JPH0610087A - High strength superplastic aluminum alloy excellent in corrosion resistance and its manufacture - Google Patents

High strength superplastic aluminum alloy excellent in corrosion resistance and its manufacture

Info

Publication number
JPH0610087A
JPH0610087A JP19476392A JP19476392A JPH0610087A JP H0610087 A JPH0610087 A JP H0610087A JP 19476392 A JP19476392 A JP 19476392A JP 19476392 A JP19476392 A JP 19476392A JP H0610087 A JPH0610087 A JP H0610087A
Authority
JP
Japan
Prior art keywords
aluminum alloy
corrosion resistance
less
alloy
subjected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19476392A
Other languages
Japanese (ja)
Inventor
Takehiko Eto
江藤武比古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19476392A priority Critical patent/JPH0610087A/en
Publication of JPH0610087A publication Critical patent/JPH0610087A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To develop a clad material made of a high strength superplastic Al alloy excellent in corrosion resistance by cladding the core material made of an Al-Zn-Mg-Cu alloy having a specified compsn. with the surface material of an Al-Zn alloy under specified temp. conditions. CONSTITUTION:The ingot of the Al alloy contg., as essential components, by weight, 3 to 8% Zn, 1 to 3% Mg and 1 to 3% Cu and furthermore contg. one or >= two kinds among 0.05 to 1.0% Mn, 0.05 to 0.5% Cr, 0.05 to 0.5% Zr and <0.10% Ti is subjected to homogenizing heat treatment at 400 to 550 deg.C and is thereafter subjected to hot rolling into the lamellar core material having <=25mum grain size, and the sheet material of the Al-Zn alloy contg., as essential components, 0.8 to 1.3% Zn is formed into the surface material, and they are formed into a clad material in which the cladding ratio is regulated to 2 to 4% per single face, which is subjected to hot cladding rolling at 300 to 500 deg.C into the clad material. This clad material is subjected to annealing by holding under heating of two stages at 350 to 550 deg.C, is cooled at >=100 deg.C/hr cooling rate, is thereafter subjected to cold rolling of at least >=50% and is heated to 400 to 550 deg.C at >=500 deg.C/hr temp. raising rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超塑性アルミニウム合金
及びその製造方法に関し、更に詳しくは、耐食性に優れ
た高強度超塑性アルミニウム合金合わせて板及びその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superplastic aluminum alloy and a method for producing the same, and more particularly to a high strength superplastic aluminum alloy laminated plate having excellent corrosion resistance and a method for producing the same.

【0002】本発明において、超塑性とは、適当な温度
と変形条件のもとで材料がくびれや破断なしに数100
%以上の大きい伸びを示す現象を云う。
In the present invention, the term "superplasticity" means that the material is several hundreds without constriction or breakage under appropriate temperature and deformation conditions.
It means a phenomenon showing a large elongation of not less than%.

【0003】[0003]

【従来の技術及び発明が解決しようとする課題】一般
に、微細結晶粒超塑性を起こさせるためには、結晶粒を
例えば25μm以下等に微細にすることが必要である。
本発明者らは、航空機に主として採用されている超々ジ
ュラルミン(7075アルミニウム合金)をもとに鋭意研
究を重ねた結果、特許第1,388,413号(特公昭6
1−57383号)『超塑性アルミニウム合金の製造方
法』に示す方法で、500%もの伸びを有する超塑性材
を開発し提案した。
2. Description of the Related Art Generally, it is necessary to make crystal grains fine, for example, 25 μm or less, in order to cause fine crystal grain superplasticity.
The present inventors have conducted extensive research based on ultra-super duralumin (7075 aluminum alloy) that is mainly used in aircraft, and as a result, Patent No. 1,388,413 (Japanese Patent Publication No. Sho 6).
No. 1-57383) "Method for producing superplastic aluminum alloy", a superplastic material having an elongation of 500% was developed and proposed.

【0004】しかし、この材料では、超塑性加工後、材
料は475℃で溶体化処理後、通常は最高強度約570
〜580N/mm2を得るためにT6時効されるが、耐食
性を付与するために過時効処理(T76或いはT73)を
行うと、強度は約500〜510N/mm2へと10〜1
5%低下してしまうという欠点があった。
However, in this material, after superplastic working, the material is subjected to solution treatment at 475 ° C., and usually has a maximum strength of about 570.
T6 is aged to obtain ~ 580 N / mm 2, but if overageing treatment (T76 or T73) is performed to impart corrosion resistance, the strength is increased to about 500-510 N / mm 2 to 10-1.
There was a drawback that it decreased by 5%.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術における欠点を解消して、耐食性に優れた高強度微細
粒超塑性アルミニウム合金及びその製造方法を提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a high-strength fine-grain superplastic aluminum alloy excellent in corrosion resistance and a method for producing the same by solving the above-mentioned drawbacks of the prior art. .

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記課題
を解決するために新たな方策について鋭意研究を重ねた
結果、従来から、航空機用アルミニウム合金の耐食性向
上の一つとして行われていたクラッド材化の適用のもと
で高強度を維持し得ることを見い出し、ここに本発明を
完成したものである。
Means for Solving the Problems As a result of intensive studies on new measures for solving the above-mentioned problems, the present inventors have hitherto carried out as one of improvement of corrosion resistance of aluminum alloys for aircraft. It was found that high strength can be maintained under the application of a clad material, and the present invention has been completed here.

【0007】すなわち、本発明は、Zn:3〜8%、Mg:
1〜3%及びCu:1〜3%以下を必須元素として含有
し、更にMn:0.05〜1.0%、Cr:0.05〜0.5
%、Zr:0.05〜0.5%及びTi:0.10%以下の中
から選んだ1種又は2種以上を含有し、残部Al及び不
純物からなる組成で結晶粒径が25μm以下のアルミニ
ウム合金を芯材とし、Zn:0.8〜1.3%を必須元素と
して含有し、残部Al及び不純物からなる組成のアルミ
ニウム合金の皮材をクラッド率が片面で2〜4%にて合
わせ板としたことを特徴とする耐食性に優れた高強度超
塑性アルミニウム合金を要旨とするものである。
That is, according to the present invention, Zn: 3 to 8%, Mg:
1 to 3% and Cu: 1 to 3% are contained as essential elements, and Mn: 0.05 to 1.0%, Cr: 0.05 to 0.5.
%, Zr: 0.05 to 0.5% and Ti: 0.10% or less, and a composition having a balance Al and impurities and having a crystal grain size of 25 μm or less. Aluminum alloy is used as core material, Zn: 0.8-1.3% is contained as an essential element, and aluminum alloy skin material of the composition consisting of balance Al and impurities is combined at a clad ratio of 2-4% on one side. The gist is a high-strength superplastic aluminum alloy excellent in corrosion resistance, which is characterized by being a plate.

【0008】また、その製造方法は、Zn:3〜8%、M
g:1〜3%及びCu:1〜3%以下を必須元素として含有
し、更にMn:0.05〜1.0%、Cr:0.05〜0.5
%、Zr:0.05〜0.5%及びTi:0.10%以下の中
から選んだ1種又は2種以上を含有し、残部Al及び不
純物からなる組成のアルミニウム合金を400〜550
℃の温度で均質化熱処理し熱間圧延して芯材とし、Zn:
0.8〜1.3%を必須元素として含有し、残部Al及び
不純物からなる組成のアルミニウム合金を皮材として、
300〜500℃の温度における熱間合わせ圧延により
片面或いは両面のクラッド材とした後、350〜550
℃の温度において2段階の加熱保持焼鈍を行い、100
℃/hr以上の冷却速度で冷却した後、少なくとも50%
以上の冷間圧延を行った後、500℃/hr以上の速度で
400〜550℃の温度に加熱することを特徴とするも
のである。
The manufacturing method is as follows: Zn: 3-8%, M
g: 1 to 3% and Cu: 1 to 3% or less are contained as essential elements, and Mn: 0.05 to 1.0%, Cr: 0.05 to 0.5.
%, Zr: 0.05 to 0.5%, and Ti: 0.10% or less, and an aluminum alloy having a composition of Al and impurities, which is 400 to 550.
Homogenizing heat treatment at a temperature of ℃ and hot rolling to make a core, Zn:
An aluminum alloy containing 0.8 to 1.3% as an essential element with the balance Al and impurities as a skin material,
After hot-rolling at a temperature of 300 to 500 ° C. into a clad material on one side or both sides, 350 to 550
Two-step heating and holding annealing is performed at a temperature of ℃,
After cooling at a cooling rate of ℃ / hr or more, at least 50%
After performing the above cold rolling, it is characterized by heating to a temperature of 400 to 550 ° C. at a rate of 500 ° C./hr or more.

【0009】以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0010】[0010]

【作用】[Action]

【0011】先ず、本発明に係る超塑性アルミニウム合
金における芯材の成分組成の限定理由について説明す
る。
First, the reasons for limiting the component composition of the core material in the superplastic aluminum alloy according to the present invention will be described.

【0012】Zn:Znは強度を付与する元素であり、3
%未満では十分な強度を得ることができず、また、8%
を超える含有量では耐食性が損なわれる。よって、Zn
含有量は3〜8%とする。
Zn: Zn is an element that imparts strength, and 3
If it is less than%, sufficient strength cannot be obtained, and 8%
If the content exceeds 1, the corrosion resistance will be impaired. Therefore, Zn
The content is 3-8%.

【0013】Mg:Mgは強度を付与する元素であり、1
%未満では十分な強度を得ることができず、また、3%
を超える含有量では冷間圧延性が損なわれる。よって、
Mg含有量は1〜3%とする。
Mg: Mg is an element that imparts strength, and 1
If less than%, sufficient strength cannot be obtained, and 3%
If the content exceeds 1, the cold rollability is impaired. Therefore,
The Mg content is 1-3%.

【0014】Cu:Cuは強度を付与する元素であり、1
%未満では十分な強度を得ることができず、また、3%
を超える含有量では冷間圧延性、延性が損なわれる。よ
って、Cu含有量は1〜3%とする。
Cu: Cu is an element that imparts strength, and 1
If less than%, sufficient strength cannot be obtained, and 3%
If the content exceeds the range, cold rolling property and ductility are impaired. Therefore, the Cu content is 1-3%.

【0015】また、これらの成分を必須元素として含有
するほか、以下のMn、Cr、Zr、Tiの1種又は2種以
上を適量にて添加させる必要がある。
In addition to containing these components as essential elements, it is necessary to add one or more of the following Mn, Cr, Zr and Ti in appropriate amounts.

【0016】Mn、Cr、Zr:Mn、Cr、Zrは、それぞ
れ0.05%未満では後述するような微細な結晶粒を得
ることができず、また、Mnが1.0%、Crが0.5%、
Zrが0.5%を超えて含有すると、鋳造時に巨大化合物
の生成を招き、十分な超塑性伸びが得られない。よっ
て、Mn含有量は0.05〜1.0%、Cr含有量は0.0
5〜0.5%、Zr含有量は0.05〜0.5%とする。
Mn, Cr, Zr: If Mn, Cr, and Zr are less than 0.05%, fine crystal grains as described later cannot be obtained, and Mn is 1.0% and Cr is 0%. .5%,
If the Zr content exceeds 0.5%, a huge compound is produced during casting and sufficient superplastic elongation cannot be obtained. Therefore, the Mn content is 0.05 to 1.0% and the Cr content is 0.0.
The content of Zr is 5 to 0.5%, and the Zr content is 0.05 to 0.5%.

【0017】Ti:Tiは鋳塊を微細組織にするために通
常添加されるもので、0.10%を超えて添加すると、
鋳造時に巨大化合物の生成を招き、十分な超塑性伸びが
得られない。よって、Ti含有量は0.10%以下とす
る。
Ti: Ti is usually added in order to make the ingot have a fine structure, and when added in excess of 0.10%,
Enormous superplastic elongation cannot be obtained because of the formation of huge compounds during casting. Therefore, the Ti content is set to 0.10% or less.

【0018】なお、不純物として含有され得るFe、Si
は、多く含有するとCu2FeAl7、Mg2Si等の不溶性の
金属間化合物(晶出物)の生成を招き、超塑性伸びの低下
を招くので、Fe:0.15%以下、Si:0.15%以下
に抑制するのが望ましい。
Fe and Si which may be contained as impurities
When it is contained in a large amount, it causes the formation of insoluble intermetallic compounds (crystallized substances) such as Cu 2 FeAl 7 , Mg 2 Si, etc., which leads to a decrease in the superplastic elongation. Therefore, Fe: 0.15% or less, Si: 0 It is desirable to suppress it to 0.15% or less.

【0019】次に、本発明に係る超塑性アルミニウム合
金における皮材の成分組成の限定理由について説明す
る。
Next, the reasons for limiting the component composition of the skin material in the superplastic aluminum alloy according to the present invention will be described.

【0020】Zn:Znは、上記Al−Zn−Mg−Cu系の
芯材に対し、皮材が犠牲陽極作用を持つように、かつ、
芯材よりも電位が卑になるように添加される元素である
が、0.8%未満では十分な犠牲陽極作用を付与でき
ず、また1.3%を超える含有量では、皮材自体の耐食
性と芯材との電位差が小さくなり、犠牲陽極作用が小さ
くなる。よって、Zn含有量は0.8〜1.3%とする。
Zn: Zn is such that the skin material has a sacrificial anode action with respect to the Al-Zn-Mg-Cu-based core material, and
It is an element added so that the electric potential becomes baser than that of the core material, but if it is less than 0.8%, a sufficient sacrificial anode action cannot be imparted, and if it exceeds 1.3%, the skin material itself Corrosion resistance and the potential difference between the core material are reduced, and the sacrificial anode action is reduced. Therefore, the Zn content is 0.8 to 1.3%.

【0021】なお、不純物として含有され得るFe、Si
は、芯材の場合と同様、多く含有すると、Cu2FeA
l7、Mg2Si等の不溶性の金属間化合物(晶出物)の生成
を招き、超塑性伸びの低下を招くので、Fe:0.15%
以下、Si:0.15%以下に抑制するのが望ましい。
Fe and Si which may be contained as impurities
As in the case of the core material, if a large amount is contained, Cu 2 FeA
Fe: 0.15% because it causes the formation of insoluble intermetallic compounds (crystallized substances) such as l 7 and Mg 2 Si, which leads to a decrease in superplastic elongation.
Hereinafter, it is desirable to suppress Si: 0.15% or less.

【0022】上記芯材及び皮材からなる超塑性アルミニ
ウム合金の製造方法について説明する。
A method of manufacturing a superplastic aluminum alloy composed of the above core material and skin material will be described.

【0023】先ず、芯材となるAl合金鋳塊を400〜
550℃に加熱し、鋳塊内部のミクロ偏析の均質化を行
い、熱間圧延により所定の板厚とし、芯材とする。熱間
圧延温度は300〜500℃が望ましい。
First, an Al alloy ingot as a core material is
The mixture is heated to 550 ° C. to homogenize the microsegregation inside the ingot, and is hot-rolled to a predetermined plate thickness to obtain a core material. The hot rolling temperature is preferably 300 to 500 ° C.

【0024】次いで、この芯材に対して上記組成の皮材
を片面或いは両面に重ねてから、望ましくは400〜5
50℃の温度に再加熱して、300〜500℃の温度に
おいて熱間合わせ圧延を行って所定の板厚まで加工す
る。これにより、芯材及び皮材は熱間ファイバー組織に
なるのと同時に、Mn、Cr、Zrの遷移元素の一部が部
分析出する。ここで、クラッド率は片面で2〜4%が好
ましい。2%未満では皮材の犠牲陽極作用が十分でな
く、良好な耐食性が得られず、また4%を超えると皮材
の強度は芯材よりも小さいので、材料全体の強度が小さ
くなるので好ましくない。
Next, a skin material having the above composition is laminated on one side or both sides of this core material, and preferably 400 to 5
It is reheated to a temperature of 50 ° C., hot-rolled at a temperature of 300 to 500 ° C., and processed to a predetermined plate thickness. As a result, the core material and the skin material have a hot fiber structure, and at the same time, a part of the transition elements of Mn, Cr and Zr are partially precipitated. Here, the clad rate is preferably 2 to 4% on one side. If it is less than 2%, the sacrificial anode action of the skin material is not sufficient and good corrosion resistance cannot be obtained, and if it exceeds 4%, the strength of the skin material is smaller than that of the core material, so that the strength of the entire material becomes small, which is preferable. Absent.

【0025】この熱間圧延後に、350〜550℃の温
度において2段階の加熱保持焼鈍を行う。具体的には、
この温度範囲で、高温にて第1回目の加熱保持を行った
後、次いで低温にて第2回目の加熱保持を行うのが好ま
しい。例えば、先ず450〜550℃の温度で0.5〜
10hrの第1回目の加熱保持を行い、続いて第2回目の
加熱保持温度まで冷却し、350〜450℃の温度で
0.5〜50hrの第2回目の加熱保持を行い、100℃
/hrの冷却速度で冷却する。いずれの加熱保持も温度が
高いほど時間は短時間でよい。
After this hot rolling, two-step heating and holding annealing is performed at a temperature of 350 to 550.degree. In particular,
In this temperature range, it is preferable that the first heating and holding is performed at a high temperature and then the second heating and holding is performed at a low temperature. For example, first, at a temperature of 450 to 550 ° C, 0.5 to 0.5
The first heating and holding for 10 hours is performed, followed by cooling to the second heating and holding temperature, and the second heating and holding for 0.5 to 50 hours at a temperature of 350 to 450 ° C, and 100 ° C.
Cool at a cooling rate of / hr. In any case of heating and holding, the higher the temperature, the shorter the time.

【0026】この加熱保持において、第1回目の加熱保
持により、溶質元素はその大部分が固溶され、続いて第
2回目の加熱保持により、Mn、Cr、Zrの遷移元素は
Alとの金属間化合物MnAl6、Cr2Mg3Al18、ZrAl3
等が析出する。また、Zn、Mg、CuとAlとの高温時効
析出物が形成され、冷間圧延時に生成される転位の密度
がより高くなるなり、より微細な結晶粒が生成されて超
塑性伸びの大きい材料が得られる。この2段階の加熱保
持焼鈍後の冷却速度が100℃/hr未満になると微細粒
が得られなくなる。
In this heating and holding, most of the solute elements are solid-solved by the first heating and holding, and subsequently, the transition elements of Mn, Cr, and Zr are metal with Al by the second heating and holding. Intercalation compound MnAl 6 , Cr 2 Mg 3 Al 18 , ZrAl 3
Etc. are deposited. Further, high temperature aging precipitates of Zn, Mg, Cu and Al are formed, the density of dislocations generated during cold rolling becomes higher, and finer crystal grains are generated, resulting in a material having a large superplastic elongation. Is obtained. If the cooling rate after the two-step heating and holding annealing is less than 100 ° C./hr, fine particles cannot be obtained.

【0027】この後、50%以上の冷間圧延を行う。5
0%未満の冷間圧延では高い歪みエネルギーが蓄積され
ず、微細粒が得られない。
Thereafter, cold rolling of 50% or more is performed. 5
With cold rolling of less than 0%, high strain energy is not accumulated and fine grains cannot be obtained.

【0028】最後に、500℃/hr以上の加熱速度で4
00〜550℃の温度に加熱すると、所期の25μm以
下の微細粒材が得られる。昇温速度が500℃/hr未満
では、400℃以下の温度域では微細粒は得られない。
また550℃を超える温度では材料がバーニング(共晶
融解)を起こす恐れがあるので好ましくない。
Finally, at a heating rate of 500 ° C./hr or more, 4
When heated to a temperature of 00 to 550 ° C., a desired fine-grained material of 25 μm or less is obtained. If the heating rate is less than 500 ° C./hr, fine particles cannot be obtained in the temperature range of 400 ° C. or less.
Further, if the temperature exceeds 550 ° C., the material may cause burning (eutectic melting), which is not preferable.

【0029】一般に、超塑性変形応力σは、結晶粒径d
と以下のような関係で表わされる。すなわち、σ∝(1
/d2)〜(1/d3)である。したがって、結晶粒が微細
なことが強く要求され、本材料の例では芯材の結晶粒径
が25μm以下でないと、500%以上の伸びが期待で
きない。よって、芯材の結晶粒径は25μm以下に制御
する。
In general, the superplastic deformation stress σ is the grain size d
And the following relationship. That is, σ∝ (1
/ D 2 ) to (1 / d 3 ). Therefore, it is strongly required that the crystal grains are fine, and in the example of this material, elongation of 500% or more cannot be expected unless the crystal grain size of the core material is 25 μm or less. Therefore, the crystal grain size of the core material is controlled to 25 μm or less.

【0030】次ぎに本発明の実施例を示す。Next, examples of the present invention will be shown.

【0031】[0031]

【実施例1】[Example 1]

【表1】 表1に示す成分組成のAl−Zn−Mg−Cu系合金の芯材
鋳塊(厚さ100mm)を480℃×12hrの均質化熱処理
した後、熱間圧延により板材にして芯材とした。次い
で、これにAl−1wt%Zn(7072合金)からなる皮材
を重ね、480℃に再加熱後、熱間合わせ圧延で所定の
クラッド材とした。クラッド率は航空機材の標準の3%
とした。次いで、表2に示す製造条件で最終板厚2.0m
mの合わせ板を製造した。
[Table 1] A core material ingot (thickness: 100 mm) of an Al—Zn—Mg—Cu alloy having the composition shown in Table 1 was homogenized and heat-treated at 480 ° C. for 12 hours, and then hot-rolled into a plate material. Then, a skin material made of Al-1 wt% Zn (7072 alloy) was superposed thereon, reheated to 480 ° C., and then hot-rolled to obtain a predetermined clad material. Clad rate is 3% of the standard for aircraft materials
And Then, under the manufacturing conditions shown in Table 2, the final plate thickness is 2.0 m.
An m laminated board was manufactured.

【表2】 [Table 2]

【0032】これらの合わせ板の超塑性特性を表2に示
す。なお、高温変形は温度515℃、歪み速度2×10
-4/secにおいて行った。また、耐食性試験はASTM
規格のEXCO試験(剥離腐食試験)を行った。
Table 2 shows the superplastic properties of these laminated plates. The high temperature deformation is 515 ° C. and the strain rate is 2 × 10.
-4 / sec. Also, the corrosion resistance test is ASTM
A standard EXCO test (exfoliation corrosion test) was performed.

【0033】表2より明らかなように、本発明例は、従
来の耐食性改善熱処理材T76以上の耐食性が得られ、
強度はT6材並みの高い強度が得られている。
As is clear from Table 2, in the examples of the present invention, the corrosion resistance of the conventional heat treatment material for improving corrosion resistance T76 or more was obtained,
The strength is as high as T6 material.

【0034】[0034]

【実施例2】表1に示すNo.2組成(Al−5.7%Zn−
2.3%Mg−1.6%Cu−0.20Cr)の芯材鋳塊(厚さ
100mm)を480℃×12hrの均質化熱処理した後、
熱間圧延により板材として芯材とした。次いで、表3
Example 2 No. 2 composition (Al-5.7% Zn-) shown in Table 1
After a core ingot (thickness: 100 mm) of 2.3% Mg-1.6% Cu-0.20 Cr) was homogenized and heat-treated at 480 ° C. for 12 hours,
A core material was obtained as a plate material by hot rolling. Then, Table 3

【表3】 に示す組成のAl合金皮材(不純物等は芯材組成並み)を
重ね、480℃に再加熱後、熱間合わせ圧延で所定のク
ラッド材とした。クラッド率は航空機材の標準の3%と
した。次いで、表2に示す製造条件No.1のもとで最終
板厚2.0mmの合わせ板を製造した。
[Table 3] The Al alloy skin material having the composition shown in (1) was piled up (impurities and the like were the same as the core material composition), reheated to 480 ° C., and hot-rolled to obtain a predetermined clad material. The clad rate was 3%, which is the standard for aircraft materials. Then, a laminated plate having a final plate thickness of 2.0 mm was manufactured under the manufacturing conditions No. 1 shown in Table 2.

【0035】これらの合わせ板の超組成特性を表3に示
す。なお、高温変形は温度515℃、歪み速度2×10
-4/secにおいて行った。また、耐食性試験はASTM
規格のEXCO試験(剥離腐食試験)を行った。
Table 3 shows the super-compositional characteristics of these laminated plates. The high temperature deformation is 515 ° C. and the strain rate is 2 × 10.
-4 / sec. Also, the corrosion resistance test is ASTM
A standard EXCO test (exfoliation corrosion test) was performed.

【0036】表3より明らかなように、本発明例は、従
来の耐食性改善熱処理材T76以上の耐食性が得られて
いる。
As is clear from Table 3, in the examples of the present invention, the corrosion resistance of the conventional heat treatment material for improving corrosion resistance T76 or more was obtained.

【0037】[0037]

【発明の効果】以上詳述したように、本発明によれば、
高い強度を持ちつつ、優れた耐食性を有する超塑性アル
ミニウム合金を提供できるので、複雑な形状の部品、数
の多い子部品をアッセンブリして作られる部品の製造を
一体成形で行うことができるという特徴を有し、航空機
産業等に好適である。
As described in detail above, according to the present invention,
Since it is possible to provide a superplastic aluminum alloy that has high strength and excellent corrosion resistance, it is possible to integrally mold parts that are made by assembling parts with complicated shapes and many child parts. And is suitable for the aircraft industry and the like.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で(以下、同じ)、Zn:3〜8%、
Mg:1〜3%及びCu:1〜3%以下を必須元素として含
有し、更にMn:0.05〜1.0%、Cr:0.05〜0.5
%、Zr:0.05〜0.5%及びTi:0.10%以下の中
から選んだ1種又は2種以上を含有し、残部Al及び不
純物からなる組成で結晶粒径が25μm以下のアルミニ
ウム合金を芯材とし、Zn:0.8〜1.3%を必須元素と
して含有し、残部Al及び不純物からなる組成のアルミ
ニウム合金の皮材をクラッド率が片面で2〜4%にて合
わせ板としたことを特徴とする耐食性に優れた高強度超
塑性アルミニウム合金。
1. By weight% (hereinafter the same), Zn: 3-8%,
It contains Mg: 1 to 3% and Cu: 1 to 3% as an essential element, and Mn: 0.05 to 1.0%, Cr: 0.05 to 0.5%.
%, Zr: 0.05 to 0.5% and Ti: 0.10% or less, and a composition having a balance Al and impurities and having a crystal grain size of 25 μm or less. Aluminum alloy is used as core material, Zn: 0.8-1.3% is contained as an essential element, and aluminum alloy skin material of the composition consisting of balance Al and impurities is combined at a clad ratio of 2-4% on one side. A high-strength superplastic aluminum alloy with excellent corrosion resistance, characterized by being a plate.
【請求項2】 Zn:3〜8%、Mg:1〜3%及びCu:1
〜3%以下を必須元素として含有し、更にMn:0.05
〜1.0%、Cr:0.05〜0.5%、Zr:0.05〜0.
5%及びTi:0.10%以下の中から選んだ1種又は2
種以上を含有し、残部Al及び不純物からなる組成のア
ルミニウム合金を400〜550℃の温度で均質化熱処
理し熱間圧延して芯材とし、Zn:0.8〜1.3%を必須
元素として含有し、残部Al及び不純物からなる組成の
アルミニウム合金を皮材として、300〜500℃の温
度における熱間合わせ圧延により片面或いは両面のクラ
ッド材とした後、350〜550℃の温度において2段
階の加熱保持焼鈍を行い、100℃/hr以上の冷却速度
で冷却した後、少なくとも50%以上の冷間圧延を行っ
た後、500℃/hr以上の速度で400〜550℃の温
度に加熱することを特徴とする耐食性に優れた高強度超
塑性アルミニウム合金の製造方法。
2. Zn: 3 to 8%, Mg: 1 to 3% and Cu: 1
~ 3% or less is contained as an essential element, and Mn: 0.05
~ 1.0%, Cr: 0.05-0.5%, Zr: 0.05-0.5.
1% or 2 selected from 5% and Ti: 0.10% or less
An aluminum alloy containing at least one species and having a composition consisting of the balance Al and impurities is homogenized at 400 to 550 ° C., hot-rolled into a core material, and Zn: 0.8 to 1.3% is an essential element. As a clad material on one side or both sides by hot-rolling at a temperature of 300 to 500 ° C., using an aluminum alloy having a composition of Al and impurities as a skin, and then performing two steps at a temperature of 350 to 550 ° C. After heat-holding and annealing, and cooling at a cooling rate of 100 ° C / hr or more, at least 50% or more of cold rolling is performed, and then heated to a temperature of 400 to 550 ° C at a rate of 500 ° C / hr or more. A method for producing a high-strength superplastic aluminum alloy having excellent corrosion resistance, which is characterized by the following.
JP19476392A 1992-06-29 1992-06-29 High strength superplastic aluminum alloy excellent in corrosion resistance and its manufacture Pending JPH0610087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19476392A JPH0610087A (en) 1992-06-29 1992-06-29 High strength superplastic aluminum alloy excellent in corrosion resistance and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19476392A JPH0610087A (en) 1992-06-29 1992-06-29 High strength superplastic aluminum alloy excellent in corrosion resistance and its manufacture

Publications (1)

Publication Number Publication Date
JPH0610087A true JPH0610087A (en) 1994-01-18

Family

ID=16329837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19476392A Pending JPH0610087A (en) 1992-06-29 1992-06-29 High strength superplastic aluminum alloy excellent in corrosion resistance and its manufacture

Country Status (1)

Country Link
JP (1) JPH0610087A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243250A (en) * 2013-05-29 2013-08-14 湖南鑫材合金有限公司 Formula, smelting process and application of Al-Zn-Mg-Cu alloy
US10155553B2 (en) 2014-07-23 2018-12-18 Topy Kogyo Kabushiki Kaisha Crawler device
CN113751524A (en) * 2021-08-19 2021-12-07 山东南山铝业股份有限公司 Production and preparation process of aviation O-state coated 7-series aluminum alloy skin sheet
CN113996655A (en) * 2021-08-19 2022-02-01 山东南山铝业股份有限公司 Preparation method of 7075 aluminum alloy clad skin sheet for T6-state aviation
CN115821177A (en) * 2022-11-29 2023-03-21 武汉大学 Strengthening and toughening method for precipitation strengthening type aluminum alloy and application thereof
CN116891965A (en) * 2023-07-28 2023-10-17 东莞市东铝铝业有限公司 Novel high-altitude anti-falling aluminum alloy material and preparation method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243250A (en) * 2013-05-29 2013-08-14 湖南鑫材合金有限公司 Formula, smelting process and application of Al-Zn-Mg-Cu alloy
US10155553B2 (en) 2014-07-23 2018-12-18 Topy Kogyo Kabushiki Kaisha Crawler device
CN113751524A (en) * 2021-08-19 2021-12-07 山东南山铝业股份有限公司 Production and preparation process of aviation O-state coated 7-series aluminum alloy skin sheet
CN113996655A (en) * 2021-08-19 2022-02-01 山东南山铝业股份有限公司 Preparation method of 7075 aluminum alloy clad skin sheet for T6-state aviation
CN115821177A (en) * 2022-11-29 2023-03-21 武汉大学 Strengthening and toughening method for precipitation strengthening type aluminum alloy and application thereof
CN115821177B (en) * 2022-11-29 2024-01-05 武汉大学 Precipitation strengthening type aluminum alloy strengthening and toughening method and application thereof
CN116891965A (en) * 2023-07-28 2023-10-17 东莞市东铝铝业有限公司 Novel high-altitude anti-falling aluminum alloy material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP3194742B2 (en) Improved lithium aluminum alloy system
US5759302A (en) Heat treatable Al alloys excellent in fracture touchness, fatigue characteristic and formability
US6056835A (en) Superplastic aluminum alloy and process for producing same
JP3222903B2 (en) Aluminum base alloy sheet product and method of manufacturing the same
EP0961841B1 (en) Process for producing aluminium alloy sheet
EP0062469B1 (en) Method for producing fine-grained, high strength aluminum alloy material
CN112996935A (en) 7XXX series aluminum alloy products
EP3676410B1 (en) High-strength, highly formable aluminum alloys and methods of making the same
EP0030070A1 (en) Method for producing aircraft stringer material
US6918975B2 (en) Aluminum alloy extrusions having a substantially unrecrystallized structure
JP3022922B2 (en) Method for producing plate or strip material with improved cold rolling characteristics
JPH0995750A (en) Aluminum alloy excellent in heat resistance
US4410370A (en) Aircraft stringer material and method for producing the same
JPH076022B2 (en) Aluminum alloy for glitter disk wheels
JPH0610087A (en) High strength superplastic aluminum alloy excellent in corrosion resistance and its manufacture
JPH05112840A (en) Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture
JP3145904B2 (en) Aluminum alloy sheet excellent in high speed superplastic forming and its forming method
JPS6339661B2 (en)
JPH05247574A (en) Production of aluminum alloy for forging and forged product of aluminum alloy
JPH07116567B2 (en) Method for producing A1-Cu-Li-Zr superplastic plate
JPH0713275B2 (en) High-strength stress corrosion cracking resistant aluminum-based powder metallurgy alloy
KR102566987B1 (en) High strength aluminum-zinc-magnesium-cooper alloy thick plate and method of manufacturing the same
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture
JPS6296643A (en) Superplastic aluminum alloy
JPS62170462A (en) Manufacture of superplastic aluminum alloy material