JP2001158951A - METHOD OF MANUFACTURING HIGH STRENGTH Al-Mg-Si-TYPE ALUMINUM ALLOY EXTRUDED MATERIAL, AND WORKING METHOD THEREFOR - Google Patents

METHOD OF MANUFACTURING HIGH STRENGTH Al-Mg-Si-TYPE ALUMINUM ALLOY EXTRUDED MATERIAL, AND WORKING METHOD THEREFOR

Info

Publication number
JP2001158951A
JP2001158951A JP2000217116A JP2000217116A JP2001158951A JP 2001158951 A JP2001158951 A JP 2001158951A JP 2000217116 A JP2000217116 A JP 2000217116A JP 2000217116 A JP2000217116 A JP 2000217116A JP 2001158951 A JP2001158951 A JP 2001158951A
Authority
JP
Japan
Prior art keywords
weight
extruded material
aluminum alloy
aging treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000217116A
Other languages
Japanese (ja)
Other versions
JP4179737B2 (en
Inventor
Masahito Yatsukura
政仁 谷津倉
Shigeru Okaniwa
茂 岡庭
Takayuki Tsuchida
孝之 土田
Teruhiro Mori
彰宏 毛利
Masakazu Iwase
正和 岩瀬
Kunihiro Yasunaga
晋拓 安永
Yasuyuki Hama
靖之 浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
Honda Motor Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nippon Light Metal Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000217116A priority Critical patent/JP4179737B2/en
Publication of JP2001158951A publication Critical patent/JP2001158951A/en
Application granted granted Critical
Publication of JP4179737B2 publication Critical patent/JP4179737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the progress of natural aging to aging treatment and to provide an Al-Mg-Si-type aluminum alloy extruded material with highly stabilized strength by aging treatment. SOLUTION: An Al-Mg-Si-type aluminum alloy is extruded, and the resultant extruded material is held at >=20 deg.C in the course from the point of time when extrusion is completed to the point of time when aging treatment is started. As the Al-Mg-Si-type aluminum alloy, an aluminum alloy which has a composition containing 0.2-0.9% Si, 0.4-1.2% Mg, 0.1-0.3% Fe, 0.005-0.2% Ti and 0.001-0.01% B and further containing, if necessary, one or more kinds among 0.01-0.35% Cu, 0.05-0.2% Cr, 0.05-0.2% Zr and 0.05-0.3% Mn is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高位に安定した強度を
もつAl−Mg−Si系アルミニウム合金押出材を製造
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an Al-Mg-Si based aluminum alloy extruded material having a high and stable strength.

【0002】[0002]

【従来の技術】Al−Mg−Si系アルミニウム合金
は、押出加工で所定形状に成形した後、Mg2Si等の
金属間化合物を析出させる時効処理によって高強度が付
与される。この長所を活用し、軽量で耐食性に優れてい
ることと併せて、車輌用機材,建築資材,作業用機器
等、広範な分野で使用されている。時効処理としては、
押出加工したAl−Mg−Si系アルミニウム合金を1
60〜220℃で時効処理するT5処理や、時効処理に
先立って溶体化処理及び焼入れを施すT6処理等が採用
されている。また、T5処理に属する熱処理ではある
が、押出加工直後にファン空冷,水焼入れ等で押出材を
冷却するダイス端焼入れも知られている。
BACKGROUND OF THE INVENTION Al-Mg-Si based aluminum alloy, after forming into a predetermined shape by extrusion, high strength is given by the aging treatment for precipitating an intermetallic compound such as Mg 2 Si. Taking advantage of this advantage, it is used in a wide range of fields, such as vehicle equipment, construction materials, and work equipment, in addition to being lightweight and excellent in corrosion resistance. As aging treatment,
Extruded Al-Mg-Si based aluminum alloy
T5 treatment for aging at 60 to 220 ° C. and T6 treatment for solution treatment and quenching prior to aging treatment are employed. Although it is a heat treatment belonging to the T5 treatment, a die end quenching for cooling an extruded material by air cooling with a fan, water quenching, or the like immediately after extrusion processing is also known.

【0003】[0003]

【発明が解決しようとする課題】時効処理でMg2Si
等が析出し、Al−Mg−Si系アルミニウム合金に強
度が付与される。ところが、同じ製造履歴をもったAl
−Mg−Si系アルミニウム合金押出材にあっても、時
効処理後の強度が異なる場合が散見される。強度変動の
原因を本発明者等が調査したところ、押出終了時点から
時効処理開始時点まで押出材が保管される条件が原因で
あることを見出した。本発明は、この知見に基づいて案
出されたものであり、時効処理までの間の保持条件を管
理することにより、時効処理で高位に安定した強度が付
与されるAl−Mg−Si系アルミニウム合金押出材を
提供することを目的とする。
SUMMARY OF THE INVENTION In the aging treatment, Mg 2 Si
And the like are precipitated to impart strength to the Al-Mg-Si-based aluminum alloy. However, Al with the same manufacturing history
-Even in the case of an extruded material of an Mg-Si-based aluminum alloy, the strength after aging treatment is sometimes different. When the present inventors investigated the cause of the strength fluctuation, they found that the cause was the condition in which the extruded material was stored from the end of extrusion to the start of aging treatment. The present invention has been devised based on this finding, and by controlling the holding conditions until the aging treatment, an Al-Mg-Si-based aluminum which is given a high and stable strength by the aging treatment. An object of the present invention is to provide an extruded alloy material.

【0004】[0004]

【課題を解決するための手段】本発明の製造方法は、こ
の目的を達成するため、押出直後の形材温度が510〜
560℃になるようにAl−Mg−Si系アルミニウム
合金を押し出し、450〜200℃間を50℃/分以上
の冷却速度で冷却した後、押出終了時点から時効処理の
開始時点までの工程間で押出材を20℃以上の温度に3
時間以上保持処理し、160〜220℃で2〜12時間
保持する時効処理を施すことを特徴とする。
According to the production method of the present invention, in order to achieve this object, the profile temperature immediately after extrusion is 510 to 510.
After extruding the Al-Mg-Si-based aluminum alloy to 560 ° C and cooling between 450 to 200 ° C at a cooling rate of 50 ° C / min or more, between the steps from the end of extrusion to the start of aging treatment. Extruded material at a temperature above 20 ° C
It is characterized by performing a aging treatment for holding for at least 160 hours at 160 to 220 ° C. for 2 to 12 hours.

【0005】押出終了時点から時効処理開始時点までの
工程間で押出材を20℃以上の温度に12時間以上保持
処理することにより製造されたアルミニウム合金押出材
は、固定金型と可動金型に通しながら可動金型を移動さ
せることにより曲げ加工される。Al−Mg−Si系ア
ルミニウム合金としては、Si:0.2〜0.9重量
%,Mg:0.4〜1.2重量%,Fe:0.1〜0.
3重量%,Ti:0.005〜0.2重量%,B:0.
001〜0.01重量%を含むアルミニウム合金が使用
される。
An aluminum alloy extruded material produced by holding an extruded material at a temperature of 20 ° C. or more for 12 hours or more between the steps from the end of extrusion to the start of aging treatment is transferred to a fixed mold and a movable mold. Bending is performed by moving the movable mold while passing. As an Al-Mg-Si-based aluminum alloy, Si: 0.2 to 0.9% by weight, Mg: 0.4 to 1.2% by weight, Fe: 0.1 to 0.
3% by weight, Ti: 0.005 to 0.2% by weight, B: 0.
An aluminum alloy containing 001 to 0.01% by weight is used.

【0006】更にCu:0.01〜0.4重量%,C
r:0.05〜0.2重量%,Zr:0.05〜0.2
重量%,Mn:0.05〜0.3重量%の1種又は2種
以上を含むAl−Mg−Si系アルミニウム合金を使用
する場合、押出し後にダイス端焼入れし、又は溶体化処
理して焼入れした後、焼入れ終了時点から時効処理の開
始時点まで工程間で押出材を45℃以上の温度に保持処
理する。押出材は、時効処理に先立ってダイス端焼入れ
やT6処理(溶体化→焼入れ)が施されることがある。
このような場合には、ダイス端焼入れ又は溶体化後の焼
入れ終了時点から時効処理の開始時点までの工程間で押
出材を20℃以上又は45℃以上の温度に保持処理す
る。
Further, Cu: 0.01 to 0.4% by weight, C
r: 0.05 to 0.2% by weight, Zr: 0.05 to 0.2
In the case of using an Al-Mg-Si-based aluminum alloy containing one or more of 0.05% to 0.3% by weight of Mn: 0.05 to 0.3% by weight, the die is quenched after extrusion or quenched by solution treatment. After the quenching, the extruded material is kept at a temperature of 45 ° C. or more between the steps from the end of the quenching to the start of the aging treatment. The extruded material may be subjected to die end quenching or T6 treatment (solution-hardening) before aging treatment.
In such a case, the extruded material is kept at a temperature of 20 ° C. or more or 45 ° C. or more between the steps from the end of quenching after die end quenching or quenching after solution treatment to the start of aging treatment.

【0007】[0007]

【作用】本発明者等は、時効処理で付与される強度の変
動原因について種々調査検討した結果、T5材にあって
は押出終了時点から時効処理までの時間,ダイス端焼入
れ材にあってはダイス端焼入れから時効処理までの時
間,T6材にあっては溶体化処理後の焼入れ終了時点か
ら時効処理までの期間に原因があることが判った。この
期間は時効処理炉が空炉になるまでの待ち時間であり、
押出材は工場内に放置されており、季節,天候等に応じ
て氷点下〜50℃程度の温度雰囲気に曝される。氷点下
〜50℃程度の温度域に押出材が長時間放置されると、
自然時効の進行状況が温度によって異なることが判っ
た。すなわち、温度に関係なく一定なものと従来考えら
れていた80℃未満の温度で進行する自然時効は、温度
によって異なる影響を時効処理後の強度に及ぼしてい
た。
The present inventors have conducted various investigations on the causes of the variation in strength imparted by the aging treatment. As a result, in the case of T5 material, the time from the end of extrusion to the aging treatment, and in the case of the die quenched material, It was found that there was a cause in the time from the quenching of the die end to the aging treatment, and in the case of T6 material, in the period from the end of quenching after the solution treatment to the aging treatment. This period is the waiting time until the aging furnace becomes an empty furnace,
The extruded material is left in the factory and is exposed to an atmosphere at a temperature below freezing to about 50 ° C. depending on the season, weather, and the like. If the extruded material is left for a long time in the temperature range of below freezing to about 50 ° C,
It was found that the progress of natural aging differs depending on the temperature. That is, the natural aging that proceeds at a temperature of less than 80 ° C., which was conventionally considered to be constant regardless of the temperature, had a different effect depending on the temperature on the strength after the aging treatment.

【0008】具体的には、180℃×6時間のT5処理
を施した6063アルミニウム合金押出材の0.2%耐
力に及ぼす保持温度及び保持時間の影響を示した図1に
みられるように、20℃以上の温度雰囲気に保持した押
出材を時効処理したものでは、押出加工後直ちに時効処
理した押出材と同等以上の耐力が得られる。これに対
し、20℃を下回る温度雰囲気に保持した押出材を時効
処理したものでは、押出加工後直ちに時効処理した押出
材に比較してかなり低い耐力しか得られなかった。ま
た、560℃×1時間の溶体化処理後に水焼入れし、1
80℃×6時間で時効処理するT6処理を施した606
1アルミニウム合金押出材では、図2にみられるように
45℃以上の温度雰囲気で保持処理するとき、押出加工
後直ちに時効処理した押出材と同等以上の耐力が得られ
ていた。この場合には、20℃の保持温度でも、保持時
間の如何によっては耐力が低下する傾向がみられる。
Specifically, as shown in FIG. 1, which shows the effect of the holding temperature and the holding time on the 0.2% proof stress of a 6063 aluminum alloy extruded material subjected to T5 treatment at 180 ° C. for 6 hours, When the extruded material held in the temperature atmosphere of 20 ° C. or more is subjected to the aging treatment, the yield strength equal to or higher than that of the extruded material subjected to the aging treatment immediately after the extrusion is obtained. On the other hand, the aging treatment of the extruded material held in an atmosphere at a temperature lower than 20 ° C. provided only a considerably lower proof stress as compared with the extruded material subjected to the aging treatment immediately after the extrusion. After solution treatment at 560 ° C. × 1 hour, water quenching
606 with T6 treatment for aging at 80 ° C for 6 hours
As shown in FIG. 2, when the aluminum alloy extruded material was subjected to the holding treatment at a temperature of 45 ° C. or more as shown in FIG. 2, a yield strength equal to or higher than that of the extruded material subjected to the aging treatment immediately after the extrusion was obtained. In this case, even at a holding temperature of 20 ° C., the proof stress tends to decrease depending on the holding time.

【0009】保持温度が時効処理後の強度に及ぼす影響
は次のように推察される。20℃を下回る温度雰囲気に
押出材を保持すると、耐力向上に寄与するGPゾーンよ
りも一般にクラスタと称されている耐力向上に寄与しな
い析出物が多く析出し、時効処理で析出させる耐力向上
に有効なMg2Si等が不足しがちになる。この傾向は
Cu,Cr,Zr,Mn等を含むAl−Mg−Si系合
金で顕著に現れ、45℃未満の保持温度でも耐力向上に
寄与しない析出物が多量に析出する。保持処理は、好ま
しくは3時間以上、更に好ましくは24時間以上に設定
される。3時間以上の保持処理により、耐力向上に寄与
する析出物が多量に析出し、当該析出物が時効処理時に
析出核となってMg2Si等の析出を促進させ、耐力を
一層上昇させる。保持処理が24時間を超えると、析出
物による耐力向上効果が飽和し、耐力が一定化した押出
材が得られる。
The effect of the holding temperature on the strength after the aging treatment is presumed as follows. When the extruded material is kept in an atmosphere at a temperature lower than 20 ° C., more precipitates that do not contribute to the improvement of the proof stress, which are generally called clusters, precipitate more than the GP zone that contributes to the improvement of the proof strength, and are effective in improving the proof strength to be deposited by aging treatment. Mg 2 Si or the like tends to be insufficient. This tendency is conspicuous in Al-Mg-Si alloys containing Cu, Cr, Zr, Mn, etc., and a large amount of precipitates that do not contribute to the improvement in proof stress are deposited even at a holding temperature of less than 45 ° C. The holding process is preferably set for 3 hours or more, more preferably 24 hours or more. By the holding treatment for 3 hours or more, a large amount of precipitates contributing to the improvement in proof stress are precipitated, and the precipitates become precipitation nuclei during the aging treatment to promote precipitation of Mg 2 Si or the like, thereby further increasing the proof stress. When the holding treatment is performed for more than 24 hours, the effect of improving the yield strength due to the precipitate is saturated, and an extruded material having a constant yield strength is obtained.

【0010】次いで、本発明が対象とするAl−Mg−
Si系アルミニウム合金の合金成分,含有量を説明す
る。 Si:0.2〜0.9重量% 時効処理時にMg2Siとして析出し、押出材に強度を
付与する合金成分である。十分な機械的強度を得るため
には、0.2重量%以上のSi含有量が必要である。し
かし、0.9重量%を超える過剰なSiが含まれると、
押出直後に押出材が冷却される過程でMg2Siが析出
し易くなり、時効処理時に強度向上に有効なMg2Si
の析出量が減少する。 Mg:0.4〜1.2重量% 時効処理時にMg2Siとして析出し、押出材に強度を
付与する合金成分である。十分な機械的強度を得るため
には、0.4重量%以上のMg含有量が必要である。し
かし、1.2重量%を超える過剰なMgが含まれると、
押出直後に押出材が冷却される過程でMg2Siが析出
し易くなり、時効処理時に強度向上に有効なMg2Si
の析出量が減少する。
Next, the Al-Mg-
The alloy components and contents of the Si-based aluminum alloy will be described. Si: 0.2 to 0.9% by weight An alloy component that precipitates as Mg 2 Si during aging treatment and imparts strength to the extruded material. In order to obtain sufficient mechanical strength, a Si content of 0.2% by weight or more is required. However, when excess Si exceeding 0.9% by weight is contained,
Extruded material is liable to Mg 2 Si precipitation in the process of being cooled immediately after extrusion, effective Mg 2 Si in improving the strength at the time of aging treatment
The amount of precipitation decreases. Mg: 0.4 to 1.2% by weight An alloy component that precipitates as Mg 2 Si during aging treatment and imparts strength to the extruded material. To obtain sufficient mechanical strength, a Mg content of 0.4% by weight or more is required. However, if an excess of more than 1.2% by weight of Mg is contained,
Extruded material is liable to Mg 2 Si precipitation in the process of being cooled immediately after extrusion, effective Mg 2 Si in improving the strength at the time of aging treatment
The amount of precipitation decreases.

【0011】Fe:0.1〜0.3重量% Al−Fe−Si相を生成し、押出材の結晶粒を微細化
することにより機械的性質を改善する合金成分である。
このような作用は、0.1重量%以上で顕著になる。し
かし、0.3重量%を超える過剰量のFeが含まれる
と、Al−Fe−Si相は量的に増加するものの、その
分だけSiが減少し、時効処理時に析出するMg2Si
が少なくなる。 Ti:0.005〜0.2重量% 鋳塊の結晶粒を微細化し、鋳造割れを抑制する作用を呈
する合金成分であり、0.005重量%以上でTi添加
の効果が顕著になる。しかし、0.2重量%を超える過
剰量のTi含有は、押出性を劣化させる。
Fe: 0.1 to 0.3% by weight An Al-Fe-Si alloy component that produces an Al-Fe-Si phase and refines the crystal grains of the extruded material to improve mechanical properties.
Such an effect becomes remarkable at 0.1% by weight or more. However, when an excessive amount of Fe exceeding 0.3% by weight is contained, although the Al—Fe—Si phase is increased in quantity, Si is reduced by that amount, and Mg 2 Si precipitated during aging treatment is reduced.
Is reduced. Ti: 0.005 to 0.2% by weight This is an alloy component that has the effect of refining the crystal grains of the ingot and suppressing casting cracks. At 0.005% by weight or more, the effect of adding Ti becomes remarkable. However, excessive Ti content exceeding 0.2% by weight deteriorates extrudability.

