JP2002155347A - Rare earth alloy, its manufacturing method and method for manufacturing rare earth sintered magnet - Google Patents

Rare earth alloy, its manufacturing method and method for manufacturing rare earth sintered magnet

Info

Publication number
JP2002155347A
JP2002155347A JP2001271673A JP2001271673A JP2002155347A JP 2002155347 A JP2002155347 A JP 2002155347A JP 2001271673 A JP2001271673 A JP 2001271673A JP 2001271673 A JP2001271673 A JP 2001271673A JP 2002155347 A JP2002155347 A JP 2002155347A
Authority
JP
Japan
Prior art keywords
weight
alloy
rare earth
manufacturing
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001271673A
Other languages
Japanese (ja)
Other versions
JP3726888B2 (en
Inventor
Koji Sato
孝治 佐藤
Kazuaki Sakaki
一晃 榊
Takahiro Hashimoto
貴弘 橋本
Takehisa Minowa
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2001271673A priority Critical patent/JP3726888B2/en
Publication of JP2002155347A publication Critical patent/JP2002155347A/en
Application granted granted Critical
Publication of JP3726888B2 publication Critical patent/JP3726888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rare earth alloy to which uniform treatment is possible in a short time in heat treatment for a thin strip ingot and its manufacturing method, and to provide a method for manufacturing a rare earth sintered magnet having excellent magnetic properties. SOLUTION: An alloy essentially consisting of, by weight, 20 to 30% R (wherein, R is Sm or two or more kinds of rare earth elements including Sm by >=50%), 10 to 45% Fe, 1 to 10% Cu and 0.5 to 5% Zr, and the balance Co is melted and is thereafter rapidly cooled by a strip casting method to obtain the rare earth alloy. The alloy contains isometric crystals with a grain size of 1 to 200 μm by >=20 vol.% and has a sheet thickness of 0.05 to 3 mm. In this way, excellent magnetic properties can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希土類金属及びそ
の製造方法並びにSm2Co17系焼結磁石の製造方法に
関する。
The present invention relates to a rare earth metal, a method for producing the same, and a method for producing an Sm 2 Co 17 based sintered magnet.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
Sm2Co17系永久磁石における焼結磁石の製造方法
は、組成調整した合金鋳塊を1〜10μmに微粉砕し、
磁場中において加圧成形した後、アルゴン雰囲気中で1
100〜1300℃、通常1200℃程度において、1
時間〜5時間の条件で焼結、溶体化する。次いで、70
0〜900℃、通常800℃程度の温度において約10
時間程度保持し、−1.0℃/分の降温速度で400℃
以下まで徐冷する時効処理を施すのが一般的である。通
常工程において、焼結、溶体化処理は、設定温度に対し
±3℃という最適温度範囲があり、厳密な制御が必要と
なる。これは、焼結、溶体化処理の際、多種の構成相が
存在することで、部分による結晶粒の成長、相変化の熱
処理温度によるばらつきが生じるためであり、そして、
高特性Sm2Co17系焼結磁石になればなるほど、焼
結、溶体化処理の温度制御は厳密となる傾向にある。そ
の最適温度範囲を維持し、良好な磁気特性を得るために
は、できるだけ偏析のない均一な合金組織が不可欠とな
る。
2. Description of the Related Art
The method for producing a sintered magnet in a Sm 2 Co 17 permanent magnet is to finely pulverize a composition-adjusted alloy ingot to 1 to 10 μm,
After pressure molding in a magnetic field, the
At 100-1300 ° C, usually around 1200 ° C, 1
Sinter and solution under conditions of time to 5 hours. Then 70
About 10 at a temperature of about 0 to 900 ° C, usually about 800 ° C.
Hold for about an hour at 400 ° C at a temperature drop rate of -1.0 ° C / min.
It is common to apply an aging treatment of gradually cooling to the following. In a normal process, sintering and solution treatment have an optimum temperature range of ± 3 ° C. with respect to a set temperature, and strict control is required. This is because, during sintering and solution treatment, the presence of various types of constituent phases causes the growth of crystal grains due to portions, and variations due to the heat treatment temperature of the phase change, and
The temperature control of the sintering and solution treatment tends to be stricter as the Sm 2 Co 17 based sintered magnet has higher characteristics. In order to maintain the optimum temperature range and obtain good magnetic properties, a uniform alloy structure with as little segregation as possible is indispensable.

【0003】均一な組織をもつSm2Co17系磁石用合
金を得るための鋳造法としては、そのマクロ組織が柱状
結晶となるように、箱形等の鋳型に合金溶湯を鋳造する
方法が採用されている。ここで、柱状結晶を得るために
は、合金溶湯の冷却速度をある程度速めなければならな
いが、箱形の鋳型を用いた鋳造法では、インゴット中央
部分において、柱状結晶が生成する冷却速度より遅くな
る傾向にあり、組織の粗大化そして等軸晶が発生するこ
ととなる。インゴットの厚みを薄くすること等の方法に
よりこの問題は解消できるが、効率的な生産性が低下す
る。このことから、ある程度の厚みのインゴットを製造
することになり、組織の粗大化そして等軸晶が生じる場
合が多い。組織の粗大化そして等軸晶の発生が、インゴ
ット中の偏析となり、焼結、溶体化の後の磁石組織にも
悪影響を及ぼし、良好な磁気特性が得られない原因とな
る。
[0003] As a casting method for obtaining an Sm 2 Co 17- based magnet alloy having a uniform structure, a method of casting a molten alloy in a box-shaped mold or the like is adopted so that the macro structure becomes a columnar crystal. Have been. Here, in order to obtain columnar crystals, the cooling rate of the molten alloy must be increased to some extent, but in the casting method using a box-shaped mold, in the center of the ingot, the cooling rate is lower than the cooling rate at which the columnar crystals are generated. This tends to cause coarsening of the structure and generation of equiaxed crystals. Although this problem can be solved by a method such as reducing the thickness of the ingot, efficient productivity is reduced. For this reason, an ingot having a certain thickness is produced, and the structure is coarsened and an equiaxed crystal is often generated. The coarsening of the structure and the generation of equiaxed crystals result in segregation in the ingot, which has an adverse effect on the magnet structure after sintering and solution treatment, and causes no good magnetic properties to be obtained.

【0004】この問題を解決する方法として、単ロール
による鋳造法(ストリップキャスティング法)が提案さ
れている(特開平8−260083号公報)。この鋳造
方法により作製されたインゴットは、微細結晶構造を有
し、偏析のない均一な合金組織が得られる。しかし、微
細な結晶構造をもつインゴットを原料として用いて焼結
磁石を製造したところ、箱型鋳型で鋳造されたインゴッ
トを原料として用いた焼結磁石に比べ、保磁力は向上す
るものの、残留磁束密度、最大エネルギー積は、むしろ
低下することが確認されている(特開平9−11138
3号公報)。微細な結晶構造を有するインゴットは、箱
型鋳型で鋳造されたインゴットに比べ、平均結晶粒径が
非常に小さい。そのため、それぞれのインゴットを焼結
磁石を製造する工程上、平均微粉末粒径5μmに微粉砕
すると、微細な結晶構造を有するインゴットは、平均結
晶粒径と平均微粉末粒径の値が近くなってしまい、微粉
砕粒子が単結晶でなくなり、多結晶の微粉砕粒子の割合
が増えることとなり、磁場中成形した際の配向度も低く
なる。結果的に、熱処理後の焼結磁石の配向度が低くな
り、残留磁束密度、最大エネルギー積の低下につながる
と考えられている。このことより、Sm2Co17系焼結
磁石において、ストリップキャスティング法により鋳造
されたインゴットは、原料インゴットとして用いられて
いない。
As a method for solving this problem, a casting method using a single roll (strip casting method) has been proposed (JP-A-8-260083). The ingot produced by this casting method has a fine crystal structure and can obtain a uniform alloy structure without segregation. However, when a sintered magnet was manufactured using an ingot having a fine crystal structure as a raw material, the coercive force was improved as compared with a sintered magnet using an ingot cast in a box mold as a raw material, but the residual magnetic flux was increased. It has been confirmed that the density and the maximum energy product are rather lowered (Japanese Patent Laid-Open No. 9-11138).
No. 3). An ingot having a fine crystal structure has a much smaller average crystal grain size than an ingot cast with a box mold. Therefore, when each ingot is finely pulverized to an average fine powder particle size of 5 μm in the process of manufacturing a sintered magnet, the ingot having a fine crystal structure has a value close to the average crystal particle size and the average fine powder particle size. As a result, the finely pulverized particles are no longer a single crystal, the proportion of the polycrystalline finely pulverized particles increases, and the degree of orientation when molded in a magnetic field also decreases. As a result, it is considered that the degree of orientation of the sintered magnet after the heat treatment decreases, leading to a decrease in the residual magnetic flux density and the maximum energy product. For this reason, in the Sm 2 Co 17 sintered magnet, the ingot cast by the strip casting method is not used as a raw material ingot.

【0005】本発明は、上記問題を解決したもので、薄
帯インゴットの熱処理の際、短時間で均一な処理ができ
る希土類合金及びその製造方法、並びに優れた磁気特性
を有する希土類焼結磁石の製造方法を提供することを目
的とする。
The present invention solves the above-mentioned problems, and a rare-earth alloy capable of performing uniform treatment in a short time when heat-treating a ribbon ingot, a method for producing the same, and a rare-earth sintered magnet having excellent magnetic properties. It is intended to provide a manufacturing method.

【0006】[0006]

【課題を解決するための手段及び発明の実施の形態】本
発明者は、上記目的を達成するため、Sm2Co17系合
金において、合金組織と熱処理による組織変化の関係を
検討したところ、結晶粒径1〜200μmの等軸晶を2
0容量%以上含有し、板厚0.05〜3mmであるSm
2Co17系合金を用いることで、熱処理が短時間で済
み、容易に均質な組織が得られることを知見した。
Means for Solving the Problems and Embodiments of the Invention In order to achieve the above object, the present inventor examined the relationship between the alloy structure and the structural change of the Sm 2 Co 17- based alloy due to heat treatment. 2 equiaxed crystals with a particle size of 1 to 200 μm
Sm containing 0% by volume or more and having a plate thickness of 0.05 to 3 mm
It has been found that by using a 2 Co 17 alloy, heat treatment can be performed in a short time and a homogeneous structure can be easily obtained.

【0007】そして、この合金をこのように非酸化性雰
囲気中で熱処理し、平均結晶粒径を成長させることで、
従来の鋳造インゴットを用いて焼結磁石を製造した場合
より、優れた磁気特性が得られることを見出したもので
ある。
[0007] Then, the alloy is heat-treated in a non-oxidizing atmosphere as described above to grow the average crystal grain size,
It has been found that superior magnetic properties can be obtained as compared with a case where a sintered magnet is manufactured using a conventional cast ingot.

【0008】従って、本発明は、(1)R(但し、Rは
Sm又はSmを50重量%以上含む2種以上の希土類元
素)20〜30重量%、Fe10〜45重量%、Cu1
〜10重量%、Zr0.5〜5重量%、残部Coを主成
分とする合金を溶融後、ストリップキャスティング法に
より急冷することによって得られ、粒径1〜200μm
の等軸晶を20容量%以上含有し、板厚0.05〜3m
mであることを特徴とする希土類合金、(2)R(但
し、RはSm又はSmを50重量%以上含む2種以上の
希土類元素)20〜30重量%、Fe10〜45重量
%、Cu1〜10重量%、Zr0.5〜5重量%、残部
Coを主成分とする合金を溶融後、1250〜1600
℃の湯温でストリップキャスティングを行うことを特徴
とする上記希土類合金の製造方法、(3)R(但し、R
はSm又はSmを50重量%以上含む2種以上の希土類
元素)20〜30重量%、Fe10〜45重量%、Cu
1〜10重量%、Zr0.5〜5重量%、残部Coを主
成分とする合金を溶融後、ストリップキャスティング法
により急冷することによって得られ、粒径1〜200μ
mの等軸晶を20容量%以上含有し、板厚0.05〜3
mmである希土類合金を、非酸化性雰囲気中において1
000〜1300℃、0.5〜20時間の熱処理を施
し、該希土類磁石合金を微粉砕した後、磁場中で圧縮成
形し、焼結、溶体化し、次いで、時効処理することを特
徴とする希土類焼結磁石の製造方法を提供する。
Accordingly, the present invention relates to (1) R (where R is Sm or two or more rare earth elements containing 50% by weight or more of Sm) 20 to 30% by weight, Fe 10 to 45% by weight, Cu 1
10 to 10% by weight, Zr 0.5 to 5% by weight, the balance being obtained by melting an alloy containing Co as a main component, followed by quenching by a strip casting method.
Containing 20% by volume or more of equiaxed crystals of
m (2) R (where R is Sm or two or more rare earth elements containing 50% by weight or more of Sm) 20 to 30% by weight, Fe 10 to 45% by weight, Cu 1 to After melting an alloy containing 10% by weight, Zr 0.5 to 5% by weight, and the balance Co as a main component, 1250 to 1600
(3) R (where R is an integer)
Is Sm or two or more rare earth elements containing 50% by weight or more of Sm) 20 to 30% by weight, Fe 10 to 45% by weight, Cu
It is obtained by melting an alloy containing 1 to 10% by weight, Zr 0.5 to 5% by weight, and the balance being Co as a main component, followed by quenching by a strip casting method.
m containing 20% by volume or more of equiaxed crystals and having a thickness of 0.05 to 3
mm in a non-oxidizing atmosphere.
A rare earth element characterized by being subjected to a heat treatment at 000 to 1300 ° C. for 0.5 to 20 hours, finely pulverizing the rare earth magnet alloy, compression molding in a magnetic field, sintering and solution, and then aging. Provided is a method for manufacturing a sintered magnet.

【0009】Sm2Co17系合金において、Smは非常
に蒸気圧が高く、高温、長時間の熱処理中に蒸発してし
まい、組成ずれを生じて得られた磁石において、保磁力
ばらつき等の磁気特性劣化を引き起すおそれがある一
方、Smの蒸発を避けるために熱処理を低温、短時間と
すると、熱処理の効果が不充分となり、残留磁束密度、
最大エネルギーの低下につながるが、上記合金を使用す
ることにより、短時間で最適な熱処理を施すことがで
き、これによって組成ずれを起こすことなく、結晶粒径
を大きくし得ると共に、このSm2Co17系磁石合金を
用いてこれを微粉砕し、磁場中で成形し、焼結、溶体
化、時効処理することで、優れた磁気特性を有するSm
2Co17系焼結磁石を得ることができる。
In the Sm 2 Co 17 alloy, Sm has a very high vapor pressure, evaporates during a high-temperature and long-time heat treatment, and a magnet having a composition deviation causes a magnetic field such as a coercive force variation. On the other hand, if the heat treatment is performed at a low temperature and for a short time in order to avoid the evaporation of Sm, the effect of the heat treatment becomes insufficient, and the residual magnetic flux density,
Although the maximum energy is reduced, the use of the above-mentioned alloy makes it possible to perform an optimal heat treatment in a short time, thereby increasing the crystal grain size without causing a composition deviation, and increasing the Sm 2 Co This is pulverized using a 17 series magnet alloy, molded in a magnetic field, and sintered, solution-processed and aged to provide Sm with excellent magnetic properties.
A 2 Co 17 based sintered magnet can be obtained.

【0010】以下、本発明につき更に詳しく説明する。
本発明における希土類合金(Sm2Co17系永久磁石合
金)組成の主成分は、Sm又はSmを50重量%以上含
む2種以上の希土類元素20〜30重量%、Fe10〜
45重量%、Cu1〜10重量%、Zr0.5〜5重量
%、残部Co及び不可避的不純物からなる。前記Sm以
外の希土類金属としては、特に限定されるものではな
く、Nd、Ce、Pr、Gdなどを挙げることができ
る。希土類元素中のSmの含有量が50重量%未満の場
合や、希土類元素量が20重量%未満、30重量%を超
える場合は、有効な磁気特性をもつことはできない。
Hereinafter, the present invention will be described in more detail.
The main components of the rare earth alloy (Sm 2 Co 17 based permanent magnet alloy) composition in the present invention are Sm or two or more rare earth elements containing 50% by weight or more of Sm, 20 to 30% by weight, Fe 10 to 10% by weight.
45% by weight, 1 to 10% by weight of Cu, 0.5 to 5% by weight of Zr, the balance being Co and unavoidable impurities. The rare earth metal other than Sm is not particularly limited, and examples thereof include Nd, Ce, Pr, and Gd. When the content of Sm in the rare earth element is less than 50% by weight, or when the amount of the rare earth element is less than 20% by weight or more than 30% by weight, it is impossible to have effective magnetic properties.

【0011】本発明のSm2Co17系永久磁石合金は、
上記組成範囲の原料を非酸化性雰囲気中において、高周
波溶解により溶融し、更に、その合金溶湯を1250〜
1600℃にストリップキャスティング法により急冷す
る。急冷前の溶湯温度が1250℃より低いと急冷温度
巾がせまく、結晶粒径200μm以上の非常に大きな結
晶が形成され組成の不均一を招く。加えて、溶湯温度が
低いと粘性が低く、厚さ3mm以下の薄帯が形成されに
くく、そればかりか途中凝固してしまい、健全な鋳造が
行えない。好ましくは1300℃以上の温度がよい。1
600℃より高い温度では溶解中Smの蒸発が甚だし
く、組成ずれが発生し、安定した生産が行えない。好ま
しくは1500℃以下がよい。
The Sm 2 Co 17 based permanent magnet alloy of the present invention comprises:
The raw material having the above composition range is melted by high frequency melting in a non-oxidizing atmosphere, and the molten alloy is further cooled to 1250 to 1250.
It is quenched to 1600 ° C. by a strip casting method. If the temperature of the molten metal before quenching is lower than 1250 ° C., the quenching temperature range becomes narrow, and very large crystals having a crystal grain size of 200 μm or more are formed, leading to uneven composition. In addition, when the temperature of the molten metal is low, the viscosity is low, and a ribbon having a thickness of 3 mm or less is difficult to be formed. Preferably, the temperature is 1300 ° C. or higher. 1
If the temperature is higher than 600 ° C., the evaporation of Sm during melting is so severe that a composition shift occurs and stable production cannot be performed. Preferably, the temperature is 1500 ° C. or lower.

【0012】このようにして得られる薄帯の結晶粒径が
細かいと熱処理時に粒形成長速度が速く、熱処理により
小さい粒は大きな粒に食われながら次第に大きな粒へと
成長して行く。このため粒径が細かいと粒成長は速やか
に進行する。しかし、粒があまりに細かいと場所による
粒成長にばらつきが生じてしまい、熱処理後粒径が均一
にならない。このような理由で結晶粒径1〜200μm
が好ましい。更に好ましくは5〜100μmがよい。
If the crystal grain size of the ribbon thus obtained is small, the grain formation length rate is high during the heat treatment, and the grains smaller in the heat treatment gradually grow into larger grains while being eaten by the larger grains. Therefore, if the particle size is small, the grain growth proceeds quickly. However, if the grains are too fine, the grain growth will vary depending on the location, and the grain size after heat treatment will not be uniform. For these reasons, the crystal grain size is 1 to 200 μm.
Is preferred. More preferably, the thickness is 5 to 100 μm.

【0013】該合金系における結晶粒径1〜200μm
の等軸晶(ここで等軸晶とは比較的長軸と短軸の長さの
差が少なく結晶軸方向がランダムであるものであり、ロ
ール面よりフリー面に向かって1方向に凝固した柱状晶
とは区別されるものである。)は、凝固前結晶の芽であ
る核が数多く形成され、これがロール面で熱を奪われた
際、一斉に結晶化することにより形成される。このため
等軸晶を形成するには、核がより多く存在する凝固温度
直上より冷却を行うのが好ましい。この際、等軸晶は多
数の核が一斉に結晶化することにより均質な組織が得ら
れやすい。このため、ブックモールド法による鋳造の際
に生じる数百μm以上の大きな等軸晶のように偏析が生
じることもない。更に該等軸品は熱処理後の結晶とアス
ペクト比(長軸、短軸の長さ比)が近く、長軸方向と短
軸方向の差が大きい柱状晶のみより短時間で熱処理を行
うことができる。等軸晶が20容量%以上含まれている
と等軸品が容易に粗大化し、粗大化した粒は小さい粒を
取り込みながら更に成長するため、短時間での熱処理が
可能となる。このように粒径の均質な粗大化を誘発する
等軸晶が多いとより短時間での処理が可能であり、等軸
晶を30容量%以上含むことが好ましく、更に好ましく
は40容量%以上である。
The grain size of the alloy system is 1 to 200 μm.
Equiaxed crystal (here, an equiaxed crystal is one in which the difference in length between the major axis and the minor axis is relatively small and the crystal axis direction is random, and solidified in one direction from the roll surface toward the free surface) The columnar crystal is distinguished from the columnar crystal by forming a large number of nuclei, which are buds of the crystal before solidification, and crystallizing all at once when heat is taken away on the roll surface. For this reason, in order to form an equiaxed crystal, it is preferable to perform cooling immediately above the solidification temperature where more nuclei exist. At this time, the equiaxed crystal is easy to obtain a homogeneous structure because many nuclei crystallize at the same time. For this reason, segregation does not occur unlike a large equiaxed crystal having a size of several hundred μm or more which is generated at the time of casting by the book mold method. Furthermore, the equiaxed product has a similar aspect ratio (length ratio of the major axis and the minor axis) to the crystal after the heat treatment, and the heat treatment can be performed in a shorter time than only the columnar crystal having a large difference between the major axis direction and the minor axis direction. it can. When the equiaxed crystal is contained in an amount of 20% by volume or more, the equiaxed product is easily coarsened, and the coarsened grains further grow while taking in small grains, so that heat treatment can be performed in a short time. When the number of equiaxed crystals that induces uniform coarsening of the particle size is large as described above, the treatment can be performed in a shorter time, and the content of the equiaxed crystals is preferably 30% by volume or more, more preferably 40% by volume or more. It is.

【0014】また、薄帯の板厚が薄いとロール上にて過
剰に冷却されるため、結晶粒が小さくなってしまうの
で、好ましい粒径を得るためには0.05mm以上の厚
さが必要である。一方、板厚が厚いと冷却が遅く、粒径
が大きくなるので3mm以下とする。
If the thickness of the ribbon is too small, it will be excessively cooled on the roll and the crystal grains will be small. Therefore, a thickness of 0.05 mm or more is required to obtain a preferable grain size. It is. On the other hand, if the plate thickness is large, the cooling is slow and the particle size becomes large.

【0015】なお、上記薄帯厚を形成する場合、ロール
急冷時のロールの周速は0.5〜10m/sが好まし
い。ストリップキャスティング法では、単ロール又は双
ロールに合金溶湯を流し込み急冷して合金化させること
ができるが、該ロールに流し込む合金溶湯の温度として
は1250〜1600℃とすることが好ましい。
In the case of forming the above-mentioned ribbon thickness, the peripheral speed of the roll during rapid cooling of the roll is preferably 0.5 to 10 m / s. In the strip casting method, the alloy melt can be poured into a single roll or twin rolls and quenched to form an alloy. The temperature of the alloy melt poured into the roll is preferably 1250 to 1600 ° C.

【0016】上記Sm2Co17系永久磁石合金を用いて
Sm2Co17系焼結磁石を製造する場合は、まず、上記
鋳造した薄帯インゴットをアルゴン、ヘリウム等の非酸
化性雰囲気中において、1000〜1300℃、0.5
〜20時間、熱処理を施すもので、これにより平均結晶
粒径20〜300μm、より好ましくは30〜200μ
mとすることが好ましい。前記熱処理温度は、1000
℃未満では、インゴットの結晶粒の成長が十分に得られ
ず、1300℃を超える温度では、結晶粒は十分に成長
するものの、インゴットが融点に達してしまい、均一な
組織が得られない。前記熱処理時間は0.5時間未満の
場合、結晶粒の成長にばらつきがあり、更に、結晶粒の
成長が十分に得られにくく、また、20時間を超えて熱
処理を施すと、熱処理炉のリークによるインゴットの劣
化、更に、インゴット中のSmが蒸発する等のことで良
好な磁気特性が得られなくなる傾向にある。また、前記
平均結晶粒径が、20μm未満の場合、先に述べたよう
に、インゴット中の平均結晶粒径と焼結磁石製造工程に
おける微粉砕粒径とが近い値になるため、微粉粒子が、
多結晶となり磁石の配向度を乱し、残留磁束密度、最大
エネルギー積の劣化を招くこととなり、300μmを超
える平均結晶粒径を得るには、長時間、或いは、高温で
の熱処理が必要となり、合金組織の劣化、或いは、組織
の均一性が損なわれる等の原因が、焼結磁石の磁気特性
に悪影響を与えるおそれがある。
When manufacturing an Sm 2 Co 17 based sintered magnet using the above Sm 2 Co 17 based permanent magnet alloy, first, the cast ribbon ingot is placed in a non-oxidizing atmosphere such as argon or helium. 1000-1300 ° C, 0.5
Heat treatment for 20 to 20 hours, whereby the average crystal grain size is 20 to 300 μm, more preferably 30 to 200 μm.
m is preferable. The heat treatment temperature is 1000
If the temperature is lower than 0 ° C, crystal grains of the ingot cannot be sufficiently grown. If the temperature exceeds 1300 ° C, the crystal grains grow sufficiently, but the ingot reaches the melting point, and a uniform structure cannot be obtained. If the heat treatment time is less than 0.5 hour, the growth of the crystal grains varies, and furthermore, it is difficult to sufficiently obtain the growth of the crystal grains. , And good magnetic properties tend not to be obtained due to evaporation of Sm in the ingot. Further, when the average crystal grain size is less than 20 μm, as described above, the average crystal grain size in the ingot and the finely pulverized particle size in the sintered magnet manufacturing process are close to each other. ,
It becomes polycrystalline and disturbs the degree of orientation of the magnet, resulting in deterioration of the residual magnetic flux density and the maximum energy product.In order to obtain an average crystal grain size exceeding 300 μm, a long time or heat treatment at a high temperature is required, Factors such as deterioration of the alloy structure or loss of uniformity of the structure may adversely affect the magnetic properties of the sintered magnet.

【0017】次に、前記Sm2Co17系永久磁石合金
を、粗粉砕し、平均粒径1〜10μm、好ましくは、約
5μmに微粉砕する。この粗粉砕は、例えば、不活性ガ
ス雰囲気中で、ジョークラッシャー、ブラウンミル、ピ
ンミル及び水素吸蔵等により行うことができる。また、
前記微粉砕は、アルコール、ヘキサン等を溶媒に用いた
湿式ボールミル、窒素、アルゴン等の不活性ガス雰囲気
中による乾式ボールミル、不活性ガス気流によるジェッ
トミル等により行うことができる。
Next, the Sm 2 Co 17 permanent magnet alloy is coarsely pulverized and finely pulverized to an average particle size of 1 to 10 μm, preferably about 5 μm. This coarse pulverization can be performed, for example, in an inert gas atmosphere by a jaw crusher, a brown mill, a pin mill, hydrogen storage, or the like. Also,
The pulverization can be performed by a wet ball mill using an alcohol, hexane or the like as a solvent, a dry ball mill in an inert gas atmosphere such as nitrogen or argon, a jet mill using an inert gas stream, or the like.

【0018】更に、前記微粉砕を、好ましくは、10k
Oe以上の磁場を印加することが可能な磁場中プレス機
等により、好ましくは、500kg/cm2以上200
0kg/cm2未満の圧力により圧縮成形する。続い
て、得られた圧縮成形体を、熱処理炉により、アルゴン
などの非酸化性雰囲気ガス中で、1100〜1300
℃、好ましくは、1150〜1250℃において0.5
〜5時間、焼結、溶体化し、終了後、急冷を行う。続い
て700〜900℃、好ましくは、750〜850℃の
温度で、5〜40時間保持し、−1.0℃/分の降温速
度で400℃以下まで徐冷する時効処理を施す。これに
より、本発明のSm2Co17系焼結磁石を得ることがで
きる。
Further, the above-mentioned pulverization is preferably carried out by 10 k
A pressing machine in a magnetic field capable of applying a magnetic field of Oe or more is preferably 500 kg / cm 2 or more and 200 kg / cm 2 or more.
Compression molding is performed under a pressure of less than 0 kg / cm 2 . Subsequently, the obtained compression-molded product is subjected to heat treatment in a non-oxidizing atmosphere gas such as argon in a gas atmosphere of 1100 to 1300.
° C, preferably 0.5 to 1150 ° C to 1250 ° C.
After sintering and solution treatment for ~ 5 hours, quenching is performed after completion. Subsequently, an aging treatment is performed at a temperature of 700 to 900 ° C., preferably 750 to 850 ° C., for 5 to 40 hours, and gradually cooling to 400 ° C. or less at a temperature lowering rate of −1.0 ° C./min. Thereby, the Sm 2 Co 17 based sintered magnet of the present invention can be obtained.

【0019】[0019]

【実施例】次に、本発明の実施例と比較例を挙げて、本
発明を具体的に説明するが、本発明はこれらの実施例に
限定されるものではない。
Next, the present invention will be described in detail with reference to examples of the present invention and comparative examples. However, the present invention is not limited to these examples.

【0020】[実施例1]Sm2Co17系磁石インゴッ
トは、Sm:25.5重量%、Fe:16.0重量%、
Cu:5.0重量%、Zr:3.0重量%、残部Coの
組成になるように配合し、アルゴンガス雰囲気中でアル
ミナルツボを使用して高周波溶解炉で溶解し、ストリッ
プキャスティング法(水冷単ロールを使用し、1m/s
のロール周速度)で1350℃の溶湯温度にて鋳造する
ことにより板厚0.3mmの合金を作製した。このとき
の偏光顕微鏡組織写真を図1に示す。この合金の平均結
晶粒径は10μmで結晶粒径1〜200μmの等軸晶9
5容量%、残部が柱状晶からなる結晶であった。ここ
で、平均結晶粒径とは体積を球に換算したときの粒径を
示したものである。(以後、平均結晶粒径はこの方法に
より得たものとする。)次に、前記Sm2Co17系磁石
インゴットを、熱処理炉を用い、アルゴン雰囲気中で1
200℃、1時間の熱処理を行い、終了後、急冷した。
ここで得られたSm2Co17系磁石合金のSm量をイオ
ン交換分離法により定量し、更に、平均結晶粒径の測定
を行った。
[Example 1] A Sm 2 Co 17 magnet ingot was composed of 25.5% by weight of Sm, 16.0% by weight of Fe,
Cu: 5.0% by weight, Zr: 3.0% by weight, the balance being Co, and melting in a high-frequency melting furnace using an alumina crucible in an argon gas atmosphere, followed by strip casting (water cooling). 1m / s using single roll
An alloy having a thickness of 0.3 mm was produced by casting at a melt temperature of 1350 ° C. at a roll peripheral speed of 1 mm. FIG. 1 shows a polarizing microscope structure photograph at this time. This alloy has an average crystal grain size of 10 μm and an equiaxed crystal 9 having a crystal grain size of 1 to 200 μm.
5% by volume, with the balance being columnar crystals. Here, the average crystal grain size indicates the grain size when the volume is converted into a sphere. (Hereinafter, the average crystal grain size is assumed to be obtained by this method.) Next, the Sm 2 Co 17- based magnet ingot was placed in an argon atmosphere using a heat treatment furnace in an argon atmosphere.
Heat treatment was performed at 200 ° C. for 1 hour, and after the completion, it was rapidly cooled.
The Sm content of the Sm 2 Co 17- based magnet alloy obtained here was quantified by an ion exchange separation method, and the average crystal grain size was measured.

【0021】更に、前記Sm2Co17系磁石合金をジョ
ークラッシャーで約500μm以下に粗粉砕後、窒素気
流によるジェットミルにより平均粒径約5μmに微粉砕
を行った。得られた微粉砕を磁場中プレス機により15
kOeの磁場中にて1.5t/cm2の圧力で成形し
た。得られた成形体を熱処理炉を用い、アルゴン雰囲気
中で、1210℃、2時間焼結した後、アルゴン雰囲気
中、1190℃、1時間溶体化処理を行った。溶体化処
理終了後、急冷し、得られたそれぞれの焼結体を、アル
ゴン雰囲気中、800℃、10時間保持し、400℃ま
で−1.0℃/分の降温速度で徐冷を行い、焼結磁石を
作製した。得られたそれぞれの焼結磁石につき、B−H
トレーサーにより磁気特性の測定を行った。
Further, the Sm 2 Co 17- based magnet alloy was roughly pulverized to about 500 μm or less by a jaw crusher, and then finely pulverized to an average particle size of about 5 μm by a jet mill using a nitrogen stream. The obtained finely pulverized product is pressed by a press machine in a magnetic field for 15 minutes.
It was molded at a pressure of 1.5 t / cm 2 in a magnetic field of kOe. The obtained compact was sintered in an argon atmosphere at 1210 ° C. for 2 hours using a heat treatment furnace, and then subjected to a solution treatment at 1190 ° C. for 1 hour in an argon atmosphere. After the solution treatment, the mixture was rapidly cooled, and each of the obtained sintered bodies was kept in an argon atmosphere at 800 ° C. for 10 hours, and gradually cooled to 400 ° C. at a temperature lowering rate of −1.0 ° C./min. A sintered magnet was produced. For each of the obtained sintered magnets, BH
The magnetic properties were measured with a tracer.

【0022】[比較例1]実施例1と同じ組成の合金
を、アルゴンガス雰囲気中で、アルミナルツボを使用し
て高周波溶解炉で溶解し、ストリップキャスティング法
(水冷単ロールを使用し、1m/sのロール周速度)で
1650℃の溶湯温度にて鋳造することにより板厚0.
3mmの合金を作製した。このときの偏光顕微鏡組織写
真を図2に示す。この合金の平均結晶粒径は20μmで
結晶粒径1〜200μmの等軸晶5容量%、残部が柱状
晶からなる結晶構造であった。
[Comparative Example 1] An alloy having the same composition as in Example 1 was melted in a high-frequency melting furnace using an alumina crucible in an argon gas atmosphere, and strip casting was performed (using a water-cooled single roll, 1 m / m2). at a molten metal temperature of 1650 ° C. at a roll temperature of 1650 ° C.).
A 3 mm alloy was made. FIG. 2 shows a micrograph of the polarizing microscope structure at this time. This alloy had an average crystal grain size of 20 μm, a crystal structure having a crystal grain size of 1 to 200 μm, 5% by volume of equiaxed crystals, and a balance of columnar crystals.

【0023】ここで得られたSm2Co17系磁石合金に
対し実施例1と同様に熱処理を行い、ここで得られたS
2Co17系磁石合金のSm量をイオン交換分離法によ
り定量し、更に、平均結晶粒径の測定を行った。
The Sm 2 Co 17- based magnet alloy obtained here was subjected to heat treatment in the same manner as in Example 1, and the Sm 2 Co 17
The Sm content of the m 2 Co 17- based magnet alloy was quantified by an ion exchange separation method, and the average crystal grain size was measured.

【0024】得られた前記Sm2Co17系磁石合金を、
実施例1と同様な製造方法で、粗粉砕、微粉砕、磁場中
成形、焼結、溶体化、次いで、時効処理を行い、焼結磁
石を作製した。得られた焼結磁石につき、実施例1と同
様に磁気特性の測定を行った。
The obtained Sm 2 Co 17- based magnet alloy was
In the same production method as in Example 1, coarse pulverization, fine pulverization, molding in a magnetic field, sintering, solution treatment, and then aging treatment were performed to produce a sintered magnet. The magnetic properties of the obtained sintered magnet were measured in the same manner as in Example 1.

【0025】表1に実施例1及び比較例1におけるSm
2Co17系磁石合金のSm量、平均結晶粒径、及び、前
記磁石合金より得られた焼結磁石の磁気特性を示す。こ
のことより、実施例は、比較例に比べ、残留磁束密度、
保磁力、最大エネルギー積において優れていることは明
らかである。
Table 1 shows Sm in Example 1 and Comparative Example 1.
Sm amount of 2 Co 17 magnet alloy, the average grain size, and show the magnetic properties of the sintered magnets obtained from the magnet alloy. From this, the example has a higher residual magnetic flux density,
It is clear that the coercive force and the maximum energy product are excellent.

【0026】[0026]

【表1】 [Table 1]

【0027】[実施例2]Sm2Co17系磁石インゴッ
トは、Sm:20.0重量%、Ce:5.5重量%、F
e:14.0重量%、Cu:5.0重量%、Zr:3.
0重量%、残部Coの組成になるように配合し、アルゴ
ンガス雰囲気中で、アルミナルツボを使用して、高周波
溶解炉で溶解し、ストリップキャスティング法(水冷単
ロールを使用し、2.5m/sのロール周速度)で14
00℃の溶湯温度にて鋳造することにより板厚0.2m
mの合金を作製した。この合金の平均結晶粒径は30μ
mで結晶粒径1〜200μmの等軸晶80容量%、残部
が柱状晶からなる結晶であった。次に、前記Sm2Co
17系磁石インゴットを、熱処理炉を用い、アルゴン雰囲
気中で、1100℃、2時間の熱処理を行い、終了後、
急冷した。ここで得られたSm2Co17系磁石合金の結
晶粒径の測定を行い、分布を調べた。これを図3に示
す。
Example 2 A Sm 2 Co 17 based magnet ingot was composed of Sm: 20.0% by weight, Ce: 5.5% by weight, F:
e: 14.0% by weight, Cu: 5.0% by weight, Zr: 3.
0% by weight, the balance being Co, melted in an argon crucible using an alumina crucible in a high-frequency melting furnace, and strip-casting (using a water-cooled single roll, 2.5 m / s roll peripheral speed) at 14
Casting at a melting temperature of 00 ° C makes the plate thickness 0.2m
m were prepared. The average crystal grain size of this alloy is 30μ
The crystal was composed of 80% by volume of equiaxed crystals having a crystal grain size of 1 to 200 μm and the remainder being columnar crystals. Next, the Sm 2 Co
The 17 system magnet ingot was heat-treated at 1100 ° C. for 2 hours in an argon atmosphere using a heat treatment furnace.
Quenched. The crystal grain size of the Sm 2 Co 17- based magnet alloy obtained here was measured, and the distribution was examined. This is shown in FIG.

【0028】次に、前記Sm2Co17系磁石合金を、ジ
ョークラッシャーで約500μm以下に粗粉砕後、窒素
気流によるジェットミルにより平均粒径約5μmに微粉
砕を行った。得られた微粉砕を、磁場中プレス機により
15kOeの磁場中にて1.5t/cm2の圧力で成形
した。得られた成形体を熱処理炉を用い、アルゴン雰囲
気中で、1190℃、2時間焼結した後、アルゴン雰囲
気中、1170℃、1時間溶体化処理を行った。溶体化
処理終了後、急冷し、得られたそれぞれの焼結体を、ア
ルゴン雰囲気中、800℃、10時間保持し、400℃
まで−1.0℃/分の降温速度で徐冷を行い、焼結磁石
を作製した。得られたそれぞれの焼結磁石につき、B−
Hトレーサーにより磁気特性の測定を行った。
Next, the Sm 2 Co 17- based magnet alloy was roughly pulverized to about 500 μm or less with a jaw crusher, and then finely pulverized to a mean particle size of about 5 μm by a jet mill using a nitrogen stream. The obtained pulverized product was molded by a press in a magnetic field at a pressure of 1.5 t / cm 2 in a magnetic field of 15 kOe. The obtained compact was sintered in an argon atmosphere at 1190 ° C. for 2 hours using a heat treatment furnace, and then subjected to a solution treatment in an argon atmosphere at 1170 ° C. for 1 hour. After the solution treatment was completed, the mixture was quenched and each of the obtained sintered bodies was kept at 800 ° C. for 10 hours in an argon atmosphere.
Until the temperature was lowered at a rate of -1.0 ° C./min to produce a sintered magnet. For each of the obtained sintered magnets, B-
Magnetic properties were measured with an H tracer.

【0029】[比較例2]実施例2と同じ組成の合金
を、アルゴンガス雰囲気中で、アルミナルツボを使用し
て高周波溶解炉で溶解し、ストリップキャスティング法
(水冷単ロールを使用し、50m/sのロール周速度)
で1240℃の温度にて鋳造することにより板厚0.1
mmの合金を作製した。この合金の平均結晶粒径は0.
5μmで結晶粒径1〜200μmの等軸晶5容量%、結
晶粒径1μm未満の等軸晶90容量%、残部が柱状晶か
らなる結晶であった。ここで得られたSm2Co17系磁
石合金を、実施例2と同様に熱処理を行い、ここで得ら
れたSm2Co17系磁石合金の結晶粒径の測定を行い、
分布を調べた。これを図4に示す。
Comparative Example 2 An alloy having the same composition as in Example 2 was melted in an argon gas atmosphere using an alumina crucible in a high-frequency melting furnace, and strip casting was performed (using a water-cooled single roll, 50 m / m2). s roll peripheral speed)
Casting at a temperature of 1240 ° C with a thickness of 0.1
mm alloy was produced. The average crystal grain size of this alloy is 0.1.
5% by volume of equiaxed crystals having a crystal grain size of 1 to 200 μm at 5 μm, 90% by volume of equiaxed crystals having a crystal grain size of less than 1 μm, and the remainder being columnar crystals. The Sm 2 Co 17- based magnet alloy obtained here was subjected to a heat treatment in the same manner as in Example 2, and the crystal grain size of the Sm 2 Co 17- based magnet alloy obtained here was measured.
The distribution was examined. This is shown in FIG.

【0030】得られた前記Sm2Co17系磁石合金を、
実施例2と同様な製造方法で、粗粉砕、微粉砕、磁場中
成形、焼結、溶体化、次いで、時効処理を行い、焼結磁
石を作製した。得られた焼結磁石につき、実施例2と同
様に磁気特性の測定を行った。
The obtained Sm 2 Co 17- based magnet alloy was
By the same manufacturing method as in Example 2, coarse grinding, fine grinding, molding in a magnetic field, sintering, solution treatment, and then aging treatment were performed to produce a sintered magnet. Magnetic properties of the obtained sintered magnet were measured in the same manner as in Example 2.

【0031】[比較例3]実施例2と同じ組成となるよ
うに、アルゴンガス雰囲気中で、アルミナルツボを使用
して高周波溶解炉で溶解し、得られるSm2Co17系磁
石合金の厚さが15mmとなるように銅製箱型鋳型に鋳
造した。ここで得られたSm2Co17系磁石合金を、実
施例2と同じように結晶粒径の測定を行い、分布を調べ
た。これを図5に示す。
Comparative Example 3 Thickness of Sm 2 Co 17- based magnet alloy obtained by melting in a high-frequency melting furnace using an alumina crucible in an argon gas atmosphere so as to have the same composition as in Example 2. Was cast to a copper box-type mold so that the diameter was 15 mm. The obtained Sm 2 Co 17- based magnet alloy was measured for crystal grain size in the same manner as in Example 2, and the distribution was examined. This is shown in FIG.

【0032】得られた前記Sm2Co17系磁石合金を、
実施例2と同様な製造方法で、粗粉砕、微粉砕、磁場中
成形、焼結、溶体化、次いで、時効処理を行い、焼結磁
石を作製した。得られた焼結磁石につき、実施例2と同
様に磁気特性の測定を行った。
The obtained Sm 2 Co 17- based magnet alloy was
By the same manufacturing method as in Example 2, coarse grinding, fine grinding, molding in a magnetic field, sintering, solution treatment, and then aging treatment were performed to produce a sintered magnet. Magnetic properties of the obtained sintered magnet were measured in the same manner as in Example 2.

【0033】表2に実施例2及び比較例2,3における
Sm2Co17系磁石合金の磁気特性を示す。図3、図
4、図5を比較すると実施例2は50μm付近に均一分
布するのに対し、比較例2は分布幅が大きく小さい粒が
たくさん存在する。また、比較例3は粒径が非常に大き
い。これを反映し、実施例2は、比較例2,3に比べ、
残留磁束密度、保磁力、最大エネルギー積において優れ
ていることがわかる。
Table 2 shows the magnetic properties of the Sm 2 Co 17- based magnet alloy in Example 2 and Comparative Examples 2 and 3. Comparing FIG. 3, FIG. 4, and FIG. 5, Example 2 has a uniform distribution around 50 μm, whereas Comparative Example 2 has a large distribution width and many small grains. Comparative Example 3 has a very large particle size. Reflecting this, Example 2 is compared with Comparative Examples 2 and 3,
It can be seen that the residual magnetic flux density, coercive force, and maximum energy product are excellent.

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【発明の効果】本発明によれば、優れた磁気特性を得る
ことが可能となる。
According to the present invention, excellent magnetic characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1における合金薄帯の偏光顕微鏡による
偏光像写真である。
FIG. 1 is a polarization image photograph of an alloy ribbon in Example 1 taken by a polarization microscope.

【図2】比較例1における合金薄帯の偏光顕微鏡による
偏光像写真である。
FIG. 2 is a polarization image photograph of an alloy ribbon in Comparative Example 1 taken by a polarization microscope.

【図3】実施例2における合金薄帯の熱処理後の粒度分
布図である。
FIG. 3 is a particle size distribution diagram after heat treatment of an alloy ribbon in Example 2.

【図4】比較例2における合金薄帯の熱処理後の粒度分
布図である。
FIG. 4 is a particle size distribution diagram after heat treatment of an alloy ribbon in Comparative Example 2.

【図5】比較例3における合金薄帯の熱処理後の粒度分
布図である。
FIG. 5 is a particle size distribution chart of a thin alloy ribbon after heat treatment in Comparative Example 3.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/053 H01F 41/02 G 41/02 1/04 B (72)発明者 橋本 貴弘 福井県武生市北府2−1−5 信越化学工 業株式会社磁性材料研究所内 (72)発明者 美濃輪 武久 福井県武生市北府2−1−5 信越化学工 業株式会社磁性材料研究所内 Fターム(参考) 4K018 AA27 BA05 BA18 BA19 BB05 BC01 BC08 BD01 CA04 DA11 FA08 KA45 5E040 AA08 AA19 BD01 CA01 HB03 HB06 HB11 NN01 NN18 5E062 CD04 CE04 CG05 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 1/053 H01F 41/02 G 41/02 1/04 B (72) Inventor Takahiro Hashimoto Takefu City, Fukui Prefecture 2-1-5 Hokufu Shin-Etsu Chemical Co., Ltd. Magnetic Materials Research Laboratory (72) Inventor Takehisa Minowa 2-1-5 Kitafu, Takeo-shi, Fukui Prefecture Shin-Etsu Chemical Co., Ltd. Magnetic Materials Research Laboratory F-term (reference) 4K018 AA27 BA05 BA18 BA19 BB05 BC01 BC08 BD01 CA04 DA11 FA08 KA45 5E040 AA08 AA19 BD01 CA01 HB03 HB06 HB11 NN01 NN18 5E062 CD04 CE04 CG05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 R(但し、RはSm又はSmを50重量
%以上含む2種以上の希土類元素)20〜30重量%、
Fe10〜45重量%、Cu1〜10重量%、Zr0.
5〜5重量%、残部Coを主成分とする合金を溶融後、
ストリップキャスティング法により急冷することによっ
て得られ、粒径1〜200μmの等軸晶を20容量%以
上含有し、板厚0.05〜3mmであることを特徴とす
る希土類合金。
1. 20 to 30% by weight of R (where R is Sm or two or more rare earth elements containing 50% by weight or more of Sm)
Fe10 to 45% by weight, Cu1 to 10% by weight, Zr0.
After melting the alloy containing 5 to 5% by weight and the balance Co as a main component,
A rare earth alloy obtained by quenching by a strip casting method, containing 20% by volume or more of equiaxed crystals having a particle size of 1 to 200 μm and having a thickness of 0.05 to 3 mm.
【請求項2】 R(但し、RはSm又はSmを50重量
%以上含む2種以上の希土類元素)20〜30重量%、
Fe10〜45重量%、Cu1〜10重量%、Zr0.
5〜5重量%、残部Coを主成分とする合金を溶融後、
1250〜1600℃の湯温でストリップキャスティン
グを行うことを特徴とする請求項1記載の希土類合金の
製造方法。
2. 20 to 30% by weight of R (where R is Sm or two or more rare earth elements containing 50% by weight or more of Sm)
Fe10 to 45% by weight, Cu1 to 10% by weight, Zr0.
After melting the alloy containing 5 to 5% by weight and the balance Co as a main component,
The method for producing a rare earth alloy according to claim 1, wherein the strip casting is performed at a hot water temperature of 1250 to 1600 ° C.
【請求項3】 R(但し、RはSm又はSmを50重量
%以上含む2種以上の希土類元素)20〜30重量%、
Fe10〜45重量%、Cu1〜10重量%、Zr0.
5〜5重量%、残部Coを主成分とする合金を溶融後、
ストリップキャスティング法により急冷することによっ
て得られ、粒径1〜200μmの等軸晶を20容量%以
上含有し、板厚0.05〜3mmである希土類合金を、
非酸化性雰囲気中において1000℃〜1300℃、
0.5〜20時間の熱処理を施し、該希土類磁石合金を
微粉砕した後、磁場中で圧縮成形し、焼結、溶体化し、
次いで、時効処理することを特徴とする希土類焼結磁石
の製造方法。
3. 20 to 30% by weight of R (where R is Sm or two or more rare earth elements containing 50% by weight or more of Sm)
Fe10 to 45% by weight, Cu1 to 10% by weight, Zr0.
After melting the alloy containing 5 to 5% by weight and the balance Co as a main component,
A rare earth alloy obtained by quenching by a strip casting method and containing 20% by volume or more of equiaxed crystals having a particle size of 1 to 200 μm and a plate thickness of 0.05 to 3 mm,
1000 ° C. to 1300 ° C. in a non-oxidizing atmosphere,
After performing a heat treatment for 0.5 to 20 hours, finely pulverizing the rare earth magnet alloy, compression molding in a magnetic field, sintering, solutionizing,
Next, a method for producing a rare earth sintered magnet, which is subjected to aging treatment.
JP2001271673A 2000-09-08 2001-09-07 Rare earth alloy and manufacturing method thereof, and manufacturing method of rare earth sintered magnet Expired - Fee Related JP3726888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001271673A JP3726888B2 (en) 2000-09-08 2001-09-07 Rare earth alloy and manufacturing method thereof, and manufacturing method of rare earth sintered magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000273194 2000-09-08
JP2000-273194 2000-09-08
JP2001271673A JP3726888B2 (en) 2000-09-08 2001-09-07 Rare earth alloy and manufacturing method thereof, and manufacturing method of rare earth sintered magnet

Publications (2)

Publication Number Publication Date
JP2002155347A true JP2002155347A (en) 2002-05-31
JP3726888B2 JP3726888B2 (en) 2005-12-14

Family

ID=26599544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001271673A Expired - Fee Related JP3726888B2 (en) 2000-09-08 2001-09-07 Rare earth alloy and manufacturing method thereof, and manufacturing method of rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP3726888B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020184724A1 (en) * 2019-03-14 2020-09-17
US10943716B2 (en) 2015-09-15 2021-03-09 Kabushiki Kaisha Toshiba Permanent magnet and rotary electrical machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10943716B2 (en) 2015-09-15 2021-03-09 Kabushiki Kaisha Toshiba Permanent magnet and rotary electrical machine
JPWO2020184724A1 (en) * 2019-03-14 2020-09-17
JP7349173B2 (en) 2019-03-14 2023-09-22 国立研究開発法人産業技術総合研究所 Metastable single crystal rare earth magnet fine powder and its manufacturing method

Also Published As

Publication number Publication date
JP3726888B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
US7691323B2 (en) Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
JP2639609B2 (en) Alloy ingot for permanent magnet and method for producing the same
JPH1036949A (en) Alloy for rare earth magnet and its production
US5690752A (en) Permanent magnet containing rare earth metal, boron and iron
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
JP2002083707A (en) Method for manufacturing rare earth sintered magnet
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JP3726888B2 (en) Rare earth alloy and manufacturing method thereof, and manufacturing method of rare earth sintered magnet
JP3667783B2 (en) Method for producing raw powder for anisotropic bonded magnet
JP2002083705A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JP3299630B2 (en) Manufacturing method of permanent magnet
JP2002083727A (en) Method of manufacturing sintered rare earth magnet
JP4680357B2 (en) Rare earth permanent magnet manufacturing method
JP3278431B2 (en) Rare earth metal-iron-boron anisotropic permanent magnet powder
JP3455552B2 (en) Method for producing rare earth metal-iron binary alloy ingot for permanent magnet
JP4574820B2 (en) Method for producing magnet powder for rare earth bonded magnet
JP3213638B2 (en) Method for producing powder for rare earth metal-iron-boron based anisotropic permanent magnet
JP3755902B2 (en) Magnet powder for anisotropic bonded magnet and method for producing anisotropic bonded magnet
JP3548568B2 (en) Method for producing rare earth metal-iron based permanent magnet alloy containing nitrogen atom
JPH01706A (en) Rare earth magnet manufacturing method
JP3935512B2 (en) Method for manufacturing anisotropic bonded magnet
JP2001223103A (en) Fine crystal type iron-base alloy magnet and method of manufacturing the same
JPH0533076A (en) Rare earth permanent magnet alloy and its production
JP2004214390A (en) Method for manufacturing rare-earth magnet, and raw alloy and powder for rare-earth magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050920

R150 Certificate of patent or registration of utility model

Ref document number: 3726888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees