JP2002313318A - リチウム二次電池 - Google Patents

リチウム二次電池

Info

Publication number
JP2002313318A
JP2002313318A JP2001112426A JP2001112426A JP2002313318A JP 2002313318 A JP2002313318 A JP 2002313318A JP 2001112426 A JP2001112426 A JP 2001112426A JP 2001112426 A JP2001112426 A JP 2001112426A JP 2002313318 A JP2002313318 A JP 2002313318A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
material layer
particles
crystalline polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001112426A
Other languages
English (en)
Inventor
Satoshige Nanai
識成 七井
Kenichi Morigaki
健一 森垣
Yasuyuki Shibano
靖幸 柴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001112426A priority Critical patent/JP2002313318A/ja
Publication of JP2002313318A publication Critical patent/JP2002313318A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

(57)【要約】 【課題】 従来よりも効果的に過充電時の発熱を抑制す
ることができ、熱安定性が高く、高率放電特性に優れた
リチウム二次電池を提供する。 【解決手段】 コバルト酸リチウムを活物質とする正
極、炭素材料を活物質とする負極、および前記正極と負
極との間に介在する電解質層からなるリチウム二次電池
であって、前記正極が、芯材に支持された内側活物質層
およびその表面に形成された外側活物質層を有し、前記
外側活物質層は、活物質粒子、導電助剤粒子、バインダ
ー樹脂および結晶性ポリマー粒子を含んでおり、前記外
側活物質層に含まれる前記結晶性ポリマー粒子の量が、
前記活物質粒子と前記導電助剤粒子の合計100重量部
あたり2〜6重量部であることを特徴とするリチウム二
次電池。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、電子機器の電源な
どに利用可能なリチウムイオン二次電池およびリチウム
ポリマー二次電池に関する。
【0002】
【従来の技術】携帯電話、ノート型パーソナルコンピュ
ータ、カメラ内蔵ビデオレコーダなどの電子機器の性能
向上に伴い、機器の消費電力は増大する傾向にある。ま
た、電子機器の一層の小型化や、携帯機器の駆動時間の
長期化も要望されている。そして、これらの要望を満た
す必要から、小型かつ高容量の二次電池が要望されてい
る。最近では、リチウム二次電池などの非水電解質二次
電池が、エネルギー密度の高い電池として注目されてお
り、その高容量化が進められている。
【0003】ここで、リチウムイオン二次電池は、エネ
ルギー密度が高いうえに、電解液の溶媒として、水でな
く有機溶媒を用いている。そのため、過充電などによる
発熱への対策が重要となる。この対策として、一般に
は、電池に機械的な安全機構や安全回路が設けられてい
る。また、リチウムポリマー二次電池は、ポリアクリロ
ニトリルなどを含むゲル状電解質を有するため、発熱時
の安全性が向上することが知られているが、リチウム二
次電池のエネルギー密度が高くなるにつれて、過充電へ
の対策や電池の熱安定性の向上の必要性も高まってく
る。
【0004】そこで、特開平11−329503号公報
では、電極に安全機構を持たせることが提案されてい
る。この方法では、電極に熱可塑性重合体を含有させる
必要がある。しかし、この方法においては、正極に含ま
れる全ての熱可塑性重合体が吸熱して軟化するまでに時
間がかかる、発熱抑制の効果を得るのに必要な熱可塑性
重合体の量が多い、などの問題がある。
【0005】また、電解液との親和性がよくない熱可塑
性重合体を用いると、正極内部の電解液量が不足するた
め、選択可能な熱可塑性重合体の種類が限定されるとい
う問題がある。正極内部の電解液量が不足すると、電池
の高率放電特性が大きく損なわれる。
【0006】さらに、例えばポリオレフィン系重合体を
含む電極合剤を用いて電極を製造する場合、合剤中の活
物質粒子と重合体とが分離しやすく、極板の製造が困難
である。これを防ぐには、バインダーの量を増やした
り、粘着性の高いエラストマー部、例えばポリブタジエ
ン部などを含んだ共重合体を用いたりする必要がある。
従って、電極合剤におけるバインダーの含有量が高くな
り、高充填密度の極板を得ることが困難となる。
【0007】
【発明が解決しようとする課題】本発明は、上記問題点
を解決するものであり、従来よりも効果的に過充電時の
発熱を抑制することができ、熱安定性が高く、高率放電
特性に優れたリチウム二次電池を提供することを目的と
する。
【0008】
【課題を解決するための手段】本発明は、コバルト酸リ
チウムを活物質とする正極、炭素材料を活物質とする負
極、および前記正極と負極との間に介在する電解質層か
らなるリチウム二次電池であって、前記正極が、芯材に
支持された内側活物質層およびその表面に形成された外
側活物質層を有し、前記外側活物質層は、活物質粒子、
導電助剤粒子、バインダー樹脂および結晶性ポリマー粒
子を含んでおり、前記外側活物質層に含まれる前記結晶
性ポリマー粒子の量が、前記活物質粒子と前記導電助剤
粒子の合計100重量部あたり2〜6重量部であること
を特徴とするリチウム二次電池に関する。ここで、前記
内側活物質層には、結晶性ポリマー粒子は含まれていな
い。
【0009】前記結晶性ポリマー粒子は、ポリオレフィ
ンからなり、その表面に酸素原子が導入されていること
が好ましい。また、前記結晶性ポリマー粒子は、ポリエ
チレンまたはエチレンと重合性不飽和結合を有するカル
ボン酸誘導体モノマーとの共重合体からなることが好ま
しい。
【0010】
【発明の実施の形態】本発明に用いる正極は、その表面
部分に結晶性ポリマー粒子を含んだ外側活物質層を有す
る。結晶性ポリマー粒子は、電解質層と接触する外側活
物質層に分布するため、過充電時に正極表面近傍で発生
した熱を効率よく吸収して軟化もしくは溶融する。その
ため、電池温度の急激な上昇が緩和される。
【0011】外側活物質層で溶融したポリマーは、電解
質層と正極との間の物質移動を抑制する障壁にもなる。
過充電時の発熱は、電解質層から正極に流入する低分子
量物質が正極で反応して継続することがある。従って、
発熱量を少なくするには、電解質層から正極への物質移
動を抑制することが効果的であると考えられる。
【0012】外側活物質層のみに結晶性ポリマー粒子を
含ませることは重要である。過充電時の発熱は、電解質
層と正極との界面付近から始まる。また、全ての結晶性
ポリマー粒子が吸熱して軟化もしくは溶融するまでの時
間は、結晶性ポリマー粒子が存在する層の厚さが薄い
程、短くなる。従って、外側活物質層のみに結晶性ポリ
マー粒子を含ませることにより、感度よく温度上昇を抑
制する効果が発揮される。
【0013】外側活物質層のみに結晶性ポリマー粒子を
含ませる場合、結晶性ポリマー粒子の必要量は少なくて
よい。このことは、正極のエネルギー密度を向上させる
観点からも有利である。加えて、外側活物質層のみに結
晶性ポリマー粒子を含ませる場合、電解液との親和性が
よくない結晶性ポリマーを用いても、正極内部の電解液
が不足するという懸念がない。従って、選択可能な結晶
性ポリマーの種類が限定されることもない。
【0014】結晶性ポリマーは、外側活物質層に粒子と
して分散させることが必要である。結晶性ポリマーを粒
子状で用いず、溶媒に溶かして正極活物質粒子と混練す
ることにより、外側活物質層に均一に分散させた場合、
活物質の表面に結晶性ポリマーが付着し、正極内のイオ
ン伝導を阻害することがある。
【0015】結晶性ポリマーは、イオン伝導に寄与させ
るものではないので、その種類に特に限定はない。ポリ
マー粒子の結晶性は、高い方が望ましい。結晶性の高い
ポリマー粒子は、軟化や溶融時の吸熱量が多く、温度上
昇を抑制する効果も大きい。一方、非晶質部分が多くな
ると、ポリマー粒子の吸熱変化は温度変化に対して緩や
かとなり、過充電状態の急激な温度上昇に追随できず、
温度上昇を抑制する効果が充分に得られない。
【0016】結晶性ポリマー粒子の吸熱点が、電池の温
度上昇率が急激に大きくなり始める温度に比べて低すぎ
ると、吸熱が必要なときの吸熱量が少なくなる。また、
吸熱点が、電池の温度上昇率が急激に大きくなり始める
温度に比べて高すぎると、吸熱が間に合わず、温度上昇
を抑制する効果が小さくなる。以上より、吸熱点は14
0〜230℃の範囲にあることが望ましい。なお、吸熱
点には、軟化点、融点、ガラス転移温度などが含まれる
が、吸熱量の大きさ、相変化の急峻さから、融点を吸熱
点として採用することが好ましい。
【0017】結晶性ポリマーとしては、正極の動作電位
範囲内で安定であり、酸化されにくいものが好ましい。
特に、ポリオレフィンが、酸化還元反応を起こしにく
く、結晶性の高いものを得やすいうえ、比較的安価であ
ることから好ましい。しかし、ポリオレフィンは、一般
に電解液との濡れ性がよくない。従って、結晶性ポリマ
ーとして、ポリオレフィンを用いた場合、正極と電解液
との濡れ性が低くなり、高率放電特性が損なわれること
がある。
【0018】そこで、結晶性ポリマー粒子の表面に、酸
素元素を導入することにより、電解液と結晶性ポリマー
粒子との親和性を向上させることが好ましい。結晶性ポ
リマー粒子の表面に酸素を導入する方法としては、例え
ば、結晶性ポリマー粒子に酸素プラズマ処理を施す方
法、クロム酸混液に結晶性ポリマー粒子を浸漬する方
法、空気中で結晶性ポリマー粒子に紫外線を照射する方
法などが挙げられる。
【0019】ポリオレフィンとしては、ポリエチレン
や、エチレンと他のモノマーとの共重合体を用いること
が望ましい。共重合体を用いる場合、他のモノマーとし
ては、重合性不飽和結合を有するカルボン酸誘導体モノ
マーが好ましい。前記カルボン酸誘導体モノマーとして
は、メタクリル酸メチル、エタクリル酸メチル、メタク
リル酸エチルなどのアクリル酸エステルや、無水マレイ
ン酸などの酸無水物を用いることができる。これらのカ
ルボン酸誘導体モノマーを用いると、上記のような方法
を用いなくても、結晶性ポリマー粒子に酸素を導入する
ことが可能である。
【0020】以上のように、結晶性ポリマー粒子の表面
に酸素を導入すると、電解液との濡れ性が改善されるだ
けでなく、正極活物質粒子と結晶性ポリマー粒子とが分
離せず、均一な正極合剤を調製することができる。こう
して得られた均一な合剤を用いれば、均質な外側活物質
層が得られ、電池の温度上昇を抑制する効果が大きくな
るとともに、電池の高率放電特性も向上する。
【0021】正極および負極間に介在する電解質層とし
ては、電解液を含ませた多孔質ポリオレフィン製セパレ
ータを用いることが有効である。電解液を含ませたポリ
オレフィン繊維からなる不織布を用いることもできる。
また、ゲル状電解質を用いることもできる。また、これ
らは単独で用いてもよく、併用してもよい。
【0022】ゲル状電解質は、例えば、架橋したポリマ
ー材料に電解液を保持させれば得ることができる。ゲル
を構成するポリマー材料としては、ポリフッ化ビニリデ
ンなどが挙げられる。架橋構造は、ポリマー材料に結晶
部位からなる架橋点を設けることにより形成することも
できるし、ポリマーの末端を反応させて新たな共有結合
を設けることにより形成してもよい。
【0023】電解質層に含まれる電解液は、リチウムイ
オンを含んだものでなければならない。リチウムイオン
の対イオンは、電池の動作電位内で電気化学的に安定な
アニオンであることが好ましい。例えば、BF4 -、PF
6 -、(C25SO22-などがあげられる。
【0024】電解液の溶媒としては、電池の動作電位内
で電気化学的に安定であり、リチウム塩を溶解させたと
きのイオン伝導率がなるべく大きなものを用いることが
好ましい。前記溶媒としては、例えば、ジエチルカーボ
ネート、エチレンカーボネート、エチルメチルカーボネ
ート、プロピレンカーボネート、γ−ブチロラクトンな
どが挙げられる。これらは単独で用いてもよく、組み合
わせて用いてもよい。
【0025】正極を構成する内側活物質層および外側活
物質層は、いずれも活物質粒子としてのコバルト酸リチ
ウム、導電助剤粒子およびバインダー樹脂を含んでい
る。そして、結晶性ポリマー粒子は、外側活物質層のみ
に含まれており、内側活物質層には含まれていない。こ
のような構成は、例えば、活物質粒子、導電助剤粒子お
よびバインダー樹脂からなる合剤を集電体などの芯材に
付与したのち、その表面に、活物質粒子、導電助剤粒
子、バインダー樹脂および結晶性ポリマー粒子からなる
合剤を塗布すれば得ることができる。
【0026】芯材を含んだ内側活物質層の厚さは、特に
限定されないが、例えば200μm以下であることが好
ましい。また、その表面に形成された外側活物質層の厚
さは、例えば50μm以下であることが好ましい。
【0027】外側活物質層に含まれる結晶性ポリマー粒
子の量は、活物質粒子と導電助剤粒子の合計100重量
部あたり2〜6重量部であることが好ましい。結晶性ポ
リマー粒子が多すぎると、正極の容量が小さくなり、結
晶性ポリマー粒子が少なすぎると、吸熱量が小さくなる
うえに、ポリマーの軟化時に充分な面積の正極を保護す
ることが困難となる。
【0028】本発明の電池の外装構造および形状は、特
に限定されない。外装材としては、例えば金属缶を用い
ることができ、円筒形、角形、ボタン形、コイン形な
ど、種々の形状を採用できる。外装材の材質も特に限定
されない。例えば、ステンレス鋼、アルミニウムなどを
用いることができる。また、アルミニウム箔とポリオレ
フィン層とを積層したラミネート材料を外装材として用
いることもできる。
【0029】
【実施例】次に、実施例に基づいて、本発明を具体的に
説明する。ただし、本発明は、これらの実施例に限定さ
れるものではない。
【0030】《実施例1》 (1)電解液の調製 エチレンカーボネートとエチルメチルカーボネートとを
体積比1:3で混合し、得られた混合溶媒にLiPF6
を溶解して1.25mol/lの濃度の電解液を得た。
【0031】(2)負極板の調製 黒鉛粉末と、バインダー樹脂としてのポリフッ化ビニリ
デンを10重量%含むN−メチル−2−ピロリドン溶液
とを、(黒鉛)/(ポリフッ化ビニリデン)=96/4
の重量比で混練して負極合剤を得た。この負極合剤を、
厚さ15μmの銅箔の両面に塗布した後、常圧で65℃
で15分間乾燥し、その後120℃で15時間真空乾燥
して、負極板を得た。得られた負極板の銅箔を含む厚さ
は、0.20mmであった。
【0032】(3)正極の調製 (i)内側活物質層 活物質粒子としてのLiCoO2と、導電助剤としての
アセチレンブラックと、バインダー樹脂としてのポリフ
ッ化ビニリデンを10重量%含むN−メチル−2−ピロ
リドン溶液とを、(活物質)/(導電助剤)/(ポリフ
ッ化ビニリデン)=100/3/7の重量比で混練して
内側活物質層用の合剤を得た。この合剤を、厚さ20μ
mのアルミニウム箔の両面に塗布した後、常圧で65℃
で15分間乾燥し、その後120℃で15時間真空乾燥
して、正極下地を得た。得られた正極下地のアルミニウ
ム箔を含む厚さは、0.17mmであった。
【0033】(ii)平均粒径2μmの結晶性ポリエチレ
ンビーズを準備した。このビーズに空気中で15分間低
圧水銀灯の紫外線を照射して、ビーズの表面に酸素を導
入した。このビーズを、活物質粒子100重量部あたり
6重量部の割合で、上記で得られた内側活物質層用の合
剤に加えて混練し、外側活物質層用の合剤1を得た。外
側活物質層用の合剤1内における不揮発成分、すなわち
活物質粒子、導電助剤粒子、バインダー樹脂および結晶
性ポリエチレンビーズの合計重量に対する結晶性ポリエ
チレンビーズの割合は、5.2重量%となる。
【0034】外側活物質層用の合剤1を(i)で得られ
た「正極下地」の両面に塗布し、常圧で65℃で15分
間乾燥し、その後100℃で15時間真空乾燥して正極
を得た。得られた正極の厚さは、0.21mmであっ
た。
【0035】得られた正極の模式的な縦断面図を図1に
示す。図1において、アルミニウム箔1の両面には、内
側活物質層2が形成されている。そして、内側活物質層
2の表面には外側活物質層3が形成されている。
【0036】得られた正極と上記負極とを、多孔質ポリ
エチレン製セパレータを介して巻回し、アルミニウム箔
とポリエチレン層からなるラミネートフィルムの外装材
に入れ、電解液の注入口を除いて密封した。そして、前
記注入口から上記電解液を3g注入し、外装材内部を減
圧して密封し、電池Aを得た。
【0037】得られた電池の縦断面図を図2に示す。図
2中、正極4と負極5との間にはセパレータ6が介在し
ており、正極4、負極5およびセパレータ6からなる極
板群は、アルミニウム箔とポリエチレン層からなるラミ
ネートフィルムの外装材7によって包装されている。
【0038】《比較例1》外側活物質層用の合剤1の代
わりに、内側活物質層用の合剤を「正極下地」の両面に
塗布したこと以外、実施例1と同様にして、厚さ0.2
1mmの正極を得た。そして、この正極を用いたこと以
外、実施例1と同様にして、電池Bを作製した。
【0039】《実施例2》平均粒径3μmの結晶性ポリ
(エチレン/メタクリル酸メチル)ブロック共重合体粒
子を準備した。この粒子を、活物質粒子100重量部あ
たり6重量部の割合で、実施例1で得られた内側活物質
層用の合剤に加えて混練し、外側活物質層用の合剤2を
得た。外側活物質層用の合剤2内における不揮発成分、
すなわち活物質粒子、導電助剤粒子、バインダー樹脂お
よび前記ブロック共重合体粒子の合計重量に対する前記
ブロック共重合体粒子の割合は、5.2重量%となる。
【0040】外側活物質層用の合剤2を実施例1で得ら
れた「正極下地」の両面に塗布し、常圧で65℃で15
分間乾燥し、その後100℃で12時間真空乾燥して正
極を得た。得られた正極の厚さは、0.20mmであっ
た。そして、この正極を用いたこと以外、実施例1と同
様にして、電池Cを作製した。
【0041】《実施例3》 ゲル電解質前駆体液の調製 末端にメタクリレート基を有するポリエチレンオキシド
と、実施例1で得られた電解液とを、(ポリマー)/
(電解液)=1/11の重量比で混合した。このとき、
前記ポリエチレンオキシドは電解液に溶解した。この溶
液100重量部に、0.3重量部の重合開始剤としての
過酸化ラウロイルを溶解し、ゲル電解質前駆体液を得
た。
【0042】実施例1で得られた電解液の代わりに、ゲ
ル電解質前駆体液を用いたこと以外、実施例1と同様に
して、電池Dを作製した。ただし、電池を密封した後、
80℃で1時間保存し、ゲル電解質前駆体液をゲル化さ
せた。
【0043】《比較例2》実施例1で得られた電解液の
代わりに、ゲル電解質前駆体液を用いたこと以外、比較
例1と同様にして、電池Eを作製した。ただし、電池を
密封した後、80℃で1時間保存し、ゲル電解質前駆体
液をゲル化させた。
【0044】《比較例3》実施例1で用いた表面に酸素
を導入した結晶性ポリエチレンビーズを、160℃で3
0分間保存した後、室温まで急冷し、非晶質ポリエチレ
ンビーズを得た。この非晶質ポリエチレンビーズは、大
部分が非晶質である。
【0045】この非晶質ポリエチレンビーズを、表面に
酸素を導入した結晶性ポリエチレンビーズの代わりに用
いたこと以外、実施例1と同様にして、厚さ0.21m
mの正極を得た。そして、この正極を用いたこと以外、
実施例1と同様にして、電池Fを作製した。
【0046】SteinとSutherlandによると、ポリエチレ
ンの赤外吸収スペクトルにおいて、720cm-1の吸収
強度と730cm-1の吸収強度との比(A730/A7
20)の値は、結晶化度(x)とほぼ次の関係: A730/A720=x/(x+1.4×(1−x)) がある(J.Chem.Soc.誌22巻、第1993頁)。比較
例3で用いた非晶質ポリエチレンビーズでは、A730
/A720=0.08であった。また、実施例1で用い
た結晶性ポリエチレンビーズでは、A730/A720
=0.5であった。従って、比較例3の非晶質ポリエチ
レンビーズは、実施例1の結晶性ポリエチレンビーズの
1/5程度しか結晶質部分を有さないと言える。なお、
ポリエチレンに関しては、A730/A720が、例え
ば0.32以上であれば、結晶性ポリエチレンであると
言える。
【0047】次に、電池A〜Fの室温における過充電時
の挙動を調べた。5個の電池Aを、4.2Vになるまで
0.06Aで充電した後、2.75Vになるまで0.0
6Aで放電した。同様の充放電を再度繰り返し、2度目
の放電容量を調べた。充放電は、すべて20℃で行っ
た。5個の電池の放電容量の平均値を電池容量として求
めた。また、電池B〜Fの電池容量も同様にして求め
た。得られた結果を表1に示す。
【0048】次に、各電池を0.6Aで連続充電した。
そして、電池温度が最高となるときの見かけの充電量を
調べた。ここで、見かけの充電量は、各電池の容量を1
00として、電池に外部から注入された電気量の電池容
量に対する比として求めた。結果を表1に示す。
【0049】
【表1】
【0050】表1において、実施例1、2と比較例1と
の比較から、外側活物質層に結晶性ポリマー粒子が含ま
れている正極を有する電池は、過充電時の温度上昇を従
来よりも遅らせることができることがわかる。また、実
施例3と比較例2とを比較すれば、液状の電解質を含む
リチウムイオン二次電池以外に、ゲル状電解質を含むリ
チウムポリマー二次電池でも、過充電時の温度上昇を遅
らせる効果があることがわかる。また、実施例1と比較
例3とを比較すれば、ポリマー粒子の結晶性が低くなる
と、温度上昇を遅らせる効果が小さくなることがわか
る。
【0051】《実施例4》紫外線を照射して表面に酸素
を導入する前の結晶性ポリエチレンビーズをそのまま用
いたこと以外、実施例1と同様にして、厚さ0.21m
mの正極を得た。そして、この正極を用いたこと以外、
実施例1と同様にして、電池Gを作製した。
【0052】《比較例4》実施例1で用いた内側活物質
用の合剤に、活物質粒子100重量部あたり3重量部の
表面に酸素原子を導入した結晶性ポリエチレンビーズを
混合した。ビーズ表面への酸素原子の導入は、実施例1
の場合と同様に行った。そして、得られた合剤を内側活
物質層および外側活物質層の形成に用いたこと以外、実
施例1と同様にして、厚さ0.21mmの正極を得た。
そして、この正極を用いたこと以外、実施例1と同様に
して、電池Hを作製した。従って、電池Hの正極は、内
側活物質層および外側活物質層の両方に結晶性ポリマー
粒子を含んでいる。
【0053】次に、電池A、GおよびHの高率放電特性
を測定した。各電池を、4.2Vになるまで0.4Aで
充電した後、2.75Vになるまで0.9Aで放電し
た。同様の充放電を再度繰り返し、2度目の放電容量を
電池の高率放電容量とした。充放電は、すべて20℃
で、各電池について5個ずつ行った。5個の電池の高率
放電容量の平均値を表2に示す。
【0054】
【表2】
【0055】表2において、実施例1と実施例4との比
較から、ポリマー粒子の表面に酸素を導入することで、
高率放電での容量低下を低減できることがわかる。ま
た、実施例1、4と比較例4とを比較すれば、ポリマー
粒子が正極全体に含まれているよりも、外側活物質層の
みに含まれている方が、高率放電での容量低下が少ない
ことがわかる。これは、ポリマー粒子が外側活物質層の
みに含まれている場合の方が、正極内部に電解液が浸透
しやすいためと考えられる。
【0056】《実施例5》外側活物質層用の合剤内にお
ける不揮発成分の合計重量に対する表面に酸素原子を導
入した結晶性ポリエチレンビーズの割合を、1.3重量
%、1.9重量%、2.8重量%、4.2重量%、6.
1重量%および7.2重量%に変えたこと以外、実施例
1と同様にして、それぞれ電池I、J、K、L、Mおよ
びNを作製した。そして、電池Aと同様にして、電池I
〜Nの室温における過充電時の挙動を調べ、高率放電特
性を測定した。結果を表3に示す。
【0057】
【表3】
【0058】表3より、結晶性ポリマー粒子の量が1.
3重量%と少なすぎると、過充電時に温度上昇を抑制す
る効果が低下し、7.2重量%と多すぎると、高率放電
特性が低下してしまうことがわかる。従って、外側活物
質層に含まれる結晶性ポリマー粒子の量は、活物質粒子
と導電助剤粒子の合計100重量部あたり2〜6重量部
が好ましいことがわかる。
【0059】
【発明の効果】本発明によれば、従来よりも効果的に過
充電時の発熱を抑制することができ、熱安定性が高く、
高率放電特性に優れたリチウム二次電池を提供すること
ができる。
【図面の簡単な説明】
【図1】実施例1で作製した正極の要部の縦断面図であ
る。
【図2】実施例1で作製した電池の要部の縦断面図であ
る。
【符号の説明】
1 アルミニウム箔 2 内側活物質層 3 外側活物質層 4 正極 5 負極 6 セパレータ 7 外装材
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/62 H01M 4/62 Z 10/40 10/40 Z (72)発明者 柴野 靖幸 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4J002 BB03W BB07W BB09W BB25W BD14X DE186 FA08W FD117 FD206 GQ00 5H029 AJ02 AJ12 AK03 AL07 AM03 AM05 AM07 CJ08 DJ08 DJ16 EJ14 HJ01 5H050 AA02 AA15 BA17 CA08 CB08 DA09 EA28 FA17 FA18 GA10 GA22 HA01

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 コバルト酸リチウムを活物質とする正
    極、炭素材料を活物質とする負極、および前記正極と負
    極との間に介在する電解質層からなるリチウム二次電池
    であって、 前記正極が、芯材に支持された内側活物質層およびその
    表面に形成された外側活物質層を有し、前記外側活物質
    層は、活物質粒子、導電助剤粒子、バインダー樹脂およ
    び結晶性ポリマー粒子を含んでおり、前記外側活物質層
    に含まれる前記結晶性ポリマー粒子の量が、前記活物質
    粒子と前記導電助剤粒子の合計100重量部あたり2〜
    6重量部であることを特徴とするリチウム二次電池。
  2. 【請求項2】 前記結晶性ポリマー粒子が、ポリオレフ
    ィンからなり、その表面に酸素原子が導入されている請
    求項1に記載のリチウム二次電池。
  3. 【請求項3】 前記結晶性ポリマー粒子が、ポリエチレ
    ンまたはエチレンと重合性不飽和結合を有するカルボン
    酸誘導体モノマーとの共重合体からなる請求項1に記載
    のリチウム二次電池。
JP2001112426A 2001-04-11 2001-04-11 リチウム二次電池 Pending JP2002313318A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001112426A JP2002313318A (ja) 2001-04-11 2001-04-11 リチウム二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001112426A JP2002313318A (ja) 2001-04-11 2001-04-11 リチウム二次電池

Publications (1)

Publication Number Publication Date
JP2002313318A true JP2002313318A (ja) 2002-10-25

Family

ID=18963846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001112426A Pending JP2002313318A (ja) 2001-04-11 2001-04-11 リチウム二次電池

Country Status (1)

Country Link
JP (1) JP2002313318A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054439A (ja) * 2009-09-02 2011-03-17 Nippon Zeon Co Ltd 全固体二次電池
WO2016147857A1 (ja) * 2015-03-18 2016-09-22 日立化成株式会社 バインダ樹脂組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
WO2019074028A1 (ja) * 2017-10-10 2019-04-18 日産自動車株式会社 非水電解質二次電池用電極

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054439A (ja) * 2009-09-02 2011-03-17 Nippon Zeon Co Ltd 全固体二次電池
WO2016147857A1 (ja) * 2015-03-18 2016-09-22 日立化成株式会社 バインダ樹脂組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
KR20170122243A (ko) * 2015-03-18 2017-11-03 히타치가세이가부시끼가이샤 결합제 수지 조성물, 리튬 이온 이차 전지용 전극 및 리튬 이온 이차 전지
JPWO2016147857A1 (ja) * 2015-03-18 2017-11-24 日立化成株式会社 バインダ樹脂組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
CN107408700A (zh) * 2015-03-18 2017-11-28 日立化成株式会社 粘合剂树脂组合物、锂离子二次电池用电极和锂离子二次电池
KR101985129B1 (ko) * 2015-03-18 2019-05-31 히타치가세이가부시끼가이샤 결합제 수지 조성물, 리튬 이온 이차 전지용 전극 및 리튬 이온 이차 전지
US10513604B2 (en) 2015-03-18 2019-12-24 Hitachi Chemical Company, Ltd. Binder resin composition, electrode for lithium ion secondary battery and lithium ion secondary battery
WO2019074028A1 (ja) * 2017-10-10 2019-04-18 日産自動車株式会社 非水電解質二次電池用電極

Similar Documents

Publication Publication Date Title
JP3872768B2 (ja) 電解液の分解反応が抑えられたリチウム2次電池及びその製造方法
JP4412840B2 (ja) リチウムポリマー電池およびその製造法
KR20030042288A (ko) 가교 고분자 보호박막을 갖춘 리튬 고분자 이차 전지 및그 제조 방법
KR20060110235A (ko) 가교 고분자의 도입에 의해 안전성이 향상된 전극 및 이를포함하는 전기 화학 소자
WO2002061874A1 (en) A multi-layered, uv-cured polymer electrolyte and lithium secondary battery comprising the same
JP4014816B2 (ja) リチウムポリマー二次電池
JP2000195475A (ja) 二次電池
CN102368562A (zh) 一种锂离子电池
JP2001210377A (ja) 高分子電解質組成物、その製造方法及びこれを利用したリチウム二次電池
JP2001210380A (ja) ポリマー電池
JP2000156242A (ja) リチウム二次電池
JP2001068094A (ja) リチウム二次電池用負極及びこれを用いたリチウム二次電池
JP2005135755A (ja) 非水系二次電池の負極用炭素材料の製造方法及びこれを用いた非水系二次電池
JP2007157496A (ja) 電極及び二次電池
JPH10112321A (ja) 非水電解液二次電池およびその製造方法
JP2002245994A (ja) リチウム二次電池用収容部材及びそれを用いた二次電池パック
JP3858465B2 (ja) リチウム二次電池
JP2000243357A (ja) 二次電池
JP2002313318A (ja) リチウム二次電池
JP2002184466A (ja) 携帯機器用電池
JP2000223085A (ja) 二次電池
JP2000223086A (ja) 二次電池
JP2003346788A (ja) 電池用負極およびそれを用いた電池
JP3407507B2 (ja) ポリマー電解質・リチウム電池
JP2002158037A5 (ja)