JP2002210648A - 磁性材の加工方法およびその装置 - Google Patents

磁性材の加工方法およびその装置

Info

Publication number
JP2002210648A
JP2002210648A JP2001006213A JP2001006213A JP2002210648A JP 2002210648 A JP2002210648 A JP 2002210648A JP 2001006213 A JP2001006213 A JP 2001006213A JP 2001006213 A JP2001006213 A JP 2001006213A JP 2002210648 A JP2002210648 A JP 2002210648A
Authority
JP
Japan
Prior art keywords
magnetic
work
magnetic material
pipe
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001006213A
Other languages
English (en)
Inventor
Takeo Suzumura
武男 進村
Hitomi Yamaguchi
ひとみ 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001006213A priority Critical patent/JP2002210648A/ja
Publication of JP2002210648A publication Critical patent/JP2002210648A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

(57)【要約】 【課題】 不可能とされていた磁性体内部に磁力線を透
過させることによって磁性パイプ内面の鏡面仕上げを磁
気研磨法によって行うことを可能にした磁性体の加工方
法およびその装置を提供することを目的とする。 【解決手段】 磁性体からなるパイプ等ワーク4におけ
る磁性材料部分を強力磁気印加装置1により強力な磁気
を印加して、磁気的に過飽和状態として磁性材料内の磁
区(磁力線)6の方向を一定方向に固定するとともに、
パイプ等ワーク4内に収容した磁性砥粒5に前記磁区の
方向を乱さない程度の磁石3による磁界を印加し、前記
ワーク4と磁界とを相対運動させることによって、ワー
ク4の内面を研磨することを特徴とするもので、ワーク
4である磁性体が恰も非磁性体であるかのような挙動を
呈している間に、磁性工具5に磁界を印加して磁性体の
ワーク4の内面を加工することができ、これまで不可能
とされていた半導体・医療機器・分析機器製造等の各種
産業における微細径パイプや屈曲パイプ等の磁性材にお
ける磁気研磨法が適用できて、磁気研磨法の加工分野の
裾野が格段に広がることとなった。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、不可能とされてい
た磁性パイプ内面の鏡面仕上げを磁気研磨法によって行
う磁性材の加工方法およびその装置に関し、マンガンク
ロム鋼パイプを用いる半導体・医療機器・分析機器製造
等の各種産業における微細径パイプや屈曲パイプ等の複
雑な形状、あるいは入口が狭く従来の加工工具が挿入不
可能な容器等磁性体ワークの内面を精密に鏡面仕上げす
る磁気研磨方法およびその装置に関する。本発明の磁気
加工方法およびその装置は、磁性体ワークの内面を精密
に鏡面仕上げするものであるが、磁性体ワークの外面を
加工する場合にも適用され得る。
【0002】
【従来の技術】「磁気研磨法」とは磁性砥粒を用いた磁
気援用の新しい表面研磨技術であり、特に、長さ4m程
度の細長いパイプ内面(真っ直ぐなパイプ内面および曲
がりパイプ内面)に対する新しい鏡面仕上げ技術として
注目され、既に実用化されている。例えば、半導体製造
関連装置に使用されるクリーンパイプ内面研磨への実用
化以外に、宇宙ステーション用として利用されるステン
レス鋼(SUS304)製の直径10mm、長さ150
0mmの複雑曲がりパイプ内面の鏡面仕上げ技術として
実用された実績がある。いずれもステンレス鋼や銅合金
などの非磁性材料からなるパイプであり、X線が物体を
容易に透過する現象と同じように、磁気における磁力線
が非磁性物体を容易に透過する現象とその効果に着目し
た特色ある内面研磨技術として注目される。
【0003】具体的な手法としては、図6に示すよう
に、非磁性体パイプの外側に永久磁石を設置し、パイプ
