JP2002299371A - Manufacturing method of electronic device and the electronic device - Google Patents

Manufacturing method of electronic device and the electronic device

Info

Publication number
JP2002299371A
JP2002299371A JP2001095639A JP2001095639A JP2002299371A JP 2002299371 A JP2002299371 A JP 2002299371A JP 2001095639 A JP2001095639 A JP 2001095639A JP 2001095639 A JP2001095639 A JP 2001095639A JP 2002299371 A JP2002299371 A JP 2002299371A
Authority
JP
Japan
Prior art keywords
electronic component
electrode
gold
protruding
protruding electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001095639A
Other languages
Japanese (ja)
Inventor
Mitsunori Ishizaki
光範 石崎
Tsuneo Hamaguchi
恒夫 濱口
Yoichi Kitamura
洋一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001095639A priority Critical patent/JP2002299371A/en
Publication of JP2002299371A publication Critical patent/JP2002299371A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1183Reworking, e.g. shaping
    • H01L2224/1184Reworking, e.g. shaping involving a mechanical process, e.g. planarising the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/11848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83102Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus using surface energy, e.g. capillary forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01055Cesium [Cs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15182Fan-in arrangement of the internal vias
    • H01L2924/15184Fan-in arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an electronic device which can stably manufacture an electronic device, having stably high junction strength, and to provide an electronic device. SOLUTION: The manufacturing method of an electronic device comprises a process for forming a projection electrode 4a, by thermally compressing a metal ball 3a consisting of gold or gold alloy on an electrode 1a of a first electronic component 1, while applying ultrasonic wave 6; a process for forming a projection electrode 4b by thermally compressing the metal ball 3a consisting of gold or gold alloy on an electrode 2a of a second electronic component 2, while applying ultrasonic wave 6; and a process for positioning the first electronic component 1 and the second electronic component 2, so that a projection electrode 4a on the first electronic component 1 and the projection electrode 4b on the second electronic component 2 correspond each other and jointing the first electronic component 1 and the second electronic component 2 by heating and pressing the projection electrode 4a of the first electronic component 1 and the projection electrode 4b of the second electronic component 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の電子部品を
突起電極を介して接続する電子装置の製造方法及び電子
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an electronic device for connecting a plurality of electronic components via bump electrodes, and an electronic device.

【0002】[0002]

【従来の技術】多端子で狭ピッチの電極を有する電子部
品を実装する手法として、フリップチップ方式と呼ばれ
る方式がよく用いられている。このフリップチップ方式
は、金属ワイヤの先端に形成した金属ボールを超音波を
印加しながら熱圧着し、その後、金属ワイヤを切断して
突起電極を形成し、この突起電極と金属電極とを熱圧着
するものである。このフリップチップ方式には主に2つ
の方法がある。
2. Description of the Related Art A method called a flip chip method is often used as a method for mounting an electronic component having a multi-terminal, narrow-pitch electrode. In this flip chip method, a metal ball formed at the tip of a metal wire is thermocompressed while applying ultrasonic waves, and then the metal wire is cut to form a protruding electrode, and the protruding electrode and the metal electrode are thermocompressed. Is what you do. There are mainly two methods for the flip chip method.

【0003】まず、第1のフリップチップ方式を説明す
る。図9は第1のフリップチップ方式による電子装置の
製造方法を示す図で、例えば“超高周波帯モジュールの
例(2)−ミリ波通信用モジュールとフリップチップボ
ンディング技術―”(大畑恵一、1999年電子情報通
信学会総合大会、pp488−489、1999)に開
示されている電子装置の製造方法を示す図である。
First, the first flip chip method will be described. FIG. 9 is a diagram illustrating a method of manufacturing an electronic device according to the first flip-chip method. For example, “Example of ultra-high frequency band module (2) —Millimeter wave communication module and flip-chip bonding technology—” (Keichi Ohata, 1999) FIG. 3 is a diagram illustrating a method of manufacturing an electronic device disclosed in the IEICE General Conference, pp. 488-489, 1999).

【0004】図9(a)に示すように、キャピラリツー
ル101を用いて、金ワイヤ102の先端に形成した金
ボール103を超音波振動104を印加しながら第1の
電子部品105の金属電極105a上に熱圧着した後、
図9(b)に示すように、金ボール103から金ワイヤ
102を切り離して金の突起電極106を形成し、図9
(c)に示すように、突起電極106と第2の電子部品
107の金属電極107aとを位置合わせする。なお、
第2の電子部品107の金属電極107aは表面に金が
形成された金属電極である。そして、図9(d)に示す
ように、加熱した状態で金属電極107aを突起電極1
06に押し付けて固相接合して電子装置を製造する。
[0004] As shown in FIG. 9 (a), a gold ball 103 formed at the tip of a gold wire 102 is applied to a metal electrode 105 a of a first electronic component 105 using a capillary tool 101 while applying ultrasonic vibration 104. After thermocompression on top,
As shown in FIG. 9B, the gold wire 102 is cut off from the gold ball 103 to form a gold projecting electrode 106.
As shown in (c), the bump electrode 106 and the metal electrode 107a of the second electronic component 107 are aligned. In addition,
The metal electrode 107a of the second electronic component 107 is a metal electrode having gold formed on the surface. Then, as shown in FIG. 9 (d), the metal electrode 107a is
06 and solid-state bonding is performed to manufacture an electronic device.

【0005】固相接合は、加圧時の接合金属同士の変形
によって接触界面の汚染層が除去できた箇所に接合が生
じるため、金属電極表面の汚染が少ない方が容易に高い
接合強度が得られる。すなわち、金属電極表面の汚染状
態によって接合強度が変化する。よって、上記電子装置
でも金属電極表面の汚染が少ない箇所で接合がなされる
ことになる。
[0005] In the solid phase bonding, since the contaminant layer at the contact interface can be removed at a portion where the contaminated layer has been removed due to the deformation of the bonding metals under pressure, the lower the contamination on the metal electrode surface, the higher the bonding strength can be easily obtained. Can be That is, the bonding strength changes depending on the contamination state of the metal electrode surface. Therefore, even in the electronic device described above, bonding is performed at a location where contamination of the metal electrode surface is small.

【0006】次に、第2のフリップチップ方式を説明す
る。図10は第2のフリップチップ方式による電子装置
の製造方法を示す図で、例えば“超音波併用熱圧着によ
るフリップチップボンディング”(富岡他、3rd S
ymposium on Microjoining
and Assembly TechnologyEl
ectronics、February 6−7、19
97、Yokohama)に開示されている電子装置の
製造方法を示す図である。
Next, the second flip chip method will be described. FIG. 10 is a diagram showing a method of manufacturing an electronic device according to the second flip-chip method. For example, “flip-chip bonding by thermocompression combined with ultrasonic waves” (Tomioka et al., 3rd S.
ymposium on Microjoining
and Assembly TechnologyEl
electronics, February 6-7, 19
97, a method of manufacturing an electronic device disclosed in Yokohama).

【0007】図10(a)に示すように、第1の電子部
品111の電極111aと第2の電子部品112の電極
112a上に形成した金の突起電極113とを位置合わ
せし、その後、図10(b)に示すように、加熱した状
態で金の突起電極113を金属電極111aに押し付け
るとともに、超音波振動114を印加して金の突起電極
113と金属電極111aとを固相接合して電子装置を
製造する。
As shown in FIG. 10A, the electrode 111a of the first electronic component 111 and the gold projecting electrode 113 formed on the electrode 112a of the second electronic component 112 are aligned with each other. As shown in FIG. 10B, the gold projection electrode 113 is pressed against the metal electrode 111a in a heated state, and the ultrasonic projection 114 is applied to solid-state join the gold projection electrode 113 and the metal electrode 111a. Manufacture electronic devices.

【0008】[0008]

【発明が解決しようとする課題】第1のフリップチップ
方式では、固相接合により電極が接続されており、固相
接合が金属電極表面の汚染状態によって接合強度が変化
するので、金と金との組み合わせ以外の金属同士を接合
する場合、主に接合界面の金属酸化物が接合の妨げとな
って高い接合強度が得られない問題があった。
In the first flip-chip method, electrodes are connected by solid-phase bonding, and the solid-state bonding changes the bonding strength depending on the contamination state of the metal electrode surface. When metals other than the combination described above are joined together, there has been a problem that a metal oxide at a joining interface mainly hinders joining and high joining strength cannot be obtained.

【0009】また、金と金とを接合する場合でも、金は
形成状況やその後の搬送状況および保管状況によって表
面の有機物汚染の状態に差が生じ、接合強度が大きくば
らつく問題があった。
[0009] Further, even when gold is bonded to gold, there is a problem in that the state of organic matter contamination on the surface varies depending on the formation state, the subsequent transportation state and the storage state, and the bonding strength varies greatly.

【0010】一方、第2のフリップチップ方式では、超
音波振動で接合界面の汚染を除去しながら固相接合を行
うことで、前述の課題は改善しているが、この方式では
全ての電極を一括接合するために大きな超音波振動を印
加しなければならず、化合物半導体素子のように脆弱な
電子部品では、実装時に破損する問題があった。
On the other hand, in the second flip-chip method, the above-mentioned problem is solved by performing solid-phase bonding while removing contamination at the bonding interface by ultrasonic vibration. However, in this method, all electrodes are used. Large ultrasonic vibrations must be applied for batch joining, and there is a problem that a fragile electronic component such as a compound semiconductor element is damaged during mounting.

【0011】さらに、電極の数が多くなると全ての電極
に均一に超音波振動を伝達できず、電極間で接合強度が
ばらつく問題があった。
Further, when the number of electrodes is increased, ultrasonic vibration cannot be transmitted uniformly to all the electrodes, and there is a problem that the bonding strength varies between the electrodes.

【0012】本発明は上記のような課題を解決するため
になされたもので、安定して高い接合強度を有する電子
装置を安定して製造することができる電子装置の製造方
法及び電子装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and provides a method of manufacturing an electronic device and an electronic device capable of stably manufacturing an electronic device having a high bonding strength. The purpose is to do.

【0013】[0013]

【課題を解決するための手段】本発明にかかる電子装置
の製造方法は、第1の電子部品の電極上に金または金合
金からなる金属ボールを超音波を印加しながら熱圧着し
突起電極を形成する工程と、第2の電子部品の電極上に
金または金合金からなる金属ボールを超音波を印加しな
がら熱圧着し突起電極を形成する工程と、上記第1の電
子部品上の突起電極と上記第2の電子部品上の突起電極
とが対応するように上記第1の電子部品と上記第2の電
子部品とを位置合わせし、上記第1の電子部品の突起電
極と上記第2の電子部品の突起電極とを加熱しながら押
し付けて上記第1の電子部品と上記第2の電子部品とを
接合する工程とを含んでいる。
According to a method of manufacturing an electronic device according to the present invention, a metal ball made of gold or a gold alloy is thermocompression-bonded to an electrode of a first electronic component while applying ultrasonic waves to form a projecting electrode. Forming, forming a protruding electrode by thermocompression bonding a metal ball made of gold or a gold alloy on the electrode of the second electronic component while applying ultrasonic waves, and forming a protruding electrode on the first electronic component. The first electronic component and the second electronic component are aligned so that the projection electrode on the second electronic component corresponds to the projection electrode on the second electronic component, and the projection electrode of the first electronic component and the second electronic component are aligned. And pressing the projecting electrode of the electronic component while heating to join the first electronic component and the second electronic component.