【0012】B:0.001〜0.01重量% 鋳塊の結晶粒を微細化し、鋳造割れを抑制する作用を呈
する合金成分であり、0.001重量%以上でB添加の
効果が顕著になる。しかし、0.01重量%を超える過
剰量のB含有は、押出性を劣化させる。 Cu:0.01〜0.4重量% 必要に応じて添加される合金成分であり、0.01重量
%以上で機械的強度を向上させる効果が顕著になる。し
かし、0.4重量%を超える過剰量のCuを添加する
と、押出直後に押出材が冷却される過程でMg2Siが
析出し易くなる。その結果、本発明で規定した冷却条件
下でも機械的強度向上に寄与しないMg2Siが析出
し、時効処理時に強度向上に有効なMg2Siの析出量
が減少する。
B: 0.001 to 0.01% by weight An alloy component which has the effect of refining the crystal grains of the ingot and suppressing casting cracks, and the effect of adding B is remarkable at 0.001% by weight or more. Become. However, excessive B content exceeding 0.01% by weight deteriorates extrudability. Cu: 0.01 to 0.4% by weight An alloy component added as necessary. When the content is 0.01% by weight or more, the effect of improving mechanical strength becomes remarkable. However, if an excessive amount of Cu exceeding 0.4% by weight is added, Mg 2 Si tends to precipitate in the process of cooling the extruded material immediately after extrusion. As a result, Mg 2 Si which does not contribute to the improvement of the mechanical strength under the cooling conditions specified in the present invention is precipitated, and the amount of Mg 2 Si which is effective for improving the strength during the aging treatment is reduced.

【0013】Cr:0.05〜0.2重量% Zr:0.05〜0.2重量% Mn:0.05〜0.3重量% Cr,Zr及びMnは、必要に応じて添加される合金成
分であり、ビレットを押出前に均質化処理するときに化
合物として析出し、押出時に組織の再結晶や再結晶粒の
粗大化を抑制する作用を呈し、押出材の軟化を防止す
る。また、耐食性の向上にも有効である。このような作
用は、Cr及びZrでは0.05重量%以上、Mnでは
0.05重量%以上で顕著になる。しかし、0.2重量
%を超える過剰量のCrやZr、又は0.3重量%を超
える過剰量のMnを添加すると、押出直後に押出材が冷
却される過程でMg2Siが析出し易くなる。その結
果、時効処理時に強度向上に有効なMg2Siの析出量
が減少する。
Cr: 0.05 to 0.2% by weight Zr: 0.05 to 0.2% by weight Mn: 0.05 to 0.3% by weight Cr, Zr and Mn are added as required. An alloy component, which precipitates as a compound when the billet is homogenized before extrusion, exhibits an action of suppressing recrystallization of the structure and coarsening of recrystallized grains during extrusion, and prevents softening of the extruded material. It is also effective in improving corrosion resistance. Such effects become remarkable at 0.05% by weight or more for Cr and Zr and 0.05% by weight or more for Mn. However, when an excessive amount of Cr or Zr exceeding 0.2% by weight or an excessive amount of Mn exceeding 0.3% by weight is added, Mg 2 Si tends to precipitate in a process of cooling the extruded material immediately after extrusion. Become. As a result, the amount of Mg 2 Si that is effective for improving the strength during the aging treatment is reduced.

【0014】押出加工 押出加工では、押出直後の形材温度が510〜560℃
の範囲になるように温度制御される。押出直後の形材温
度が510℃に満たないと、Mg,Siが十分に固溶せ
ず、後工程の時効処理で強度付与に必要な析出量が不足
しがちになる。逆に560℃を超える形材温度では、押
出後の再結晶粒組織が粗大化しやすく,機械的強度が低
下する傾向が示される。押出後の形材は、450〜20
0℃の温度域を冷却速度50℃/分以上で冷却される。
冷却速度をこのように制御するとき、押出材中にMg,
Si等が析出することが防止され、後工程の時効処理で
強度付与に必要な析出量が確保される。
Extrusion In extrusion, the temperature of the profile immediately after extrusion is 510-560 ° C.
The temperature is controlled so as to fall within the range. If the temperature of the profile immediately after extrusion is less than 510 ° C., Mg and Si do not form a solid solution, and the amount of precipitation necessary for imparting strength tends to be insufficient in the aging treatment in the subsequent step. Conversely, at a profile temperature exceeding 560 ° C., the recrystallized grain structure after extrusion tends to become coarse, and the mechanical strength tends to decrease. The shape after extrusion is 450-20
It is cooled at a cooling rate of 50 ° C./min or more in a temperature range of 0 ° C.
When controlling the cooling rate in this way, Mg,
Precipitation of Si and the like is prevented, and the amount of precipitation necessary for imparting strength is ensured in the aging treatment in a later step.

【0015】時効処理 押出材は、160〜220℃で2〜12時間保持するT
5処理が施される。T5処理によってMg2Si等が析
出し、押出材が時効硬化する。このときの時効条件は、
押出材の要求特性に応じて160〜220℃及び2〜1
2時間の範囲で加熱温度及び保持時間が適宜設定され
る。また、480〜580℃に1〜8時間保持する溶体
化処理後に焼入れし、同様な条件下で時効処理するT6
処理も採用可能である。押出材のマトリックスは、溶体
化処理によって過飽和固溶状態になり、160〜220
℃で2〜12時間保持することによりMg2Si等の析
出によって時効硬化する。この場合も、押出材の要求特
性に応じて160〜220℃及び2〜12時間の範囲で
加熱温度及び保持時間が適宜設定される。
The aging-treated extruded material is maintained at 160 to 220 ° C. for 2 to 12 hours.
Five processes are performed. By the T5 treatment, Mg 2 Si or the like precipitates, and the extruded material age hardens. The aging conditions at this time are:
160-220 ° C and 2-1 depending on the required properties of the extruded material
The heating temperature and the holding time are appropriately set within a range of 2 hours. T6 which is quenched after solution treatment at 480 to 580 ° C. for 1 to 8 hours and is aged under similar conditions
Processing can also be employed. The matrix of the extruded material is brought into a supersaturated solid solution state by the solution treatment, and
By holding at 2 ° C. for 2 to 12 hours, age hardening occurs due to precipitation of Mg 2 Si or the like. Also in this case, the heating temperature and the holding time are appropriately set in the range of 160 to 220 ° C. and 2 to 12 hours according to the required characteristics of the extruded material.

【0016】曲げ加工 押出材とほぼ同じ形状の挿通口を有する固定金型と可動
金型とを各々の挿通口が一直線になるように配置し、押
出材を固定金型の挿通口から可動金型の挿通口に向かっ
て押し込む。押出材の先端が可動金型の挿通口を通過し
たら、押出材の押し混みを継続しながら徐々に可動金型
を移動させることにより、押出材に自在な曲げ加工が施
される。可動金型の移動量は押出材のスプリングバック
量を考慮して決定されるが、この曲げ加工方法は一般に
マルチベンディングと呼ばれる方法であり、ドローベン
ディングやストレッチベンディング等の他の曲げ加工方
法より、スプリングバック量およびそのバラツキが大き
いため、より押出材の耐力を一定にしておく必要性があ
る。押出終了時点から時効処理開始時点までの工程間
で、押出材を20℃以上の温度で、保持処理しておくと
時効処理時に析出核となるMg2Si等の析出がおこる
が、保持時間が12時間を超えるとあまり析出がおこら
なくなり、押出材の耐力が一定となり、その結果寸法精
度に優れた曲げ加工材が得られる。更に保持処理を継続
し、保持時間が24時間を超えるとMg2Si等の析出
がほとんどなくなり、より寸法精度に優れた曲げ加工材
が得られる。
A fixed mold and a movable mold having an insertion opening having substantially the same shape as the bent extruded material are arranged so that the respective insertion openings are aligned, and the extruded material is moved from the insertion opening of the fixed mold to the movable mold. Push it into the mold opening. When the tip of the extruded material passes through the insertion opening of the movable mold, the extruded material can be freely bent by gradually moving the movable mold while continuously pushing and pushing the extruded material. The amount of movement of the movable mold is determined in consideration of the amount of springback of the extruded material, but this bending method is a method generally called multi-bending, which is different from other bending methods such as draw bending and stretch bending. Since the amount of springback and its variation are large, it is necessary to keep the proof strength of the extruded material constant. During the process from the end of the extrusion to the start of the aging treatment, when the extruded material is kept at a temperature of 20 ° C. or more, the precipitation nucleus such as Mg 2 Si during the aging treatment precipitates. When the time exceeds 12 hours, precipitation hardly occurs, and the yield strength of the extruded material becomes constant. As a result, a bent material having excellent dimensional accuracy can be obtained. When the holding process is further continued and the holding time exceeds 24 hours, precipitation of Mg 2 Si or the like hardly occurs, and a bent material having more excellent dimensional accuracy can be obtained.

【0017】[0017]

【実施例1】組成を表1に示したAl−Mg−Si系ア
ルミニウム合金1のビレットを580℃×2時間で均質
化処理した後、450℃に加熱し、100mm×100
mm,肉厚2mmの中空矩形断面をもつ長さ40mの押
出材を製造した。
Example 1 A billet of an Al-Mg-Si-based aluminum alloy 1 having a composition shown in Table 1 was homogenized at 580 ° C for 2 hours, and then heated to 450 ° C and 100 mm x 100
An extruded material having a length of 40 m and a hollow rectangular cross section having a thickness of 2 mm and a thickness of 2 mm was produced.

【0018】 [0018]

【0019】得られた各押出材を冷却速度70℃/分の
ファン空冷で520℃から室温まで冷却した後、時効処
理開始までの間、表2に示すように種々の時間及び温度
に保持した後、180℃×6時間の時効処理を施した。
時効処理された押出材の耐力を測定し、時効処理で付与
された耐力に及ぼす保持条件の影響を調査した。比較の
ため、押出直後に時効処理を施した押出材についても同
様に耐力測定した。表2の調査結果から明らかなよう
に、20℃以上の温度雰囲気で保持した押出材の耐力
は、押出直後に時効処理を施した押出材の耐力と同等以
上の値を示した。これに対し、10℃で12時間以上保
持した押出材では、時効処理で付与される強度が大幅に
低下していた。
Each of the obtained extruded materials was cooled from 520 ° C. to room temperature by a fan air cooling at a cooling rate of 70 ° C./min, and was kept at various times and temperatures as shown in Table 2 until the aging treatment was started. Thereafter, aging treatment was performed at 180 ° C. for 6 hours.
The proof stress of the aged extruded material was measured, and the effect of holding conditions on the proof stress imparted by the aging treatment was investigated. For comparison, the proof stress of the extruded material subjected to the aging treatment immediately after the extrusion was similarly measured. As is evident from the investigation results in Table 2, the proof stress of the extruded material held in a temperature atmosphere of 20 ° C. or higher showed a value equal to or higher than that of the extruded material subjected to the aging treatment immediately after extrusion. On the other hand, in the extruded material held at 10 ° C. for 12 hours or more, the strength imparted by the aging treatment was significantly reduced.

【0020】 [0020]

【0021】[0021]

【実施例2】Al−Mg−Si系アルミニウム合金2の
ビレットを580℃×2時間で均質化処理した後、48
0℃に加熱し、100mm×100mm,肉厚2mmの
中空矩形断面をもつ長さ40mの形状に押し出した。各
押出材に、540℃×1時間→水冷のT6処理を施し
た。T6処理された各押出材を時効処理開始までの間、
表3に示すように種々の時間及び温度に保持した後、1
80℃×6時間の時効処理を施した。時効処理された押
出材の耐力を測定し、時効処理で付与された耐力に及ぼ
す保持条件の影響を調査した。比較のため、焼入れ終了
後直ちに時効処理を施した押出材についても同様に耐力
測定した。表3の調査結果から明らかなように、溶体化
処理後の焼入れ終了から時効処理までの間を40℃以上
の温度雰囲気で保持した押出材の耐力は、押出直後に時
効処理を施した押出材の耐力と同等の値を示した。これ
に対し、20℃で3時間以上保持した押出材では、時効
処理で付与される強度が大幅に低下していた。
Example 2 After a billet of an Al—Mg—Si based aluminum alloy 2 was homogenized at 580 ° C. for 2 hours,
It was heated to 0 ° C. and extruded into a 40 mm long shape having a hollow rectangular cross section of 100 mm × 100 mm and a thickness of 2 mm. Each extruded material was subjected to T6 treatment of 540 ° C. × 1 hour → water cooling. Until the aging treatment is started for each extruded material subjected to T6 treatment,
After holding for various times and temperatures as shown in Table 3,
An aging treatment was performed at 80 ° C. for 6 hours. The proof stress of the aged extruded material was measured, and the effect of holding conditions on the proof stress imparted by the aging treatment was investigated. For comparison, the proof strength of the extruded material immediately after quenching was measured similarly. As is clear from the investigation results in Table 3, the proof strength of the extruded material kept at a temperature of 40 ° C. or more from the end of quenching after the solution treatment to the aging treatment was as follows. A value equivalent to the yield strength was shown. On the other hand, in the extruded material held at 20 ° C. for 3 hours or more, the strength imparted by the aging treatment was significantly reduced.

【0022】 [0022]

【0023】[0023]

【実施例3】実施例1で製造された押出材(100×1
00mm、肉厚2mmの中空材)を23℃の雰囲気で保
持処理した後、図3に示すように固定金型1と可動金型
2に押通し方向Dに通過速度90cm/分で通しなが
ら、可動金型2の曲率半径Rが200mmとなるように
移動させ、押出材Mを曲げ加工した。加工された押出材
Mの形状を測定して押出材Mの曲率半径rを求め、曲率
半径rに及ぼす保持処理の影響を調査した。
Example 3 The extruded material (100 × 1) produced in Example 1
After a hollow material having a thickness of 00 mm and a thickness of 2 mm) is held in an atmosphere at 23 ° C., the material is passed through the fixed mold 1 and the movable mold 2 in the pushing direction D at a passing speed of 90 cm / min as shown in FIG. The extruded material M was bent by moving the movable mold 2 so that the radius of curvature R became 200 mm. The radius of curvature r of the extruded material M was determined by measuring the shape of the processed extruded material M, and the effect of the holding treatment on the radius of curvature r was investigated.

【0024】表4の調査結果にみられるように、保持時
間が0時間と12時間とでは、保持温度20℃の場合に
79.5mm(49.3+30.2mm),保持温度4
0℃の場合に199mm(139.2+59.8mm)
と、加工された押出材Mの曲率半径rの差が大きくなっ
ていた。すなわち、12時間未満の保持温度では、保持
温度が僅かに異なるだけでスプリングバック量が大きく
変わることが判る。これに対し、保持温度が12時間と
24時間とでは、保持温度が20℃の場合に17.5m
m,保持温度が40℃の場合に24.1mmと、同じ1
2時間の違いでも加工された押出材Mの曲率半径rの差
が小さくなっている。この傾向は、保持時間が長時間に
なるほど顕著になっている。したがって、12時間以上
に保持時間を設定するとき、保持時間が変化してもスプ
リングバック量が大きく変化しないことがわかる。
As can be seen from the investigation results in Table 4, when the holding time is 0 hour and 12 hours, when the holding temperature is 20 ° C., 79.5 mm (49.3 + 30.2 mm) and the holding temperature 4
199mm (139.2 + 59.8mm) at 0 ° C
And the difference in the radius of curvature r of the processed extruded material M was large. That is, when the holding temperature is less than 12 hours, the amount of springback greatly changes even if the holding temperature is slightly different. On the other hand, when the holding temperature is 20 ° C. when the holding temperature is 12 hours and 24 hours, 17.5 m
m, 24.1 mm when the holding temperature is 40 ° C., the same 1
The difference in the radius of curvature r of the processed extruded material M is small even with a difference of 2 hours. This tendency becomes more remarkable as the holding time becomes longer. Therefore, when the holding time is set to 12 hours or more, it is understood that the springback amount does not change significantly even if the holding time changes.

【0025】 [0025]

【0026】[0026]

【発明の効果】以上に説明したように、本発明において
は、押出終了時点又は溶体化処理後の焼入れ終了時点か
ら時効処理開始時点まで間、20℃以上の雰囲気で押出
材を保持することによって、自然時効の進展をコントロ
ールしている。そのため、時効処理で強度付与に有効な
Mg2Si等の析出量が確保され、高位に安定した強度
をもつ時効処理材が得られる。
As described above, in the present invention, the extruded material is held in an atmosphere of 20 ° C. or more from the end of extrusion or the end of quenching after solution treatment to the start of aging treatment. , Controlling the progress of natural aging. Therefore, the amount of precipitation of Mg 2 Si or the like effective for imparting strength is secured by the aging treatment, and an aging material having a high and stable strength can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 6063−T5材の耐力値に及ぼす保持温度
及び保持時間の影響を示したグラフ
FIG. 1 is a graph showing the effect of holding temperature and holding time on the proof stress value of a 6063-T5 material.

【図2】 6061−T6材の耐力値に及ぼす保持温度
及び保持時間の影響を示したグラフ
FIG. 2 is a graph showing the effect of holding temperature and holding time on the proof stress value of the 6061-T6 material.

【図3】 押出材の曲げ加工を説明する図FIG. 3 is a diagram illustrating bending of an extruded material.

【符号の説明】[Explanation of symbols]

1:固定金型 2:可動金型 R:可動金型の曲率半径 M:押出形材 D:押通
し方向
1: fixed mold 2: movable mold R: radius of curvature of movable mold M: extruded material D: pushing direction

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 602 C22F 1/00 602 612 612 630 630A 683 683 691 691B 692 692A 693 693A 693B (72)発明者 岡庭 茂 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 土田 孝之 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 毛利 彰宏 静岡県庵原郡蒲原町蒲原161番地 日本軽 金属株式会社蒲原製造所内 (72)発明者 岩瀬 正和 大阪府堺市下田町20番1号 日本軽金属株 式会社大阪工場内 (72)発明者 安永 晋拓 埼玉県和光市中央一丁目4番1号 株式会 社本田技術研究所内 (72)発明者 浜 靖之 埼玉県和光市中央一丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 4E029 AA06 EA05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 602 C22F 1/00 602 612 612 630 630 630A 683 683 691 691B 692 692A 693 693A 693B (72) Invention Person Shigeru Owaniwa 1-34-1 Kambara, Kambara-cho, Abara-gun, Shizuoka Prefecture Inside the Nippon Light Metal Co., Ltd. Group Technical Center (72) Inventor Takayuki Tsuchida 1-34-1 Kambara, Kambara-cho, Abara-gun, Shizuoka Prefecture Nippon Light Metal Group Technology Inside the center (72) Inventor Akihiro Mori 161 Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture Inside the Nippon Light Metal Co., Ltd.Kamahara Factory (72) Inventor Masakazu Iwase 20-1, Shimoda-cho, Sakai-shi, Osaka Nippon Light Metal Corporation Osaka Plant (72) Inventor Shintaku Yasunaga Sai Prefecture Wako center chome No. 4 No. 1 stock company Honda intra-technology Research Institute (72) inventor beach Yasuyuki Wako, Saitama center chome No. 4 No. 1 stock company Honda R & D in the F-term (reference) 4E029 AA06 EA05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 押出直後の形材温度が510〜560℃
になるようにAl−Mg−Si系アルミニウム合金を押
し出し、450〜200℃間を50℃/分以上の冷却速
度で冷却した後、押出終了時点から時効処理の開始時点
までの工程間で押出材を20℃以上の温度に3時間以上
保持処理し、160〜220℃で2〜12時間保持する
時効処理を施すことを特徴とする高強度Al−Mg−S
i系アルミニウム合金の製造方法。
1. The temperature of a profile immediately after extrusion is 510 to 560 ° C.
An Al-Mg-Si-based aluminum alloy is extruded so as to obtain an extruded material between 450-200 ° C at a cooling rate of 50 ° C / min or more and between the end of extrusion and the start of aging treatment. Characterized in that a high-strength Al-Mg-S is subjected to a holding treatment at a temperature of 20 ° C or higher for 3 hours or more, and an aging treatment at 160 to 220 ° C for 2 to 12 hours.
A method for producing an i-based aluminum alloy.
【請求項2】 Si:0.2〜0.9重量%,Mg:
0.4〜1.2重量%,Fe:0.1〜0.3重量%,
Ti:0.005〜0.2重量%,B:0.001〜
0.01重量%を含み、残部が実質的にAlの組成をも
つAl−Mg−Si系アルミニウム合金を使用する請求
項1記載のAl−Mg−Si系アルミニウム合金押出材
の製造方法。
2. Si: 0.2 to 0.9% by weight, Mg:
0.4 to 1.2% by weight, Fe: 0.1 to 0.3% by weight,
Ti: 0.005 to 0.2% by weight, B: 0.001 to
The method for producing an extruded Al-Mg-Si-based aluminum alloy according to claim 1, wherein an Al-Mg-Si-based aluminum alloy containing 0.01% by weight and a balance substantially having an Al composition is used.
【請求項3】 Si:0.2〜0.9重量%,Mg:
0.4〜1.2重量%,Fe:0.1〜0.3重量%,
Ti:0.005〜0.2重量%,B:0.001〜
0.01重量%を含み、更にCu:0.01〜0.4重
量%,Cr:0.05〜0.2重量%,Zr:0.05
〜0.2重量%,Mn:0.05〜0.3重量%の1種
又は2種以上を含むAl−Mg−Si系アルミニウム合
金を押し出した後、ダイス端焼入れし、又は溶体化処理
して焼入れした後、焼入れ終了時点から時効処理の開始
時点までの工程間で押出材を45℃以上の温度に保持処
理することを特徴とする高強度Al−Mg−Si系アル
ミニウム合金の製造方法。
3. Si: 0.2 to 0.9% by weight, Mg:
0.4 to 1.2% by weight, Fe: 0.1 to 0.3% by weight,
Ti: 0.005 to 0.2% by weight, B: 0.001 to
0.01% by weight, Cu: 0.01 to 0.4% by weight, Cr: 0.05 to 0.2% by weight, Zr: 0.05
After extruding an Al-Mg-Si-based aluminum alloy containing one or more of 0.2 to 0.2% by weight and Mn: 0.05 to 0.3% by weight, a die end quenching or solution treatment is performed. A method for producing a high-strength Al-Mg-Si-based aluminum alloy, comprising: extruding a material at a temperature of 45 ° C or higher between the steps from the end of quenching to the start of aging after quenching.
【請求項4】 押出終了時点から時効処理開始時点まで
の工程間で押出材を20℃以上の温度に12時間以上保
持処理することにより製造された請求項2記載のアルミ
ニウム合金押出材を、固定金型と可動金型に通しながら
可動金型を移動させることにより曲げ加工することを特
徴とするアルミニウム合金押出材の加工方法。
4. The aluminum alloy extruded material according to claim 2, which is produced by holding the extruded material at a temperature of 20 ° C. or more for 12 hours or more between steps from the end of extrusion to the start of aging treatment. A method for processing an extruded aluminum alloy, wherein the bending is performed by moving the movable mold while passing through the mold and the movable mold.
JP2000217116A 1999-09-22 2000-07-18 Method for producing high-strength Al-Mg-Si-based aluminum alloy extruded material and its processing method Expired - Fee Related JP4179737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000217116A JP4179737B2 (en) 1999-09-22 2000-07-18 Method for producing high-strength Al-Mg-Si-based aluminum alloy extruded material and its processing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-269270 1999-09-22
JP26927099 1999-09-22
JP2000217116A JP4179737B2 (en) 1999-09-22 2000-07-18 Method for producing high-strength Al-Mg-Si-based aluminum alloy extruded material and its processing method

Publications (2)

Publication Number Publication Date
JP2001158951A true JP2001158951A (en) 2001-06-12
JP4179737B2 JP4179737B2 (en) 2008-11-12

Family

ID=26548698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000217116A Expired - Fee Related JP4179737B2 (en) 1999-09-22 2000-07-18 Method for producing high-strength Al-Mg-Si-based aluminum alloy extruded material and its processing method

Country Status (1)

Country Link
JP (1) JP4179737B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452430B2 (en) * 2002-10-10 2008-11-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for reforming A1 alloy castings
CN101856676A (en) * 2010-06-18 2010-10-13 上海交通大学 Thin plate production method by extruding and extending sheet of spiral line type
CN102808120A (en) * 2012-07-26 2012-12-05 上海友升铝业有限公司 Al-mg-si series aluminum alloy and preparation method thereof
WO2019159810A1 (en) * 2018-02-19 2019-08-22 株式会社Uacj Method for manufacturing aluminum alloy member
CN112981194A (en) * 2021-02-09 2021-06-18 东莞市东联铝业有限公司 Anti-wrinkling aluminum profile and preparation method thereof
CN113492159A (en) * 2020-03-18 2021-10-12 郭涛 Preparation process of aluminum alloy section for wind power tower ladder stand and foot stick
US11345980B2 (en) 2018-08-09 2022-05-31 Apple Inc. Recycled aluminum alloys from manufacturing scrap with cosmetic appeal
CN116179877A (en) * 2022-12-30 2023-05-30 山东兖矿轻合金有限公司 Zr-containing high-strength fine-grain 6-series aluminum alloy extrusion bar and manufacturing method and application thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452430B2 (en) * 2002-10-10 2008-11-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for reforming A1 alloy castings
CN101856676A (en) * 2010-06-18 2010-10-13 上海交通大学 Thin plate production method by extruding and extending sheet of spiral line type
CN102808120A (en) * 2012-07-26 2012-12-05 上海友升铝业有限公司 Al-mg-si series aluminum alloy and preparation method thereof
WO2019159810A1 (en) * 2018-02-19 2019-08-22 株式会社Uacj Method for manufacturing aluminum alloy member
JPWO2019159810A1 (en) * 2018-02-19 2021-03-18 株式会社Uacj Manufacturing method of aluminum alloy member
JP7249321B2 (en) 2018-02-19 2023-03-30 株式会社Uacj Method for manufacturing aluminum alloy member
US11345980B2 (en) 2018-08-09 2022-05-31 Apple Inc. Recycled aluminum alloys from manufacturing scrap with cosmetic appeal
CN113492159A (en) * 2020-03-18 2021-10-12 郭涛 Preparation process of aluminum alloy section for wind power tower ladder stand and foot stick
CN112981194A (en) * 2021-02-09 2021-06-18 东莞市东联铝业有限公司 Anti-wrinkling aluminum profile and preparation method thereof
CN116179877A (en) * 2022-12-30 2023-05-30 山东兖矿轻合金有限公司 Zr-containing high-strength fine-grain 6-series aluminum alloy extrusion bar and manufacturing method and application thereof

Also Published As

Publication number Publication date
JP4179737B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP6955483B2 (en) High-strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability and its manufacturing method
KR20060133996A (en) Method for producing al-mg-si alloy excellent in bake-hardenability and hemmability
CN111004950B (en) 2000 aluminium alloy section bar and its manufacturing method
CN111424200B (en) High-strength high-heat-resistance low-scandium-silver-added Al-Cu-Mg alloy and heat treatment process thereof
JPH07197219A (en) Production of aluminum alloy sheet for forming
JP2024088721A (en) Manufacturing method of aluminum alloy forging material
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP2002348630A (en) Aluminum forged component and manufacturing method therefor
CN109680194B (en) Preparation method of high-strength extruded section of Mg-Zn-Sn-Mn alloy
JP2001158951A (en) METHOD OF MANUFACTURING HIGH STRENGTH Al-Mg-Si-TYPE ALUMINUM ALLOY EXTRUDED MATERIAL, AND WORKING METHOD THEREFOR
WO2015111438A1 (en) Underbracket for two-wheeled vehicle and three-wheeled vehicle, and production method for same
JP3670706B2 (en) Method for producing high-strength aluminum alloy extrusion mold with excellent bending workability
JP2002235158A (en) Method for producing high strength aluminum alloy extrusion shape material having excellent bending workability
JPH10317114A (en) Manufacture of medium-strength al-mg-si alloy extruded material excellent in air hardening property
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
JPH10317113A (en) Production of aluminum extruded shape excellent in bendability
JPH10183287A (en) Aluminum alloy for cold forging and its production
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JPH05247574A (en) Production of aluminum alloy for forging and forged product of aluminum alloy
JPH1112675A (en) Production of aluminum alloy for hot forging and hot forged product
JP4011270B2 (en) Method for producing Al-Mg-Si-based aluminum alloy extruded material and processing method thereof
KR102012952B1 (en) Aluminium alloy and manufacturing method thereof
JP2000104149A (en) Production of aluminum-manganese alloy rolling stock having fine recrystallized grain structure
JP2002241880A (en) Aluminum alloy extrusion profile material having excellent bending workability and production method therefor
JPH05171328A (en) Thin hollow shape of aluminum alloy excellent in bendability and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070306

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140905

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees