01-12 2019-07-18 Accuride Corporation Aluminum alloys for applications such as wheels and methods of manufacture
KR102417740B1 (en) * 2018-01-12 2022-07-08 애큐라이드코포레이션 Aluminum alloys and manufacturing methods for applications such as wheels
CN109402539A (en) * 2018-11-29 2019-03-01 四川航天长征装备制造有限公司 A method of it improving rods and bars of aluminium alloy and radially extends rate
CN112355214B (en) * 2020-10-20 2022-06-10 湖南金天钛业科技有限公司 Preparation method of large-size forging for heavy rocket binding support
CN112355214A (en) * 2020-10-20 2021-02-12 湖南金天钛业科技有限公司 Preparation method of large-size forging for heavy rocket binding support
CN114346137A (en) * 2021-12-06 2022-04-15 中国科学院金属研究所 Hot processing preparation method of large-size titanium alloy bar with uniform thin banded structure
CN114346137B (en) * 2021-12-06 2023-10-13 中国科学院金属研究所 Hot working preparation method of large-size titanium alloy bar with uniform ribbon-shaped structure
CN114799002A (en) * 2022-03-22 2022-07-29 西安聚能高温合金材料科技有限公司 Forging method of super-large-specification high-temperature alloy cake blank
CN114799002B (en) * 2022-03-22 2024-04-02 西安聚能高温合金材料科技有限公司 Forging method of ultra-large high-temperature alloy cake blank
CN115595518A (en) * 2022-11-30 2023-01-13 昆明冶金研究院有限公司(Cn) Forging heat treatment process for 7-series extruded aluminum alloy bar

Also Published As

Publication number Publication date
JP4774630B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP5561846B2 (en) High strength aluminum alloy material and manufacturing method thereof
JP2002348630A (en) Aluminum forged component and manufacturing method therefor
JPH111737A (en) Heat treated type 7000 series aluminum alloy with excellent corrosion resistance and high strength, and its production
EP0961841A1 (en) Process for producing aluminium alloy sheet
WO2006083982A2 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
WO2010113553A1 (en) Cu-co-si copper alloy for use in electronics, and manufacturing method therefor
EP3208361B1 (en) Method for producing aluminum alloy member, and aluminum alloy member obtained by same
JP3766357B2 (en) Aluminum alloy forging material for strength member and forging material
JP2000144296A (en) High-strength and high-toughness aluminum alloy forged material
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP2004315938A (en) Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
JP2001107168A (en) High strength and high toughness aluminum alloy forged material excellent in corrosion resistance
JP2004250738A (en) Al-Mg BASED ALLOY SHEET
JPH08269652A (en) Production of aluminum alloy extruded shape having excellent bendability and high strength
JPH10317114A (en) Manufacture of medium-strength al-mg-si alloy extruded material excellent in air hardening property
JP3516566B2 (en) Aluminum alloy for cold forging and its manufacturing method
JP4145454B2 (en) Wear-resistant aluminum alloy elongated body and method for producing the same
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JPH05247574A (en) Production of aluminum alloy for forging and forged product of aluminum alloy
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JP2001158951A (en) METHOD OF MANUFACTURING HIGH STRENGTH Al-Mg-Si-TYPE ALUMINUM ALLOY EXTRUDED MATERIAL, AND WORKING METHOD THEREFOR
JPH08269608A (en) High strength aluminum alloy excellent in formability and corrosion resistance
JP3684245B2 (en) Aluminum alloy for cold forging
JPH08283923A (en) Production of aluminum-magnesium alloy material having high corrosion resistance and high strength
JPH0610087A (en) High strength superplastic aluminum alloy excellent in corrosion resistance and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110506

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R150 Certificate of patent or registration of utility model

Ref document number: 4774630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

EXPY Cancellation because of completion of term