【0014】また、第1の電子部品上に形成される突起
電極の径と、第2の電子部品上に形成される突起電極の
径とが異なるようにしてもよい。
Further, the diameter of the protruding electrode formed on the first electronic component may be different from the diameter of the protruding electrode formed on the second electronic component.

【0015】また、位置合わせの前に、第1又は第2の
電子部品上に形成された突起電極の先端に平坦部を形成
するようにしてもよい。
Before the positioning, a flat portion may be formed at the tip of the protruding electrode formed on the first or second electronic component.

【0016】また、突起電極の先端を加熱しながら平坦
部を形成してもよい。
Further, a flat portion may be formed while heating the tip of the protruding electrode.

【0017】また、第1及び第2の電子部品がそれぞれ
複数の電極を有するようにし、各電極毎に金または金合
金からなる金属ボールを超音波を印加しながら熱圧着し
上記複数の電極上に複数の突起電極を形成するようにし
てもよい。
Further, the first and second electronic parts each have a plurality of electrodes, and a metal ball made of gold or a gold alloy is thermocompression-bonded to each of the electrodes while applying ultrasonic waves to each of the plurality of electrodes. A plurality of protruding electrodes may be formed at the same time.

【0018】さらに、突起電極を形成する工程が、第1
又は第2の電子部品の電極上に金または金合金からなる
第1の突起電極を形成する工程と、この第1の突起電極
上に金または金合金からなる金属ボールを超音波を印加
しながら熱圧着し第2の突起電極を形成する工程とを含
むようにしてもよい。
Further, the step of forming the protruding electrode includes the first step.
Alternatively, a step of forming a first protruding electrode made of gold or a gold alloy on the electrode of the second electronic component, and forming a metal ball made of gold or a gold alloy on the first protruding electrode while applying ultrasonic waves. Thermocompression bonding to form a second projecting electrode.

【0019】また、本発明にかかる電子装置は、電極を
有する第1の電子部品と、上記第1の電子部品に対向し
て配置され上記第1の電子部品の電極に対応する位置に
電極を有する第2の電子部品と、上記第1の電子部品の
電極上に形成されその形状が球を押しつぶしたような形
状をしている第1の導電体と、上記第1の導電体と電気
的に接続されるように上記第2の電子部品の電極上に形
成されその形状が球を押しつぶしたような形状をしてお
りその径が上記第1の導電体の径と異なる第2の導電体
とを備えている。
Further, the electronic device according to the present invention includes a first electronic component having an electrode, and an electrode disposed at a position corresponding to the electrode of the first electronic component which is disposed to face the first electronic component. A second electronic component, a first conductor formed on an electrode of the first electronic component, the first conductor having a shape like a crushed sphere, and an electrical connection between the first conductor and the first conductor. A second conductor formed on the electrode of the second electronic component so as to be connected to the second conductor and having a shape like a crushed sphere and having a diameter different from that of the first conductor And

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の一形態を説
明する。 実施の形態1.図1、図2はこの実施の形態1による電
子装置の製造方法を示す図である。図において、1は第
1の電子部品、1aは第1の電子部品1の金属電極、2
は第2の電子部品、2aは第2の電子部品2の金属電
極、3は金ワイヤ、3aは金ボール、4aは電極1a上
に形成された金の突起電極、4bは電極2a上に形成さ
れた金の突起電極、5はキャピラリツール、6は超音波
振動である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below. Embodiment 1 FIG. 1 and 2 are views showing a method for manufacturing an electronic device according to the first embodiment. In the figure, 1 is a first electronic component, 1a is a metal electrode of the first electronic component 1, 2
Is a second electronic component, 2a is a metal electrode of the second electronic component 2, 3 is a gold wire, 3a is a gold ball, 4a is a gold protruding electrode formed on the electrode 1a, and 4b is formed on the electrode 2a. The gold projecting electrode 5 is a capillary tool, and 6 is an ultrasonic vibration.

【0021】電子装置を製造するには、まず、図1
(a)に示すように、金ワイヤ3の先端に形成した金ボ
ール3aを超音波振動6を印加しながら第1の電子部品
1の金属電極1aに熱圧着し、金ワイヤを切断すること
で、図1(b)に示すように第1の電子部品1の金属電
極1a上に金の突起電極4aを形成する。
To manufacture an electronic device, first, FIG.
As shown in (a), the gold ball 3a formed at the tip of the gold wire 3 is thermocompression-bonded to the metal electrode 1a of the first electronic component 1 while applying the ultrasonic vibration 6, and the gold wire is cut. As shown in FIG. 1B, a gold protruding electrode 4a is formed on the metal electrode 1a of the first electronic component 1.

【0022】この突起電極4aの形成は、直径25μm
の金ワイヤ3の先端を放電によって溶融・凝固させて7
5μmの金ボール3aを形成し、その後、表面に厚さ3
μmの金が形成されている幅100μmの金属電極1a
を有したアルミナ配線基板1を200℃に加熱した状態
で、金属ボール3aを0.2wの超音波振動6を印加し
ながら35gの荷重で25ms間、金属電極1aに押し
付けて接合し、金ワイヤを切断することで、最大部の径
が80μmの金の突起電極4aを形成すようにすればよ
い。なお、ここでは突起電極を8個形成することにし
た。
The projection electrode 4a is formed with a diameter of 25 μm.
The tip of the gold wire 3 is melted and solidified by electric discharge to obtain 7
A gold ball 3a having a thickness of 5 μm is formed.
100 μm wide metal electrode 1 a on which μm gold is formed
In a state where the alumina wiring substrate 1 having the above is heated to 200 ° C., the metal ball 3a is pressed against the metal electrode 1a with a load of 35 g for 25 ms while applying an ultrasonic vibration 6 of 0.2 w to bond the metal ball 3a to the gold wire. May be cut to form a gold protruding electrode 4a having a maximum diameter of 80 μm. Here, eight projecting electrodes are formed.

【0023】一方、図1(c)に示すように、金ワイヤ
3の先端に形成した金ボール3aを超音波振動6を印加
しながら第2の電子部品2の金属電極2aに熱圧着し、
金ワイヤを切断することで、図1(d)に示すように第
2の電子部品2の金属電極2a上に金の突起電極4bを
形成する。
On the other hand, as shown in FIG. 1C, a gold ball 3a formed at the tip of the gold wire 3 is thermocompression-bonded to the metal electrode 2a of the second electronic component 2 while applying ultrasonic vibration 6.
By cutting the gold wire, a gold protruding electrode 4b is formed on the metal electrode 2a of the second electronic component 2 as shown in FIG.

【0024】この突起電極4bの形成は、直径25μm
の金ワイヤ3の先端を放電によって溶融・凝固させて7
5μmの金ボール3aを形成し、その後、表面に厚さ3
μmの金が形成されている100μm×100μmの金
属電極2aを有したGaAs半導体素子2(2.0mm
×1.5mm×t0.1mm)を200℃に加熱した状
態で、金属ボール3aを0.2wの超音波振動6を印加
しながら35gの荷重で25ms間、金属電極2aに押
し付けて接合し、金ワイヤを切断することで、最大部の
径が80μmの金の突起電極4bを形成すようにすれば
よい。なお、ここでは突起電極を8個形成することにし
た。
The projection electrode 4b is formed with a diameter of 25 μm.
The tip of the gold wire 3 is melted and solidified by electric discharge to obtain 7
A gold ball 3a having a thickness of 5 μm is formed.
A GaAs semiconductor device 2 having a metal electrode 2a of 100 μm × 100 μm on which a gold of
× 1.5 mm × t0.1 mm) at a temperature of 200 ° C., the metal ball 3 a was pressed against the metal electrode 2 a for 25 ms with a load of 35 g for 25 ms while applying an ultrasonic vibration 6 of 0.2 w, By cutting the gold wire, the gold protruding electrode 4b having a maximum diameter of 80 μm may be formed. Here, eight projecting electrodes are formed.

【0025】このように超音波振動を印加しながら突起
電極4a、4bを形成しているので、金の表面の汚染状
態によらず安定して高い強度で接合できる。また、超音
波振動は突起電極毎に印加するため、小さな超音波振動
で接合でき、脆弱なGaAs半導体素子でも破損が生じ
ない。
Since the protruding electrodes 4a and 4b are formed while applying ultrasonic vibration in this manner, bonding can be stably performed with high strength regardless of the state of contamination of the gold surface. Further, since ultrasonic vibration is applied to each protruding electrode, bonding can be performed with small ultrasonic vibration, and even a fragile GaAs semiconductor element is not damaged.

【0026】この実施の形態ではワイヤとして金を用い
金の突起電極を形成するようにしているが、金の代わり
に金合金を用いて金合金の突起電極を形成してもよい。
In this embodiment, gold is used as a wire to form a gold protruding electrode. However, a gold alloy protruding electrode may be formed using a gold alloy instead of gold.

【0027】また、第1の電子部品としてアルミナ配線
基板を用いたが、ガラスセラミックスや窒化アルミ等の
セラミックス配線基板や樹脂配線基板、またはSiやS
iGe、GaAs、InP等の半導体素子、さらにはコ
ンデンサ素子、抵抗素子、インダクタ素子でもよい。な
お、金属電極の表面はアルミやアルミの合金、銀や銀の
合金、銅や銅の合金でもよい。
Although an alumina wiring board is used as the first electronic component, a ceramic wiring board such as glass ceramics or aluminum nitride, a resin wiring board, or Si or S
It may be a semiconductor element such as iGe, GaAs, InP, etc., or a capacitor element, a resistance element, or an inductor element. The surface of the metal electrode may be aluminum or an aluminum alloy, silver or a silver alloy, copper or a copper alloy.

【0028】また、第2の電子部品としてGaAsの半
導体素子を用いたが、SiやSiGe、InP等の半導
体素子、またはコンデンサ素子、抵抗素子、インダクタ
素子、さらにはアルミナやガラスセラミックスや窒化ア
ルミ等のセラミックス配線基板や樹脂配線基板も使用で
きる。なお、金属電極の表面はアルミやアルミの合金、
銀や銀の合金、銅や銅の合金でもよい。
Although a GaAs semiconductor element is used as the second electronic component, a semiconductor element such as Si, SiGe, or InP, or a capacitor element, a resistance element, an inductor element, or an alumina, glass ceramic, aluminum nitride, or the like is used. Ceramic wiring boards and resin wiring boards can also be used. The surface of the metal electrode is made of aluminum or aluminum alloy,
Silver or an alloy of silver, copper or an alloy of copper may be used.

【0029】このように、第1の電子部品1の金属電極
1a上に突起電極4aを、第2の電子部品2の金属電極
2a上に突起電極4bを形成した後、図2(a)に示す
ように、第1の電子部品1上の突起電極4aと第2の電
子部品2上の突起電極4bとを位置合わせする。
After the protruding electrode 4a is formed on the metal electrode 1a of the first electronic component 1 and the protruding electrode 4b is formed on the metal electrode 2a of the second electronic component 2 as shown in FIG. As shown, the bump electrode 4a on the first electronic component 1 and the bump electrode 4b on the second electronic component 2 are aligned.

【0030】この位置合わせは、GaAs半導体素子2
とアルミナ配線基板1のそれぞれに2カ所づつ設けた認
識用のパターンをカメラで認識して互いの中心位置と角
度を一致させることで行えばよい。詳細には、接合時に
GaAs半導体素子の突起電極がアルミナ配線基板の突
起電極から滑り落ちないように、GaAs半導体素子の
認識用パターンを1回認識した後、アルミナ配線基板の
認識用パターンは3回認識動作を行って3σで±5μm
以内の精度で位置を合わせすればよい。なお、このよう
にすると、10.5秒で位置合わせすることができる。
This alignment is performed by the GaAs semiconductor device 2
It is sufficient that the two recognition patterns provided on the substrate and the alumina wiring board 1 are recognized by the camera and the center position and the angle are matched with each other. In detail, after the recognition pattern of the GaAs semiconductor element is recognized once so that the projection electrode of the GaAs semiconductor element does not slip off the projection electrode of the alumina wiring board at the time of bonding, the recognition pattern of the alumina wiring board is three times. ± 5μm at 3σ by performing recognition operation
What is necessary is just to adjust a position with the accuracy within. In this case, the positioning can be performed in 10.5 seconds.

【0031】位置合わせ後、図2(b)に示すように、
第1の電子部品1と第2の電子部品2とを加熱した状態
で押し付け、第1の電子部品1の突起電極4aと第2の
電子部品2の突起電極4bとを固相接合する。
After the alignment, as shown in FIG.
The first electronic component 1 and the second electronic component 2 are pressed in a heated state, and the protruding electrode 4a of the first electronic component 1 and the protruding electrode 4b of the second electronic component 2 are solid-phase bonded.

【0032】この電極の接合は、アルミナ配線基板1と
GaAs半導体素子2を300℃に加熱した状態で、G
aAs半導体素子2を800gの荷重で10秒間アルミ
ナ配線基板1に押し付けてアルミナ配線基板1上の金の
突起電極4aとGaAs半導体素子2上の金の突起電極
4bとを接合するようにすればよい。金の突起電極は接
合の直前に形成するので、接合時の金表面の汚染状態は
一定であり、ばらつきのない安定した強度で接合でき
る。
The bonding of the electrodes is performed by heating the alumina wiring substrate 1 and the GaAs semiconductor element 2 to 300 ° C.
The aAs semiconductor element 2 may be pressed against the alumina wiring substrate 1 with a load of 800 g for 10 seconds to join the gold projecting electrode 4a on the alumina wiring substrate 1 with the gold projecting electrode 4b on the GaAs semiconductor element 2. . Since the gold protruding electrode is formed immediately before bonding, the state of contamination of the gold surface during bonding is constant, and bonding can be performed with stable strength without variation.

【0033】この実施の形態のフリップチップ方式で
は、電子部品の金属電極に超音波併用熱圧着で金の突起
電極を接合するようにしているので、超音波振動を印加
することで金以外の金属電極や金属の表面状態によらず
高い接合強度を得ることができる。
In the flip chip method of this embodiment, the gold protruding electrode is bonded to the metal electrode of the electronic component by thermocompression combined with ultrasonic waves. High bonding strength can be obtained regardless of the surface condition of the electrode or metal.

【0034】また、超音波振動は金の突起電極毎に個別
に印加するので大きな超音波振動は必要なく、脆弱な素
材の電子部品でも破損が生じない。さらに電極数が増し
ても安定した接合強度が得られる。
Also, since ultrasonic vibration is applied individually to each of the gold protruding electrodes, large ultrasonic vibration is not required, and electronic components made of fragile materials do not break. Even if the number of electrodes further increases, stable bonding strength can be obtained.

【0035】また、本方式では金の突起電極は接合の直
前に形成するため、接合時の金表面の汚染状態は一定で
あり、ばらつきのない安定した接合部が得られる利点が
ある。
Further, in this method, since the gold protruding electrode is formed immediately before bonding, the state of contamination of the gold surface at the time of bonding is constant, and there is an advantage that a stable bonded portion without variation can be obtained.

【0036】実施の形態2.図3、図4はこの実施の形
態2による電子装置の製造方法を示す図である。図にお
いて、7は突起電極4aの先端に形成した平坦部、8は
平板である。なお、他の符号は図1と同じであるので説
明は省略する。
Embodiment 2 3 and 4 are views showing a method for manufacturing an electronic device according to the second embodiment. In the figure, 7 is a flat portion formed at the tip of the protruding electrode 4a, and 8 is a flat plate. The other reference numerals are the same as those in FIG.

【0037】電子装置を製造するには、まず、図3
(a)に示すように、金ワイヤ3の先端に形成した金ボ
ール3aを超音波振動6を印加しながら第1の電子部品
1の金属電極1aに熱圧着し、金ワイヤを切断すること
で、図3(b)に示すように第1の電子部品1の金属電
極1a上に金の突起電極4aを形成する。
To manufacture an electronic device, first, FIG.
As shown in (a), the gold ball 3a formed at the tip of the gold wire 3 is thermocompression-bonded to the metal electrode 1a of the first electronic component 1 while applying the ultrasonic vibration 6, and the gold wire is cut. Then, as shown in FIG. 3B, a gold protruding electrode 4a is formed on the metal electrode 1a of the first electronic component 1.

【0038】この突起電極4aの形成は、実施の形態1
と同様にして、実施の形態1と同様のアルミナ配線基板
1の金属電極1a上に最大部の径が80μmの金の突起
電極4aを形成すようにすればよい。なお、ここでも突
起電極を8個形成することにした。
The formation of the projecting electrode 4a is performed in the first embodiment.
In the same manner as in the first embodiment, a gold projecting electrode 4a having a maximum diameter of 80 μm may be formed on the metal electrode 1a of the same alumina wiring board 1 as in the first embodiment. Here, eight projecting electrodes were also formed.

【0039】一方、図3(c)に示すように、金ワイヤ
3の先端に形成した金ボール3aを超音波振動6を印加
しながら第2の電子部品2の金属電極2aに熱圧着し、
金ワイヤを切断することで、図3(d)に示すように第
2の電子部品2の金属電極2a上に金の突起電極4bを
形成する。
On the other hand, as shown in FIG. 3C, a gold ball 3a formed at the tip of the gold wire 3 is thermocompression-bonded to the metal electrode 2a of the second electronic component 2 while applying ultrasonic vibration 6.
By cutting the gold wire, a gold protruding electrode 4b is formed on the metal electrode 2a of the second electronic component 2 as shown in FIG.

【0040】この突起電極4bの形成は、実施の形態1
と同様にして、実施の形態1と同様のGaAs半導体素
子2の金属電極2a上に最大部の径が80μmの金の突
起電極4bを形成すようにすればよい。なお、ここでも
突起電極を8個形成することにした。
The formation of the projecting electrode 4b is performed in the first embodiment.
In the same manner as in the first embodiment, a gold projection electrode 4b having a maximum diameter of 80 μm may be formed on the metal electrode 2a of the GaAs semiconductor element 2 similar to the first embodiment. Here, eight projecting electrodes were also formed.

【0041】ワイヤ、第1の電子部品、第2の電子部品
は、実施の形態1で説明したものを用いてもよく、金属
電極の表面はアルミやアルミの合金、銀や銀の合金、銅
や銅の合金でもよい。
As the wire, the first electronic component, and the second electronic component, those described in the first embodiment may be used. The surface of the metal electrode is formed of aluminum or an aluminum alloy, silver or a silver alloy, or copper. Or an alloy of copper.

【0042】また、第1の電子部品1に突起電極4aを
形成した後、図4(a)に示すように、第1の電子部品
1に形成した突起電極4aの先端に平板8を押しつけ、
突起電極4aの先端に平坦部7を形成する。平坦部7の
形成は、例えば平板8を960gの荷重で5秒間押し付
けて突起電極4aの先端に径63μmの平坦部7を形成
すればよい。
After the protruding electrode 4a is formed on the first electronic component 1, the flat plate 8 is pressed against the tip of the protruding electrode 4a formed on the first electronic component 1, as shown in FIG.
A flat part 7 is formed at the tip of the protruding electrode 4a. The flat portion 7 may be formed, for example, by pressing the flat plate 8 with a load of 960 g for 5 seconds to form the flat portion 7 having a diameter of 63 μm at the tip of the protruding electrode 4a.

【0043】このように、第1の電子部品1の突起電極
4aの先端に平坦部7を、第2の電子部品2上に突起電
極4bを形成した後、図4(b)に示すように、第1の
電子部品1の突起電極4aと第2の電子部品2の突起電
極4bとを位置合わせする。この位置合わせは実施の形
態1と同様にすればよい。
As described above, after the flat portion 7 is formed on the tip of the protruding electrode 4a of the first electronic component 1 and the protruding electrode 4b is formed on the second electronic component 2, as shown in FIG. Then, the projection electrode 4a of the first electronic component 1 and the projection electrode 4b of the second electronic component 2 are aligned. This alignment may be performed in the same manner as in the first embodiment.

【0044】そして、図4(c)に示すように、第1の
電子部品1と第2の電子部品2とを加熱した状態で押し
付け、先端に平坦部7を形成した金の突起電極4aと第
2の電子部品2の金の突起電極4bとを固相接合する。
電極の接合は実施の形態1と同様にすればよい。
Then, as shown in FIG. 4 (c), the first electronic component 1 and the second electronic component 2 are pressed in a heated state, and the gold protruding electrode 4a having the flat portion 7 formed at the tip is formed. The gold projection electrode 4b of the second electronic component 2 is solid-phase bonded.
The electrodes may be joined in the same manner as in Embodiment 1.

【0045】この実施の形態では、アルミナ配線基板上
の突起電極の先端をあらかじめ平坦にしているので、ア
ルミナ配線基板にGaAs半導体素子を押し付ける際
に、アルミナ配線基板上の突起電極とGaAs半導体素
子上の突起電極の位置がずれても、アルミナ配線基板上
の突起電極からGaAs半導体素子上の突起電極がすべ
り落ちにくくなる。その結果、高精度な位置合わせが不
要となる。
In this embodiment, since the tips of the protruding electrodes on the alumina wiring board are flattened in advance, when the GaAs semiconductor element is pressed on the alumina wiring board, the protruding electrodes on the alumina wiring board and the GaAs semiconductor element are not pressed. Even if the position of the projecting electrode is shifted, the projecting electrode on the GaAs semiconductor element hardly slips from the projecting electrode on the alumina wiring substrate. As a result, high-precision alignment is not required.