内に投入した磁性砥粒に磁界による研磨圧力を与えると
同時に、磁石の回転に追従させて磁性砥粒を回転させる
ことで、パイプ内面との間に相対運動を与えて内面を鏡
面仕上げする方法である。図6の例では、静止した非磁
性体パイプであるワーク24に対して磁界すなわちヨー
ク27により連結された複数の磁極側23S、23Nを
回転させることによって、一対の磁極S、Nが2個配置
された磁極間に形成された不均一集中磁場により発生し
た多数の磁性砥粒25のワーク24内面への加工圧力
と、ワーク24と磁界との間の相対回転により生ずる磁
性砥粒25の遠心力によって発生するワーク24内面へ
の研磨圧力により、ワーク24の内面が精密に鏡面仕上
げされるものである。
【0004】図7に示すように、非磁性体パイプの外部
に設置した永久磁石から発する磁力線からなる磁界がパ
イプを透過してパイプ内部に磁気を作用させる現象を加
工の原理とするものである。加工圧力および球形磁性粒
子の磁気追従回転磁気力について、磁性粒子に作用する
磁気力Fは、一般に次式にて表される(磁気力の基本
式)。 F=kD3 χH(∂H/∂x) ここで、k:定数、D:粒子径、χ:粒子の磁化率、
H:磁場強度、(∂H/∂x):磁場強度の変化率であ
る。すなわち、粒子に作用する磁気力は、粒子径の3乗
に、粒子の磁化率に比例して大きくなり、磁場強度Hと
その変化率の積に比例して大きくなる。ガラスあるいは
銅、アルミニウム材料等の非磁性材料で、変化率がゼロ
の場合には磁気力もゼロとなる。この原理により、学習
ロボットを利用して発明者が製作した研磨装置としての
非磁性細管の内面磁気研磨装置を使用して行った結果を
図8に示す。非磁性パイプであるSUS304ステンレ
ス鋼曲がり管内面の加工結果であり、20.6ミクロン
の加工前粗さを0.37ミクロンに仕上げることが可能
であることが知見された。
【0005】
【発明が解決しようとする課題】しかしながら、現在ま
での長い期間にわたって、「磁力線は磁性体を透過しな
い」という固定観念に基づき、前述した特色ある内面磁
気研磨技術は、ワークがクリーンパイプ等のステンレス
鋼製パイプ、セラミックスパイプ等の非磁性体に限られ
て適用されるものであり、鉄パイプ等の磁性パイプには
適用できないとされて、研究開発の努力も行われないま
ま今日に至っている。
【0006】そこで、本発明では、不可能とされていた
磁性体内部に磁力線を透過させることによって磁性パイ
プ内面の鏡面仕上げを磁気研磨法によって行うことを可
能にした磁性体の加工方法およびその装置を提供するこ
とを目的とする。
【0007】
【課題を解決するための手段】このため本発明は、磁性
体からなるパイプ等ワークにおける磁性材料部分を強力
磁気の印加により磁気的に過飽和状態として磁性材料内
の磁区の方向を一定方向に固定するとともに、パイプ等
ワーク内に収容した磁性砥粒に前記磁区の方向を乱さな
い程度の磁界を印加し、前記ワークと磁界とを相対運動
させることによって、ワークの内面を研磨することを特
徴とする。また本発明は、磁性体からなるパイプ等ワー
クにおける磁性材料部分をキュリー温度以上に昇温させ
て常磁性体に磁気転移させるとともに、パイプ等ワーク
内に収容した磁性砥粒に磁界を印加し、前記ワークと磁
界とを相対運動させることによって、ワークの内面を研
磨することを特徴とする。また本発明は、磁性体からな
るパイプ等ワークと、該ワークに近接配置されてその磁
性材料部分を磁気的に過飽和状態とするための強力磁気
印加装置と、前記ワーク内に収容した磁性砥粒に磁界を
印加する磁石と、前記ワークと磁界とを相対運動させる
駆動装置とからなることを特徴とする。また本発明は、
磁性体からなるパイプ等ワークと、該ワークに近接配置
されてその磁性材料部分をキュリー点以上に加熱して常
磁性体に磁気転移させる昇温装置と、前記ワーク内に収
容した磁性砥粒に磁界を印加する磁石と、前記ワークと
磁界とを相対運動させる駆動装置とからなることを特徴
とする。また本発明は、前記昇温装置が高周波誘導加熱
装置であることを特徴とする。また本発明は、前記ワー
クにおける少なくとも加工部を不活性ガス雰囲気中に配
設したことを特徴とするもので、これらを課題解決のた
めの手段とするものである。
【0008】
【実施の形態】以下、本発明における磁性材の加工方法
およびその装置の1実施の形態を図面に基づいて説明す
る。図1は本発明の磁性材の加工方法およびその装置の
模式図、図2は磁性材料の磁気的過飽和状態の説明図、
図3は磁性材料の磁界の強さと磁束密度との関係図、図
4は細長い磁性パイプ内面の磁気研磨原理図、図5は磁
性材料をキュリー点以上に加熱して常磁性体に磁気転移
させる昇温装置を使用した磁性材の加工方法およびその
装置の模式図である。本発明は、従来からの固定観念に
疑問を抱き、磁性パイプ等の磁性材に対する新しい内面
磁気研磨法と研磨装置を提案するもので、着想の原点
は、「磁力線は磁性体に対して透過しない」という単純
な発想に物理学的根拠が何もないという考え方による。
つまり、磁力線は、少なくとも磁気的に過飽和状態に置
かれれば磁性体の内部から外部へと作用するとの知見に
基づくものである。
【0009】第1番目の発明は、図1に示すように、磁
性体からなるパイプ等ワーク4における磁性材料部分を
強力磁気印加装置1による強力磁気の印加により磁気的
に過飽和状態として磁性材料内の磁区(磁力線6)の方
向を一定方向に固定するとともに、パイプ等ワーク4内
に収容した磁性砥粒5に前記磁区6の方向を乱さない程
度の磁石3による磁界を印加し(磁極2N、2Sから磁
性パイプ4内に向かう磁力線を利用してもよい。)、前
記ワーク4と磁界(により吸引される磁性砥粒5)とを
相対運動させることによって、ワーク4の内面を研磨す
ることを特徴とするものである。磁性材料を磁気的に過
飽和状態にすることとは、図3に示すB−H曲線(磁性
材料の磁化曲線)の飽和磁束密度Bm以上の磁場を印可
することをいう。そして、磁性パイプ内面加工のため
に、永久磁石から磁力線を磁性パイプ内部に透過させる
(図6、図7、図2を参照)。このためには、磁性パイ
プ4の材料部分を磁気的に過飽和状態として予め一方向
に完全固定した磁区6(図2)が、外部からの照射磁力
線によって磁区方向が乱れない値(図3のBm以下の磁
束密度)の磁気を印加することを特徴とする。前述した
ように、本発明では、ワークである磁気的に過飽和状態
となった磁性材料の内面磁気研磨加工は、従来から利用
している非磁性パイプ内面磁気研磨方法・加工条件およ
び加工装置をそのまま用いて実現することができる。
【0010】磁性パイプを磁気研磨する条件は、従来の
非磁性体パイプの研磨加工と同様に、図7に示すよう
に、パイプ外部の永久磁石から発する磁力線をパイプ内
部に透過させ、パイプ内部に磁気作用させることが必要
である。(前述したように、非磁性パイプの場合には磁
力線が簡単に透過するので容易に実現できる)。磁性体
が磁化する物理現象は、アト・ランダムに配列している
磁性体内の磁区の方向が外部磁場によって一定方向(磁
力線方向)に強制的に傾かせられ、このとき磁性体は磁
化されたといわれる。磁性材料を磁化するための外部磁
界の強さを次第に高め、ある値以上の強力な外部磁界に
すると、磁性体内の磁区の方向が完全に一方向に固定さ
れる過飽和状態になる。このとき、図2のように、全て
の磁区方向は一定方向に固定されて動かなくなる(図3
に示す飽和磁束密度Bm以上の過飽和領域の磁界強
度)。この状態で、磁性体内における磁区の方向を全て
一方向に完全固定するための磁界強度よりも幾分か低い
磁界(図3のBm以下の値)を直角方向に照射する(図
2参照)。このときの磁力線は、予め照射した他の強力
な外部磁界によって一定方向に固定された磁区方向を変
化させることができないため、磁力線は容易に磁性パイ
プを透過する。
【0011】このようにして、磁性パイプをパイプ軸方
向に過飽和磁化状態にすれば(図2)見掛け上、磁性パ
イプは非磁性パイプのような挙動を示す。磁性パイプの
磁気的過飽和状態の度合いは、図3に示す磁性材料のB
−H曲線(磁化特性曲線)に依存して決まる。一般に薄
肉磁性パイプは簡単に飽和磁束密度に達し易く、過飽和
状態にし易いので、内面磁気研磨加工に適する。図4
は、具体例としての長尺の磁性体パイプの内面研磨装置
の模式図を示す。磁性パイプ4の磁気的過飽和状態は電
磁コイル(または永久磁石)9−ヨーク7−磁性パイプ
4から構成される閉磁気回路によって実現される。約4
mの長尺の磁性パイプ4については、加工ユニット全体
を磁性パイプ4の軸方向に移動させることによって研磨
される。回転磁極装置および加工条件は、従来からの非
磁性パイプ内面磁気研磨装置および研磨条件をそのまま
用いることができる。
【0012】例えば、磁性砥粒を駆動する磁界として一
様な均一磁場分布を採用せざるを得ないパイプ等のワー
ク径がきわめて小さいものの内表面の精密仕上げにおい
ては、前記磁性砥粒に加えて磁気的異方性あるいは形状
異方性を有する磁性粒子を混入させることによって、ワ
ークと磁界とが相対回転した場合に、磁性粒子が研磨抵
抗に打ち勝って回転磁極に追従して容易に回転して、磁
性砥粒を研磨材とした研磨加工を効果的に行わせたり、
前記磁界を印加するところの磁石が永久磁石あるいは電
磁コイルもしくはこれらの組合せから構成して、永久磁
石における回転数制御による磁場変動制御に優先させて
電磁石の電流制御により励磁力を変動させて磁場を変動
制御させて、より精密な磁場制御も可能となる。
【0013】さらに、前記磁性砥粒等の工具として、磁
性工具を樹脂等の非磁性材料にてコーティングするか、
あるいは非磁性工具を磁性材料にてコーティングして、
種々の素材を工具として用いて設計の自由度を向上させ
たり、工作物加工面に対する影響を微妙に調整すること
も可能となる。また、パイプ状のワークに油等の液状潤
滑剤を封入して湿式研磨がなされるように構成した場合
は、研磨が円滑になされて散塵も抑制され、作業終了後
の工具と工作物との分離の手間を少なくするように構成
してもよい。また、前記磁性砥粒や磁性工具および液状
潤滑剤等のスラリーをポンプ等により強制循環させて、
常に研磨材を新しいものに代えて研磨能力を維持し、か
つ研磨面の冷却によって研磨時の焼付きを効果的に防止
することもできる。
【0014】次に、第2番目の発明として、磁性材料の
キュリー点を利用する実施の形態を説明する。すなわ
ち、磁性材料のキュリー温度(磁性イオンの磁気モーメ
ントが一方向に揃っている強磁性状態の磁性体における
自発磁化は温度上昇とともに減少し、ある温度以上では
常磁性体に戻るというキュリーの法則に基づく)を利用
し、加工部を局所的に強磁性体またはフェリ磁性体から
常磁性体に磁気転移させ、従来から提案された非磁性工
作物を加工対象とする内面磁気研磨法を利用して磁性工
作物内面を精密研磨する方法を提案するものである。図
5に示すように、磁性体からなるパイプ等ワーク4にお
ける磁性材料部分を、昇温装置例えば高周波誘導加熱装
置10によってキュリー温度以上に昇温させることで、
常磁性体に磁気転移させるとともに、パイプ等ワーク4
内に収容した磁性砥粒5に磁石(電磁コイルが好まし
い)3による磁界を印加し、前記ワーク4と磁界とを相
対運動させることによって、ワーク4の内面を研磨する
ことを特徴とする。
【0015】前記高周波誘導加熱技術等を利用して磁性
ワークの加工部を局所的に磁気転移する温度にまで加熱
して高温状態で研磨が行われて、ワークおよび加工部に
供給した磁性砥粒等の工具表面は酸化が進行するため、
少なくとも加工部の雰囲気を不活性ガス等で制御する等
の酸化防止対策を施す必要がある。図示の例ではワーク
を含めた加工装置全体を不活性ガス雰囲気中に閉じ込め
た室内が構成されている。一方、磁性工具を駆動する磁
界発生源である磁石についても高温雰囲気に耐熱性の低
い永久磁石を設置した場合には、永久磁石は強磁性を喪
失してしまい、磁性工具への作用磁力(加工力)を低下
させて加工不能に陥らせる。したがって、好適には永久
磁石に代えて電磁コイルが磁界発生源として採用され
る。
【0016】Ni−Fe合金におけるキュリー温度を例
に採れば、キュリー点はNi含有量によって左右される
が、150〜900°Kの範囲で変化する。このこと
は、磁性パイプを室温から徐々に昇温することによって
透磁率が低下することを意味しており、透磁率の低下に
よって磁気飽和の程度が低くなり、磁性管における磁力
線の透過度を昇温化することによって高められる。ワー
ク4と磁界とを相対運動させる形態として、静止したワ
ーク4に対して電磁コイル3を矢印のように振動させた
り、ワーク4の軸回りに揺動させてもよいし、静止した
電磁コイル3に対してワーク4を軸心回りに回転させて
もよい。あるいは、通電ブラシを介して電磁コイル3を
回転させることにより屈曲パイプにも対応した研磨も可
能となる。以上の動作を組み合わせることもできる。
【0017】以下、本発明における磁性材料の磁気的過
飽和現象を加工原理とした実験装置による実験結果の確
証を順を追って説明する。前記図1に示した磁性パイプ
内面の磁気研磨装置において、N・S磁極間の磁性パイ
プ材4に磁力線が流れるため、磁性パイプ4内空間に磁
気は作用せず、内面研磨は不可能である。しかし、N・
S磁極間の磁場強度を高めてN極から発する磁力線の本
数を増大していくことで磁性パイプ4は磁気的飽和状態
におかれ、パイプ4中を流れる磁力線の本数が限界値に
達し、これ以上の本数の磁力線は流れなくなる。したが
って、残りの磁力線は否応なしに磁性パイプ4内の空間
に作用して、内面磁気研磨加工に関与することになる。
【0018】この磁気的過飽和状態における磁性パイプ
4内の磁区6の方向と、パイプ4を透過してパイプ4内
空間へ透過していく磁石による磁力線の方向を直交させ
る。この事象は図2の状態に類似している。電磁コイル
を使用して実験し、磁性平板(SPCC)を透過する磁
束密度と距離Zの関係を求めた結果を図9に示す。非磁
性材料のステンレス鋼(SUS304)が最大透過度を
示すことはいうまでもない。磁性材料(SPCC)の場
合は、薄手平板ほど磁束の透過度が高いことが分かる。
厚さ4mmの磁性平板は磁力線を全く透過しない。
【0019】図10に、磁性パイプ4内の空間に磁性砥
粒5のモデルとして4mm径の鋼球を設置し、鋼球に作
用する磁気吸引力を測定した結果を示す。この磁気吸引
力は磁性砥粒5がパイプ4内面に作用する加工力に相当
する。非磁性材料のステンレス鋼が大きな磁気吸引力を
示すことは当然ながら、反面、磁性パイプの場合の磁気
吸引力はパイプ肉厚が厚くなるほど逆に小さくなること
が分かる。磁力線がパイプ内空間に透過し難くなるため
である。しかし、パイプ肉厚が0.4mm〜0.6mm
では相応の磁力線透過量があり、磁性パイプ内面の面積
との集積で与えられる磁気吸引力の合力はステンレス鋼
の値よりも高くなっている。このことは、磁性パイプの
加工の可能性を示唆する。
【0020】図12は、図1に示した実験方法にしたが
い、図11の加工条件で内面加工したときの結果であ
る。加工時間は2分間である。加工前の表面粗さ2μm
Ry(0.28μmRa)が、ステンレス鋼の非磁性材
パイプでは0.25μmRy(0.05μmRa)に仕
上げられる。一方、磁性パイプの場合には、非磁性材料
のステンレス鋼ほど研磨速度は速くないが、次第に鏡面
化していることが分かる。パイプ肉厚が厚くなるほど仕
上げ面粗さは粗くなっている。磁力線の透過量が小さく
なるため加工圧力が低下し、前加工面の粗面が除去し難
くなったためと考えられる。充分な加工時間を経過すれ
ば鏡面磁気研磨が可能と推測できる。以上の実験結果か
ら、磁性パイプ肉厚部(磁性材料)を磁気的過飽和状態
に置くことによって、見掛け上、磁性パイプを非磁性化
して内面磁気研磨加工できることが実証できた。
【0021】以上、本発明の実施の形態について説明し
てきたが、本発明の趣旨の範囲内で、磁性体ワークの形
状、種類、材質、強力磁気印加装置の形状、形式、磁性
砥粒あるいは磁性砥粒とともに混入される磁性工具や液
状潤滑剤の形状、材質、これら磁性砥粒等に磁界を印加
する磁石の形状、形式および配置形態、前記ワークと磁
界とを相対運動させる駆動装置の形式、相対運動の形態
(回転、スライドおよびそれらの組合せ等)、磁性材料
部分をキュリー点以上に加熱する昇温装置の形状、形
式、加工部の酸化を防止するための対策形態(不活性ガ
ス雰囲気室内への加工装置の設置の他、加工部への不活
性ガスの供給等)、強力磁気印加装置と昇温装置との併
用、ヨークの形状、磁極の形状、およびこれらの間の関
連構成磁界の強さ、研磨時間等は適宜選定できる。
【0022】
【発明の効果】以上、詳細に説明したように、本発明で
は、磁性体からなるパイプ等ワークにおける磁性材料部
分を強力磁気の印加により磁気的に過飽和状態として磁
性材料内の磁区の方向を一定方向に固定するとともに、
パイプ等ワーク内に収容した磁性砥粒に前記磁区の方向
を乱さない程度の磁界を印加し、前記ワークと磁界とを
相対運動させることによって、ワークの内面を研磨する
ように構成したので、ワークである磁性体が恰も非磁性
体であるかのような挙動を呈している間に、磁性工具に
磁界を印加して磁性体の加工面を加工することができ、
これまで不可能とされていた半導体・医療機器・分析機
器製造等の各種産業における微細径パイプや屈曲パイプ
等の磁性材への磁気研磨法が適用でき、磁気研磨法の加
工分野の裾野が格段に広がることとなった。
【0023】また、磁性体からなるパイプ等ワークにお
ける磁性材料部分をキュリー温度以上に昇温させて常磁
性体に磁気転移させるとともに、パイプ等ワーク内に収
容した磁性砥粒に磁界を印加し、前記ワークと磁界とを
相対運動させることによって、ワークの内面を研磨する
ように構成したので、磁性体からなるパイプ等ワークに
おける磁性材料部分に昇温装置を適用するだけで、ワー
クである磁性体が恰も非磁性体であるかのような挙動を
呈している間に、磁性工具に磁界を印加して磁性体の加
工面を加工することができる。
【0024】さらに、前記昇温装置が高周波誘導加熱装
置である場合は、加熱、昇温のための熱源が清潔で安全
であり、温度制御も確実かつ精密に行える。さらにま
た、前記ワークにおける少なくとも加工部を不活性ガス
雰囲気中に配設した場合は、工具を含む加工部の酸化を
有効に防止できるとともに、局部的に加工部のみに不活
性ガスを噴射するもののような面倒な工程が不要とな
る。このように本発明によれば、不可能とされていた磁
性体内部に磁力線を透過させることによって磁性パイプ
内面の鏡面仕上げを磁気研磨法によって行うことを可能
にした磁性体の加工方法およびその装置が提供される。
【図面の簡単な説明】
【図1】本発明の磁性材の加工方法およびその装置の模
式図である。
【図2】同、磁性材料の磁気的過飽和状態の説明図であ
る。
【図3】同、磁性材料の磁界の強さと磁束密度との関係
図である。
【図4】同、細長い磁性パイプ内面の磁気研磨原理図で
ある。
【図5】同、昇温装置を使用した磁性材の加工装置の模
式図である。
【図6】非磁性パイプの内面磁気研磨の原理図である。
【図7】同、磁力線分布である。
【図8】非磁性パイプの内面磁気研磨装置を使用して行
った結果図である。
【図9】非磁性および磁性板における磁気透過度測定値
図である。
【図10】非磁性および磁性パイプ内に設置した鋼球に
作用する磁気吸引力図である。
【図11】図1の実験装置における加工条件図である。
【図12】非磁性および磁性パイプ内面の磁気研磨結果
図である。
【符号の説明】
1 強力磁気印加装置 2 磁極 3 磁石 4 磁性パイプ 5 磁性砥粒 6 磁力線(磁区) 7 ヨーク 8 鉄心 9 コイル 10 高周波誘導加熱装置(昇温装置) V 直流電源

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 磁性体からなるパイプ等ワークにおける
    磁性材料部分を強力磁気の印加により磁気的に過飽和状
    態として磁性材料内の磁区の方向を一定方向に固定する
    とともに、パイプ等ワーク内に収容した磁性砥粒に前記
    磁区の方向を乱さない程度の磁界を印加し、前記ワーク
    と磁界とを相対運動させることによって、ワークの内面
    を研磨することを特徴とする磁性材の加工方法。
  2. 【請求項2】 磁性体からなるパイプ等ワークにおける
    磁性材料部分をキュリー温度以上に昇温させて常磁性体
    に磁気転移させるとともに、パイプ等ワーク内に収容し
    た磁性砥粒に磁界を印加し、前記ワークと磁界とを相対
    運動させることによって、ワークの内面を研磨すること
    を特徴とする磁性材の加工方法。
  3. 【請求項3】 磁性体からなるパイプ等ワークと、該ワ
    ークに近接配置されてその磁性材料部分を磁気的に過飽
    和状態とするための強力磁気印加装置と、前記ワーク内
    に収容した磁性砥粒に磁界を印加する磁石と、前記ワー
    クと磁界とを相対運動させる駆動装置とからなることを
    特徴とする磁性材の加工装置。
  4. 【請求項4】 磁性体からなるパイプ等ワークと、該ワ
    ークに近接配置されてその磁性材料部分をキュリー点以
    上に加熱して常磁性体に磁気転移させる昇温装置と、前
    記ワーク内に収容した磁性砥粒に磁界を印加する磁石
    と、前記ワークと磁界とを相対運動させる駆動装置とか
    らなることを特徴とする磁性材の加工装置。
  5. 【請求項5】 前記昇温装置が高周波誘導加熱装置であ
    ることを特徴とする請求項4に記載の磁性材の加工装
    置。
  6. 【請求項6】 前記ワークにおける少なくとも加工部を
    不活性ガス雰囲気中に配設したことを特徴とする請求項
    4または5に記載の磁性材の加工装置。
JP2001006213A 2001-01-15 2001-01-15 磁性材の加工方法およびその装置 Pending JP2002210648A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001006213A JP2002210648A (ja) 2001-01-15 2001-01-15 磁性材の加工方法およびその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001006213A JP2002210648A (ja) 2001-01-15 2001-01-15 磁性材の加工方法およびその装置

Publications (1)

Publication Number Publication Date
JP2002210648A true JP2002210648A (ja) 2002-07-30

Family

ID=18874135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001006213A Pending JP2002210648A (ja) 2001-01-15 2001-01-15 磁性材の加工方法およびその装置

Country Status (1)

Country Link
JP (1) JP2002210648A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210073A (ja) * 2006-02-10 2007-08-23 Utsunomiya Univ 磁気研磨装置及び磁気研磨加工用工具
DE102006059017A1 (de) * 2006-12-14 2008-06-26 Stahab Gmbh Verfahren und Vorrichtung zur Oberflächenbearbeitung von Rohrinnenflächen
CN103624634A (zh) * 2013-11-26 2014-03-12 辽宁科技大学 一种厚壁陶瓷管内表面磁力研磨抛光方法及其装置
CN113561017A (zh) * 2021-07-20 2021-10-29 上海理工大学 一种用于薄壁件的机械手复合打磨工具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440392A (en) * 1977-08-05 1979-03-29 Fiz Tekhn I Akademii Nauku Ber Method of finishing product of ferroelectrocity by eerroelectrocity grinding powder in magnetic field
JPH04176556A (ja) * 1990-11-13 1992-06-24 Daido Steel Co Ltd 磁気研摩方法、磁気研摩用砥粒およびその製造方法
JPH04350903A (ja) * 1991-05-28 1992-12-04 Tdk Corp 磁石材料およびその製造方法
JPH0863734A (ja) * 1994-08-23 1996-03-08 Hitachi Ltd 磁気記録媒体およびそれを用いた磁気記録再生装置
WO1999023676A1 (fr) * 1997-10-30 1999-05-14 Sumitomo Special Metals Co., Ltd. Procede de fabrication d'aimants a liaison r-fe-b presentant une haute resistance a la corrosion
JP2000076637A (ja) * 1998-09-02 2000-03-14 Hitachi Ltd 磁気記録媒体及び磁気記憶装置
JP2000107996A (ja) * 1998-07-30 2000-04-18 Japan Science & Technology Corp 磁気異方性工具を用いた表面処理方法およびその装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440392A (en) * 1977-08-05 1979-03-29 Fiz Tekhn I Akademii Nauku Ber Method of finishing product of ferroelectrocity by eerroelectrocity grinding powder in magnetic field
JPH04176556A (ja) * 1990-11-13 1992-06-24 Daido Steel Co Ltd 磁気研摩方法、磁気研摩用砥粒およびその製造方法
JPH04350903A (ja) * 1991-05-28 1992-12-04 Tdk Corp 磁石材料およびその製造方法
JPH0863734A (ja) * 1994-08-23 1996-03-08 Hitachi Ltd 磁気記録媒体およびそれを用いた磁気記録再生装置
WO1999023676A1 (fr) * 1997-10-30 1999-05-14 Sumitomo Special Metals Co., Ltd. Procede de fabrication d'aimants a liaison r-fe-b presentant une haute resistance a la corrosion
JP2000107996A (ja) * 1998-07-30 2000-04-18 Japan Science & Technology Corp 磁気異方性工具を用いた表面処理方法およびその装置
JP2000076637A (ja) * 1998-09-02 2000-03-14 Hitachi Ltd 磁気記録媒体及び磁気記憶装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210073A (ja) * 2006-02-10 2007-08-23 Utsunomiya Univ 磁気研磨装置及び磁気研磨加工用工具
DE102006059017A1 (de) * 2006-12-14 2008-06-26 Stahab Gmbh Verfahren und Vorrichtung zur Oberflächenbearbeitung von Rohrinnenflächen
CN103624634A (zh) * 2013-11-26 2014-03-12 辽宁科技大学 一种厚壁陶瓷管内表面磁力研磨抛光方法及其装置
CN113561017A (zh) * 2021-07-20 2021-10-29 上海理工大学 一种用于薄壁件的机械手复合打磨工具

Similar Documents

Publication Publication Date Title
Khan et al. Selection of optimum polishing fluid composition for ball end magnetorheological finishing (BEMRF) of copper
Kim et al. Simulation for the prediction of surface-accuracy in magnetic abrasive machining
Alam et al. MR fluid-based novel finishing process for nonplanar copper mirrors
JPWO2008056809A1 (ja) 電磁攪拌装置
JP2011104696A (ja) 球体研磨装置
JP2000107996A (ja) 磁気異方性工具を用いた表面処理方法およびその装置
JP2002210648A (ja) 磁性材の加工方法およびその装置
JP6371645B2 (ja) 磁石工具を用いた磁気研磨方法及び磁気研磨装置
JP3761791B2 (ja) 曲がり管内面の磁気援用研磨方法およびその装置
Khurana et al. Spot nanofinishing using ball nose magnetorheological solid rotating core tool
JPH0116623B2 (ja)
Moghanizadeh et al. Development the flexible magnetic abrasive finishing process by transmitting the magnetic fields
JP2007045878A (ja) 磁性砥粒
TW202007477A (zh) 化學機械研磨系統
Gao et al. Characteristics of a novel atomized spherical magnetic abrasive powder
JPH0248391B2 (ja)
JP2006272520A (ja) 磁気援用加工法及びこれに用いられる磁性工具
JP4185985B2 (ja) 磁気援用加工法
JP2003062747A (ja) 磁性流体利用の加工方法およびその装置
JP4478795B2 (ja) 磁性砥粒及び磁気研磨法
Sato et al. Study of internal magnetic field assisted finishing for copper tubes with MRF (Magneto-rheological fluid)-based Slurry
JP2000061810A (ja) 磁気研磨方法及び磁気研磨装置
Alam et al. 1Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India; 2Institute for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Edinburgh, Scotland, United Kingdom
Zou et al. Mechanism of a magnetic field assisted finishing process using a magnet tool and magnetic particles
JP2019030924A (ja) 磁気研磨方法及び磁気研磨装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061010