【0046】この実施の形態では、3σで±15μm以
内の位置合わせ精度で十分であり、GaAs半導体素
子、アルミナ配線基板ともに、それぞれ2箇所づつ設置
した認識用のパターンを各1回づつ認識するだけで達成
できた。この位置合わせに要した時間は4.5秒であ
り、実施の形態1に比べて生産タクトが6秒短縮でき
た。
In this embodiment, a positioning accuracy within ± 15 μm at 3σ is sufficient, and both the GaAs semiconductor element and the alumina wiring substrate need only recognize the recognition patterns set at two locations each one time. Was achieved. The time required for this alignment was 4.5 seconds, and the production tact was reduced by 6 seconds compared to the first embodiment.

【0047】さらに、アルミナ配線基板上の金の突起電
極の先端をあらかじめ平坦にしておくとGaAs半導体
素子上の金の突起電極がくさびのようにアルミナ配線基
板上の金の突起電極に食込んで接合強度が向上する効果
も生じる。
Furthermore, if the tips of the gold protruding electrodes on the alumina wiring substrate are flattened in advance, the gold protruding electrodes on the GaAs semiconductor element will bite into the gold protruding electrodes on the alumina wiring substrate like wedges. There is also an effect of improving the bonding strength.

【0048】先端を平坦にしない場合、突起電極あたり
のシア破断強度は平均で約75gであったが、先端を平
坦にした場合は突起電極あたりのシア破断強度は平均で
約92gに向上した。もちろん、アルミナ配線基板の突
起電極ではなくGaAs半導体素子の突起電極の先端部
を平坦にしておいても同様の効果が得られる。
When the tip was not flat, the shear breaking strength per projection electrode was about 75 g on average, but when the tip was flat, the shear breaking strength per projection electrode was improved to about 92 g on average. Of course, the same effect can be obtained by flattening the tip of the protruding electrode of the GaAs semiconductor element instead of the protruding electrode of the alumina wiring substrate.

【0049】また、この実施の形態では、第1の電子部
品(アルミナ配線基板)に形成された突起電極の先端に
平坦部を形成するようにしているが、逆に、第2の電子
部品(GaAs半導体素子)に形成された突起電極の先
端に平坦部を形成してもよい。
Further, in this embodiment, a flat portion is formed at the tip of the protruding electrode formed on the first electronic component (alumina wiring board). Conversely, the second electronic component ( A flat portion may be formed at the tip of the protruding electrode formed on the GaAs semiconductor device).

【0050】また、第1の電子部品と第2の電子部品の
両方の突起電極の先端部を平坦にしておいてもよい。こ
の場合、突起電極はさらにすべり落ちにくくなり、その
時、第1の電子部品または第2の電子部品の突起電極の
どちらか一方の平坦部の径が他方より大きくなるように
変形させておくと、平坦部径の小さい金の突起電極がく
さびのように食込んで接合強度が向上する効果が生じ
る。
Further, the tips of the projecting electrodes of both the first electronic component and the second electronic component may be flattened. In this case, the protruding electrode becomes more difficult to slide down. At this time, if the flat portion of one of the protruding electrodes of the first electronic component or the second electronic component is deformed so as to have a larger diameter than the other, The effect that the gold protruding electrode having a small flat portion bites in like a wedge to improve the bonding strength is produced.

【0051】実施の形態3.図5、図6はこの実施の形
態3による電子装置およびその製造方法を示す図であ
る。図において1bは第1の電子部品1の金属電極、4
cは電極2上に形成され突起電極4aよりも径の小さい
金の突起電極、9はスルーホール、9aは金属層、10
ははんだ電極である。なお、他の符号は図1と同じであ
るので説明は省略する。
Embodiment 3 FIG. 5 and 6 are views showing an electronic device and a method of manufacturing the same according to the third embodiment. In the figure, 1b is a metal electrode of the first electronic component 1, 4
c is a gold protruding electrode formed on the electrode 2 and having a smaller diameter than the protruding electrode 4a; 9 is a through hole; 9a is a metal layer;
Is a solder electrode. The other reference numerals are the same as those in FIG.

【0052】電子装置を製造するには、まず、図5
(a)に示すように、金ワイヤ3の先端に形成した金ボ
ール3aを超音波振動6を印加しながら第1の電子部品
1の金属電極1bに熱圧着し、金ワイヤを切断すること
で、図5(b)に示すように第1の電子部品1の金属電
極1b上に金の突起電極4aを形成する。
To manufacture an electronic device, first, FIG.
As shown in (a), a gold ball 3a formed at the tip of the gold wire 3 is thermocompression-bonded to the metal electrode 1b of the first electronic component 1 while applying ultrasonic vibration 6, and the gold wire is cut. Then, as shown in FIG. 5B, a gold projecting electrode 4a is formed on the metal electrode 1b of the first electronic component 1.

【0053】この突起電極4aの形成は、直径25μm
の金ワイヤ3の先端を放電によって溶融・凝固させて7
5μmの金ボール3aを形成し、その後、表面に厚さ
0.3μmの金が形成されている幅100μmの金属電
極1bを有したアルミナ配線基板1を200℃に加熱し
た状態で、金属ボール3aを0.2wの超音波振動6を
印加しながら35gの荷重で25ms間、金属電極1b
に押し付けて接合し、金ワイヤを切断することで、最大
部の径が80μmの金の突起電極4aを形成すようにす
ればよい。なお、ここでは突起電極を5個形成すること
にした。
The projection electrode 4a is formed with a diameter of 25 μm.
The tip of the gold wire 3 is melted and solidified by electric discharge to obtain 7
A 5 μm gold ball 3 a is formed, and then the metal ball 3 a is heated to 200 ° C. on an alumina wiring substrate 1 having a metal electrode 1 b having a width of 100 μm and having a thickness of 0.3 μm on the surface. Is applied to the metal electrode 1b with a load of 35 g for 25 ms while applying an ultrasonic vibration 6 of 0.2 w.
, And the gold wire is cut to form the gold protruding electrode 4a having a maximum diameter of 80 μm. Here, five projecting electrodes are formed.

【0054】一方、図5(c)に示すように、金ワイヤ
3の先端に形成した金ボール3aを超音波振動6を印加
しながら第2の電子部品2の金属電極2aに熱圧着し、
金ワイヤを切断することで、図5(d)に示すように、
第2の電子部品2の金属電極2a上に金の突起電極4c
を形成する。この突起電極4cの径の大きさは、突起電
極4aの径よりも小さくなるように形成する。
On the other hand, as shown in FIG. 5C, a gold ball 3a formed at the tip of the gold wire 3 is thermocompression-bonded to the metal electrode 2a of the second electronic component 2 while applying ultrasonic vibration 6.
By cutting the gold wire, as shown in FIG.
A gold projection electrode 4c is formed on the metal electrode 2a of the second electronic component 2.
To form The diameter of the projection electrode 4c is formed to be smaller than the diameter of the projection electrode 4a.

【0055】この突起電極4cの形成は、直径20μm
の金ワイヤ3の先端を放電によって溶融・凝固させて5
5μmの金ボール3aを形成し、その後、表面に厚さ3
μmの金が形成されている67μm×67μmの金属電
極2aを有したInPn半導体素子(0.45mm×
0.3mm×t0.15mm)2を200℃に加熱した
状態で、金属ボール3aを0.18wの超音波振動6を
印加しながら30gの荷重で20ms間、金属電極2a
に押し付けて接合し、金ワイヤを切断することで、最大
部の径が62μmの金の突起電極を形成すようにすれば
よい。なお、ここでは突起電極を5個形成することにし
た。
The projection electrode 4c is formed with a diameter of 20 μm.
The tip of the gold wire 3 is melted and solidified by electric discharge to obtain 5
A gold ball 3a having a thickness of 5 μm is formed.
InPn semiconductor device having a 67 μm × 67 μm metal electrode 2 a on which a μm gold is formed (0.45 mm ×
(0.3 mm × t 0.15 mm) 2 is heated to 200 ° C., and the metal ball 3 a is applied to the metal electrode 2 a for 20 ms with a load of 30 g while applying an ultrasonic vibration 6 of 0.18 w.
Then, the gold protruding electrode having the maximum diameter of 62 μm may be formed by pressing and bonding the wire and cutting the gold wire. Here, five projecting electrodes are formed.

【0056】このように超音波振動6を印加することに
よって金の表面の汚染状態によらず安定して高い強度で
接合できる。また、超音波振動は突起電極毎に印加する
ため、小さな超音波振動で接合でき、脆弱なInPn半
導体素子でも破損が生じない。
By applying the ultrasonic vibration 6 in this manner, bonding can be stably performed with high strength regardless of the contamination state of the gold surface. In addition, since ultrasonic vibration is applied to each protruding electrode, bonding can be performed with small ultrasonic vibration, and breakage does not occur even in a fragile InPn semiconductor element.

【0057】ワイヤ、第1の電子部品、第2の電子部品
は、実施の形態1で説明したものを用いてもよく、金属
電極の表面はアルミやアルミの合金、銀や銀の合金、銅
や銅の合金でもよい。
As the wire, the first electronic component, and the second electronic component, those described in Embodiment 1 may be used. The surface of the metal electrode may be made of aluminum or an aluminum alloy, silver or a silver alloy, copper Or an alloy of copper.

【0058】このように、第1の電子部品1の金属電極
1b上に突起電極4aを、第2の電子部品2の電極2a
上に突起電極4cを形成した後、図6(a)に示すよう
に、第1の電子部品1の突起電極4aと第2の電子部品
2の突起電極4cとを位置合わせする。
As described above, the protruding electrode 4a is formed on the metal electrode 1b of the first electronic component 1 and the electrode 2a of the second electronic component 2 is formed.
After the protruding electrode 4c is formed thereon, as shown in FIG. 6A, the protruding electrode 4a of the first electronic component 1 and the protruding electrode 4c of the second electronic component 2 are aligned.

【0059】この位置合わせは、InPn半導体素子
2、アルミナ配線基板1ともに、それぞれ2カ所づつ設
置した認識用のパターンを各1回づつ認識して3σで±
15μm以内の精度で位置を合わせすればよい。なお、
このようにすると、4.5秒で位置合せわせすることが
できる。
This alignment is performed by recognizing the recognition patterns, which are provided at two places, respectively, once for each of the InPn semiconductor element 2 and the alumina wiring board 1 once each, and ± 3σ.
The position may be adjusted with an accuracy within 15 μm. In addition,
In this way, the alignment can be performed in 4.5 seconds.

【0060】位置合わせ後、図6(b)に示すように、
第1の電子部品1と第2の電子部品2とを加熱した状態
で押し付け、第1の電子部品1の金の突起電極4aと第
2の電子部品2の径の小さい金の突起電極4cとを固相
接合する。
After the alignment, as shown in FIG.
The first electronic component 1 and the second electronic component 2 are pressed in a heated state, and the gold protruding electrode 4a of the first electronic component 1 and the gold protruding electrode 4c of the second electronic component 2 having a small diameter are pressed. For solid phase bonding.

【0061】この電極間の接合は、アルミナ配線基板1
とInPn半導体素子2を300℃に加熱した状態で、
InPn半導体素子2を450gの荷重で10秒間アル
ミナ配線基板1に押しつけてアルミナ配線基板1上の金
の突起電極4aとInPn半導体素子2上の金の突起電
極4cとを接合するようにすればよい。金の突起電極は
接合の直前に形成するので、接合時の金表面の汚染状態
は一定であり、ばらつきのない安定した強度で接合でき
る。
The bonding between the electrodes is performed by the alumina wiring board 1
And InPn semiconductor element 2 heated to 300 ° C.
The InPn semiconductor element 2 may be pressed against the alumina wiring substrate 1 with a load of 450 g for 10 seconds to join the gold projecting electrode 4a on the alumina wiring substrate 1 with the gold projecting electrode 4c on the InPn semiconductor element 2. . Since the gold protruding electrode is formed immediately before bonding, the state of contamination of the gold surface during bonding is constant, and bonding can be performed with stable strength without variation.

【0062】その後、図6(c)に示すように、第1の
電子部品1の電極1bにはんだ電極10を形成し、はん
だ電極10を介して配線基板等、他の電子部品に実装す
る。
Thereafter, as shown in FIG. 6C, a solder electrode 10 is formed on the electrode 1b of the first electronic component 1, and mounted on another electronic component such as a wiring board via the solder electrode 10.

【0063】はんだ電極10は、表面に0.3μmの金
を形成した金属電極1bに直径0.5mmの錫と鉛の合
金からなるはんだボールを設置した後、はんだボールを
溶融・凝固させて形成すればよい。
The solder electrode 10 is formed by disposing a solder ball made of an alloy of tin and lead having a diameter of 0.5 mm on a metal electrode 1b having a surface of 0.3 μm gold and then melting and solidifying the solder ball. do it.

【0064】なお、はんだ電極としては錫、インジウ
ム、錫と銀の合金、錫と金の合金、インジウムと鉛の合
金、錫と鉛と銀の合金、錫と鉛とインジウムの合金、錫
と銀と銅の合金、錫と銀と銅とビスマスの合金でもよ
い。また、はんだ電極を形成する金属電極の表面は銀ま
たは銀の合金、銅または銅の合金、ニッケルでもよい。
The solder electrodes include tin, indium, tin-silver alloy, tin-gold alloy, indium-lead alloy, tin-lead-silver alloy, tin-lead-indium alloy, tin-silver Alloy of tin and silver, or an alloy of tin, silver, copper and bismuth. The surface of the metal electrode forming the solder electrode may be silver or a silver alloy, copper or a copper alloy, or nickel.

【0065】以上のようにして、第1の電子部品1の電
極1b上に形成されその形状が球を押しつぶしたような
形状をしている第1の導電体(突起電極4aが押しつぶ
されたもの)と、第1の導電体と電気的に接続されるよ
うに第2の電子部品2の電極2a上に形成されその形状
が球を押しつぶしたような形状をしておりその径が第1
の導電体の径と異なる第2の導電体(突起電極4cが押
しつぶされたもの)とを備えた電子装置が製造される。
As described above, the first conductor formed on the electrode 1b of the first electronic component 1 and having a shape like a crushed sphere (the first conductor having the crushed protruding electrode 4a) ), And formed on the electrode 2a of the second electronic component 2 so as to be electrically connected to the first conductor, the shape of which is like a crushed sphere and whose diameter is the first.
An electronic device including a second conductor (having the protruding electrode 4c crushed) having a diameter different from that of the conductor is manufactured.

【0066】InPn半導体素子等の極めて高価な素子
では、しばしば金属電極の寸法を小さくして素子面積を
縮小することでコストの低減が図られる。そのため、I
nPn半導体素子では例えば採寸が67μm×67μm
と極めて小さな電極が形成されることになる。
In the case of extremely expensive devices such as InPn semiconductor devices, the cost can be reduced by reducing the size of the metal electrode and the device area. Therefore, I
For an nPn semiconductor device, for example, the measurement is 67 μm × 67 μm.
And an extremely small electrode is formed.

【0067】ここで、電極上に形成される突起電極は、
ワイヤ先端の金属ボールを電子部品の金属電極に超音波
熱圧着する際に金属ボールが金属電極からはみ出すと電
子部品が破損する危険が生じるため、金属ボール径すな
わち突起電極径は電子部品の電極寸法で制限されること
になる。
Here, the projecting electrodes formed on the electrodes are:
When the metal ball at the tip of the wire is subjected to ultrasonic thermocompression bonding to the metal electrode of the electronic component, if the metal ball protrudes from the metal electrode, there is a risk of damaging the electronic component. Will be limited.

【0068】そのため、例えば採寸が67μm×67μ
mと極めて小さな電極では、突起電極の形成位置精度も
考慮すると、金の突起電極径を62μmと小径にしなけ
ればならず、このような小径の突起電極では、2段以上
に高く積み重ねた接続構造は強度が低く、外部からの衝
撃等で破断する危険が増すことになる。
Therefore, for example, the measurement is 67 μm × 67 μm.
In the case of an electrode having an extremely small diameter of m, the diameter of the gold projection electrode must be reduced to 62 μm in consideration of the accuracy of the formation position of the projection electrode. Has low strength, and the danger of breaking due to an external impact or the like increases.

【0069】それに対して、この実施の形態で示した電
子装置のように、アルミナ配線基板の電極径をInPn
半導体素子の突起電極径より大きくしておけば、InP
n半導体素子の突起電極径がちいさくとも、その接合部
の強度は増し、破断の恐れがなくなる。
On the other hand, as in the electronic device shown in this embodiment, the electrode diameter of the alumina wiring substrate is changed to InPn.
If the diameter is larger than the diameter of the bump electrode of the semiconductor element, InP
Even if the diameter of the protruding electrode of the n-semiconductor element is small, the strength of the joint increases and the possibility of breakage is eliminated.

【0070】また、アルミナ配線基板上の金の突起電極
の径をInPn半導体素子上の金の突起電極径より大き
くしておくと、アルミナ配線基板にInPn半導体素子
を押し付ける際に、アルミナ配線基板上の金の突起電極
とInPn半導体素子上の金の突起電極の位置がずれて
いても、アルミナ配線基板上の金の突起電極からInP
n半導体素子上の金の突起電極がすべり落ちにくくなる
ため、高い搭載精度が不要となって位置合わせ時の認識
回数が低減でき、実施の形態1に比べて生産タクトが短
縮できる。
If the diameter of the gold projection electrode on the alumina wiring substrate is made larger than the diameter of the gold projection electrode on the InPn semiconductor element, when the InPn semiconductor element is pressed against the alumina wiring substrate, Even if the position of the gold protrusion electrode on the alumina wiring substrate is shifted from the position of the gold protrusion electrode on the InPn semiconductor element, the InP
Since the gold protruding electrode on the n-semiconductor element is unlikely to slide down, high mounting accuracy is not required, the number of times of recognition at the time of alignment can be reduced, and the production tact can be reduced as compared with the first embodiment.

【0071】また、一方の金の突起電極の先端に平坦部
を形成する工程も省けるため、実施の形態2に比べても
生産性がよい。さらに、アルミナ配線基板の金の突起電
極にInPn半導体素子の金の突起電極がくさびのよう
に食込んで接合強度が向上する利点もある。
Further, since the step of forming a flat portion at the tip of one gold protruding electrode can be omitted, the productivity is higher than that of the second embodiment. Further, there is also an advantage that the gold protruding electrode of the InPn semiconductor element cuts into the gold protruding electrode of the alumina wiring substrate like a wedge to improve the bonding strength.

【0072】なお、金属電極の寸法が十分大きい電子部
品同士を接続する場合でも、前述した生産タクト短縮と
接合強度向上の効果を得るため、一方の金の突起電極径
を小さくしてもよいことは言うまでもない。
Even when electronic components having sufficiently large metal electrodes are connected to each other, the diameter of one gold protruding electrode may be reduced in order to obtain the effects of shortening the production cycle and improving the bonding strength. Needless to say.

【0073】また、第1の電子部品と第2の電子部品の
金の突起電極径が異なる場合でも、接合を行う前にどち
らか一方、あるいは両方の金の突起電極の先端に平板を
押し付けて平坦部を形成しておくと、接合時の金の突起
電極のすべり落ちはさらに生じにくくなる。
Even when the diameter of the gold projection electrode of the first electronic component is different from that of the second electronic component, a flat plate is pressed against the tip of one or both of the gold projection electrodes before joining. If a flat portion is formed, sliding of the gold protruding electrode at the time of bonding is further less likely to occur.

【0074】実施の形態4.図7、図8はこの実施の形
態4による電子装置の製造方法を示す図である。図にお
いて、4dは第2の電子部品2の電極2a上に形成され
た第1の突起電極4b上にさらに形成された金で構成さ
れる第2の突起電極、11は熱硬化型の樹脂である。な
お、他の符号は図4〜図6と同じであるので説明は省略
する。
Embodiment 4 7 and 8 are views showing a method for manufacturing an electronic device according to the fourth embodiment. In the figure, 4d is a second protruding electrode made of gold further formed on the first protruding electrode 4b formed on the electrode 2a of the second electronic component 2, and 11 is a thermosetting resin. is there. The other reference numerals are the same as those in FIGS.

【0075】電子装置を製造するには、まず、図7
(a)に示すように、金ワイヤ3の先端に形成した金ボ
ール3aを超音波振動6を印加しながら第1の電子部品
1の金属電極1bに熱圧着し、金ワイヤを切断すること
で、図7(b)に示すように第1の電子部品1の金属電
極1b上に金の突起電極4aを形成する。
To manufacture an electronic device, first, FIG.
As shown in (a), a gold ball 3a formed at the tip of the gold wire 3 is thermocompression-bonded to the metal electrode 1b of the first electronic component 1 while applying ultrasonic vibration 6, and the gold wire is cut. Then, as shown in FIG. 7B, a gold projecting electrode 4a is formed on the metal electrode 1b of the first electronic component 1.

【0076】この突起電極4aの形成は、直径25μm
の金ワイヤ3の先端を放電によって溶融・凝固させて7
5μmの金ボール3aを形成し、その後、表面に厚さ
0.3μmの金が形成されている幅100μmの金属電
極1bを有したアルミナ配線基板1を200℃に加熱し
た状態で、金属ボール3aを0.2wの超音波振動6を
印加しながら35gの荷重で25ms間、金属電極1a
に押し付けて接合し、金ワイヤを切断することで、最大
部の径が80μmの金の突起電極4aを形成すようにす
ればよい。なお、ここでは突起電極を150個形成する
ことにした。
The projection electrode 4a is formed with a diameter of 25 μm.
The tip of the gold wire 3 is melted and solidified by electric discharge to obtain 7
A 5 μm gold ball 3 a is formed, and then the metal ball 3 a is heated to 200 ° C. on an alumina wiring substrate 1 having a metal electrode 1 b having a width of 100 μm and having a thickness of 0.3 μm on the surface. Is applied to the metal electrode 1a for 25 ms with a load of 35 g while applying an ultrasonic vibration 6 of 0.2 w.
, And the gold wire is cut to form the gold protruding electrode 4a having a maximum diameter of 80 μm. Here, 150 projecting electrodes were formed.

【0077】一方、図7(c)に示すように、金ワイヤ
3の先端に形成した金ボール3aを超音波振動6を印加
しながら第2の電子部品2の金属電極2aに熱圧着して
金の突起電極4bを形成した後、さらに金ワイヤ3の先
端に形成した金ボール3aを超音波振動6を印加しなが
らこの突起電極4b上に熱圧着し、図7(d)に示すよ
うに、突起電極4b上に突起電極4dを形成する。すな
わち、第2の電子部品2の金属電極2a上に2段の金の
突起電極4b、4dを形成する。
On the other hand, as shown in FIG. 7C, a gold ball 3a formed at the tip of the gold wire 3 is thermocompression-bonded to the metal electrode 2a of the second electronic component 2 while applying ultrasonic vibration 6. After the gold protruding electrode 4b is formed, the gold ball 3a formed at the tip of the gold wire 3 is thermocompression-bonded onto the protruding electrode 4b while applying the ultrasonic vibration 6, as shown in FIG. The projection electrode 4d is formed on the projection electrode 4b. That is, two-stage gold protruding electrodes 4b and 4d are formed on the metal electrode 2a of the second electronic component 2.

【0078】この2段の突起電極4a、4dの形成は、
直径25μmの金ワイヤ3の先端を放電によって溶融・
凝固させて75μmの金ボール3aを形成した後、表面
に厚さ1μmのアルミが形成されている100μm×1
00μmの金属電極2aを有したSiGe半導体素子2
(11mm×11mm×t0.4mm)を150℃に加
熱した状態で、金ボール3aを0.2wの超音波振動6
を印加しながら35gの荷重で25ms間、金属電極2
aに押し付けて接合し、金ワイヤを切断して金の突起電
極を形成し、さらに、直径25μmの金ワイヤ3の先端
を放電によって溶融・凝固させて75μmの金ボール3
aを形成して0.2wの超音波振動6を印加しながら3
5gの荷重で25ms間、金の突起電極4bに押し付け
て接合し、金ワイヤを切断することで、最大部の径が8
0μmの金の突起電極4b、4dを2段に形成すればよ
い。なお、ここでは突起電極を150個形成することに
した。
The formation of the two-stage projecting electrodes 4a and 4d is as follows.
The tip of the gold wire 3 having a diameter of 25 μm is melted by electric discharge.
After solidification to form a 75 μm gold ball 3a, 100 μm × 1 having a 1 μm thick aluminum formed on the surface
SiGe semiconductor device 2 having 00 μm metal electrode 2a
(11 mm × 11 mm × t 0.4 mm) was heated to 150 ° C., and the gold ball 3 a was subjected to ultrasonic vibration 6
While applying a 35 g load to the metal electrode 2 for 25 ms.
a, the gold wire is cut to form a gold protruding electrode, and the tip of the gold wire 3 having a diameter of 25 μm is melted and solidified by electric discharge to form a gold ball 3 having a diameter of 75 μm.
a while forming and applying a 0.2 w ultrasonic vibration 6
By pressing against the gold protruding electrode 4b for 25 ms with a load of 5 g and cutting the gold wire, the diameter of the largest portion is 8 mm.
The 0 μm gold projecting electrodes 4b and 4d may be formed in two steps. Here, 150 projecting electrodes were formed.

【0079】このように超音波振動を印加しながら突起
電極4a、4b、4dを形成しているので、金以外の金
属電極や表面が汚染された金の電極でも安定して高い強
度で接合できる。また、超音波振動は突起電極毎に印加
するため、小さな超音波振動で接合できるとともに、電
極数が例えば150と多ピンであっても突起電極の接合
強度がばらつくことがない。
Since the protruding electrodes 4a, 4b, 4d are formed while applying ultrasonic vibrations in this manner, metal electrodes other than gold and gold electrodes whose surface is contaminated can be stably bonded with high strength. . Also, since ultrasonic vibration is applied to each protruding electrode, bonding can be performed with small ultrasonic vibration, and the bonding strength of the protruding electrode does not vary even if the number of electrodes is as large as 150, for example.

【0080】ワイヤ、第1の電子部品、第2の電子部品
は、実施の形態1で説明したものを用いてもよく、金属
電極の表面はアルミやアルミの合金、銀や銀の合金、銅
や銅の合金でもよい。
As the wire, the first electronic component, and the second electronic component, those described in the first embodiment may be used. The surface of the metal electrode may be aluminum or an aluminum alloy, silver or a silver alloy, copper Or an alloy of copper.

【0081】また、第1の電子部品1に突起電極4aを
形成した後、図8(a)に示すように、加熱した状態で
第1の電子部品1に形成した突起電極4aの先端に平板
8を押しつけ、突起電極4aの先端部に平坦部7を形成
する。
After forming the protruding electrode 4a on the first electronic component 1, as shown in FIG. 8A, a flat plate is formed on the tip of the protruding electrode 4a formed on the first electronic component 1 in a heated state. 8 is pressed to form a flat portion 7 at the tip of the protruding electrode 4a.

【0082】平坦部7の形成は、例えば、300℃に加
熱した状態で平板を18kgの荷重で5秒間押し付けて
金の突起電極の先端に径74μmの平坦部を形成すれば
よい。
The flat portion 7 may be formed, for example, by pressing a flat plate with a load of 18 kg for 5 seconds while heating at 300 ° C. to form a flat portion having a diameter of 74 μm at the tip of the gold protruding electrode.

【0083】加熱した状態で平板を押し付けることで、
金の突起電極とアルミナ配線基板の金属電極表面の金と
の接合界面で固相接合を進展させて接合強度をより高め
ることが可能となる。加熱せずに平板を押し付けた場
合、金の突起電極あたりのシア破断強度は平均で約42
gであったが、300に加熱した状態で平板を押し付け
ると、金の突起電極あたりのシア破断強度は平均で約6
0gに向上した。なお、平板を押し付ける時の加熱温度
が150℃以上であれば、金の突起電極の接合強度の向
上効果が得られる。
By pressing a flat plate in a heated state,
It is possible to further increase the bonding strength by developing solid-state bonding at the bonding interface between the gold projection electrode and the gold on the metal electrode surface of the alumina wiring substrate. When a flat plate is pressed without heating, the shear breaking strength per gold protruding electrode is about 42 on average.
g, but when the flat plate was pressed while being heated to 300, the shear breaking strength per gold protruding electrode was about 6 on average.
It improved to 0 g. If the heating temperature when pressing the flat plate is 150 ° C. or higher, the effect of improving the bonding strength of the gold protruding electrode can be obtained.

【0084】このように、第1の電子部品1の金属電極
1b上の突起電極4aの先端に平坦部7を、第2の電子
部品2上に2段の突起電極4b、4dを形成した後、図
8(b)に示すように、第1の電子部品1の突起電極4
aと第2の電子部品2の2段の突起電極4b、4dとを
位置合わせする。この位置合わせは実施の形態3と同様
にすればよい。
As described above, after the flat portion 7 is formed at the tip of the protruding electrode 4a on the metal electrode 1b of the first electronic component 1, and after the two-stage protruding electrodes 4b and 4d are formed on the second electronic component 2, As shown in FIG. 8B, the bump electrodes 4 of the first electronic component 1
a and the two-stage protruding electrodes 4b and 4d of the second electronic component 2 are aligned. This alignment may be performed in the same manner as in the third embodiment.

【0085】その後、図8(c)に示すように、第1の
電子部品1と第2の電子部品2とを加熱した状態で押し
付け、先端に平坦部7を形成した金の突起電極4aと第
2の電子部品2の金の突起電極4dとを固相接合する。
Then, as shown in FIG. 8 (c), the first electronic component 1 and the second electronic component 2 are pressed in a heated state, and the gold protruding electrode 4a having the flat portion 7 formed at the tip is formed. The gold projection electrode 4d of the second electronic component 2 is solid-phase bonded.

【0086】電極間の接合は、アルミナ配線基板1を3
00℃に、SiGe半導体素子2を240℃に加熱した
状態で、SiGe半導体素子2を15Kgの荷重で10
秒間アルミナ配線基板1に押し付けてアルミナ配線基板
1上の金の突起電極4aとSiGe半導体素子2上の金
の突起電極4dとを接合すればよい。ここで、金の突起
電極は接合の直前に形成するので、接合時の金表面の汚
染状態は一定であり、安定した接合強度が得られる。
The bonding between the electrodes is performed by connecting the alumina wiring board 1
While heating the SiGe semiconductor device 2 to 240 ° C. at 00 ° C., the SiGe semiconductor device 2 was
The gold bump electrode 4a on the alumina wiring board 1 and the gold bump electrode 4d on the SiGe semiconductor element 2 may be joined by pressing against the alumina wiring board 1 for 2 seconds. Here, since the gold protruding electrode is formed immediately before bonding, the state of contamination of the gold surface during bonding is constant, and stable bonding strength can be obtained.

【0087】なお、突起電極の先端をあらかじめ平坦に
しておけば、実施の形態2で説明したように、高精度な
位置合わせが不要となり、位置合わせ時の認識回数が低
減でき、生産タクトが短縮でき、さらに、接合強度が向
上する効果も得られる。もちろん、アルミナ配線基板の
金の突起電極ではなくSiGe半導体素子の金の突起電
極の先端部を平坦にしておいても同様の効果が得られ
る。
If the tips of the protruding electrodes are flattened in advance, as described in the second embodiment, high-precision alignment is not required, the number of recognitions at the time of alignment can be reduced, and the production tact is reduced. And an effect of improving the bonding strength can be obtained. Of course, the same effect can be obtained by flattening the tip of the gold projecting electrode of the SiGe semiconductor element instead of the gold projecting electrode of the alumina wiring substrate.

【0088】また、アルミナ配線基板とSiGe半導体
素子の両方の金の突起電極の先端部を平坦にしておくと
突起電極はさらにすべり落ちにくくなり、その時、アル
ミナ配線基板またはSiGe半導体素子の金の突起電極
のどちらか一方の平坦部の径が他方より大きくなるよう
に変形させておくと、平坦部径の小さい金の突起電極が
くさびのように食込んで接合強度が向上する効果が得ら
れる。
If the tips of the gold protruding electrodes of both the alumina wiring substrate and the SiGe semiconductor device are flattened, the protruding electrodes are more difficult to slide down. If one of the electrodes is deformed so that the diameter of one flat portion is larger than the other, an effect is obtained in which the gold protruding electrode having a small flat portion bites like a wedge and the bonding strength is improved.

【0089】以上のように、第1の電子部品1と第2の
電子部品2とを固相接合した後、図8(d)に示すよう
に、第1の電子部品1と第2の電子部品2の隙間に熱硬
化型の樹脂11を充填して樹脂を硬化させ、さらに、第
1の電子部品1の電極1bにはんだ電極10を形成す
る。このはんだ電極10を介して半導体装置が配線基板
等、他の電子部品に実装されることになる。
As described above, after the first electronic component 1 and the second electronic component 2 are solid-phase bonded, as shown in FIG. 8D, the first electronic component 1 and the second electronic component 2 are joined together. The space between the components 2 is filled with a thermosetting resin 11 to cure the resin, and further, the solder electrodes 10 are formed on the electrodes 1 b of the first electronic component 1. The semiconductor device is mounted on another electronic component such as a wiring board via the solder electrodes 10.

【0090】樹脂の充填は、アルミナ配線基板1とSi
Ge半導体素子2との隙間にエポキシ系の熱硬化型樹脂
を充填した後、乾燥炉内で150℃の温度で1時間加熱
してエポキシ系樹脂を硬化させるようにすればよい。
The resin was filled with the alumina wiring board 1 and Si
After filling the gap with the Ge semiconductor element 2 with an epoxy-based thermosetting resin, the epoxy-based resin may be cured by heating at 150 ° C. for 1 hour in a drying furnace.

【0091】また、はんだ電極10は実施の形態3と同
様にして形成すればよい。なお、はんだ電極は実施の形
態3と同様の材質のものを使用すればよく、はんだ電極
を形成する金属電極の表面は銀または銀の合金、銅また
は銅の合金、ニッケルでもよい。
The solder electrode 10 may be formed in the same manner as in the third embodiment. Note that the same material as in Embodiment 3 may be used for the solder electrode, and the surface of the metal electrode forming the solder electrode may be silver or a silver alloy, copper or a copper alloy, or nickel.

【0092】このようにアルミナ配線基板とSiGe半
導体素子との隙間にエポキシ系の熱硬化型樹脂を充填す
ることで、外部からの衝撃やアルミナ配線基板とSiG
e半導体素子との線膨張係数の差で生じる熱応力等でア
ルミナ配線基板とSiGe半導体素子との接合部が破断
することが防止できる。さらにアルミナ配線基板やSi
Ge半導体素子の金属電極、金属配線が外気中の汚染物
質に接触して腐食されることも防止できる。
By filling the gap between the alumina wiring board and the SiGe semiconductor element with the epoxy-based thermosetting resin as described above, external shocks or the alumina wiring board and the SiG
It is possible to prevent the joint between the alumina wiring substrate and the SiGe semiconductor element from being broken due to thermal stress or the like caused by a difference in linear expansion coefficient from the e semiconductor element. In addition, alumina wiring boards and Si
It is also possible to prevent the metal electrode and the metal wiring of the Ge semiconductor element from being corroded by contact with a contaminant in the outside air.

【0093】また、SiGe半導体素子の金の突起電極
を2段にするとアルミナ配線基板とSiGe半導体素子
との隙間が大きくなって樹脂の進入が容易になるため、
気泡等の充填欠陥が生じにくくなる効果が得られる。
Further, when the gold projecting electrodes of the SiGe semiconductor element are formed in two steps, the gap between the alumina wiring substrate and the SiGe semiconductor element becomes large and the resin can easily enter.
The effect of making it difficult to generate a filling defect such as a bubble is obtained.

【0094】さらにアルミナ配線基板とSiGe半導体
素子との線膨張係数の差で生じる熱応力もより低減され
てアルミナ配線基板とSiGe半導体素子との接合部が
さらに破断しにくくなる。これらの効果は実装する電子
部品の寸法が大きくなればなるほど顕著となる。
Further, the thermal stress caused by the difference in linear expansion coefficient between the alumina wiring substrate and the SiGe semiconductor element is further reduced, so that the joint between the alumina wiring substrate and the SiGe semiconductor element is harder to break. These effects become more remarkable as the size of the electronic component to be mounted increases.

【0095】この実施の形態では、2段の突起電極はS
iGe半導体素子に形成したが、SiGe半導体素子で
はなくアルミナ配線基板に形成してもよく、また、アル
ミナ配線基板とSiGe半導体素子の両方に形成しても
同様の効果が得られる。もちろん突起電極は2段に限ら
ず3段以上に形成してもよいことは言うまでもない。
In this embodiment, the two-stage projecting electrode is S
Although formed on the iGe semiconductor element, it may be formed not on the SiGe semiconductor element but on the alumina wiring substrate, or the same effect can be obtained by forming the element on both the alumina wiring substrate and the SiGe semiconductor element. Of course, it goes without saying that the protruding electrodes may be formed not only in two stages but also in three or more stages.

【0096】[0096]

【発明の効果】本発明にかかる電子装置の製造方法は、
第1の電子部品の電極上に金または金合金からなる金属
ボールを超音波を印加しながら熱圧着し突起電極を形成
する工程と、第2の電子部品の電極上に金または金合金
からなる金属ボールを超音波を印加しながら熱圧着し突
起電極を形成する工程と、上記第1の電子部品上の突起
電極と上記第2の電子部品上の突起電極とが対応するよ
うに上記第1の電子部品と上記第2の電子部品とを位置
合わせし、上記第1の電子部品の突起電極と上記第2の
電子部品の突起電極とを加熱しながら押し付けて上記第
1の電子部品と上記第2の電子部品とを接合する工程と
を含んでいるので、電子部品の金属電極の表面状態によ
らず、安定して高い接合強度を有する電子部品を製造す
ることができる。
According to the method for manufacturing an electronic device according to the present invention,
A step of forming a protruding electrode by applying heat and pressure to a metal ball made of gold or a gold alloy on the electrode of the first electronic component while applying ultrasonic waves; and forming a projecting electrode on the electrode of the second electronic component. A step of forming a protruding electrode by thermocompression bonding of a metal ball while applying ultrasonic waves, and a step of forming the protruding electrode on the first electronic component to correspond to the protruding electrode on the second electronic component. The electronic component and the second electronic component are aligned with each other, and the projecting electrodes of the first electronic component and the projecting electrodes of the second electronic component are pressed while being heated, and the first electronic component and the second electronic component are pressed. Since the method includes the step of bonding the second electronic component, the electronic component having a high bonding strength can be stably produced regardless of the surface state of the metal electrode of the electronic component.

【0097】また、第1の電子部品上に形成される突起
電極の径と、第2の電子部品上に形成される突起電極の
径とが異なる場合には、高精度な位置合わせの必要がな
く、さらに、接合強度を向上させることができる。
If the diameter of the protruding electrode formed on the first electronic component is different from the diameter of the protruding electrode formed on the second electronic component, it is necessary to perform highly accurate alignment. In addition, the bonding strength can be further improved.

【0098】また、位置合わせの前に、第1又は第2の
電子部品上に形成された突起電極の先端に平坦部を形成
する場合には、高精度な位置合わせが不要となる。
If a flat portion is formed at the tip of the protruding electrode formed on the first or second electronic component before the positioning, high-precision positioning is not required.

【0099】また、突起電極の先端を加熱しながら平坦
部を形成する場合には、高精度な位置合わせの必要がな
く、さらに、接合強度を向上させることができる。
In the case where a flat portion is formed while heating the tip of the protruding electrode, there is no need for high-precision alignment, and the bonding strength can be further improved.

【0100】また、第1及び第2の電子部品がそれぞれ
複数の電極を有し、各電極毎に金または金合金からなる
金属ボールを超音波を印加しながら熱圧着し上記複数の
電極上に複数の突起電極を形成する場合には、大きな超
音波振動の印加を必要とせず、脆弱な電子部品でも、実
装時に破損しないようにすることができる。
Each of the first and second electronic components has a plurality of electrodes, and a metal ball made of gold or a gold alloy is thermocompression-bonded to each of the electrodes while applying ultrasonic waves to each of the plurality of electrodes. When a plurality of protruding electrodes are formed, it is not necessary to apply large ultrasonic vibration, and even a fragile electronic component can be prevented from being damaged during mounting.

【0101】さらに、突起電極を形成する工程が、第1
又は第2の電子部品の電極上に金または金合金からなる
第1の突起電極を形成する工程と、この第1の突起電極
上に金または金合金からなる金属ボールを超音波を印加
しながら熱圧着し第2の突起電極を形成する工程とを含
んでいる場合には、第1の電子部品と第2の電子部品と
の隙間を大きくすることができ、樹脂封止する場合に、
樹脂の進入を容易にすることができる。
Further, the step of forming the protruding electrode includes the first step.
Alternatively, a step of forming a first protruding electrode made of gold or a gold alloy on the electrode of the second electronic component, and forming a metal ball made of gold or a gold alloy on the first protruding electrode while applying ultrasonic waves. When the step of forming the second protruding electrode by thermocompression bonding is included, the gap between the first electronic component and the second electronic component can be increased.
It is possible to easily enter the resin.

【0102】また、本発明にかかる電子装置は、電極を
有する第1の電子部品と、上記第1の電子部品に対向し
て配置され上記第1の電子部品の電極に対応する位置に
電極を有する第2の電子部品と、上記第1の電子部品の
電極上に形成されその形状が球を押しつぶしたような形
状をしている第1の導電体と、上記第1の導電体と電気
的に接続されるように上記第2の電子部品の電極上に形
成されその形状が球を押しつぶしたような形状をしてお
りその径が上記第1の導電体の径と異なる第2の導電体
とを備えているので、接合強度の高い電子装置を提供で
きる。
The electronic device according to the present invention includes a first electronic component having an electrode, and an electrode disposed at a position corresponding to the electrode of the first electronic component, the electrode being located opposite to the first electronic component. A second electronic component, a first conductor formed on an electrode of the first electronic component, the shape of which is shaped like a crushed sphere, and an electrical connection between the first conductor and the first conductor. A second conductor formed on the electrode of the second electronic component so as to be connected to the second conductor and having a shape like a crushed sphere and having a diameter different from that of the first conductor Therefore, an electronic device having high bonding strength can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1による電子装置の製造
方法を示す断面図である。
FIG. 1 is a sectional view illustrating a method for manufacturing an electronic device according to a first embodiment of the present invention.

【図2】 本発明の実施の形態1による電子装置の製造
方法を示す断面図である。
FIG. 2 is a sectional view illustrating the method for manufacturing the electronic device according to the first embodiment of the present invention.

【図3】 本発明の実施の形態2による電子装置の製造
方法を示す断面図である。
FIG. 3 is a sectional view illustrating a method of manufacturing an electronic device according to a second embodiment of the present invention.

【図4】 本発明の実施の形態2による電子装置の製造
方法を示す断面図である。
FIG. 4 is a sectional view illustrating the method for manufacturing the electronic device according to the second embodiment of the present invention.

【図5】 本発明の実施の形態3による電子装置および
その製造方法を示す断面図である。
FIG. 5 is a cross-sectional view illustrating an electronic device and a method of manufacturing the same according to a third embodiment of the present invention.

【図6】 本発明の実施の形態3による電子装置および
その製造方法を示す断面図である。
FIG. 6 is a cross-sectional view showing an electronic device and a method of manufacturing the same according to a third embodiment of the present invention.

【図7】 本発明の実施の形態4による電子装置の製造
方法を示す断面図である。
FIG. 7 is a sectional view illustrating the method for manufacturing the electronic device according to the fourth embodiment of the present invention.

【図8】 本発明の実施の形態4による電子装置の製造
方法を示す断面図である。
FIG. 8 is a sectional view illustrating the method for manufacturing the electronic device according to the fourth embodiment of the present invention.

【図9】 従来の電子装置の製造方法を示す断面図であ
る。
FIG. 9 is a cross-sectional view illustrating a method for manufacturing a conventional electronic device.

【図10】 従来の電子装置の製造方法を示す断面図で
ある。
FIG. 10 is a cross-sectional view illustrating a method for manufacturing a conventional electronic device.

【符号の説明】[Explanation of symbols]

1 第1の電子部品 1a、1b 第1の電子部
品の金属電極 2 第2の電子部品 2a 第2の電子部品の金
属電極 3 金ワイヤ 3a 金ボール 4a、4b、4c、4d 突起電極 5 キャピラリツール 6 超音波振動 7 平坦部 8 平板 9 スルーホール 9a 金属層 10 はんだ電極 11 熱硬化型の樹脂 101 キャピラリツール 102 金ワイヤ 103 金ボール 104、114 超音波
振動 105、111 第1の電子部品 105a、111a 第1の電子部品の金属電極 106、113 突起電極 107、112 第2の
電子部品 107a、112a 第2の電子部品の金属電極
DESCRIPTION OF SYMBOLS 1 1st electronic component 1a, 1b Metal electrode of 1st electronic component 2 2nd electronic component 2a Metal electrode of 2nd electronic component 3 Gold wire 3a Gold ball 4a, 4b, 4c, 4d Projection electrode 5 Capillary tool Reference Signs List 6 ultrasonic vibration 7 flat part 8 flat plate 9 through hole 9a metal layer 10 solder electrode 11 thermosetting resin 101 capillary tool 102 gold wire 103 gold ball 104, 114 ultrasonic vibration 105, 111 first electronic component 105a, 111a Metal electrode 106, 113 of first electronic component Projection electrode 107, 112 Second electronic component 107a, 112a Metal electrode of second electronic component

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 25/07 25/18 (72)発明者 北村 洋一 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5F044 AA00 BB11 FF04 KK04 KK17 KK18 KK19 LL15 PP17 QQ02 QQ03 QQ04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 25/07 25/18 (72) Inventor Yoichi Kitamura 2-3-2 Marunouchi 2-chome, Chiyoda-ku, Tokyo F term (reference) 5F044 AA00 BB11 FF04 KK04 KK17 KK18 KK19 LL15 PP17 QQ02 QQ03 QQ04

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 第1の電子部品の電極上に金または金合
金からなる金属ボールを超音波を印加しながら熱圧着し
突起電極を形成する工程と、第2の電子部品の電極上に
金または金合金からなる金属ボールを超音波を印加しな
がら熱圧着し突起電極を形成する工程と、上記第1の電
子部品上の突起電極と上記第2の電子部品上の突起電極
とが対応するように上記第1の電子部品と上記第2の電
子部品とを位置合わせし、上記第1の電子部品の突起電
極と上記第2の電子部品の突起電極とを加熱しながら押
し付けて上記第1の電子部品と上記第2の電子部品とを
接合する工程とを含んでいることを特徴とする電子装置
の製造方法。
1. A step of forming a protruding electrode by thermocompression bonding a metal ball made of gold or a gold alloy on an electrode of a first electronic component while applying an ultrasonic wave, and forming a gold electrode on an electrode of a second electronic component. Alternatively, the step of forming a protruding electrode by thermocompression bonding a metal ball made of a gold alloy while applying ultrasonic waves corresponds to the protruding electrode on the first electronic component and the protruding electrode on the second electronic component. As described above, the first electronic component and the second electronic component are aligned with each other, and the first electronic component and the second electronic component are pressed against each other while being heated, and the first electronic component is pressed against the first electronic component. Bonding the electronic component to the second electronic component. A method for manufacturing an electronic device, comprising:
【請求項2】 第1の電子部品上に形成される突起電極
の径と、第2の電子部品上に形成される突起電極の径と
が異なることを特徴とする請求項1記載の電子装置の製
造方法。
2. The electronic device according to claim 1, wherein a diameter of the protruding electrode formed on the first electronic component is different from a diameter of the protruding electrode formed on the second electronic component. Manufacturing method.
【請求項3】 位置合わせの前に、第1又は第2の電子
部品上に形成された突起電極の先端に平坦部を形成する
ことを特徴とする請求項1記載の電子装置の製造方法。
3. The method of manufacturing an electronic device according to claim 1, wherein a flat portion is formed at a tip of the protruding electrode formed on the first or second electronic component before the alignment.
【請求項4】 突起電極の先端を加熱しながら平坦部を
形成することを特徴とする請求項3記載の電子装置の製
造方法。
4. The method according to claim 3, wherein the flat portion is formed while heating the tip of the protruding electrode.
【請求項5】 第1及び第2の電子部品はそれぞれ複数
の電極を有しており、各電極毎に金または金合金からな
る金属ボールを超音波を印加しながら熱圧着し上記複数
の電極上に複数の突起電極を形成することを特徴とする
請求項1記載の電子装置の製造方法。
5. The first and second electronic components each have a plurality of electrodes, and a metal ball made of gold or a gold alloy is thermocompression-bonded to each of the electrodes while applying ultrasonic waves to each of the plurality of electrodes. 2. The method for manufacturing an electronic device according to claim 1, wherein a plurality of protruding electrodes are formed thereon.
【請求項6】 突起電極を形成する工程は、第1又は第
2の電子部品の電極上に金または金合金からなる第1の
突起電極を形成する工程と、この第1の突起電極上に金
または金合金からなる金属ボールを超音波を印加しなが
ら熱圧着し第2の突起電極を形成する工程とを含んでい
ることを特徴とする請求項1記載の電子装置の製造方
法。
6. The step of forming a protruding electrode includes forming a first protruding electrode made of gold or a gold alloy on an electrode of the first or second electronic component, and forming the first protruding electrode on the first protruding electrode. 2. The method of manufacturing an electronic device according to claim 1, further comprising: a step of thermocompression-bonding a metal ball made of gold or a gold alloy while applying ultrasonic waves to form a second protruding electrode.
【請求項7】 電極を有する第1の電子部品と、上記第
1の電子部品に対向して配置され上記第1の電子部品の
電極に対応する位置に電極を有する第2の電子部品と、
上記第1の電子部品の電極上に形成されその形状が球を
押しつぶしたような形状をしている第1の導電体と、上
記第1の導電体と電気的に接続されるように上記第2の
電子部品の電極上に形成されその形状が球を押しつぶし
たような形状をしておりその径が上記第1の導電体の径
と異なる第2の導電体とを備えていることを特徴とする
電子装置。
7. A first electronic component having an electrode, a second electronic component disposed to face the first electronic component and having an electrode at a position corresponding to an electrode of the first electronic component,
A first conductor formed on an electrode of the first electronic component and having a shape that crushes a sphere; and a first conductor that is electrically connected to the first conductor. A second conductor formed on the electrode of the second electronic component and having a shape like a crushed sphere, the diameter of which is different from the diameter of the first conductor. Electronic device.
JP2001095639A 2001-03-29 2001-03-29 Manufacturing method of electronic device and the electronic device Pending JP2002299371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001095639A JP2002299371A (en) 2001-03-29 2001-03-29 Manufacturing method of electronic device and the electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001095639A JP2002299371A (en) 2001-03-29 2001-03-29 Manufacturing method of electronic device and the electronic device

Publications (1)

Publication Number Publication Date
JP2002299371A true JP2002299371A (en) 2002-10-11

Family

ID=18949659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001095639A Pending JP2002299371A (en) 2001-03-29 2001-03-29 Manufacturing method of electronic device and the electronic device

Country Status (1)

Country Link
JP (1) JP2002299371A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286666A (en) * 2005-03-31 2006-10-19 Toshiba Corp Method of manufacturing semiconductor device
JP2016164950A (en) * 2015-03-06 2016-09-08 三菱重工業株式会社 Joining method and joined body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286666A (en) * 2005-03-31 2006-10-19 Toshiba Corp Method of manufacturing semiconductor device
JP4709563B2 (en) * 2005-03-31 2011-06-22 株式会社東芝 Manufacturing method of semiconductor device
JP2016164950A (en) * 2015-03-06 2016-09-08 三菱重工業株式会社 Joining method and joined body
EP3255659A4 (en) * 2015-03-06 2018-04-11 Mitsubishi Heavy Industries, Ltd. Bonding method and bonded body

Similar Documents

Publication Publication Date Title
US4842662A (en) Process for bonding integrated circuit components
JP2001313314A (en) Semiconductor device using bump, its manufacturing method, and method for forming bump
JP2003243442A (en) Semiconductor device and manufacturing method thereof, circuit substrate and electronic apparatus
JP2003243441A (en) Semiconductor device and manufacturing method thereof, circuit substrate and electronic apparatus
JP2735022B2 (en) Bump manufacturing method
JP2002270647A (en) Semiconductor chip mounting board and manufacturing method therefor
JP2001351945A (en) Method of manufacturing semiconductor device
KR100379823B1 (en) Manufacturing method of semiconductor integrated circuit device
US20060175939A1 (en) Piezoelectric device and method of producing the same
JP2002299371A (en) Manufacturing method of electronic device and the electronic device
JP3482840B2 (en) Method for manufacturing semiconductor device
JP2001053432A (en) Flip chip mounted structure
JP3572254B2 (en) Circuit board
JP3419398B2 (en) Method for manufacturing semiconductor device
EP3570318A1 (en) Method for bonding an electrically conductive element to a bonding partner
JP3279844B2 (en) Semiconductor device and manufacturing method thereof
JP2002016104A (en) Mounting method of semiconductor device and manufacturing method of semiconductor device mounted assembly
JP3746719B2 (en) Flip chip mounting method
JP2699855B2 (en) Semiconductor device bonding method
JP2008091650A (en) Flip-chip packaging method and semiconductor package
JP3168889B2 (en) Semiconductor element mounting method
JP3472342B2 (en) Method of manufacturing semiconductor device package
JPH09181120A (en) Manufacture of semiconductor device
JP3434226B2 (en) Fixed lead frame and method of manufacturing the same
JPH0714966A (en) Multi-terminal composite lead frame and manufacture thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040708