JP2001511044A - Intraluminal prosthesis that does not shorten - Google Patents
Intraluminal prosthesis that does not shortenInfo
- Publication number
- JP2001511044A JP2001511044A JP53487598A JP53487598A JP2001511044A JP 2001511044 A JP2001511044 A JP 2001511044A JP 53487598 A JP53487598 A JP 53487598A JP 53487598 A JP53487598 A JP 53487598A JP 2001511044 A JP2001511044 A JP 2001511044A
- Authority
- JP
- Japan
- Prior art keywords
- stent
- annular
- sections
- coupling
- members
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008878 coupling Effects 0.000 claims abstract description 75
- 238000010168 coupling process Methods 0.000 claims abstract description 75
- 238000005859 coupling reaction Methods 0.000 claims abstract description 75
- 239000000463 material Substances 0.000 claims description 13
- 229910001000 nickel titanium Inorganic materials 0.000 claims description 7
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical group [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 claims description 7
- 230000007704 transition Effects 0.000 claims description 7
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 210000003090 iliac artery Anatomy 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000004904 shortening Methods 0.000 description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 210000004204 blood vessel Anatomy 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 210000002254 renal artery Anatomy 0.000 description 5
- 210000003484 anatomy Anatomy 0.000 description 4
- 210000001168 carotid artery common Anatomy 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 201000001320 Atherosclerosis Diseases 0.000 description 3
- 208000031481 Pathologic Constriction Diseases 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 210000001715 carotid artery Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000013049 sediment Substances 0.000 description 3
- 230000036262 stenosis Effects 0.000 description 3
- 208000037804 stenosis Diseases 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- 210000000269 carotid artery external Anatomy 0.000 description 2
- 210000004004 carotid artery internal Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 229910000701 elgiloys (Co-Cr-Ni Alloy) Inorganic materials 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 206010002329 Aneurysm Diseases 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 1
- 241001070941 Castanea Species 0.000 description 1
- 235000014036 Castanea Nutrition 0.000 description 1
- 229920004934 Dacron® Polymers 0.000 description 1
- 206010061876 Obstruction Diseases 0.000 description 1
- 241000219492 Quercus Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 230000002308 calcification Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007887 coronary angioplasty Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002966 stenotic effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 210000000626 ureter Anatomy 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000009763 wire-cut EDM Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91525—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91533—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91533—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
- A61F2002/91541—Adjacent bands are arranged out of phase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
- A61F2002/91558—Adjacent bands being connected to each other connected peak to peak
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0014—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
- A61F2210/0019—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at only one temperature whilst inside or touching the human body, e.g. constrained in a non-operative shape during surgery, another temperature only occurring before the operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/0054—V-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0029—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in bending or flexure capacity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0039—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Optics & Photonics (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Physics & Mathematics (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
(57)【要約】 管腔内プロテーゼ(40)には複数の環状部材が設けられている。各環状部材は、相互に結合されて環形状を形成する複数の支柱(42,44)と頂点(46)とを含んでいる。各環状部材は、圧縮状態と拡張状態とを有し、且つ圧縮状態よりも拡張状態においてより短い長手方向寸法を有している。複数の結合部材(48)が、相互に隣接する環状部材の頂点同士を結合している。結合部材は、拡張状態における各環状部材のより短い長手方向寸法を補償するように機能する複数の交互の区分を有している。ステントは、その長さ及び/又は外周に沿って変化する可撓性を付与しても良く且つ異なる直径を有する区分を含んでも良い。 (57) [Summary] The endoluminal prosthesis (40) is provided with a plurality of annular members. Each annular member includes a plurality of struts (42, 44) and a vertex (46) that are joined together to form a ring shape. Each annular member has a compressed state and an expanded state, and has a shorter longitudinal dimension in the expanded state than in the compressed state. A plurality of connecting members (48) connect the vertices of the annular members adjacent to each other. The coupling member has a plurality of alternating sections that function to compensate for the shorter longitudinal dimension of each annular member in the expanded state. A stent may provide flexibility that varies along its length and / or circumference and may include sections having different diameters.
Description
【発明の詳細な説明】 短縮しない管腔内プロテーゼ 発明の背景 1.発明の分野 本発明は、哺乳類の脈管内に移植するための脈管内プロテーゼ(人工器官)に 関し、より特定すると、哺乳類の脈管の内腔の内側の特定の場所に圧縮状態で供 給され、次いで、脈管を支持するために拡張状態へと展開される管腔内ステント に関する。管腔内ステントには、圧縮状態及び拡張状態の両方においてほぼ同じ 長さでプロテーゼを維持する構造的形状が備えられている。管腔内ステントには また、その長さに沿って変化する剛性又は可撓性が備えられている。 2.従来技術の説明 ステントのような管腔内プロテーゼは、一般的には、動脈瘤の治療において、 脈管のためのライナーとして又は狭窄した若しくは閉塞した脈管の潰れを防止す るための機械的な支持を提供するために使用される。これらのステントは、典型 的には、圧縮状態で脈管又はその他の管状構造の内腔の内側の特定の場所へ給送 され、次いで、その場所で展開されて拡張状態とされる。このステントは、拡張 状態では、圧縮状態のステントの直径の数倍の直径を有する。これらのステント はまた、血管内のアテローム性狭窄症の治療、特に経皮的管横断冠動脈血管形成 (PTCA)術の後においても、しばしば、手術の結果を良くするため及び狭窄 と同様の症状を減らすために展開される。 人体の脈管の内腔内の所望の位置にステントを位置決めすることは、ステント の性能及び治療方法の成功に影響を及ぼす重要なファクタである。ステントが展 開される内腔内の領域は、通常は、医師がアクセスし難いので、ステントの展開 された直径及び長さは、医師が正確な位置に正しい大きさのステントを正確に位 置決めする前に知ることができることが本質的である。例えば、人体の血管の疾 患した又は損傷を受けた区分又は領域の直径及び長さは、種々の人体の血管、疾 患の状態及び展開の目的によって変わるので、正しい直径及び長さを有するステ ントが展開のためのこの領域に給送されることが重要である。 人体の血管の内腔のこの領域を注意深く大きさを合わすことは、この領域にお ける人体の血管の正しい寸法は知っているがステントの直径及び長さについては 確実に知ってはいない多くの医師に対して困難な挑戦を提起するかもしれない。 これは、多くのステントが、圧縮状態から拡張状態へと拡張するときに受ける短 縮作用による。 この短縮作用は、図1A,1B,2A及び2Bに示されており、これらの図は 、頂点26によって結合されたV字形状の支柱又は脚部22及び24によって作 られたメッシュ形状のパターンを有するステントの部分20を示している。これ らのV字形状の支柱22,24の2つの対がステントのこの部分20に示されて いる。これらの支柱22及び24の各々は長さhを有している。図1Bは、一杯 に圧縮された状態のステントの部分20を図示しており、ここでは、長さhは、 長手方向すなわち水平方向成分l2を有しており(図2B参照)、図1Aは、一杯 に拡張された状態のステントの同じ部分20を図示しており、ここでは、長さh は、長手方向すなわち水平方向成分l1(図2A参照)を有している。図1A, 1B,2A及び2Bにおいて想像線28及び30によって示されているように、 l1はl2よりも短い。なぜならば、支柱22が水平軸に対してなす角度は、拡張 状態においてより大きく、従って、拡張した部分20の長さが圧縮された部分2 0の長さよりも2dだけ短くなるからである。この短縮は、ステントが圧縮状態 から拡張状態へと拡張されるときに、支柱22及び24の長手方向成分が短くな ることによって生じる。 この短縮作用は、この短縮される長さ2dの正しい寸法を決定することは容易 でないので、厄介なものである。医師は、ステントの材料、処置される血管及び 血管の内腔で正しく展開されたときのステントの予想される直径に基づいてこの 計算をしなければならない。例えば、短縮長さ2dは、同じステントが展開部分 において直径が異なる血管内で展開されるときに変化するであろう。 更に、血管の内腔径、解剖学的構造又は長さに沿った疾患状態の変化を経験す るある種の人体の脈管がある。このような血管において展開されるステントは、 これらの変化に対処し又はこれらの変化に適合することができる必要があるであ ろう。 このような人体の脈管の例として、頸動脈がある。血液は、総頸動脈を介して 心臓から脳へ供給される。これらの動脈は、首に沿った目のすぐ下方及び後方の 位置までたどるときに内腔が約8〜10mmである。この位置で、総頸動脈は、 血液を脳へ供給する内腔6〜8mmの内腔径を有する内頸動脈と、血液を顔及び 頭皮へ供給する内腔径が6〜8mmの外頸動脈とに分かれる。総頸動脈のアテロ ーム性動脈硬化による障害は、総頸動脈が内頸動脈と外頸動脈とに分かれるこの 分岐点のあたりで起こる傾向があり、従って、ステントは、この分岐点において 展開する必要がある場合が多い。 別の例は、総腸骨動脈において約8〜10mmの内腔径を有するが、外腸骨動 脈において約6〜7mmの内腔径に減っている腸骨動脈である。総腸骨動脈は、 全く頻繁に石灰性であり且つ通常はより大きな径方向の強度又は剛性を有するよ り短いステントを必要とするより局部的な狭窄又は閉塞障害を経験する。腸骨組 織のより広汎性のアテローム性動脈硬化による疾患は、通常は、総腸骨動脈と内 腸骨動脈との両方を含み且つ腸骨組織が経験する曲がりくねった角のある部位に おいて展開するのに適した高い可撓性を有するより長いステントを必要とするで あろう。 大腿骨膝窩組織は、同様に、局部的な或いは広い範囲の狭窄障害を経験する。 更に、ステントの可撓性は、股関節又は膝関節のような関節の動きによって影響 される血管の位置において展開される場合に重要である。 腎臓動脈は別の有用な例を提供する。腎臓動脈の入口の最初の1cm程度は、 アテローム又は石灰化によって全く堅く狭くなっている場合が多く且つ比較的真 っ直ぐであり、一方、腎臓動脈の残りの部分は比較的湾曲している。この結果と して、腎臓動脈に移植することを意図したステントは、最初の1.5cm程度が 比較的剛性であり、次いで、より可撓性で且つ従順となるべきである。 従って、一杯に圧縮された状態及び一杯に拡張された状態の両方において並び に一杯に圧縮された状態と一杯に拡張された状態との間の全ての状態で、一貫し た長さを維持することができる管腔内プロテーゼの必要性が依然としてある。ま た、変化する内腔径、種々の解剖学的構造及び種々の疾患状態に対応できるステ ントの必要性がある。 開示の概要 本発明の目的を達成するためには、複数の環状部材を有するステントが提供さ れている。各環状部材は、圧縮状態と拡張状態とを有しており且つ圧縮状態より も拡張状態においてより短い長手方向寸法を有している。複数の結合部材が、隣 接する環状部材同士を結合し、この結合部材は、拡張状態における各環状部材の より短い長手方向寸法を補償するように作動する。 本発明の一つの実施形態においては、各環状部材は、複数の支柱と、環形状を 形成するために結合された頂点と、を含んでいる。これらの結合部材は、隣接す る環状部材の頂点に結合されている。環状部材の複数の支柱は、左側及び右側の 支柱を含んでおり、これらの左側及び右側の支柱の各対は、各頂点において相互 に結合されている。各支柱は、環状部材が圧縮状態よりも拡張状態にあるときに より短い長手方向寸法を有する。 本発明の一つの実施形態においては、少なくとも一つの環状部材が、複数の交 互の支柱及び頂点が相互に結合されて閉塞された環状部材を形成するように閉塞 された形状を有しても良い。更に、複数の交互の支柱及び頂点が少なくとも一つ の場所において結合されないように、少なくとも一つの環状部材が開口した形状 を呈することも可能である。 本発明の好ましい実施形態においては、結合部材は複数の交互の区分を有して いる。一つの実施形態においては、結合部材は、交互の頂部の湾曲した頂点と底 部の頂点とを画成している複数の交互の湾曲区分を有している。別の実施形態に おいては、結合部材は、複数の交互の湾曲した区分と真っ直ぐな区分とを有して いる。別の実施形態においては、結合部材は、複数の交互の且つ角度の付けられ た真っ直ぐな区分を有している。この結合部材は、各環状部材が拡張状態にある ときに、圧縮状態よりもより長い長手方向寸法を有して、拡張状態における環状 部材のより短い長手方向寸法を補償する。 本発明によるステントは更に、隣接する環状部材及び結合部材によって画成さ れた複数の開口を含んでいる。一つの実施形態においては、ステントの種々の区 分の開口が種々の大きさを有することが可能である。 本発明によるステントは更に、複数の区分を更に有し、そのうちの少なくとも 2つは、異なる可撓性度合いを有している。一つの実施形態においては、変化す る可撓性が複数のギャップを形成することによって達成されている。これらのギ ャップは、一つ若しくはそれ以上の結合部材若しくは隣接する環状部材間の結合 部材の部分を省略すること又は支柱の一つ若しくはそれ以上を省略するか又は結 合部材及び支柱を省略することによって形成することができる。もう一つ別の実 施形態においては、変化する可撓性は、種々の支柱区分の開口に種々の大きさを 付与することによって達成される。 本発明によるステントは、更に、ステントが拡張状態にあるときに、種々の直 径を呈する区分を提供しても良い。これらの種々の直径は、ステントに、傾斜し た又は段状の形状を付与することによって達成しても良い。 本発明の好ましい実施形態においては、ステントは、ニチノール(Nitin ol)のような形状記憶合金によって作られているが、ステンレス鋼、タンタル 、チタン、エルジロイ(elgiloy)、金、白金又はその他の金属若しくは合 金又はポリマー又は十分な生体適合性、剛性、可撓性、径方向強度、放射線不透 過性及び耐血栓性を有する複合材を、ステント材料として使用することができる 。 このように、本発明によるステントは、一杯に圧縮された状態及び一杯に拡張 された状態並びに一杯に圧縮された状態と一杯に拡張された状態との間の全ての 状態の両方において、一定の長さを維持する。この結果、本発明によるステント は、正しい大きさ及び展開を容易にし、それによって、機械的な過程を簡素化し 且つそのために必要な時間を出来限り短縮することができる。更に、本発明によ るステントは、その長さ及び/又は外周に沿って変化する可撓性及び剛性を提供 すると共に、ステントの種々の区分に沿って変化する直径を提供し、それによっ て、変化する内腔径、種々の解剖学的構造及び種々の疾患状態を有する体内の脈 管の治療を容易にする。 図面の簡単な説明 図1Aは、拡張状態にある従来技術のステントの一部分の側面図であり、 図1Bは、圧縮状態にある図1Aの一部分の側面図であり、 図2Aは、ステ ントが拡張状態にあるときの図1A及び1Bのステントの支柱の長手方向成分を 図示しており、 図2Bは、ステントが圧縮状態にあるときの図1A及び1Bのステントの支柱 の長手方向成分を図示しており、 図3は、本発明によるステントの斜視図であり、 図4Aは、拡張状態にある図3のステントの一部分の側面図であり、 図4Bは、圧縮状態にある図4Aの一部分の側面図であり、 図5Aは、ステントが拡張状態にあるときの図4A及び4Bのステントの支柱 の長手方向成分と結合部材とを図示しており、 図5Bは、ステントが圧縮状態にあるときの図4A及び4Bのステントの支柱 の長手方向成分と結合部材とを図示しており、 図6Aは、拡張状態にある図3のステントの側面図であり、 図6Bは、圧縮状態にある図6Aのステントの側面図であり、 図7及び8は、本発明による結合部材の別の実施形態を示しており、 図9は、図3のステントの一部分に対する変形例を示す側面図であり、 図10は、図3のステントの一部分に対する別の変形例を示す側面図であり、 図11A〜11Cは、図3のステントに対する変形例を図示している。 好ましい実施形態の詳細な説明 以下の詳細な説明は、本発明を実施する現在のところ考えられる最も良好なモ ードである。この説明は、限定的な意味でなされたものではなく、本発明の実施 形態の一般的な原理を示す目的のためにのみなされたものである。本発明の範囲 は、請求の範囲によって最も良く規定されている。 本発明による管腔内プロテーゼは、ステントであるけれども、本発明の原理は 、ライナー及びフィルタのような他のプロテーゼに適用することもできる。この ステントは、圧縮状態で人体の脈管の内腔内の所望の位置へ給送され、次いで、 拡張状態へと拡張させることによって展開される。ステントは、一杯に圧縮され た状態及び一杯に拡張された状態及びこれら2つの状態間の全ての状態の両方に おいて、ほぼ同じ長さを維持する。ステントには、同ステントが種々の解剖学的 構造及び種々の区分に沿った変化する可撓性又は剛性を設けても良い。このステ ントはまた、同一のステントが、種々の直径を有する人体の脈管内への移植を容 易にするために、ステントの種々の部分に沿って種々の直径を有する形状で提供 さ れても良い。 本発明によるステントは、自己拡張性のステント又はバルーンを膨らませるこ と若しくは拡張部材によって径方向に拡張されることができるステント又はステ ントがその大きさを変化させる熱を付与する高周波の使用によって拡張されるス テントとすることができる。このステントはまた、結合されたステント移植プロ テーゼを形成するために、PTFE、ダクロン若しくはその他の生体適合性材料 からなる被覆によってコーティングしても良い。本発明のステントが拡張され得 る脈管としては、導管、動脈、気管、静脈、尿管及び食道のような天然の体内脈 管に限定されず、移植片のような人工脈管も含まれる。 1.好ましい実施形態 本発明によるステント40が拡張状態で図3〜6に図示されている。図3を参 照すると、ステント40は、管形状を有しており且つ頂点において結合されたほ ぼV字形状の支柱の複数の対であって、V字形状の支柱の各対の頂点に複数の結 合部材を係合することによる複数の対によって作られている。図4A及び4Bは 、ステント40の一部分を更に詳細に図示している。ステント40は、交互の左 側支柱42と右側支柱44との複数の対を有している。左側支柱と右側支柱42 ,44の各対は、頂点46において結合されて、対のためのほぼV字形状を形成 している。左側の支柱42は、各頂点46の左側のものであるとして規定されて おり、右側支柱44は、各頂点46の右側のものとして規定されている。左側の 支柱42と右側支柱44とは、交互になっている。なぜならば、一対のV字形状 の支柱のうちの左側の支柱42もまた隣接するV字形状の対の左側の支柱でもあ り、一対のV字形状の支柱のうちの右側の支柱44もまた隣接するV字形状の支 柱の右側の支柱でもあるからである。このようにして、交互の左側及び右側支柱 42及び44は、環状ステント40の周囲に環状形態で延びて環状部材を形成し ている。各頂点46は、結合部材48によって別の頂点46に結合されている。 従って、ステント40は、それら自体に結合されたV字形状の支柱42,44の 対によって形成され且つ結合部材48によって結合されたそれらの頂点46を有 している管状格子に似ている。図3に示されているように、ステント40の両端 は、両端の末端がこれらの交互の左側及び右側の支柱42,44の頂点46によ って 画成されている、複数の交互の左側及び右側の支柱42,44によって画成され ている。 結合部材48は、複数の又はパターン状の交互の区分を含んでいる形状を有し ている。結合部材48の非限定的な第1の好ましい実施形態が図4A及び4Bに 図示されている。各結合部材48は、頂点46から長手方向延長部52に沿って 長手方向に延び、次いで、湾曲した区分54に沿って頂部の湾曲した頂点56ま で上方に傾斜し、そこから湾曲した区分58に沿って底部の湾曲した頂点60ま で下方に傾斜している。結合部材48は、次いで、湾曲した区分62に沿って頂 部の湾曲した頂点64へと上方に傾斜している。結合部材48は、頂部の湾曲し た頂点64から湾曲した区分66に沿って反対側の頂点46の長手延長部68ま で下方に傾斜している。従って、結合部材48は、交互の頂部及び底部の頂点5 6,60及び64によって画成されている複数の交互の湾曲区分を有している。 結合部材48は、2つの機能を達成するために提供されている。第1に、結合 部材48は、頂点46の対を結合する。第2に、結合部材48は、各支柱42及 び44の長手方向成分が受ける短縮を補償して、ステント40を常にほぼ同じ長 さに維持するように機能する。これは、結合部材48に、圧縮されたときにその 長さを短縮するように交互の区分と結合する自然の付勢及び弾力性を設けること によって達成される。拡張することを許容されたときに、結合部材48は、その 自然のすなわち本来の位置へと戻るように付勢されて、各支柱42及び44の長 手方向成分が経験する短縮を補償するように結合部材48を長くする。 この作用は、図4A,4B,5A及び5Bに示されている。ステント40が圧 縮状態にあるとき、結合部材48は、結合部材48が拡張状態にあるときの長さ L1よりも短い長さL2を有する。結合部材48が圧縮状態にあるとき、交互の波 形曲線は、拡張状態にあるときよりもより高い振幅とより小さい波長とを有する (図4Aと4Bとを比較せよ)。従って、L2とL1との差は、結合部材48の両端 における支柱42,44のl1とl2との差を補償する。図4A及び4Bにおける 線70及び72は、ステント40の関連する部分が如何なる短縮をも経験しない ことを示しており、図6A及び6Bにおける線74及び76は、ステント40全 体がその全ての状態に亘って一定の長さを維持することを示している。 図4A,4B,5A及び5Bにおいては、結合部材48は特定の形状を呈する ものとして説明したが、結合部材48は、本発明の精神及び範囲を逸脱すること なく他の形状を呈することができることは、当業者によって理解されるであろう 。例えば、結合部材48は、これらが、各支柱42及び44の長手方向成分が経 験する短縮を補償するように機能する限り、如何なる湾曲した又は部分的に湾曲 した又はその他の形状で設けることができる。 図7は、結合部材48の非限定的な第2の好ましい実施形態を示しており、こ の実施形態においては、結合部材48aは、交互の湾曲した区分80と真っ直ぐ な区分82とを有している。結合部材48aが圧縮されるとき、その湾曲した区 分80もまた、それが拡張状態にあるときよりもより高い振幅とより短い波長と を有する。図8は、非限定的な第3の好ましい実施形態を示しており、この実施 形態においては、結合部材48bは、相互に角度が付けられた交互の真っ直ぐな 区分84及び86を有している。 ステント40が一杯に拡張された状態にあるとき、同ステントは、このステン トが展開される体内脈管の領域の内径よりも若干大きい外形を有するのが好まし い。これによって、ステント40は、所望の位置にしっかりと係留されることが でき且つステント40が展開位置から離れて侵入するのを防止する。 ステント40は、その長さに沿った種々の部分又は区分に種々の可撓性又は剛 性が付与されて、このような種々の可撓性又は剛性を必要とする体内脈管におけ る展開を容易にする。この種々の可撓性又は剛性は、結合部材48及び支柱42 ,44を省略すること又は一以上の支柱42,44及び/又は結合部材48を結 合しないことによって、ステント40に沿った一以上の位置で”ギャップ”を形 成することによって達成することができる。これらの位置は、ステント40の長 さ及び/又は外周に沿ったどこであっても良い。更に、ステント40の種々の度 合いの可撓性は、これらのギャップのパターンを変えることによって達成するこ とができる。非限定的な例は、図9に示されているようなほぼ螺旋状のパターン の省略された支柱42,44及び/又は結合部材48を提供するものである。省 略された支柱42,44及び結合部材48は、図9において符号47(支柱42 ,44のためのもの)及び符号49(結合部材48のためのもの)によって想像 線 (すなわち破線)で示されている。例えば、省略された支柱47は、図9の頂部 左隅から図9の底部右隅までステント40の長さに沿った比較的螺旋状のパター ンを呈し且つステント40の外周に沿って延びることができる。同様に、省略さ れた結合部材49は、図9の底部左隅から図9の頂部右隅までステント40の長 さに沿って比較的螺旋状のパターンを呈し且つステント40の外周に沿って延び ることができる。 他の非限定的な代替例は、ステント40の一端又は両端からステント40の中 心に向かってこれらのギャップ47,49の数を増すか又はステント40の中心 からステント40の一端又は両端に向かってこれらのギャップ47,49の数を 増すためのものである。ある結合部材48の一部分のみ及びこれらの結合部材4 8のうちの全部でないいくつかを省略することも可能である。多数のギャップ4 7,49を有するステント40の一部分は、より大きい可撓性又はより低い剛性 を有する。 支柱47を省略した結果として、交互の支柱42及び44によって作られてい る環状部材のいくつかが閉じているか又は完全に結合された環状部材を構成し、 一方、これらの環状部材のいくつかが開口した環状部材であることが可能である 。 種々の可撓性又は剛性は、支柱42及び44と結合部材48との間に画成され た、開口した領域又は開口78(例えば、図4A及び10参照)の大きさが、ス テント40の長さ及び/又は外周に沿って、ステント40の種々の部分又は区分 において変化する構造的な形状を提供することによって達成することができる。 非限定的な実施形態においては、ステント40の一つの区分内の全ての開口78 は、ほぼ同じ第1の大きさを有し、ステント40の別の区分は、ほぼ同じ第2の 大きさを有しており、この第1の大きさと第2の大きさとは異なっている。各々 が、その区分における他の開口78とほぼ同じ大きさの開口78を有するが、他 の区分においては開口78と異なる大きさを有している付加的な区分を設けるこ ともできる。 開口78の大きさを変えることは、支柱42及び44並びに結合部材48の長 さを変えることによって達成することができる。例えば、より小さい開口78は 、支柱42及び44並びに特定の開口した領域78を画成している結合部材48 の 長さを短縮することによって提供することができる。類似した開口78を備えた ステント40の部分は、より大きい開口78を備えたステント40の部分よりも より剛性で且つ可撓性がより低い。このことにより、ステント40は、ステント 40が一端でより剛性であり、この剛性の端部から徐々に可撓性となる必要があ る体内脈管内で展開することができる。このような体内脈管の例としては、上記 した腎臓及び腸骨動脈がある。 開口78の大きさを変えることは、他の重要な目的としても機能する。例えば 、ステント40の両端により小さい開口78を設けることによって、脈管の壁の 適用範囲を増し又はより緊密にし、それによって、疾患した脈管壁の改良された 支持をし及び血小板の破片が塞栓した堆積物として除去されるのを防止する。堆 積物の除去は、除去された堆積物が脳へ運ばれておそらく脳卒中を生じ得る頸動 脈のようなある種の脈管においては危険である。ステント40のある場所におい てより大きな開口78を提供する別の例は、別の体内脈管の側方分岐の閉塞を防 止する際に重要であるかもしれない広い開口78領域を提供する。これらのより 広い開口した領域もまた、ガイドワイヤ、カテーテル、ステント、移植片及びそ の他の展開部材がステント40の本体を通ってこれらの側方分岐内へと通過する のを許容する。 ステント40はまた、圧縮状態においては一定の直径を呈するが、一杯に拡張 された状態のときにはステント40の種々の部分が異なる直径を呈するような形 態にて設けることができる。拡張可能なステント40に異なる部分において異な る直径を呈する能力を備えることは、ステント40が内腔径が変わるある種の体 内脈管又は体内脈管の分岐において使用される場合に重要である。このような体 内脈管及び分岐の例として、上記した頸動脈及び腸骨動脈がある。 変化するステント40の直径は、多くの方法で設けることができる。第1の非 限定的な代替え例は、図11Aに示すように、ステント40の次第に傾斜が付け られた形状を設けることである。傾斜が付けられた形状は、次第に狭くなること を経験する体内脈管における使用に最も適している。第2の非限定的な代替え例 は、各々が比較的一貫しているが異なる直径を有する2つのステント40の区分 間に段形状のような突然の遷移部分を設けることである。この段部は、図11C に示されている隆起した段40Cまたは図11Bに示されている落ち込んだ段4 0bのためのものとすることができる。更に、ステント40に、特定の解剖学的 な要件に合致するためにその長さに沿って直径にいくつかの変化を設けることが できる。 ステントの形状の傾斜又は遷移は、予め整形することによって達成することが でき且つ(1)ステント材料の厚み、(2)開口78の大きさ及び(3)ギャッ プ47,49、を変えることによって高めることができる。 上記に加えて、ステント40の長さ及び/又は外周に沿ったある位置でステン ト40材料の幅及び厚みを変えることによっても、種々の可撓性及び剛性を達成 することができることも当業者は理解するであろう。 展開方法に応じて多くの材料が、ステント40及びその支柱42及び44並び に結合部材48の両方のために使用することができる。自己拡張型のステントと して使用される場合には、ステント40(その支柱42及び44並びに結合部材 48を含む)は、”機械的”記憶及び訓練の特異な性能を有するニチノールのよ うな形状記憶超弾性合金によって作られるのが好ましい。この合金は、遷移温度 範囲以上で第1の所定の形状に形成することができる。この合金は、遷移温度範 囲以下で第2の形状に弾性的に変形させても良いが、この合金は、遷移温度範囲 を超える温度まで暖め戻されると、それ本来の(第1の所定の)形状へと完全に 復帰する。ニチノールは、約50%のニッケルと約50%のチタンとの組成物を 有するのが好ましい。ニチノールのような形状記憶合金及びそれらのステントに おける使用特性は、文献に詳しく記載されており、T.W.Duerig,A. R.Pelton及びD.Stockelによる”医学における超弾性の使用( The Use of Superelasticity in Medici ne)”という名称の文献を参考にすることができる。この文献のコピーが本明 細書に添付されており且つあたかも本明細書において十分に記載されているかの ように特定の参照符によって特に本明細書に組み入れられている。 別の方法として、ステント40(その支柱42及び44並びに結合部材48を 含む)は、ステンレス鋼、タンタル、チタン、エルジロイ、金、白金又はその他 のあらゆる金属若しくは合金又はポリマー又は十分な生体適合性、剛性、可撓性 、 径方向強度、放射線非透過性及び耐血栓性を有する複合材料によって作ることが できる。 結合部材48は、支柱42及び44と同じ材料を有するものとして上記したけ れども、本発明の精神及び範囲から逸脱することなく異なる材料によって結合部 材48を提供することができる。このような材料は、弾性があり且つ結合部材4 8が支柱42及び44が経験する短縮を補償するために長手方向において圧縮さ れ或いは拡張されるのを可能にできなければならない。このような材料の非限定 的な例には、ステント40のための上記した材料のいずれもが含まれ得る。 2.製造方法 ステント40は、このステントの材料及び展開の所望の性質に応じて多くの方 法のうちの一つによって作ることができる。 非限定的な第1の好ましい方法においては、ステント40は、ステントが一杯 に圧縮された状態にあるときにステントと等しい寸法の固体ニチノール管によっ て作られている。ステント40(すなわち、支柱42及び44並びに結合部材4 8)のパターンは、コンピュータ制御のレーザーカッター又はレース内にプログ ラムされ、このレーザーカッター又はレースは、支柱42及び44と結合部材4 8との間の区分を、ステント40の外径及び壁厚を厳密に制御する方法で切り取 る。 切断工程の後に、ステント40は、完全に拡張された状態に達するまで徐々に 拡張される。拡張は、内側拡張取り付け具によって達成することができるが、本 発明の精神及び範囲から逸脱することなく、他の拡張装置及び方法を使用するこ とができる。ステント40の全長は、ステント40の完全に圧縮された状態から 完全に拡張された状態までの拡張全体に亘って一定に維持されなければならない 。 ステント40が一杯に拡張された状態へと拡張されると、ニチノール材料の形 状記憶を一杯に拡張された寸法に”設定”するために熱処理される。ステント4 0は、次いで、洗浄され且つ電解研磨される。 次の段階において、ステント40は、穿刺による給送か又は最少侵入外科方法 によって、脈管内に給送できる寸法に再び圧縮される。特に、ステント40は、 給送器具によって脈管内の所望の場所へ給送することができるように、より小さ い状態に圧縮されなければならない。限定的ではないが、チューブ、カテーテル 又はシースのようなあらゆる一般的な給送器具を使用することができる。この圧 縮は、ステント40を例えば摂氏零度の低温まで冷却し且つこの温度を維持しな がらステント40を圧縮してステント40が給送装置の内側へ挿入できるように することによって達成される。ステント40は、一旦給送装置の内側へ挿入され ると、給送装置によって室温で圧縮状態に維持される。 非限定的な第2の好ましい方法においては、バルーンで拡張可能なステント4 0を、支柱42及び44並びに結合部材48の所望の形状に曲げられ且つ成形さ れた複数のワイヤを結合することによって製造することができる。この結合は、 溶接、縛り付け、接着又はその他の一般的な方法によって達成することができる 。別の方法として、ワイヤー放電加工を使用することができる。ワイヤは、ステ ント40が圧縮され或いは拡張されるときに、塑性変形を経験することができる 。ステント40の圧縮又は拡張状態への塑性変形がなされると、ステント40は 、ステント40を再び塑性的に変形する別の力が加わるまでこの状態のままであ る。 ある種の製造方法を上記したが、本発明の精神及び範囲から逸脱することなく 、他の製造方法を利用することができることは当業者によって理解されるであろ う。 3.展開方法 ステント40は、多くの給送装置及び給送方法によって展開させることができ る。これらの給送装置及び方法は、ステント40が、自己拡張、径方向拡張力又 は高周波によって拡張されるか否かに応じて変わるであろう。 上記の説明は、本発明の特定の実施形態に言及しているが、本発明の精神から 逸脱することなく多くの変形を施してもよいことは理解されるであろう。請求の 範囲は、本発明の真の範囲及び精神内に包含されるこのような変形を含むことを 意図している。Detailed Description of the Invention Intraluminal Prosthesis without Contraction Background of the Invention Field of the invention The present invention relates to an endovascular prosthesis for implantation into a mammalian vessel, and more particularly, to be delivered in a compressed state to a specific location inside the lumen of a mammalian vessel and then to the vessel. An endoluminal stent deployed to an expanded state to support the stent. Intraluminal stents are provided with a structural shape that maintains the prosthesis at approximately the same length in both the compressed and expanded states. Intraluminal stents also have varying stiffness or flexibility along their length. 2. Description of the prior art Endoluminal prostheses, such as stents, generally provide mechanical support as a liner for vessels or to prevent stenotic or occluded vessel collapse in the treatment of aneurysms Used for These stents are typically delivered in a compressed state to a specific location inside the lumen of a vessel or other tubular structure, and then deployed and expanded there. The stent has a diameter in the expanded state that is several times the diameter of the stent in the compressed state. These stents are also often used for the treatment of atherosclerosis in blood vessels, especially after percutaneous transluminal coronary angioplasty (PTCA), to improve the outcome of the operation and to reduce the symptoms similar to stenosis. Expanded to reduce. Positioning a stent at a desired location within the lumen of a human vessel is an important factor that affects the performance of the stent and the success of the treatment procedure. Since the area within the lumen in which the stent is deployed is usually inaccessible to the physician, the deployed diameter and length of the stent may be less than the physician's ability to accurately position the correct size stent at the correct location. It is essential to be able to know. For example, the diameter and length of a diseased or injured section or region of a human blood vessel can vary depending on various human blood vessels, disease states and the purpose of the deployment, so that a stent having the correct diameter and length can be deployed. It is important to be fed into this area for. Careful sizing of this area of the lumen of the body vessel is a challenge to many physicians who know the correct dimensions of the body vessel in this area but do not know for certain the diameter and length of the stent. It may pose a difficult challenge. This is due to the shortening effect that many stents undergo when expanding from a compressed state to an expanded state. This shortening action is illustrated in FIGS. 1A, 1B, 2A and 2B, which show a mesh-shaped pattern created by V-shaped struts or legs 22 and 24 connected by vertices 26. 1 shows a portion 20 of a stent having the same. Two pairs of these V-shaped struts 22, 24 are shown in this portion 20 of the stent. Each of these posts 22 and 24 has a length h. FIG. 1B illustrates the portion 20 of the stent in a fully compressed state, where the length h is the longitudinal or horizontal component l. Two (See FIG. 2B) and FIG. 1A illustrates the same portion 20 of the stent in a fully expanded state, where the length h 1 is the longitudinal or horizontal component l. 1 (See FIG. 2A). As indicated by phantom lines 28 and 30 in FIGS. 1A, 1B, 2A and 2B, 1 Is l Two Shorter than. This is because the angle made by the struts 22 with respect to the horizontal axis is greater in the expanded state, and thus the length of the expanded portion 20 is 2d shorter than the length of the compressed portion 20. This shortening is caused by the shortening of the longitudinal components of struts 22 and 24 when the stent is expanded from the compressed state to the expanded state. This shortening effect is cumbersome because it is not easy to determine the correct dimensions of this shortened length 2d. The physician must make this calculation based on the stent material, the vessel to be treated, and the expected diameter of the stent when correctly deployed in the lumen of the vessel. For example, the shortened length 2d will change when the same stent is deployed in vessels of different diameters in the deployed section. In addition, there are certain human vessels that experience changes in disease state along the lumen diameter, anatomy or length of the blood vessel. A stent deployed in such a vessel would need to be able to cope with or adapt to these changes. An example of such a human vessel is the carotid artery. Blood is supplied from the heart to the brain via the common carotid artery. These arteries have a lumen of about 8-10 mm when tracing to locations just below and behind the eye along the neck. At this position, the common carotid artery has an internal carotid artery with a lumen diameter of 6-8 mm supplying blood to the brain, and an external carotid artery with a lumen diameter of 6-8 mm supplying blood to the face and scalp. Divided into Damage due to atherosclerosis of the common carotid artery tends to occur around this bifurcation where the common carotid artery divides into internal and external carotid arteries, so the stent needs to be deployed at this bifurcation. There are many cases. Another example is the iliac artery having a lumen diameter of about 8-10 mm in the common iliac artery, but reducing to a lumen diameter of about 6-7 mm in the external iliac artery. The common iliac artery is quite often calcified and experiences a more localized stenosis or obstruction disorder that usually requires a shorter stent with greater radial strength or stiffness. Diseases due to more diffuse atherosclerosis of the iliac tissue usually involve both the common iliac artery and the internal iliac artery and develop at the serpentine corners experienced by the iliac tissue. Would require a longer stent with high flexibility suitable for The femoral popliteal tissue also experiences localized or widespread stenosis disorders. In addition, the flexibility of the stent is important when deployed at locations in the blood vessel that are affected by movement of the joint, such as the hip or knee. The renal artery provides another useful example. The first 1 cm or so of the entrance to the renal artery is often quite tight and narrow due to atheroma or calcification, while the rest of the renal artery is relatively curved. As a result, stents intended for implantation in the renal arteries should be relatively stiff for the first 1.5 cm or so and then be more flexible and compliant. Thus, maintaining a consistent length both in the fully compressed state and in the fully expanded state, and in all states between the fully compressed state and the fully expanded state, can be achieved. There remains a need for a possible endoluminal prosthesis. There is also a need for stents that can accommodate varying lumen diameters, different anatomical structures, and different disease states. SUMMARY OF THE DISCLOSURE To achieve the objects of the present invention, a stent having a plurality of annular members is provided. Each annular member has a compressed state and an expanded state and has a shorter longitudinal dimension in the expanded state than in the compressed state. A plurality of coupling members couple adjacent annular members, and the coupling members operate to compensate for a shorter longitudinal dimension of each annular member in the expanded state. In one embodiment of the present invention, each annular member includes a plurality of struts and vertices joined to form an annular shape. These coupling members are coupled to the vertices of adjacent annular members. The plurality of struts of the annular member include left and right struts, and each pair of left and right struts are interconnected at each vertex. Each strut has a shorter longitudinal dimension when the annular member is in an expanded state than in a compressed state. In one embodiment of the invention, at least one annular member may have a closed shape such that a plurality of alternating struts and vertices are joined together to form a closed annular member. . Furthermore, it is also possible for at least one annular member to have an open shape such that a plurality of alternating struts and vertices are not joined at at least one location. In a preferred embodiment of the invention, the coupling member has a plurality of alternating sections. In one embodiment, the coupling member has a plurality of alternating curved sections defining alternating top and bottom vertices. In another embodiment, the coupling member has a plurality of alternating curved sections and straight sections. In another embodiment, the coupling member has a plurality of alternating and angled straight sections. The coupling member has a longer longitudinal dimension than the compressed state when each annular member is in the expanded state to compensate for the shorter longitudinal dimension of the annular member in the expanded state. The stent according to the present invention further includes a plurality of openings defined by adjacent annular members and coupling members. In one embodiment, the openings in the different sections of the stent can have different sizes. The stent according to the invention furthermore has a plurality of sections, at least two of which have different degrees of flexibility. In one embodiment, varying flexibility is achieved by forming a plurality of gaps. These gaps can be achieved by omitting one or more coupling members or portions of coupling members between adjacent annular members, or by omitting one or more of the columns or by omitting the coupling members and columns. Can be formed. In another embodiment, varying flexibility is achieved by providing different sizes of openings in different strut sections. The stent according to the present invention may further provide sections exhibiting various diameters when the stent is in the expanded state. These various diameters may be achieved by imparting a beveled or stepped shape to the stent. In a preferred embodiment of the invention, the stent is made of a shape memory alloy such as Nitinol, but with stainless steel, tantalum, titanium, elgiloy, gold, platinum or other metals or Alloys or polymers or composites with sufficient biocompatibility, stiffness, flexibility, radial strength, radiopacity and thrombus resistance can be used as stent materials. Thus, the stent according to the present invention has a constant in both the fully compressed and fully expanded states and in all states between the fully compressed and fully expanded states. Maintain length. As a result, the stent according to the invention facilitates correct sizing and deployment, thereby simplifying the mechanical process and minimizing the time required for it. Further, stents according to the present invention provide varying flexibility and stiffness along their length and / or outer circumference, as well as providing varying diameters along various sections of the stent, thereby varying. Facilitates the treatment of vasculature in the body with lumen diameter, different anatomical structures and different disease states. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a side view of a portion of a prior art stent in an expanded state, FIG. 1B is a side view of a portion of FIG. 1A in a compressed state, and FIG. 1A and 1B illustrate the longitudinal component of the strut of the stent of FIGS. 1A and 1B when in the retracted state, and FIG. 2B illustrates the longitudinal component of the strut of the stent of FIGS. 1A and 1B when the stent is in a compressed state. FIG. 3 is a perspective view of a stent according to the invention, FIG. 4A is a side view of a portion of the stent of FIG. 3 in an expanded state, and FIG. 4B is a portion of FIG. 4A in a compressed state. FIG. 5A illustrates the longitudinal components of the struts and the coupling members of the stent of FIGS. 4A and 4B when the stent is in an expanded state, and FIG. 5B illustrates when the stent is in a compressed state. 4A and 4 of FIG. 6A illustrates the longitudinal components of the struts of the stent of FIG. 6 and the coupling member, FIG. 6A is a side view of the stent of FIG. 3 in an expanded state, and FIG. 6B is a side view of the stent of FIG. 6A in a compressed state. 7 and 8 show another embodiment of the coupling member according to the invention, FIG. 9 is a side view showing a modification to a part of the stent of FIG. 3, and FIG. FIG. 11B is a side view showing another modification example of a part of the stent of FIG. 3, and FIGS. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following detailed description is the best currently contemplated mode of practicing the invention. This description has not been made in a limiting sense, but is for the purpose of illustrating the general principles of embodiments of the present invention. The scope of the present invention is best defined by the appended claims. Although the endoluminal prosthesis according to the present invention is a stent, the principles of the present invention can be applied to other prostheses such as liners and filters. The stent is delivered in a compressed state to a desired location within the lumen of a human vessel, and then deployed by expanding to an expanded state. The stent maintains approximately the same length in both the fully compressed and fully expanded states and all states between these two states. The stent may be provided with varying flexibility or stiffness along different anatomical structures and different sections. The stent may also be provided with different diameters along different portions of the stent to facilitate implantation of the same stent into a human vessel having different diameters. Stents according to the present invention can be expanded by the use of high-frequency, self-expanding stents or balloons that can be inflated or expanded radially by an expansion member or that impart heat to change the size of the stent. Stent. The stent may also be coated with a coating of PTFE, Dacron or other biocompatible material to form a bonded stent-graft prosthesis. The vessels to which the stents of the present invention can be expanded are not limited to natural bodily vessels such as conduits, arteries, trachea, veins, ureters and esophagus, but also include artificial vessels such as grafts. 1. Preferred embodiment A stent 40 according to the present invention is illustrated in FIGS. Referring to FIG. 3, a stent 40 has a plurality of pairs of generally V-shaped struts having a tubular shape and joined at a vertex, with a plurality of pairs at the apex of each pair of V-shaped struts. It is made by a plurality of pairs by engaging a coupling member. 4A and 4B illustrate a portion of the stent 40 in more detail. The stent 40 has multiple pairs of alternating left struts 42 and right struts 44. Each pair of left and right columns 42,44 is joined at a vertex 46 to form a substantially V-shape for the pair. The left column 42 is defined as being on the left side of each vertex 46, and the right column 44 is defined as being on the right side of each vertex 46. The left support 42 and the right support 44 are alternated. This is because the left column 42 of the pair of V-shaped columns is also the left column of the adjacent V-shaped pair, and the right column 44 of the pair of V-shaped columns is also adjacent. This is because it is also a right-side column of the V-shaped column. In this manner, the alternating left and right struts 42 and 44 extend in an annular configuration around the annular stent 40 to form an annular member. Each vertex 46 is connected to another vertex 46 by a connecting member 48. Thus, the stents 40 resemble a tubular lattice formed by a pair of V-shaped struts 42,44 joined to themselves and having their vertices 46 joined by a joining member 48. As shown in FIG. 3, both ends of the stent 40 have a plurality of alternating left and right ends, the ends of which are defined by the vertices 46 of these alternating left and right struts 42,44. The columns 42 and 44 define the columns. The coupling member 48 has a shape that includes a plurality or alternating sections in a pattern. A first non-limiting preferred embodiment of the coupling member 48 is illustrated in FIGS. 4A and 4B. Each coupling member 48 extends longitudinally from a vertex 46 along a longitudinal extension 52 and then slopes up along a curved section 54 to a top curved vertex 56 from there to a curved section 58. It slopes down to a curved apex 60 at the bottom. The coupling member 48 then slopes up along the curved section 62 to the top curved apex 64. The coupling member 48 slopes down from the top curved vertex 64 along the curved section 66 to a longitudinal extension 68 of the opposite vertex 46. Thus, coupling member 48 has a plurality of alternating curved sections defined by alternating top and bottom vertices 56,60 and 64. Coupling members 48 are provided to accomplish two functions. First, coupling member 48 couples a pair of vertices 46. Second, the coupling member 48 functions to compensate for the foreshortening experienced by the longitudinal components of each strut 42 and 44 so that the stent 40 is always maintained at approximately the same length. This is accomplished by providing the coupling member 48 with a natural bias and resiliency that couples with the alternating sections to reduce its length when compressed. When allowed to expand, coupling member 48 is biased back to its natural or home position to compensate for the shortening experienced by the longitudinal component of each strut 42 and 44. The connecting member 48 is lengthened. This effect is illustrated in FIGS. 4A, 4B, 5A and 5B. When the stent 40 is in the compressed state, the coupling member 48 has a length L when the coupling member 48 is in the expanded state. 1 Length L shorter than Two Having. When the coupling member 48 is in the compressed state, the alternating waveform curve has a higher amplitude and a smaller wavelength than when in the expanded state (compare FIGS. 4A and 4B). Therefore, L Two And L 1 Is different from that of the struts 42, 44 at both ends of the coupling member 48. 1 And l Two To compensate for the difference. The lines 70 and 72 in FIGS. 4A and 4B show that the relevant portions of the stent 40 do not experience any foreshortening, and the lines 74 and 76 in FIGS. 6A and 6B indicate that the entire stent 40 is in its entirety. It shows that a constant length is maintained throughout. 4A, 4B, 5A and 5B, the coupling member 48 has been described as having a particular shape, but the coupling member 48 may have other shapes without departing from the spirit and scope of the present invention. Will be understood by those skilled in the art. For example, the coupling members 48 can be provided in any curved or partially curved or other shape as long as they function to compensate for the shortening experienced by the longitudinal component of each strut 42 and 44. . FIG. 7 shows a non-limiting second preferred embodiment of the coupling member 48, in which the coupling member 48a has alternating curved sections 80 and straight sections 82. I have. When the coupling member 48a is compressed, its curved section 80 also has a higher amplitude and a shorter wavelength than when it is in the expanded state. FIG. 8 shows a third non-limiting preferred embodiment, in which the coupling member 48b has alternating straight sections 84 and 86 that are angled with respect to each other. . When the stent 40 is in the fully expanded state, it preferably has a profile slightly larger than the inner diameter of the region of the body vessel in which the stent is to be deployed. This allows the stent 40 to be securely anchored at the desired location and prevent the stent 40 from entering away from the deployed position. The stent 40 may be provided with various flexibility or rigidity at various portions or sections along its length to facilitate deployment in a body vessel that requires such various flexibility or rigidity. I do. This varying flexibility or stiffness may be achieved by omitting the connecting member 48 and the struts 42, 44 or by not connecting one or more of the struts 42, 44 and / or the connecting member 48 to one or more along the stent 40. This can be achieved by forming a "gap" at the location. These locations can be anywhere along the length and / or circumference of the stent 40. Further, varying degrees of flexibility of the stent 40 can be achieved by altering the pattern of these gaps. A non-limiting example is to provide the struts 42, 44 and / or coupling members 48 in a generally helical pattern as shown in FIG. The omitted struts 42, 44 and coupling member 48 are shown in phantom lines (ie, dashed lines) in FIG. 9 by reference numeral 47 (for columns 42, 44) and reference numeral 49 (for coupling member 48). ing. For example, the omitted struts 47 may exhibit a relatively helical pattern along the length of the stent 40 from the top left corner of FIG. 9 to the bottom right corner of FIG. . Similarly, the omitted coupling member 49 exhibits a relatively helical pattern along the length of the stent 40 from the bottom left corner of FIG. 9 to the top right corner of FIG. Can be. Other non-limiting alternatives include increasing the number of these gaps 47,49 from one or both ends of the stent 40 toward the center of the stent 40 or from the center of the stent 40 to one or both ends of the stent 40. This is to increase the number of these gaps 47 and 49. It is also possible to omit only some of the coupling members 48 and some but not all of these coupling members 48. A portion of the stent 40 having a number of gaps 47,49 has more flexibility or less stiffness. As a result of omitting the strut 47, some of the annular members formed by the alternating struts 42 and 44 constitute closed or fully joined annular members, while some of these annular members are It can be an open annular member. The varying flexibility or rigidity is such that the size of the open area or opening 78 (see, for example, FIGS. 4A and 10) defined between the struts 42 and 44 and the coupling member 48 is the length of the stent 40. This can be achieved by providing a varying structural shape at various portions or sections of the stent 40 along the length and / or circumference. In a non-limiting embodiment, all the openings 78 in one section of the stent 40 have substantially the same first size, and another section of the stent 40 has the substantially same second size. And the first size and the second size are different. Each has an opening 78 that is approximately the same size as the other openings 78 in that section, but additional sections may be provided in other sections that have a different size than the openings 78. Changing the size of the opening 78 can be achieved by changing the length of the posts 42 and 44 and the coupling member 48. For example, a smaller opening 78 can be provided by reducing the length of the struts 42 and 44 and the coupling member 48 defining a particular open area 78. Portions of the stent 40 with similar openings 78 are stiffer and less flexible than portions of the stent 40 with larger openings 78. This allows the stent 40 to be deployed in a body vessel where the stent 40 is more rigid at one end and needs to become increasingly flexible from this rigid end. Examples of such body vessels include the above-mentioned renal and iliac arteries. Changing the size of the opening 78 also serves another important purpose. For example, providing smaller openings 78 at both ends of the stent 40 may increase or tighten the coverage of the vessel wall, thereby providing improved support of the diseased vessel wall and platelet debris emboli. To prevent it from being removed as sediment. Removal of sediment is dangerous in certain vessels, such as the carotid artery, where the removed sediment can be carried to the brain and possibly cause a stroke. Another example of providing a larger opening 78 at one location of the stent 40 provides a larger opening 78 area that may be important in preventing occlusion of the lateral bifurcation of another body vessel. These wider open areas also allow guidewires, catheters, stents, grafts, and other deployment members to pass through the body of stent 40 and into these lateral branches. The stent 40 can also be configured to have a constant diameter in the compressed state, but different portions of the stent 40 when in the fully expanded state. Providing the expandable stent 40 with the ability to exhibit different diameters in different portions is important when the stent 40 is used in certain body vessels or branches of body vessels of varying lumen diameter. Examples of such internal vessels and branches include the carotid and iliac arteries described above. The varying diameter of the stent 40 can be provided in a number of ways. A first non-limiting alternative is to provide a gradually tapered shape of the stent 40, as shown in FIG. 11A. The beveled shape is best suited for use in body vessels that experience tapering. A second non-limiting alternative is to provide an abrupt transition, such as a step, between sections of two stents 40, each having a relatively consistent but different diameter. This step may be for the raised step 40C shown in FIG. 11C or the depressed step 40b shown in FIG. 11B. Further, the stent 40 can be provided with some variation in diameter along its length to meet particular anatomical requirements. The inclination or transition of the shape of the stent can be achieved by pre-shaping and enhanced by changing (1) the thickness of the stent material, (2) the size of the openings 78 and (3) the gaps 47,49. be able to. In addition to the above, those skilled in the art will appreciate that varying flexibility and stiffness can also be achieved by varying the width and thickness of the stent 40 material at certain locations along the length and / or circumference of the stent 40. You will understand. Many materials can be used for both the stent 40 and its struts 42 and 44 and the coupling member 48, depending on the deployment method. When used as a self-expanding stent, the stent 40 (including its struts 42 and 44 and the coupling member 48) is made of a shape memory memory such as Nitinol with the unique performance of "mechanical" memory and training. It is preferably made of an elastic alloy. The alloy can be formed into a first predetermined shape above the transition temperature range. The alloy may be elastically deformed to a second shape below the transition temperature range, but when the alloy is warmed back to a temperature above the transition temperature range, it returns to its original (first predetermined). It completely returns to its shape. Nitinol preferably has a composition of about 50% nickel and about 50% titanium. Shape memory alloys such as Nitinol and their use properties in stents are well described in the literature and are described in W. Duerig, A .; R. Pelton and D.M. Reference may be made to the document by Stockel entitled "The Use of Superelasticity in Medicine". Copies of this document are attached to this specification and are specifically incorporated herein by specific reference numbers as if fully set forth herein. Alternatively, the stent 40 (including its struts 42 and 44 and the connecting member 48) may be made of stainless steel, tantalum, titanium, elgiloy, gold, platinum or any other metal or alloy or polymer or sufficient biocompatible, It can be made of a composite material that has rigidity, flexibility, radial strength, radiopacity and thrombus resistance. Although coupling member 48 has been described above as having the same material as struts 42 and 44, coupling member 48 can be provided by a different material without departing from the spirit and scope of the present invention. Such a material must be resilient and capable of allowing the coupling member 48 to be compressed or expanded longitudinally to compensate for the shortening experienced by the struts 42 and 44. Non-limiting examples of such materials can include any of the materials described above for stent 40. 2. Production method The stent 40 can be made in one of many ways, depending on the material of the stent and the desired properties of the deployment. In a first non-limiting preferred method, the stent 40 is made of solid Nitinol tubing of the same size as the stent when the stent is in a fully compressed state. The pattern of the stent 40 (i.e., the struts 42 and 44 and the coupling members 48) is programmed into a computer controlled laser cutter or race, which cuts between the struts 42 and 44 and the coupling members 48. Are cut out in such a way that the outer diameter and wall thickness of the stent 40 are tightly controlled. After the cutting step, the stent 40 is gradually expanded until it reaches a fully expanded state. Expansion can be accomplished by an inner expansion mount, but other expansion devices and methods can be used without departing from the spirit and scope of the present invention. The overall length of the stent 40 must be kept constant throughout the expansion of the stent 40 from a fully compressed state to a fully expanded state. Once the stent 40 is expanded to its fully expanded state, it is heat treated to "set" the shape memory of the Nitinol material to the fully expanded dimensions. The stent 40 is then cleaned and electropolished. In the next step, the stent 40 is recompressed to a size that can be delivered intravascularly, either by puncture or by minimally invasive surgery. In particular, the stent 40 must be compressed to a smaller state so that it can be delivered to the desired location within the vessel by the delivery device. Any common delivery device such as, but not limited to, a tube, catheter or sheath can be used. This compression is accomplished by cooling the stent 40 to a low temperature, for example, zero degrees Celsius, and maintaining the temperature while compressing the stent 40 so that the stent 40 can be inserted inside the delivery device. Once inserted into the delivery device, the stent 40 is maintained in a compressed state at room temperature by the delivery device. In a second non-limiting preferred method, the balloon expandable stent 40 is fabricated by joining a plurality of wires bent and shaped into the desired shape of the struts 42 and 44 and the joining member 48. can do. This connection can be achieved by welding, tying, gluing or other common methods. Alternatively, wire electrical discharge machining can be used. The wire can undergo plastic deformation when the stent 40 is compressed or expanded. Once the stent 40 has been plastically deformed to a compressed or expanded state, the stent 40 remains in this state until another force is applied that plastically deforms the stent 40 again. While certain manufacturing methods have been described above, it will be appreciated by those skilled in the art that other manufacturing methods may be utilized without departing from the spirit and scope of the invention. 3. Deployment method The stent 40 can be deployed by a number of delivery devices and delivery methods. These delivery devices and methods will vary depending on whether the stent 40 is expanded by self-expansion, radial expansion force, or high frequency. While the description above refers to particular embodiments of the present invention, it will be understood that many modifications may be made without departing from the spirit of the invention. The appended claims are intended to cover such modifications as would fall within the true scope and spirit of the invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 イエール,スリラム・エス アメリカ合衆国アラバマ州35244,バーミ ンガム,チェスナット・オークス・ドライ ブ 3127 (72)発明者 レッドモンド,ラッセル・ジェイ アメリカ合衆国カリフォルニア州93117, ゴレタ,ノース・フェアビュー・アベニュ ー 1148 (72)発明者 ヴィダル,クロード・エイ アメリカ合衆国カリフォルニア州93111, サンタ・バーバラ,サン・パトリチオ・ド ライブ 5426────────────────────────────────────────────────── ─── Continuation of front page (72) Inventors Yale, Suriram S 35244, Bami, Alabama, United States Ngam, Chestnut Oaks Dry Step 3127 (72) Redmond, Russell Jay United States California 93117, Goleta, North Fairview Avenue ー 1148 (72) Inventor Vidal, Claude Ay United States California 93111, Santa Barbara, Sao Patricio do Live 5426
Claims (1)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/797,814 US5827321A (en) | 1997-02-07 | 1997-02-07 | Non-Foreshortening intraluminal prosthesis |
US08/797,814 | 1997-02-07 | ||
PCT/US1998/002175 WO1998034668A1 (en) | 1997-02-07 | 1998-02-04 | Non-foreshortening intraluminal prosthesis |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001511044A true JP2001511044A (en) | 2001-08-07 |
Family
ID=25171870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53487598A Pending JP2001511044A (en) | 1997-02-07 | 1998-02-04 | Intraluminal prosthesis that does not shorten |
Country Status (5)
Country | Link |
---|---|
US (7) | US5827321A (en) |
EP (1) | EP1028772A4 (en) |
JP (1) | JP2001511044A (en) |
CA (1) | CA2280131C (en) |
WO (1) | WO1998034668A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005537072A (en) * | 2002-09-02 | 2005-12-08 | アンソン メディカル リミテッド | Flexible stent graft |
JP4825665B2 (en) * | 2003-02-26 | 2011-11-30 | ボストン サイエンティフィック リミテッド | Lumen device with enhanced mounting characteristics |
JP2017018330A (en) * | 2015-07-10 | 2017-01-26 | 有限会社Ptmc研究所 | Stent graft |
JP2017023779A (en) * | 2009-07-08 | 2017-02-02 | コンセントリック メディカル,インク. | Device and method for treating vessel and internal duct |
Families Citing this family (509)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE176587T1 (en) * | 1994-05-19 | 1999-02-15 | Scimed Life Systems Inc | IMPROVED TISSUE SUPPORT DEVICES |
US7204848B1 (en) * | 1995-03-01 | 2007-04-17 | Boston Scientific Scimed, Inc. | Longitudinally flexible expandable stent |
CA2186029C (en) * | 1995-03-01 | 2003-04-08 | Brian J. Brown | Improved longitudinally flexible expandable stent |
US6602281B1 (en) * | 1995-06-05 | 2003-08-05 | Avantec Vascular Corporation | Radially expansible vessel scaffold having beams and expansion joints |
US5702418A (en) * | 1995-09-12 | 1997-12-30 | Boston Scientific Corporation | Stent delivery system |
KR19990064209A (en) | 1995-10-13 | 1999-07-26 | 트랜스바스큘라, 인코포레이티드 | Apparatus, Systems, and Methods for Interstitial Acupoint Intervention |
US5776161A (en) * | 1995-10-16 | 1998-07-07 | Instent, Inc. | Medical stents, apparatus and method for making same |
JP2000505316A (en) | 1996-02-02 | 2000-05-09 | トランスバスキュラー インコーポレイテッド | Method and apparatus for joining openings formed in adjacent blood vessels or other anatomical structures |
US6796997B1 (en) | 1996-03-05 | 2004-09-28 | Evysio Medical Devices Ulc | Expandable stent |
WO1997032544A1 (en) * | 1996-03-05 | 1997-09-12 | Divysio Solutions Ulc. | Expandable stent and method for delivery of same |
CA2192520A1 (en) | 1996-03-05 | 1997-09-05 | Ian M. Penn | Expandable stent and method for delivery of same |
US5868780A (en) * | 1996-03-22 | 1999-02-09 | Lashinski; Robert D. | Stents for supporting lumens in living tissue |
US6241760B1 (en) * | 1996-04-26 | 2001-06-05 | G. David Jang | Intravascular stent |
US20040106985A1 (en) | 1996-04-26 | 2004-06-03 | Jang G. David | Intravascular stent |
US6235053B1 (en) | 1998-02-02 | 2001-05-22 | G. David Jang | Tubular stent consists of chevron-shape expansion struts and contralaterally attached diagonal connectors |
JP4636634B2 (en) * | 1996-04-26 | 2011-02-23 | ボストン サイエンティフィック サイムド,インコーポレイテッド | Intravascular stent |
US6666883B1 (en) | 1996-06-06 | 2003-12-23 | Jacques Seguin | Endoprosthesis for vascular bifurcation |
US7238197B2 (en) * | 2000-05-30 | 2007-07-03 | Devax, Inc. | Endoprosthesis deployment system for treating vascular bifurcations |
US7686846B2 (en) | 1996-06-06 | 2010-03-30 | Devax, Inc. | Bifurcation stent and method of positioning in a body lumen |
US8728143B2 (en) | 1996-06-06 | 2014-05-20 | Biosensors International Group, Ltd. | Endoprosthesis deployment system for treating vascular bifurcations |
US6432127B1 (en) | 1996-10-11 | 2002-08-13 | Transvascular, Inc. | Devices for forming and/or maintaining connections between adjacent anatomical conduits |
IL131063A (en) * | 1997-01-24 | 2005-07-25 | Kentucky Oil N V | Bistable spring construction for a stent and other medical apparatus |
US8353948B2 (en) * | 1997-01-24 | 2013-01-15 | Celonova Stent, Inc. | Fracture-resistant helical stent incorporating bistable cells and methods of use |
US8663311B2 (en) | 1997-01-24 | 2014-03-04 | Celonova Stent, Inc. | Device comprising biodegradable bistable or multistable cells and methods of use |
US20040267350A1 (en) * | 2002-10-30 | 2004-12-30 | Roubin Gary S. | Non-foreshortening intraluminal prosthesis |
US5827321A (en) * | 1997-02-07 | 1998-10-27 | Cornerstone Devices, Inc. | Non-Foreshortening intraluminal prosthesis |
DE29702671U1 (en) * | 1997-02-17 | 1997-04-10 | Jomed Implantate GmbH, 72414 Rangendingen | Stent |
US20020133222A1 (en) * | 1997-03-05 | 2002-09-19 | Das Gladwin S. | Expandable stent having a plurality of interconnected expansion modules |
US6033433A (en) * | 1997-04-25 | 2000-03-07 | Scimed Life Systems, Inc. | Stent configurations including spirals |
US6451049B2 (en) * | 1998-04-29 | 2002-09-17 | Sorin Biomedica Cardio, S.P.A. | Stents for angioplasty |
IT1292295B1 (en) * | 1997-04-29 | 1999-01-29 | Sorin Biomedica Cardio Spa | ANGIOPLASTIC STENT |
DE69835634T3 (en) † | 1997-05-07 | 2010-09-23 | Cordis Corp. | Intravascular stent and insertion system (obstruction of the ostium of a vessel) |
DE29708879U1 (en) * | 1997-05-20 | 1997-07-31 | Jomed Implantate GmbH, 72414 Rangendingen | Coronary stent |
US5836966A (en) * | 1997-05-22 | 1998-11-17 | Scimed Life Systems, Inc. | Variable expansion force stent |
EP0884029B1 (en) * | 1997-06-13 | 2004-12-22 | Gary J. Becker | Expandable intraluminal endoprosthesis |
ES2214600T3 (en) * | 1997-06-30 | 2004-09-16 | Medex Holding Gmbh | INTRALUMINAL IMPLANT. |
DE19834956B9 (en) * | 1997-08-01 | 2005-10-20 | Eckhard Alt | Supporting prosthesis (stent) |
EP0898947A3 (en) * | 1997-08-15 | 1999-09-08 | GRIESHABER & CO. AG SCHAFFHAUSEN | Method and apparatus to improve the outflow of the aqueous humor of an eye |
US6890546B2 (en) | 1998-09-24 | 2005-05-10 | Abbott Laboratories | Medical devices containing rapamycin analogs |
US6013091A (en) | 1997-10-09 | 2000-01-11 | Scimed Life Systems, Inc. | Stent configurations |
US6309414B1 (en) * | 1997-11-04 | 2001-10-30 | Sorin Biomedica Cardio S.P.A. | Angioplasty stents |
US6533807B2 (en) | 1998-02-05 | 2003-03-18 | Medtronic, Inc. | Radially-expandable stent and delivery system |
US6395019B2 (en) | 1998-02-09 | 2002-05-28 | Trivascular, Inc. | Endovascular graft |
US5931866A (en) * | 1998-02-24 | 1999-08-03 | Frantzen; John J. | Radially expandable stent featuring accordion stops |
US5938697A (en) * | 1998-03-04 | 1999-08-17 | Scimed Life Systems, Inc. | Stent having variable properties |
US6179868B1 (en) * | 1998-03-27 | 2001-01-30 | Janet Burpee | Stent with reduced shortening |
JP4583597B2 (en) * | 1998-05-05 | 2010-11-17 | ボストン サイエンティフィック リミテッド | Smooth end stent |
DE19822157B4 (en) * | 1998-05-16 | 2013-01-10 | Abbott Laboratories Vascular Enterprises Ltd. | Radially expandable stent for implantation in a body vessel |
ATE342014T1 (en) * | 1998-06-19 | 2006-11-15 | Endologix Inc | SELF-EXPANDING BRANCHING ENDOVASCULAR PROSTHESIS |
US6261319B1 (en) * | 1998-07-08 | 2001-07-17 | Scimed Life Systems, Inc. | Stent |
US6461380B1 (en) | 1998-07-28 | 2002-10-08 | Advanced Cardiovascular Systems, Inc. | Stent configuration |
US7887578B2 (en) | 1998-09-05 | 2011-02-15 | Abbott Laboratories Vascular Enterprises Limited | Stent having an expandable web structure |
US20020019660A1 (en) * | 1998-09-05 | 2002-02-14 | Marc Gianotti | Methods and apparatus for a curved stent |
US6755856B2 (en) | 1998-09-05 | 2004-06-29 | Abbott Laboratories Vascular Enterprises Limited | Methods and apparatus for stenting comprising enhanced embolic protection, coupled with improved protection against restenosis and thrombus formation |
US6682554B2 (en) | 1998-09-05 | 2004-01-27 | Jomed Gmbh | Methods and apparatus for a stent having an expandable web structure |
US7815763B2 (en) | 2001-09-28 | 2010-10-19 | Abbott Laboratories Vascular Enterprises Limited | Porous membranes for medical implants and methods of manufacture |
DE19840645A1 (en) | 1998-09-05 | 2000-03-09 | Jomed Implantate Gmbh | Stent |
US6193744B1 (en) * | 1998-09-10 | 2001-02-27 | Scimed Life Systems, Inc. | Stent configurations |
US7960405B2 (en) * | 1998-09-24 | 2011-06-14 | Abbott Laboratories | Compounds and methods for treatment and prevention of diseases |
US6042597A (en) † | 1998-10-23 | 2000-03-28 | Scimed Life Systems, Inc. | Helical stent design |
US6733523B2 (en) | 1998-12-11 | 2004-05-11 | Endologix, Inc. | Implantable vascular graft |
US6660030B2 (en) | 1998-12-11 | 2003-12-09 | Endologix, Inc. | Bifurcation graft deployment catheter |
JP4189127B2 (en) | 1998-12-11 | 2008-12-03 | エンドロジックス、インク | Intraluminal artificial blood vessels |
US6187036B1 (en) | 1998-12-11 | 2001-02-13 | Endologix, Inc. | Endoluminal vascular prosthesis |
US6743252B1 (en) | 1998-12-18 | 2004-06-01 | Cook Incorporated | Cannula stent |
US6355057B1 (en) | 1999-01-14 | 2002-03-12 | Medtronic, Inc. | Staggered endoluminal stent |
US6251134B1 (en) * | 1999-02-28 | 2001-06-26 | Inflow Dynamics Inc. | Stent with high longitudinal flexibility |
US6273910B1 (en) | 1999-03-11 | 2001-08-14 | Advanced Cardiovascular Systems, Inc. | Stent with varying strut geometry |
US8034100B2 (en) | 1999-03-11 | 2011-10-11 | Endologix, Inc. | Graft deployment system |
US6261316B1 (en) | 1999-03-11 | 2001-07-17 | Endologix, Inc. | Single puncture bifurcation graft deployment system |
DE19913978A1 (en) * | 1999-03-18 | 2000-09-28 | Schering Ag | Asymmetric stent containing irregularly distributed active agents or radioisotopes useful e.g. for treating atherosclerosis and preventing restenosis |
US6464723B1 (en) * | 1999-04-22 | 2002-10-15 | Advanced Cardiovascular Systems, Inc. | Radiopaque stents |
US6273911B1 (en) | 1999-04-22 | 2001-08-14 | Advanced Cardiovascular Systems, Inc. | Variable strength stent |
US8016873B1 (en) | 1999-05-03 | 2011-09-13 | Drasler William J | Intravascular hinge stent |
US6245101B1 (en) | 1999-05-03 | 2001-06-12 | William J. Drasler | Intravascular hinge stent |
US6375676B1 (en) | 1999-05-17 | 2002-04-23 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent with enhanced delivery precision and stent delivery system |
US6997951B2 (en) * | 1999-06-30 | 2006-02-14 | Edwards Lifesciences Ag | Method and device for treatment of mitral insufficiency |
US6409754B1 (en) * | 1999-07-02 | 2002-06-25 | Scimed Life Systems, Inc. | Flexible segmented stent |
US6569193B1 (en) * | 1999-07-22 | 2003-05-27 | Advanced Cardiovascular Systems, Inc. | Tapered self-expanding stent |
US6544279B1 (en) * | 2000-08-09 | 2003-04-08 | Incept, Llc | Vascular device for emboli, thrombus and foreign body removal and methods of use |
DE19937638B4 (en) * | 1999-08-12 | 2006-11-02 | Alveolus Inc. | Tracheal Stent |
US6371980B1 (en) * | 1999-08-30 | 2002-04-16 | Cardiovasc, Inc. | Composite expandable device with impervious polymeric covering and bioactive coating thereon, delivery apparatus and method |
US6293968B1 (en) | 1999-09-02 | 2001-09-25 | Syde A. Taheri | Inflatable intraluminal vascular stent |
US20010047200A1 (en) * | 1999-10-13 | 2001-11-29 | Raymond Sun | Non-foreshortening intraluminal prosthesis |
US6610087B1 (en) | 1999-11-16 | 2003-08-26 | Scimed Life Systems, Inc. | Endoluminal stent having a matched stiffness region and/or a stiffness gradient and methods for providing stent kink resistance |
US6585758B1 (en) | 1999-11-16 | 2003-07-01 | Scimed Life Systems, Inc. | Multi-section filamentary endoluminal stent |
US6361555B1 (en) | 1999-12-15 | 2002-03-26 | Advanced Cardiovascular Systems, Inc. | Stent and stent delivery assembly and method of use |
US6443979B1 (en) | 1999-12-20 | 2002-09-03 | Advanced Cardiovascular Systems, Inc. | Expandable stent delivery sheath and method of use |
US6423090B1 (en) | 2000-02-11 | 2002-07-23 | Advanced Cardiovascular Systems, Inc. | Stent pattern with staged expansion |
US6723119B2 (en) * | 2000-03-01 | 2004-04-20 | Medinol Ltd. | Longitudinally flexible stent |
US8920487B1 (en) | 2000-03-01 | 2014-12-30 | Medinol Ltd. | Longitudinally flexible stent |
US8202312B2 (en) * | 2000-03-01 | 2012-06-19 | Medinol Ltd. | Longitudinally flexible stent |
US7828835B2 (en) | 2000-03-01 | 2010-11-09 | Medinol Ltd. | Longitudinally flexible stent |
US8496699B2 (en) * | 2000-03-01 | 2013-07-30 | Medinol Ltd. | Longitudinally flexible stent |
US7758627B2 (en) * | 2000-03-01 | 2010-07-20 | Medinol, Ltd. | Longitudinally flexible stent |
US7141062B1 (en) * | 2000-03-01 | 2006-11-28 | Medinol, Ltd. | Longitudinally flexible stent |
US7621947B2 (en) * | 2000-03-01 | 2009-11-24 | Medinol, Ltd. | Longitudinally flexible stent |
EP1132058A1 (en) * | 2000-03-06 | 2001-09-12 | Advanced Laser Applications Holding S.A. | Intravascular prothesis |
US6451050B1 (en) | 2000-04-28 | 2002-09-17 | Cardiovasc, Inc. | Stent graft and method |
US20030114918A1 (en) | 2000-04-28 | 2003-06-19 | Garrison Michi E. | Stent graft assembly and method |
US6520984B1 (en) | 2000-04-28 | 2003-02-18 | Cardiovasc, Inc. | Stent graft assembly and method |
US6616689B1 (en) * | 2000-05-03 | 2003-09-09 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
US6602282B1 (en) * | 2000-05-04 | 2003-08-05 | Avantec Vascular Corporation | Flexible stent structure |
JP2003533335A (en) | 2000-05-22 | 2003-11-11 | オーバス メディカル テクノロジーズ インク. | Self-expanding stent |
US6652576B1 (en) | 2000-06-07 | 2003-11-25 | Advanced Cardiovascular Systems, Inc. | Variable stiffness stent |
US7632303B1 (en) | 2000-06-07 | 2009-12-15 | Advanced Cardiovascular Systems, Inc. | Variable stiffness medical devices |
US6652579B1 (en) | 2000-06-22 | 2003-11-25 | Advanced Cardiovascular Systems, Inc. | Radiopaque stent |
US6799637B2 (en) | 2000-10-20 | 2004-10-05 | Schlumberger Technology Corporation | Expandable tubing and method |
DE10040630A1 (en) * | 2000-08-16 | 2002-03-07 | Thomas Hupp | Stent for implantation in the carotid artery |
US7766956B2 (en) | 2000-09-22 | 2010-08-03 | Boston Scientific Scimed, Inc. | Intravascular stent and assembly |
US20020072792A1 (en) * | 2000-09-22 | 2002-06-13 | Robert Burgermeister | Stent with optimal strength and radiopacity characteristics |
US6695833B1 (en) | 2000-09-27 | 2004-02-24 | Nellix, Inc. | Vascular stent-graft apparatus and forming method |
AU2002233936A1 (en) * | 2000-11-07 | 2002-05-21 | Advanced Bio Prosthetic Surfaces, Ltd. | Endoluminal stent, self-fupporting endoluminal graft and methods of making same |
US6929660B1 (en) | 2000-12-22 | 2005-08-16 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
NO335594B1 (en) | 2001-01-16 | 2015-01-12 | Halliburton Energy Serv Inc | Expandable devices and methods thereof |
US6998060B2 (en) | 2001-03-01 | 2006-02-14 | Cordis Corporation | Flexible stent and method of manufacture |
US6679911B2 (en) | 2001-03-01 | 2004-01-20 | Cordis Corporation | Flexible stent |
EP2158875B1 (en) | 2001-03-13 | 2019-07-03 | Medinol Ltd. | Stent for improving blood flow |
DE10118944B4 (en) | 2001-04-18 | 2013-01-31 | Merit Medical Systems, Inc. | Removable, essentially cylindrical implants |
US6749628B1 (en) | 2001-05-17 | 2004-06-15 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US20040176837A1 (en) * | 2001-05-17 | 2004-09-09 | Atladottir Svava Maria | Self-expanding stent and catheter assembly and method for treating bifurcations |
US7087088B2 (en) * | 2001-05-24 | 2006-08-08 | Torax Medical, Inc. | Methods and apparatus for regulating the flow of matter through body tubing |
US6629994B2 (en) | 2001-06-11 | 2003-10-07 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
US6939373B2 (en) | 2003-08-20 | 2005-09-06 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
US6673106B2 (en) * | 2001-06-14 | 2004-01-06 | Cordis Neurovascular, Inc. | Intravascular stent device |
US6818013B2 (en) * | 2001-06-14 | 2004-11-16 | Cordis Corporation | Intravascular stent device |
GB0114918D0 (en) | 2001-06-19 | 2001-08-08 | Vortex Innovation Ltd | Devices for repairing aneurysms |
US6635083B1 (en) | 2001-06-25 | 2003-10-21 | Advanced Cardiovascular Systems, Inc. | Stent with non-linear links and method of use |
US20030109886A1 (en) | 2001-06-27 | 2003-06-12 | Martin Keegan | Catheter |
US6749629B1 (en) | 2001-06-27 | 2004-06-15 | Advanced Cardiovascular Systems, Inc. | Stent pattern with figure-eights |
EP1399085B1 (en) | 2001-06-27 | 2016-02-17 | Salviac Limited | A catheter |
CA2454871C (en) | 2001-07-26 | 2008-09-30 | Alveolus Inc | Removable stent and method of using the same |
IES20010828A2 (en) * | 2001-09-12 | 2003-03-19 | Medtronic Inc | Medical device for intraluminal endovascular stenting |
DE50105476D1 (en) * | 2001-09-18 | 2005-04-07 | Abbott Lab Vascular Entpr Ltd | stent |
US8262689B2 (en) * | 2001-09-28 | 2012-09-11 | Advanced Cardiovascular Systems, Inc. | Embolic filtering devices |
DE60231733D1 (en) | 2001-11-09 | 2009-05-07 | Angioscore Inc | |
US20040111108A1 (en) | 2001-11-09 | 2004-06-10 | Farnan Robert C. | Balloon catheter with non-deployable stent |
US6776794B1 (en) | 2001-11-28 | 2004-08-17 | Advanced Cardiovascular Systems, Inc. | Stent pattern with mirror image |
US20030176914A1 (en) * | 2003-01-21 | 2003-09-18 | Rabkin Dmitry J. | Multi-segment modular stent and methods for manufacturing stents |
EP1917931A3 (en) | 2001-12-03 | 2013-02-27 | Intek Technology LLC | Multi-segment modular stent and methods for manufacturing stents |
US7147661B2 (en) * | 2001-12-20 | 2006-12-12 | Boston Scientific Santa Rosa Corp. | Radially expandable stent |
US6964681B2 (en) * | 2002-01-29 | 2005-11-15 | Medtronic Vascular, Inc. | Flared stent and method of use |
US7445629B2 (en) * | 2002-01-31 | 2008-11-04 | Boston Scientific Scimed, Inc. | Medical device for delivering biologically active material |
US7291165B2 (en) | 2002-01-31 | 2007-11-06 | Boston Scientific Scimed, Inc. | Medical device for delivering biologically active material |
US7326245B2 (en) * | 2002-01-31 | 2008-02-05 | Boston Scientific Scimed, Inc. | Medical device for delivering biologically active material |
JP4512369B2 (en) * | 2002-01-31 | 2010-07-28 | ラディ・メディカル・システムズ・アクチェボラーグ | Stent |
US7695427B2 (en) * | 2002-04-26 | 2010-04-13 | Torax Medical, Inc. | Methods and apparatus for treating body tissue sphincters and the like |
US20050197715A1 (en) * | 2002-04-26 | 2005-09-08 | Torax Medical, Inc. | Methods and apparatus for implanting devices into non-sterile body lumens or organs |
US7637935B2 (en) | 2002-05-06 | 2009-12-29 | Abbott Laboratories | Endoprosthesis for controlled contraction and expansion |
EP1503700B1 (en) | 2002-05-08 | 2012-09-26 | Abbott Laboratories | Endoprosthesis having foot extensions |
US8303617B2 (en) * | 2002-05-13 | 2012-11-06 | Salviac Limited | Embolic protection system |
US7195648B2 (en) | 2002-05-16 | 2007-03-27 | Cordis Neurovascular, Inc. | Intravascular stent device |
US7794492B2 (en) * | 2002-05-20 | 2010-09-14 | Kawasumi Laboratories, Inc. | Stent and stent graft |
US6656220B1 (en) | 2002-06-17 | 2003-12-02 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
US8425549B2 (en) | 2002-07-23 | 2013-04-23 | Reverse Medical Corporation | Systems and methods for removing obstructive matter from body lumens and treating vascular defects |
US9561123B2 (en) | 2002-08-30 | 2017-02-07 | C.R. Bard, Inc. | Highly flexible stent and method of manufacture |
US6878162B2 (en) | 2002-08-30 | 2005-04-12 | Edwards Lifesciences Ag | Helical stent having improved flexibility and expandability |
US20040054398A1 (en) * | 2002-09-13 | 2004-03-18 | Cully Edward H. | Stent device with multiple helix construction |
WO2004026183A2 (en) | 2002-09-20 | 2004-04-01 | Nellix, Inc. | Stent-graft with positioning anchor |
US20040093056A1 (en) | 2002-10-26 | 2004-05-13 | Johnson Lianw M. | Medical appliance delivery apparatus and method of use |
US20040087886A1 (en) * | 2002-10-30 | 2004-05-06 | Scimed Life Systems, Inc. | Linearly expandable ureteral stent |
US7959671B2 (en) | 2002-11-05 | 2011-06-14 | Merit Medical Systems, Inc. | Differential covering and coating methods |
US7637942B2 (en) | 2002-11-05 | 2009-12-29 | Merit Medical Systems, Inc. | Coated stent with geometry determinated functionality and method of making the same |
US7527644B2 (en) | 2002-11-05 | 2009-05-05 | Alveolus Inc. | Stent with geometry determinated functionality and method of making the same |
US7875068B2 (en) | 2002-11-05 | 2011-01-25 | Merit Medical Systems, Inc. | Removable biliary stent |
PL377190A1 (en) | 2002-11-07 | 2006-01-23 | Abbott Laboratories | Prosthesis with multiple drugs in discrete unmixed droplets |
WO2004041126A1 (en) | 2002-11-08 | 2004-05-21 | Jacques Seguin | Endoprosthesis for vascular bifurcation |
US7316710B1 (en) * | 2002-12-30 | 2008-01-08 | Advanced Cardiovascular Systems, Inc. | Flexible stent |
US6849084B2 (en) * | 2002-12-31 | 2005-02-01 | Intek Technology L.L.C. | Stent delivery system |
US8080026B2 (en) | 2003-01-21 | 2011-12-20 | Angioscore, Inc. | Apparatus and methods for treating hardened vascular lesions |
US20050021070A1 (en) * | 2003-01-21 | 2005-01-27 | Angioscore, Inc. | Methods and apparatus for manipulating vascular prostheses |
US7686824B2 (en) * | 2003-01-21 | 2010-03-30 | Angioscore, Inc. | Apparatus and methods for treating hardened vascular lesions |
US7179286B2 (en) * | 2003-02-21 | 2007-02-20 | Boston Scientific Scimed, Inc. | Stent with stepped connectors |
ATE492246T1 (en) | 2003-03-19 | 2011-01-15 | Advanced Bio Prosthetic Surfac | ENDOLUMINAL STENT WITH CENTER CONNECTING LINKS |
US7637934B2 (en) | 2003-03-31 | 2009-12-29 | Merit Medical Systems, Inc. | Medical appliance optical delivery and deployment apparatus and method |
US7604660B2 (en) | 2003-05-01 | 2009-10-20 | Merit Medical Systems, Inc. | Bifurcated medical appliance delivery apparatus and method |
US7625398B2 (en) | 2003-05-06 | 2009-12-01 | Abbott Laboratories | Endoprosthesis having foot extensions |
US8048146B2 (en) | 2003-05-06 | 2011-11-01 | Abbott Laboratories | Endoprosthesis having foot extensions |
US7625401B2 (en) | 2003-05-06 | 2009-12-01 | Abbott Laboratories | Endoprosthesis having foot extensions |
US7112216B2 (en) * | 2003-05-28 | 2006-09-26 | Boston Scientific Scimed, Inc. | Stent with tapered flexibility |
US6916336B2 (en) * | 2003-06-09 | 2005-07-12 | Avantec Vascular Corporation | Vascular prosthesis |
US7131993B2 (en) * | 2003-06-25 | 2006-11-07 | Boston Scientific Scimed, Inc. | Varying circumferential spanned connectors in a stent |
DE10328882B4 (en) * | 2003-06-26 | 2010-06-02 | Admedes Schuessler Gmbh | Use of a flexible shaft as a hose-like insertion device |
DE10335649A1 (en) | 2003-07-30 | 2005-02-24 | Jotec Gmbh | Braid stent for implantation in a blood vessel |
US7959665B2 (en) * | 2003-07-31 | 2011-06-14 | Abbott Cardiovascular Systems Inc. | Intravascular stent with inverted end rings |
US20080033570A1 (en) * | 2003-08-01 | 2008-02-07 | Blitz Benjamin T | Prostatic stent placement device |
DE10342757A1 (en) * | 2003-09-16 | 2005-04-07 | Campus Gmbh & Co. Kg | Stent with terminal anchoring elements |
US20050149168A1 (en) * | 2003-12-30 | 2005-07-07 | Daniel Gregorich | Stent to be deployed on a bend |
US8454676B1 (en) | 2004-01-20 | 2013-06-04 | Advanced Cardiovascular Systems, Inc. | Transition matching stent |
JP4447356B2 (en) * | 2004-03-19 | 2010-04-07 | パイオニア株式会社 | Speaker device |
US8431145B2 (en) | 2004-03-19 | 2013-04-30 | Abbott Laboratories | Multiple drug delivery from a balloon and a prosthesis |
US20070027523A1 (en) * | 2004-03-19 | 2007-02-01 | Toner John L | Method of treating vascular disease at a bifurcated vessel using coated balloon |
US20100030183A1 (en) | 2004-03-19 | 2010-02-04 | Toner John L | Method of treating vascular disease at a bifurcated vessel using a coated balloon |
EP2301619B1 (en) | 2004-03-19 | 2017-05-10 | Abbott Laboratories | Multiple drug delivery from a balloon and a prosthesis |
US7686825B2 (en) | 2004-03-25 | 2010-03-30 | Hauser David L | Vascular filter device |
DE102004022044B4 (en) * | 2004-05-03 | 2008-12-18 | Qualimed Innovative Medizinprodukte Gmbh | stent |
US20060122686A1 (en) * | 2004-05-10 | 2006-06-08 | Ran Gilad | Stent and method of manufacturing same |
US20060122692A1 (en) * | 2004-05-10 | 2006-06-08 | Ran Gilad | Stent valve and method of using same |
US20060122693A1 (en) * | 2004-05-10 | 2006-06-08 | Youssef Biadillah | Stent valve and method of manufacturing same |
US8048145B2 (en) | 2004-07-22 | 2011-11-01 | Endologix, Inc. | Graft systems having filling structures supported by scaffolds and methods for their use |
US20060060266A1 (en) * | 2004-09-01 | 2006-03-23 | Pst, Llc | Stent and method for manufacturing the stent |
US7780721B2 (en) * | 2004-09-01 | 2010-08-24 | C. R. Bard, Inc. | Stent and method for manufacturing the stent |
GB0419954D0 (en) | 2004-09-08 | 2004-10-13 | Advotek Medical Devices Ltd | System for directing therapy |
US7927346B2 (en) * | 2004-09-10 | 2011-04-19 | Stryker Corporation | Diversion device to increase cerebral blood flow |
WO2006034436A2 (en) | 2004-09-21 | 2006-03-30 | Stout Medical Group, L.P. | Expandable support device and method of use |
US7887579B2 (en) | 2004-09-29 | 2011-02-15 | Merit Medical Systems, Inc. | Active stent |
JP4203476B2 (en) * | 2005-01-24 | 2009-01-07 | シャープ株式会社 | Portable information device |
FR2881946B1 (en) * | 2005-02-17 | 2008-01-04 | Jacques Seguin | DEVICE FOR THE TREATMENT OF BODILY CONDUIT AT BIFURCATION LEVEL |
JP5271697B2 (en) * | 2005-03-23 | 2013-08-21 | アボット ラボラトリーズ | Delivery of highly lipophilic drugs through medical devices |
WO2006108010A2 (en) | 2005-04-04 | 2006-10-12 | Burpee Materials Technology, Llc | Flexible stent |
DE102005016103B4 (en) * | 2005-04-08 | 2014-10-09 | Merit Medical Systems, Inc. | Duodenumstent |
US7947207B2 (en) | 2005-04-12 | 2011-05-24 | Abbott Cardiovascular Systems Inc. | Method for retaining a vascular stent on a catheter |
US7763198B2 (en) | 2005-04-12 | 2010-07-27 | Abbott Cardiovascular Systems Inc. | Method for retaining a vascular stent on a catheter |
US8628565B2 (en) * | 2005-04-13 | 2014-01-14 | Abbott Cardiovascular Systems Inc. | Intravascular stent |
DE102005019649A1 (en) * | 2005-04-26 | 2006-11-02 | Alveolus Inc. | Flexible stent for positioning in lumen of esophagus comprises tube and stabilization members defined circumferentially about tube, where each member extends inwardly in tube to define inner diameter that is less than inner diameter of tube |
JP5112295B2 (en) * | 2005-04-27 | 2013-01-09 | スタウト メディカル グループ,エル.ピー. | Expandable support and method of use |
US20060253193A1 (en) * | 2005-05-03 | 2006-11-09 | Lichtenstein Samuel V | Mechanical means for controlling blood pressure |
US10076641B2 (en) | 2005-05-11 | 2018-09-18 | The Spectranetics Corporation | Methods and systems for delivering substances into luminal walls |
US7731654B2 (en) | 2005-05-13 | 2010-06-08 | Merit Medical Systems, Inc. | Delivery device with viewing window and associated method |
WO2007008600A2 (en) | 2005-07-07 | 2007-01-18 | Nellix, Inc. | Systems and methods for endovascular aneurysm treatment |
EP1903949A2 (en) | 2005-07-14 | 2008-04-02 | Stout Medical Group, L.P. | Expandable support device and method of use |
US20070050011A1 (en) * | 2005-08-26 | 2007-03-01 | Medlogics Device Corporation | Lumen-supporting stents and methods for creating lumen-supporting stents with various open/closed designs |
US8518100B2 (en) * | 2005-12-19 | 2013-08-27 | Advanced Cardiovascular Systems, Inc. | Drug eluting stent for the treatment of dialysis graft stenoses |
US20070173924A1 (en) * | 2006-01-23 | 2007-07-26 | Daniel Gelbart | Axially-elongating stent and method of deployment |
US20070191926A1 (en) * | 2006-02-14 | 2007-08-16 | Advanced Cardiovascular Systems, Inc. | Stent pattern for high stent retention |
EP1983931B1 (en) * | 2006-02-14 | 2017-01-04 | Angiomed GmbH & Co. Medizintechnik KG | Highly flexible stent and method of manufacture |
US7678440B1 (en) * | 2006-03-01 | 2010-03-16 | Mcknight Geoffrey P | Deformable variable-stiffness cellular structures |
US8475074B1 (en) | 2006-03-01 | 2013-07-02 | Hrl Laboratories, Llc | Variable stiffness joint mechanism |
WO2007131002A2 (en) | 2006-05-01 | 2007-11-15 | Stout Medical Group, L.P. | Expandable support device and method of use |
US20070276444A1 (en) * | 2006-05-24 | 2007-11-29 | Daniel Gelbart | Self-powered leadless pacemaker |
US20070276465A1 (en) * | 2006-05-25 | 2007-11-29 | Rosaire Mongrain | Stent |
EP2020956A2 (en) | 2006-05-26 | 2009-02-11 | Nanyang Technological University | Implantable article, method of forming same and method for reducing thrombogenicity |
US9259336B2 (en) * | 2006-06-06 | 2016-02-16 | Cook Medical Technologies Llc | Stent with a crush-resistant zone |
US20070287879A1 (en) * | 2006-06-13 | 2007-12-13 | Daniel Gelbart | Mechanical means for controlling blood pressure |
CA2936752A1 (en) | 2006-06-22 | 2007-12-27 | Ams Research Corporation | Adjustable tension incontinence sling assemblies |
US8029558B2 (en) | 2006-07-07 | 2011-10-04 | Abbott Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US10004584B2 (en) | 2006-07-10 | 2018-06-26 | First Quality Hygienic, Inc. | Resilient intravaginal device |
US8613698B2 (en) | 2006-07-10 | 2013-12-24 | Mcneil-Ppc, Inc. | Resilient device |
US10219884B2 (en) | 2006-07-10 | 2019-03-05 | First Quality Hygienic, Inc. | Resilient device |
US8047980B2 (en) | 2006-07-10 | 2011-11-01 | Mcneil-Ppc, Inc. | Method of treating urinary incontinence |
WO2008008794A2 (en) | 2006-07-10 | 2008-01-17 | Mc Neil-Ppc, Inc. | Resilient device |
US8252041B2 (en) | 2006-08-23 | 2012-08-28 | Abbott Laboratories | Stent designs for use in peripheral vessels |
US7988720B2 (en) * | 2006-09-12 | 2011-08-02 | Boston Scientific Scimed, Inc. | Longitudinally flexible expandable stent |
WO2008060360A2 (en) * | 2006-09-28 | 2008-05-22 | Surmodics, Inc. | Implantable medical device with apertures for delivery of bioactive agents |
US8778009B2 (en) | 2006-10-06 | 2014-07-15 | Abbott Cardiovascular Systems Inc. | Intravascular stent |
US9387100B2 (en) | 2007-01-08 | 2016-07-12 | Cardinal Health Switzerland GmbH | Intraluminal medical device having variable axial flexibility about the circumference of the device |
FR2911063B1 (en) | 2007-01-09 | 2009-03-20 | Stentys S A S Soc Par Actions | RUPTIBLE BRIDGE STRUCTURE FOR STENT, AND STENT INCLUDING SUCH BRIDGE STRUCTURES. |
US8523931B2 (en) | 2007-01-12 | 2013-09-03 | Endologix, Inc. | Dual concentric guidewire and methods of bifurcated graft deployment |
EP2120785B1 (en) * | 2007-02-12 | 2021-12-01 | C.R. Bard, Inc. | Highly flexible stent and method of manufacture |
US8333799B2 (en) | 2007-02-12 | 2012-12-18 | C. R. Bard, Inc. | Highly flexible stent and method of manufacture |
AT504975B1 (en) * | 2007-02-19 | 2013-12-15 | Arc Austrian Res Centers Gmbh | GRID PART OF METAL AND METHOD FOR PRODUCING A GRID PART |
US8623070B2 (en) | 2007-03-08 | 2014-01-07 | Thomas O. Bales | Tapered helical stent and method for manufacturing the stent |
US8974514B2 (en) | 2007-03-13 | 2015-03-10 | Abbott Cardiovascular Systems Inc. | Intravascular stent with integrated link and ring strut |
DE102007019058A1 (en) * | 2007-04-23 | 2008-10-30 | Stengel, Max, Dr.Dr. | Vascular implant for the treatment of an aneurysm |
US20080269746A1 (en) | 2007-04-24 | 2008-10-30 | Osteolign, Inc. | Conformable intramedullary implant with nestable components |
US8128679B2 (en) | 2007-05-23 | 2012-03-06 | Abbott Laboratories Vascular Enterprises Limited | Flexible stent with torque-absorbing connectors |
US8016874B2 (en) | 2007-05-23 | 2011-09-13 | Abbott Laboratories Vascular Enterprises Limited | Flexible stent with elevated scaffolding properties |
US7867273B2 (en) * | 2007-06-27 | 2011-01-11 | Abbott Laboratories | Endoprostheses for peripheral arteries and other body vessels |
US9144508B2 (en) * | 2007-07-19 | 2015-09-29 | Back Bay Medical Inc. | Radially expandable stent |
US8663318B2 (en) * | 2007-07-23 | 2014-03-04 | Hocor Cardiovascular Technologies Llc | Method and apparatus for percutaneous aortic valve replacement |
US8663319B2 (en) * | 2007-07-23 | 2014-03-04 | Hocor Cardiovascular Technologies Llc | Methods and apparatus for percutaneous aortic valve replacement |
US7988723B2 (en) | 2007-08-02 | 2011-08-02 | Flexible Stenting Solutions, Inc. | Flexible stent |
US8226701B2 (en) | 2007-09-26 | 2012-07-24 | Trivascular, Inc. | Stent and delivery system for deployment thereof |
US8066755B2 (en) | 2007-09-26 | 2011-11-29 | Trivascular, Inc. | System and method of pivoted stent deployment |
US8663309B2 (en) | 2007-09-26 | 2014-03-04 | Trivascular, Inc. | Asymmetric stent apparatus and method |
AU2008308474B2 (en) | 2007-10-04 | 2014-07-24 | Trivascular, Inc. | Modular vascular graft for low profile percutaneous delivery |
US20090105687A1 (en) * | 2007-10-05 | 2009-04-23 | Angioscore, Inc. | Scoring catheter with drug delivery membrane |
US9198687B2 (en) | 2007-10-17 | 2015-12-01 | Covidien Lp | Acute stroke revascularization/recanalization systems processes and products thereby |
US10123803B2 (en) | 2007-10-17 | 2018-11-13 | Covidien Lp | Methods of managing neurovascular obstructions |
US9220522B2 (en) | 2007-10-17 | 2015-12-29 | Covidien Lp | Embolus removal systems with baskets |
US8066757B2 (en) | 2007-10-17 | 2011-11-29 | Mindframe, Inc. | Blood flow restoration and thrombus management methods |
US8926680B2 (en) | 2007-11-12 | 2015-01-06 | Covidien Lp | Aneurysm neck bridging processes with revascularization systems methods and products thereby |
US11337714B2 (en) | 2007-10-17 | 2022-05-24 | Covidien Lp | Restoring blood flow and clot removal during acute ischemic stroke |
US8088140B2 (en) | 2008-05-19 | 2012-01-03 | Mindframe, Inc. | Blood flow restorative and embolus removal methods |
US8585713B2 (en) | 2007-10-17 | 2013-11-19 | Covidien Lp | Expandable tip assembly for thrombus management |
US8545514B2 (en) | 2008-04-11 | 2013-10-01 | Covidien Lp | Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby |
US8328861B2 (en) | 2007-11-16 | 2012-12-11 | Trivascular, Inc. | Delivery system and method for bifurcated graft |
US8083789B2 (en) | 2007-11-16 | 2011-12-27 | Trivascular, Inc. | Securement assembly and method for expandable endovascular device |
US8337544B2 (en) | 2007-12-20 | 2012-12-25 | Abbott Laboratories Vascular Enterprises Limited | Endoprosthesis having flexible connectors |
US20090163998A1 (en) * | 2007-12-20 | 2009-06-25 | Abbott Laboratories Vascular Enterprises Limited | Endoprosthesis having rings linked by foot extensions |
US8920488B2 (en) | 2007-12-20 | 2014-12-30 | Abbott Laboratories Vascular Enterprises Limited | Endoprosthesis having a stable architecture |
US7850726B2 (en) | 2007-12-20 | 2010-12-14 | Abbott Laboratories Vascular Enterprises Limited | Endoprosthesis having struts linked by foot extensions |
US8470021B2 (en) * | 2007-12-28 | 2013-06-25 | Cook Medical Technologies Llc | Radially expandable stent |
KR100988816B1 (en) * | 2008-01-29 | 2010-10-20 | 신경민 | A stent |
US8940003B2 (en) | 2008-02-22 | 2015-01-27 | Covidien Lp | Methods and apparatus for flow restoration |
US8221494B2 (en) | 2008-02-22 | 2012-07-17 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
US9039748B2 (en) * | 2008-04-07 | 2015-05-26 | Abbott Cardiovascular Systems Inc. | Method of securing a medical device onto a balloon and system thereof |
US8236040B2 (en) | 2008-04-11 | 2012-08-07 | Endologix, Inc. | Bifurcated graft deployment systems and methods |
CN101902988A (en) | 2008-04-25 | 2010-12-01 | 耐利克斯股份有限公司 | The induction system of stent graft |
US10716573B2 (en) | 2008-05-01 | 2020-07-21 | Aneuclose | Janjua aneurysm net with a resilient neck-bridging portion for occluding a cerebral aneurysm |
US10028747B2 (en) | 2008-05-01 | 2018-07-24 | Aneuclose Llc | Coils with a series of proximally-and-distally-connected loops for occluding a cerebral aneurysm |
US20090287143A1 (en) * | 2008-05-15 | 2009-11-19 | Casey Line | Small Gauge Mechanical Tissue Cutter/Aspirator Probe For Glaucoma Surgery |
US20090287233A1 (en) * | 2008-05-15 | 2009-11-19 | Huculak John C | Small Gauge Mechanical Tissue Cutter/Aspirator Probe For Glaucoma Surgery |
WO2009149294A1 (en) | 2008-06-04 | 2009-12-10 | Nellix, Inc. | Sealing apparatus and methods of use |
US10022164B2 (en) | 2008-06-11 | 2018-07-17 | Eventions, Llc | Orthopedic fastener device |
US11207199B2 (en) | 2008-06-11 | 2021-12-28 | Q3 Medical Devices Limited | Stent with anti-migration devices |
US20100256731A1 (en) | 2009-04-02 | 2010-10-07 | Mangiardi Eric K | Stent |
US10117760B2 (en) | 2009-04-02 | 2018-11-06 | Q3 Medical Devices Limited | Stent |
US10245165B2 (en) | 2009-04-02 | 2019-04-02 | Q3 Medical Devices Limited | Stent |
US20100042202A1 (en) * | 2008-08-13 | 2010-02-18 | Kamal Ramzipoor | Composite stent having multi-axial flexibility |
US10898620B2 (en) * | 2008-06-20 | 2021-01-26 | Razmodics Llc | Composite stent having multi-axial flexibility and method of manufacture thereof |
US8206635B2 (en) | 2008-06-20 | 2012-06-26 | Amaranth Medical Pte. | Stent fabrication via tubular casting processes |
US8206636B2 (en) | 2008-06-20 | 2012-06-26 | Amaranth Medical Pte. | Stent fabrication via tubular casting processes |
JP5134729B2 (en) | 2008-07-01 | 2013-01-30 | エンドロジックス、インク | Catheter system |
US9039756B2 (en) | 2008-07-21 | 2015-05-26 | Jenesis Surgical, Llc | Repositionable endoluminal support structure and its applications |
EP3878408A1 (en) | 2008-07-21 | 2021-09-15 | Jenesis Surgical, LLC | Endoluminal support apparatus |
US9402707B2 (en) | 2008-07-22 | 2016-08-02 | Neuravi Limited | Clot capture systems and associated methods |
US9005274B2 (en) | 2008-08-04 | 2015-04-14 | Stentys Sas | Method for treating a body lumen |
US9149376B2 (en) * | 2008-10-06 | 2015-10-06 | Cordis Corporation | Reconstrainable stent delivery system |
US9125720B2 (en) | 2008-10-13 | 2015-09-08 | Alcon Research, Ltd. | Capsularhexis device with flexible heating element |
US20100211176A1 (en) | 2008-11-12 | 2010-08-19 | Stout Medical Group, L.P. | Fixation device and method |
WO2010056895A1 (en) | 2008-11-12 | 2010-05-20 | Stout Medical Group, L.P. | Fixation device and method |
US20100137974A1 (en) * | 2008-12-02 | 2010-06-03 | Boston Scientific Scimed, Inc. | Stent with Graduated Stiffness |
US8137344B2 (en) | 2008-12-10 | 2012-03-20 | Alcon Research, Ltd. | Flexible, automated capsulorhexis device |
US8157797B2 (en) | 2009-01-12 | 2012-04-17 | Alcon Research, Ltd. | Capsularhexis device with retractable bipolar electrodes |
AU2010207983B2 (en) * | 2009-02-02 | 2015-05-14 | Cardinal Health 529, Llc | Flexible stent design |
US20100274276A1 (en) * | 2009-04-22 | 2010-10-28 | Ricky Chow | Aneurysm treatment system, device and method |
BRPI1013573A2 (en) * | 2009-04-24 | 2016-04-12 | Flexible Stenting Solutions Inc | flexible devices |
US20110054587A1 (en) | 2009-04-28 | 2011-03-03 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
US10772717B2 (en) | 2009-05-01 | 2020-09-15 | Endologix, Inc. | Percutaneous method and device to treat dissections |
JP2012525239A (en) | 2009-05-01 | 2012-10-22 | エンドロジックス、インク | Transcutaneous methods and devices for treating dissociation (priority information and incorporation by reference) |
US8814854B2 (en) | 2009-06-03 | 2014-08-26 | Alcon Research, Ltd. | Capsulotomy repair device and method for capsulotomy repair |
US20100312252A1 (en) * | 2009-06-03 | 2010-12-09 | Guangyao Jia | Capsularhexis device with flexible heating element having an angled transitional neck |
CA2961767C (en) | 2009-06-23 | 2018-08-14 | Endospan Ltd. | Vascular prostheses for treating aneurysms |
US20110004294A1 (en) * | 2009-07-02 | 2011-01-06 | Abbott Laboratories | Fatigue-resistant stent |
US8529596B2 (en) | 2009-07-08 | 2013-09-10 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
US8357178B2 (en) * | 2009-07-08 | 2013-01-22 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
US8795317B2 (en) * | 2009-07-08 | 2014-08-05 | Concentric Medical, Inc. | Embolic obstruction retrieval devices and methods |
US8795345B2 (en) * | 2009-07-08 | 2014-08-05 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
US8357179B2 (en) * | 2009-07-08 | 2013-01-22 | Concentric Medical, Inc. | Vascular and bodily duct treatment devices and methods |
US8979892B2 (en) | 2009-07-09 | 2015-03-17 | Endospan Ltd. | Apparatus for closure of a lumen and methods of using the same |
US8491646B2 (en) | 2009-07-15 | 2013-07-23 | Endologix, Inc. | Stent graft |
JP5588511B2 (en) | 2009-07-27 | 2014-09-10 | エンドロジックス、インク | Stent graft |
DE202009010388U1 (en) | 2009-07-31 | 2010-12-09 | Düring, Klaus, Dr. | Fixation device for fixing an apnea stent in the airway |
US8114149B2 (en) * | 2009-10-20 | 2012-02-14 | Svelte Medical Systems, Inc. | Hybrid stent with helical connectors |
US9358140B1 (en) | 2009-11-18 | 2016-06-07 | Aneuclose Llc | Stent with outer member to embolize an aneurysm |
CN105361976B (en) | 2009-11-30 | 2017-08-18 | 恩多斯潘有限公司 | For implantation into the multi-part overlay film frame system in the blood vessel with multiple branches |
EP2509535B1 (en) | 2009-12-08 | 2016-12-07 | Endospan Ltd | Endovascular stent-graft system with fenestrated and crossing stent-grafts |
US20110144577A1 (en) * | 2009-12-11 | 2011-06-16 | John Stankus | Hydrophilic coatings with tunable composition for drug coated balloon |
US8951595B2 (en) * | 2009-12-11 | 2015-02-10 | Abbott Cardiovascular Systems Inc. | Coatings with tunable molecular architecture for drug-coated balloon |
US8480620B2 (en) * | 2009-12-11 | 2013-07-09 | Abbott Cardiovascular Systems Inc. | Coatings with tunable solubility profile for drug-coated balloon |
GB2476479B (en) | 2009-12-22 | 2012-06-20 | Cook Medical Technologies Llc | Implantable device |
US20110276078A1 (en) | 2009-12-30 | 2011-11-10 | Nellix, Inc. | Filling structure for a graft system and methods of use |
CA2789304C (en) | 2010-02-08 | 2018-01-02 | Endospan Ltd. | Thermal energy application for prevention and management of endoleaks in stent-grafts |
US20110208289A1 (en) * | 2010-02-25 | 2011-08-25 | Endospan Ltd. | Flexible Stent-Grafts |
US9199066B2 (en) | 2010-03-12 | 2015-12-01 | Quattro Vascular Pte Ltd. | Device and method for compartmental vessel treatment |
WO2011119536A1 (en) | 2010-03-22 | 2011-09-29 | Abbott Cardiovascular Systems Inc. | Stent delivery system having a fibrous matrix covering with improved stent retention |
EP2380604A1 (en) | 2010-04-19 | 2011-10-26 | InnoRa Gmbh | Improved coating formulations for scoring or cutting balloon catheters |
US9241755B2 (en) | 2010-05-11 | 2016-01-26 | Alcon Research, Ltd. | Capsule polishing device and method for capsule polishing |
US8535380B2 (en) | 2010-05-13 | 2013-09-17 | Stout Medical Group, L.P. | Fixation device and method |
US8389041B2 (en) | 2010-06-17 | 2013-03-05 | Abbott Cardiovascular Systems, Inc. | Systems and methods for rotating and coating an implantable device |
BR112013002720A2 (en) | 2010-08-02 | 2016-05-31 | Cordis Corp | flexible helical stent having intermediate non-helical region |
CA2807119C (en) | 2010-08-02 | 2017-08-01 | Cordis Corporation | Flexible helical stent having different helical regions |
BR112013002637B1 (en) | 2010-08-02 | 2020-12-29 | CARDINAL HEALTH SWITZERLAND 515 GmbH | flexible stent having protruding joints |
CA2807022C (en) | 2010-08-02 | 2016-09-06 | Cordis Corporation | Flexible helical stent having intermediate structural feature |
EP2608747A4 (en) | 2010-08-24 | 2015-02-11 | Flexmedex Llc | Support device and method for use |
US8632559B2 (en) | 2010-09-21 | 2014-01-21 | Angioscore, Inc. | Method and system for treating valve stenosis |
US9149388B2 (en) | 2010-09-29 | 2015-10-06 | Alcon Research, Ltd. | Attenuated RF power for automated capsulorhexis |
WO2012052982A1 (en) | 2010-10-22 | 2012-04-26 | Neuravi Limited | Clot engagement and removal system |
WO2012061526A2 (en) | 2010-11-02 | 2012-05-10 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
US9149286B1 (en) | 2010-11-12 | 2015-10-06 | Flexmedex, LLC | Guidance tool and method for use |
US9393100B2 (en) | 2010-11-17 | 2016-07-19 | Endologix, Inc. | Devices and methods to treat vascular dissections |
CA3035048C (en) | 2010-12-23 | 2021-05-04 | Mark Deem | System for mitral valve repair and replacement |
US8512395B2 (en) | 2010-12-30 | 2013-08-20 | Boston Scientific Scimed, Inc. | Stent with horseshoe shaped bridges |
US8801768B2 (en) | 2011-01-21 | 2014-08-12 | Endologix, Inc. | Graft systems having semi-permeable filling structures and methods for their use |
US9526638B2 (en) | 2011-02-03 | 2016-12-27 | Endospan Ltd. | Implantable medical devices constructed of shape memory material |
BR112013019925A2 (en) * | 2011-02-04 | 2016-12-13 | Concentric Medical Inc | devices and methods of treatment of body and vascular duct |
US9855046B2 (en) | 2011-02-17 | 2018-01-02 | Endospan Ltd. | Vascular bands and delivery systems therefor |
EP2680915B1 (en) | 2011-03-01 | 2021-12-22 | Endologix LLC | Catheter system |
WO2012117395A1 (en) | 2011-03-02 | 2012-09-07 | Endospan Ltd. | Reduced-strain extra- vascular ring for treating aortic aneurysm |
JP2014511247A (en) | 2011-03-03 | 2014-05-15 | ボストン サイエンティフィック サイムド,インコーポレイテッド | Low strain high strength stent |
WO2012119037A1 (en) | 2011-03-03 | 2012-09-07 | Boston Scientific Scimed, Inc. | Stent with reduced profile |
US11259824B2 (en) | 2011-03-09 | 2022-03-01 | Neuravi Limited | Clot retrieval device for removing occlusive clot from a blood vessel |
EP3871617A1 (en) | 2011-03-09 | 2021-09-01 | Neuravi Limited | A clot retrieval device for removing occlusive clot from a blood vessel |
US12076037B2 (en) | 2011-03-09 | 2024-09-03 | Neuravi Limited | Systems and methods to restore perfusion to a vessel |
WO2014139845A1 (en) * | 2013-03-14 | 2014-09-18 | Neuravi Limited | A clot retrieval device for removing occlusive clot from a blood vessel |
EP2685934A4 (en) * | 2011-03-17 | 2015-01-07 | Pq Bypass Inc | Differential dilation stent and method of use |
US9782277B2 (en) * | 2011-04-04 | 2017-10-10 | Allium Medical Solutions Ltd. | System and method for manufacturing a stent |
JP5976777B2 (en) | 2011-04-06 | 2016-08-24 | エンドーロジックス インコーポレイテッド | Methods and systems for the treatment of intravascular aneurysms |
US9101507B2 (en) | 2011-05-18 | 2015-08-11 | Ralph F. Caselnova | Apparatus and method for proximal-to-distal endoluminal stent deployment |
WO2012158881A1 (en) * | 2011-05-19 | 2012-11-22 | Tyco Healthcare Group Lp | Vascular remodeling device |
US10092426B2 (en) * | 2011-05-31 | 2018-10-09 | Cook Medical Technologies Llc | Non-foreshortening, axial tension constrainable stent |
US10285798B2 (en) | 2011-06-03 | 2019-05-14 | Merit Medical Systems, Inc. | Esophageal stent |
US8574287B2 (en) | 2011-06-14 | 2013-11-05 | Endospan Ltd. | Stents incorporating a plurality of strain-distribution locations |
EP2579811B1 (en) | 2011-06-21 | 2016-03-16 | Endospan Ltd | Endovascular system with circumferentially-overlapping stent-grafts |
EP2723273B1 (en) | 2011-06-21 | 2021-10-27 | Twelve, Inc. | Prosthetic heart valve devices |
EP2729095B1 (en) | 2011-07-07 | 2016-10-26 | Endospan Ltd. | Stent fixation with reduced plastic deformation |
EP2747682A4 (en) | 2011-08-23 | 2015-01-21 | Flexmedex Llc | Tissue removal device and method |
US9839510B2 (en) | 2011-08-28 | 2017-12-12 | Endospan Ltd. | Stent-grafts with post-deployment variable radial displacement |
US9763780B2 (en) | 2011-10-19 | 2017-09-19 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
CN103974674B (en) | 2011-10-19 | 2016-11-09 | 托尔福公司 | Artificial heart valve film device, artificial mitral valve and related system and method |
US11202704B2 (en) | 2011-10-19 | 2021-12-21 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
AU2012325809B2 (en) | 2011-10-19 | 2016-01-21 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US9039757B2 (en) | 2011-10-19 | 2015-05-26 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9655722B2 (en) | 2011-10-19 | 2017-05-23 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
WO2013065040A1 (en) | 2011-10-30 | 2013-05-10 | Endospan Ltd. | Triple-collar stent-graft |
US8986368B2 (en) * | 2011-10-31 | 2015-03-24 | Merit Medical Systems, Inc. | Esophageal stent with valve |
US9597204B2 (en) | 2011-12-04 | 2017-03-21 | Endospan Ltd. | Branched stent-graft system |
JP2015505497A (en) | 2012-02-01 | 2015-02-23 | クアトロ・ヴァスキュラー・ピーティーイー・リミテッド | Device for dilation with vascular compartments |
US9216033B2 (en) | 2012-02-08 | 2015-12-22 | Quattro Vascular Pte Ltd. | System and method for treating biological vessels |
WO2013119735A1 (en) | 2012-02-08 | 2013-08-15 | Tanhum Feld | Constraining structure with non-linear axial struts |
US9579198B2 (en) | 2012-03-01 | 2017-02-28 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
US8992595B2 (en) | 2012-04-04 | 2015-03-31 | Trivascular, Inc. | Durable stent graft with tapered struts and stable delivery methods and devices |
US9498363B2 (en) | 2012-04-06 | 2016-11-22 | Trivascular, Inc. | Delivery catheter for endovascular device |
US9770350B2 (en) | 2012-05-15 | 2017-09-26 | Endospan Ltd. | Stent-graft with fixation elements that are radially confined for delivery |
KR102313261B1 (en) | 2012-06-05 | 2021-10-14 | 메리트 메디컬 시스템즈, 인크. | Esophageal stent |
US8834556B2 (en) * | 2012-08-13 | 2014-09-16 | Abbott Cardiovascular Systems Inc. | Segmented scaffold designs |
US9254203B2 (en) | 2012-08-20 | 2016-02-09 | Boston Scientific Scimed, Inc. | Delivery device |
US9463177B2 (en) | 2012-09-10 | 2016-10-11 | The Regents Of The University Of California | Compounds and methods for modulating vascular injury |
US8784434B2 (en) | 2012-11-20 | 2014-07-22 | Inceptus Medical, Inc. | Methods and apparatus for treating embolism |
DE102012112733A1 (en) * | 2012-12-20 | 2014-06-26 | Acandis Gmbh & Co. Kg | Medical system e.g. bifurcation stent system installed in blood vessel, has a mesh structure having a partly hollow truncated cone-shaped transition section, in which the distal end portions are formed in hollow cylindrical shape |
CA2891225C (en) | 2013-03-05 | 2021-03-02 | Merit Medical Systems, Inc. | Reinforced valve |
USD707818S1 (en) | 2013-03-05 | 2014-06-24 | Alcon Research Ltd. | Capsulorhexis handpiece |
WO2014141232A1 (en) | 2013-03-11 | 2014-09-18 | Endospan Ltd. | Multi-component stent-graft system for aortic dissections |
EP4085870A1 (en) | 2013-03-13 | 2022-11-09 | Jenesis Surgical, LLC | Articulated commissure valve stents |
US9642635B2 (en) | 2013-03-13 | 2017-05-09 | Neuravi Limited | Clot removal device |
WO2014159093A1 (en) | 2013-03-14 | 2014-10-02 | Endologix, Inc. | Method for forming materials in situ within a medical device |
EP2967611B1 (en) | 2013-03-14 | 2019-01-16 | Neuravi Limited | Devices for removal of acute blockages from blood vessels |
US9433429B2 (en) | 2013-03-14 | 2016-09-06 | Neuravi Limited | Clot retrieval devices |
US9320592B2 (en) | 2013-03-15 | 2016-04-26 | Covidien Lp | Coated medical devices and methods of making and using same |
US9545301B2 (en) | 2013-03-15 | 2017-01-17 | Covidien Lp | Coated medical devices and methods of making and using same |
WO2014150130A1 (en) | 2013-03-15 | 2014-09-25 | Merit Medical Systems, Inc. | Esophageal stent |
US9907684B2 (en) | 2013-05-08 | 2018-03-06 | Aneuclose Llc | Method of radially-asymmetric stent expansion |
CA2910948C (en) | 2013-05-20 | 2020-12-29 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
US9320628B2 (en) * | 2013-09-09 | 2016-04-26 | Boston Scientific Scimed, Inc. | Endoprosthesis devices including biostable and bioabsorable regions |
US10117668B2 (en) | 2013-10-08 | 2018-11-06 | The Spectranetics Corporation | Balloon catheter with non-deployable stent having improved stability |
CN203829102U (en) * | 2013-10-09 | 2014-09-17 | 唐利龙 | Support for preformed guide-wire channel |
US10238406B2 (en) | 2013-10-21 | 2019-03-26 | Inari Medical, Inc. | Methods and apparatus for treating embolism |
CR20160240A (en) | 2013-11-11 | 2016-08-04 | Edwards Lifesciences Cardiaq Llc | SYSTEMS AND METHODS FOR THE MANUFACTURE OF THE FRAME OF A CANNULA |
US10603197B2 (en) | 2013-11-19 | 2020-03-31 | Endospan Ltd. | Stent system with radial-expansion locking |
US9668890B2 (en) | 2013-11-22 | 2017-06-06 | Covidien Lp | Anti-thrombogenic medical devices and methods |
CN103720529B (en) * | 2013-12-30 | 2017-02-08 | 先健科技(深圳)有限公司 | Arcus aortae intraoperative stent and method for manufacturing stent |
USD737438S1 (en) | 2014-03-04 | 2015-08-25 | Novartis Ag | Capsulorhexis handpiece |
US10285720B2 (en) | 2014-03-11 | 2019-05-14 | Neuravi Limited | Clot retrieval system for removing occlusive clot from a blood vessel |
US10792056B2 (en) | 2014-06-13 | 2020-10-06 | Neuravi Limited | Devices and methods for removal of acute blockages from blood vessels |
JP6595513B2 (en) | 2014-06-13 | 2019-10-23 | ニューラヴィ・リミテッド | Device for removal of acute occlusions from blood vessels |
US9545263B2 (en) | 2014-06-19 | 2017-01-17 | Limflow Gmbh | Devices and methods for treating lower extremity vasculature |
US10265086B2 (en) | 2014-06-30 | 2019-04-23 | Neuravi Limited | System for removing a clot from a blood vessel |
WO2016079649A1 (en) | 2014-11-17 | 2016-05-26 | Quattro Vascular Pte Ltd. | Balloon catheter system |
US11253278B2 (en) | 2014-11-26 | 2022-02-22 | Neuravi Limited | Clot retrieval system for removing occlusive clot from a blood vessel |
ES2920773T3 (en) | 2014-11-26 | 2022-08-09 | Neuravi Ltd | A clot removal device to remove an occlusive clot from a blood vessel |
US10617435B2 (en) | 2014-11-26 | 2020-04-14 | Neuravi Limited | Clot retrieval device for removing clot from a blood vessel |
US9789228B2 (en) | 2014-12-11 | 2017-10-17 | Covidien Lp | Antimicrobial coatings for medical devices and processes for preparing such coatings |
WO2016098113A1 (en) | 2014-12-18 | 2016-06-23 | Endospan Ltd. | Endovascular stent-graft with fatigue-resistant lateral tube |
EP4417169A2 (en) | 2015-06-30 | 2024-08-21 | Endologix LLC | Locking assembly for coupling guidewire to delivery system |
WO2017015296A1 (en) * | 2015-07-19 | 2017-01-26 | Sanford Health | Bridging stent graft with combination balloon expandable and self-expandable stents and methods for use |
JP7111610B2 (en) | 2015-08-21 | 2022-08-02 | トゥエルヴ, インコーポレイテッド | Implantable Heart Valve Devices, Mitral Valve Repair Devices, and Related Systems and Methods |
US10441447B2 (en) | 2015-09-11 | 2019-10-15 | Cook Medical Technologies Llc | Variable radial stiffness and variable diameter intraluminal device |
FI3364891T3 (en) | 2015-10-23 | 2023-09-25 | Inari Medical Inc | Device for intravascular treatment of vascular occlusion |
CN110742709B (en) * | 2016-03-18 | 2022-06-28 | 复旦大学附属中山医院 | Aorta bare stent and aorta interlayer stent |
EP3435930B1 (en) | 2016-03-31 | 2022-11-30 | Vesper Medical, Inc. | Intravascular implants |
WO2017189276A1 (en) | 2016-04-29 | 2017-11-02 | Medtronic Vascular Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
BR112019003113A2 (en) | 2016-08-17 | 2019-05-21 | Neuravi Limited | clot removal system to remove occlusive clot from a blood vessel |
AU2017324233A1 (en) | 2016-09-06 | 2019-04-04 | Neuravi Limited | A clot retrieval device for removing occlusive clot from a blood vessel |
EP4400076A3 (en) | 2016-10-24 | 2024-10-02 | Inari Medical, Inc. | Devices and methods for treating vascular occlusion |
US10258488B2 (en) * | 2016-11-14 | 2019-04-16 | Covidien Lp | Stent |
US10449069B2 (en) | 2016-11-14 | 2019-10-22 | Covidien Lp | Stent |
US10905572B2 (en) * | 2016-11-14 | 2021-02-02 | Covidien Lp | Stent |
WO2018189593A2 (en) | 2017-04-10 | 2018-10-18 | Limflow Gmbh | Devices and methods for treating lower extremity vasculature |
US10575950B2 (en) | 2017-04-18 | 2020-03-03 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
US10433961B2 (en) | 2017-04-18 | 2019-10-08 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
US10702378B2 (en) | 2017-04-18 | 2020-07-07 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
US10792151B2 (en) | 2017-05-11 | 2020-10-06 | Twelve, Inc. | Delivery systems for delivering prosthetic heart valve devices and associated methods |
US10646338B2 (en) | 2017-06-02 | 2020-05-12 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
US10709591B2 (en) | 2017-06-06 | 2020-07-14 | Twelve, Inc. | Crimping device and method for loading stents and prosthetic heart valves |
US10786352B2 (en) | 2017-07-06 | 2020-09-29 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10729541B2 (en) | 2017-07-06 | 2020-08-04 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10238513B2 (en) | 2017-07-19 | 2019-03-26 | Abbott Cardiovascular Systems Inc. | Intravascular stent |
US10849769B2 (en) | 2017-08-23 | 2020-12-01 | Vesper Medical, Inc. | Non-foreshortening stent |
WO2019050765A1 (en) | 2017-09-06 | 2019-03-14 | Inari Medical, Inc. | Hemostasis valves and methods of use |
US11628076B2 (en) | 2017-09-08 | 2023-04-18 | Vesper Medical, Inc. | Hybrid stent |
US10271977B2 (en) | 2017-09-08 | 2019-04-30 | Vesper Medical, Inc. | Hybrid stent |
US11357650B2 (en) | 2019-02-28 | 2022-06-14 | Vesper Medical, Inc. | Hybrid stent |
US11154314B2 (en) | 2018-01-26 | 2021-10-26 | Inari Medical, Inc. | Single insertion delivery system for treating embolism and associated systems and methods |
US11364134B2 (en) | 2018-02-15 | 2022-06-21 | Vesper Medical, Inc. | Tapering stent |
US10500078B2 (en) | 2018-03-09 | 2019-12-10 | Vesper Medical, Inc. | Implantable stent |
CA3114285A1 (en) | 2018-08-13 | 2020-02-20 | Inari Medical, Inc. | System for treating embolism and associated devices and methods |
US10842498B2 (en) | 2018-09-13 | 2020-11-24 | Neuravi Limited | Systems and methods of restoring perfusion to a vessel |
US11406416B2 (en) | 2018-10-02 | 2022-08-09 | Neuravi Limited | Joint assembly for vasculature obstruction capture device |
CN112955207A (en) | 2018-10-09 | 2021-06-11 | 林弗洛公司 | Apparatus and method for catheter alignment |
JP7483409B2 (en) | 2019-03-04 | 2024-05-15 | ニューラヴィ・リミテッド | Actuated Clot Retrieval Catheter |
AU2020242051A1 (en) | 2019-03-20 | 2021-11-04 | inQB8 Medical Technologies, LLC | Aortic dissection implant |
US11517457B2 (en) | 2019-07-03 | 2022-12-06 | Abbott Cardiovascular Systems Inc. | Intravascular stent |
EP4427686A2 (en) | 2019-09-11 | 2024-09-11 | Neuravi Limited | Expandable mouth catheter |
WO2021076954A1 (en) | 2019-10-16 | 2021-04-22 | Inari Medical, Inc. | Systems, devices, and methods for treating vascular occlusions |
US11712231B2 (en) | 2019-10-29 | 2023-08-01 | Neuravi Limited | Proximal locking assembly design for dual stent mechanical thrombectomy device |
WO2021087294A1 (en) | 2019-11-01 | 2021-05-06 | Limflow Gmbh | Devices and methods for increasing blood perfusion to a distal extremity |
US11779364B2 (en) | 2019-11-27 | 2023-10-10 | Neuravi Limited | Actuated expandable mouth thrombectomy catheter |
US11839725B2 (en) | 2019-11-27 | 2023-12-12 | Neuravi Limited | Clot retrieval device with outer sheath and inner catheter |
US11517340B2 (en) | 2019-12-03 | 2022-12-06 | Neuravi Limited | Stentriever devices for removing an occlusive clot from a vessel and methods thereof |
US11633198B2 (en) | 2020-03-05 | 2023-04-25 | Neuravi Limited | Catheter proximal joint |
US11944327B2 (en) | 2020-03-05 | 2024-04-02 | Neuravi Limited | Expandable mouth aspirating clot retrieval catheter |
US11883043B2 (en) | 2020-03-31 | 2024-01-30 | DePuy Synthes Products, Inc. | Catheter funnel extension |
US11759217B2 (en) | 2020-04-07 | 2023-09-19 | Neuravi Limited | Catheter tubular support |
US11871946B2 (en) | 2020-04-17 | 2024-01-16 | Neuravi Limited | Clot retrieval device for removing clot from a blood vessel |
US11730501B2 (en) | 2020-04-17 | 2023-08-22 | Neuravi Limited | Floating clot retrieval device for removing clots from a blood vessel |
US11717308B2 (en) | 2020-04-17 | 2023-08-08 | Neuravi Limited | Clot retrieval device for removing heterogeneous clots from a blood vessel |
US11737771B2 (en) | 2020-06-18 | 2023-08-29 | Neuravi Limited | Dual channel thrombectomy device |
US11937836B2 (en) | 2020-06-22 | 2024-03-26 | Neuravi Limited | Clot retrieval system with expandable clot engaging framework |
US11439418B2 (en) | 2020-06-23 | 2022-09-13 | Neuravi Limited | Clot retrieval device for removing clot from a blood vessel |
US11395669B2 (en) | 2020-06-23 | 2022-07-26 | Neuravi Limited | Clot retrieval device with flexible collapsible frame |
US11864781B2 (en) | 2020-09-23 | 2024-01-09 | Neuravi Limited | Rotating frame thrombectomy device |
US11937837B2 (en) | 2020-12-29 | 2024-03-26 | Neuravi Limited | Fibrin rich / soft clot mechanical thrombectomy device |
US12029442B2 (en) | 2021-01-14 | 2024-07-09 | Neuravi Limited | Systems and methods for a dual elongated member clot retrieval apparatus |
US11872354B2 (en) | 2021-02-24 | 2024-01-16 | Neuravi Limited | Flexible catheter shaft frame with seam |
US12064130B2 (en) | 2021-03-18 | 2024-08-20 | Neuravi Limited | Vascular obstruction retrieval device having sliding cages pinch mechanism |
US11974764B2 (en) | 2021-06-04 | 2024-05-07 | Neuravi Limited | Self-orienting rotating stentriever pinching cells |
US11937839B2 (en) | 2021-09-28 | 2024-03-26 | Neuravi Limited | Catheter with electrically actuated expandable mouth |
US12011186B2 (en) | 2021-10-28 | 2024-06-18 | Neuravi Limited | Bevel tip expandable mouth catheter with reinforcing ring |
Family Cites Families (108)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5384A (en) * | 1847-12-04 | Improvement in decomposing potash-feldspar for obtaining certain salts | ||
US3868956A (en) * | 1972-06-05 | 1975-03-04 | Ralph J Alfidi | Vessel implantable appliance and method of implanting it |
US4372600A (en) * | 1980-04-07 | 1983-02-08 | The Mead Corporation | Bottle carrier |
US4390599A (en) * | 1980-07-31 | 1983-06-28 | Raychem Corporation | Enhanced recovery memory metal device |
US4441215A (en) * | 1980-11-17 | 1984-04-10 | Kaster Robert L | Vascular graft |
SE445884B (en) * | 1982-04-30 | 1986-07-28 | Medinvent Sa | DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION |
US4512338A (en) * | 1983-01-25 | 1985-04-23 | Balko Alexander B | Process for restoring patency to body vessels |
US4580568A (en) * | 1984-10-01 | 1986-04-08 | Cook, Incorporated | Percutaneous endovascular stent and method for insertion thereof |
ES8705239A1 (en) * | 1984-12-05 | 1987-05-01 | Medinvent Sa | A device for implantation and a method of implantation in a vessel using such device. |
US5102417A (en) * | 1985-11-07 | 1992-04-07 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4733665C2 (en) * | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4681110A (en) * | 1985-12-02 | 1987-07-21 | Wiktor Dominik M | Catheter arrangement having a blood vessel liner, and method of using it |
US4649922A (en) * | 1986-01-23 | 1987-03-17 | Wiktor Donimik M | Catheter arrangement having a variable diameter tip and spring prosthesis |
US4878906A (en) * | 1986-03-25 | 1989-11-07 | Servetus Partnership | Endoprosthesis for repairing a damaged vessel |
US4795458A (en) * | 1987-07-02 | 1989-01-03 | Regan Barrie F | Stent for use following balloon angioplasty |
US4886062A (en) * | 1987-10-19 | 1989-12-12 | Medtronic, Inc. | Intravascular radially expandable stent and method of implant |
US4830003A (en) * | 1988-06-17 | 1989-05-16 | Wolff Rodney G | Compressive stent and delivery system |
US5180868A (en) * | 1988-06-20 | 1993-01-19 | Battelle Memorial Institute | Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline |
US4913141A (en) * | 1988-10-25 | 1990-04-03 | Cordis Corporation | Apparatus and method for placement of a stent within a subject vessel |
CH678393A5 (en) * | 1989-01-26 | 1991-09-13 | Ulrich Prof Dr Med Sigwart | |
US5226909A (en) * | 1989-09-12 | 1993-07-13 | Devices For Vascular Intervention, Inc. | Atherectomy device having helical blade and blade guide |
CA2026604A1 (en) * | 1989-10-02 | 1991-04-03 | Rodney G. Wolff | Articulated stent |
US5064435A (en) * | 1990-06-28 | 1991-11-12 | Schneider (Usa) Inc. | Self-expanding prosthesis having stable axial length |
DE9117152U1 (en) * | 1990-10-09 | 1996-07-11 | Cook Inc., Bloomington, Ind. | Stent |
DE69116130T2 (en) * | 1990-10-18 | 1996-05-15 | Ho Young Song | SELF-EXPANDING, ENDOVASCULAR DILATATOR |
US5356423A (en) | 1991-01-04 | 1994-10-18 | American Medical Systems, Inc. | Resectable self-expanding stent |
JP2760666B2 (en) * | 1991-03-15 | 1998-06-04 | 株式会社東芝 | Method and apparatus for controlling PWM converter |
US5147370A (en) * | 1991-06-12 | 1992-09-15 | Mcnamara Thomas O | Nitinol stent for hollow body conduits |
US5234457A (en) * | 1991-10-09 | 1993-08-10 | Boston Scientific Corporation | Impregnated stent |
US5354309A (en) * | 1991-10-11 | 1994-10-11 | Angiomed Ag | Apparatus for widening a stenosis in a body cavity |
CA2079417C (en) | 1991-10-28 | 2003-01-07 | Lilip Lau | Expandable stents and method of making same |
US5372600A (en) | 1991-10-31 | 1994-12-13 | Instent Inc. | Stent delivery systems |
US5282827A (en) * | 1991-11-08 | 1994-02-01 | Kensey Nash Corporation | Hemostatic puncture closure system and method of use |
FR2683449A1 (en) * | 1991-11-08 | 1993-05-14 | Cardon Alain | ENDOPROTHESIS FOR TRANSLUMINAL IMPLANTATION. |
US5192297A (en) * | 1991-12-31 | 1993-03-09 | Medtronic, Inc. | Apparatus and method for placement and implantation of a stent |
US5507767A (en) * | 1992-01-15 | 1996-04-16 | Cook Incorporated | Spiral stent |
US5405377A (en) * | 1992-02-21 | 1995-04-11 | Endotech Ltd. | Intraluminal stent |
FR2688401B1 (en) * | 1992-03-12 | 1998-02-27 | Thierry Richard | EXPANDABLE STENT FOR HUMAN OR ANIMAL TUBULAR MEMBER, AND IMPLEMENTATION TOOL. |
US5201757A (en) * | 1992-04-03 | 1993-04-13 | Schneider (Usa) Inc. | Medial region deployment of radially self-expanding stents |
US5540712A (en) | 1992-05-01 | 1996-07-30 | Nitinol Medical Technologies, Inc. | Stent and method and apparatus for forming and delivering the same |
US5354308A (en) * | 1992-05-01 | 1994-10-11 | Beth Israel Hospital Association | Metal wire stent |
US5507771A (en) * | 1992-06-15 | 1996-04-16 | Cook Incorporated | Stent assembly |
US5562725A (en) * | 1992-09-14 | 1996-10-08 | Meadox Medicals Inc. | Radially self-expanding implantable intraluminal device |
DE4303181A1 (en) * | 1993-02-04 | 1994-08-11 | Angiomed Ag | Implantable catheter |
WO1994021196A2 (en) * | 1993-03-18 | 1994-09-29 | C.R. Bard, Inc. | Endovascular stents |
US5441515A (en) * | 1993-04-23 | 1995-08-15 | Advanced Cardiovascular Systems, Inc. | Ratcheting stent |
US5414664A (en) | 1993-05-28 | 1995-05-09 | Macronix International Co., Ltd. | Flash EPROM with block erase flags for over-erase protection |
US5913897A (en) * | 1993-09-16 | 1999-06-22 | Cordis Corporation | Endoprosthesis having multiple bridging junctions and procedure |
GB2281865B (en) * | 1993-09-16 | 1997-07-30 | Cordis Corp | Endoprosthesis having multiple laser welded junctions,method and procedure |
KR970004845Y1 (en) * | 1993-09-27 | 1997-05-21 | 주식회사 수호메디테크 | Stent for expanding a lumen |
US5445646A (en) * | 1993-10-22 | 1995-08-29 | Scimed Lifesystems, Inc. | Single layer hydraulic sheath stent delivery apparatus and method |
US5609627A (en) * | 1994-02-09 | 1997-03-11 | Boston Scientific Technology, Inc. | Method for delivering a bifurcated endoluminal prosthesis |
ATE188863T1 (en) | 1994-02-25 | 2000-02-15 | Fischell Robert | STENT |
US5643312A (en) | 1994-02-25 | 1997-07-01 | Fischell Robert | Stent having a multiplicity of closed circular structures |
US5843120A (en) | 1994-03-17 | 1998-12-01 | Medinol Ltd. | Flexible-expandable stent |
US5449373A (en) * | 1994-03-17 | 1995-09-12 | Medinol Ltd. | Articulated stent |
US6461381B2 (en) | 1994-03-17 | 2002-10-08 | Medinol, Ltd. | Flexible expandable stent |
US5733303A (en) | 1994-03-17 | 1998-03-31 | Medinol Ltd. | Flexible expandable stent |
US5415664A (en) * | 1994-03-30 | 1995-05-16 | Corvita Corporation | Method and apparatus for introducing a stent or a stent-graft |
CA2502504A1 (en) * | 1994-05-19 | 1995-11-30 | Scimed Life Systems, Inc. | Improved tissue supporting devices |
ATE176587T1 (en) * | 1994-05-19 | 1999-02-15 | Scimed Life Systems Inc | IMPROVED TISSUE SUPPORT DEVICES |
US5476508A (en) * | 1994-05-26 | 1995-12-19 | Tfx Medical | Stent with mutually interlocking filaments |
DE4418336A1 (en) | 1994-05-26 | 1995-11-30 | Angiomed Ag | Stent for widening and holding open receptacles |
US5817152A (en) * | 1994-10-19 | 1998-10-06 | Birdsall; Matthew | Connected stent apparatus |
US5575818A (en) * | 1995-02-14 | 1996-11-19 | Corvita Corporation | Endovascular stent with locking ring |
CA2186029C (en) * | 1995-03-01 | 2003-04-08 | Brian J. Brown | Improved longitudinally flexible expandable stent |
DE19508805C2 (en) * | 1995-03-06 | 2000-03-30 | Lutz Freitag | Stent for placement in a body tube with a flexible support structure made of at least two wires with different shape memory functions |
US5591197A (en) * | 1995-03-14 | 1997-01-07 | Advanced Cardiovascular Systems, Inc. | Expandable stent forming projecting barbs and method for deploying |
EP0740928B1 (en) * | 1995-04-12 | 2004-07-07 | Corvita Europe | Self-expanding stent for introducing a medical device in a body cavity and manufacturing process |
AU711431B2 (en) | 1995-04-26 | 1999-10-14 | Medinol Ltd | Articulated stent |
US6010530A (en) * | 1995-06-07 | 2000-01-04 | Boston Scientific Technology, Inc. | Self-expanding endoluminal prosthesis |
US5562697A (en) * | 1995-09-18 | 1996-10-08 | William Cook, Europe A/S | Self-expanding stent assembly and methods for the manufacture thereof |
WO1998022159A2 (en) * | 1996-11-07 | 1998-05-28 | Medtronic Instent Inc. | Variable flexibility stent |
US5776161A (en) * | 1995-10-16 | 1998-07-07 | Instent, Inc. | Medical stents, apparatus and method for making same |
US5591195A (en) * | 1995-10-30 | 1997-01-07 | Taheri; Syde | Apparatus and method for engrafting a blood vessel |
US5607442A (en) * | 1995-11-13 | 1997-03-04 | Isostent, Inc. | Stent with improved radiopacity and appearance characteristics |
US5810868A (en) | 1995-12-07 | 1998-09-22 | Arterial Vascular Engineering, Inc. | Stent for improved transluminal deployment |
WO1997025937A1 (en) * | 1996-01-18 | 1997-07-24 | Jang G David | Programmable variably flexible modular stents |
US5895406A (en) * | 1996-01-26 | 1999-04-20 | Cordis Corporation | Axially flexible stent |
US5843117A (en) * | 1996-02-14 | 1998-12-01 | Inflow Dynamics Inc. | Implantable vascular and endoluminal stents and process of fabricating the same |
CA2192520A1 (en) * | 1996-03-05 | 1997-09-05 | Ian M. Penn | Expandable stent and method for delivery of same |
US5868780A (en) * | 1996-03-22 | 1999-02-09 | Lashinski; Robert D. | Stents for supporting lumens in living tissue |
NZ331269A (en) * | 1996-04-10 | 2000-01-28 | Advanced Cardiovascular System | Expandable stent, its structural strength varying along its length |
US6152957A (en) * | 1996-04-26 | 2000-11-28 | Jang; G. David | Intravascular stent |
US5922021A (en) * | 1996-04-26 | 1999-07-13 | Jang; G. David | Intravascular stent |
DE19617823A1 (en) | 1996-05-03 | 1997-11-13 | Sitomed Medizintechnik Vertrie | Vascular prosthesis for coronary use |
US5843244A (en) * | 1996-06-13 | 1998-12-01 | Nitinol Devices And Components | Shape memory alloy treatment |
US5807404A (en) * | 1996-09-19 | 1998-09-15 | Medinol Ltd. | Stent with variable features to optimize support and method of making such stent |
US5824045A (en) * | 1996-10-21 | 1998-10-20 | Inflow Dynamics Inc. | Vascular and endoluminal stents |
US5868781A (en) | 1996-10-22 | 1999-02-09 | Scimed Life Systems, Inc. | Locking stent |
US6551350B1 (en) * | 1996-12-23 | 2003-04-22 | Gore Enterprise Holdings, Inc. | Kink resistant bifurcated prosthesis |
US5955600A (en) * | 1996-12-27 | 1999-09-21 | Isis Pharmaceuticals, Inc. | Method for the synthesis of nucleotide or oligonucleotide phosphoramidites |
FR2758253B1 (en) * | 1997-01-10 | 1999-04-02 | Nycomed Lab Sa | IMPLANTABLE DEVICE FOR THE TREATMENT OF A BODY DUCT |
US5925061A (en) * | 1997-01-13 | 1999-07-20 | Gore Enterprise Holdings, Inc. | Low profile vascular stent |
US5827321A (en) * | 1997-02-07 | 1998-10-27 | Cornerstone Devices, Inc. | Non-Foreshortening intraluminal prosthesis |
US5810872A (en) | 1997-03-14 | 1998-09-22 | Kanesaka; Nozomu | Flexible stent |
US5853419A (en) * | 1997-03-17 | 1998-12-29 | Surface Genesis, Inc. | Stent |
US5741327A (en) * | 1997-05-06 | 1998-04-21 | Global Therapeutics, Inc. | Surgical stent featuring radiopaque markers |
US5836966A (en) | 1997-05-22 | 1998-11-17 | Scimed Life Systems, Inc. | Variable expansion force stent |
US5913895A (en) | 1997-06-02 | 1999-06-22 | Isostent, Inc. | Intravascular stent with enhanced rigidity strut members |
US5855600A (en) | 1997-08-01 | 1999-01-05 | Inflow Dynamics Inc. | Flexible implantable stent with composite design |
US5824059A (en) | 1997-08-05 | 1998-10-20 | Wijay; Bandula | Flexible stent |
US6042606A (en) | 1997-09-29 | 2000-03-28 | Cook Incorporated | Radially expandable non-axially contracting surgical stent |
US5938697A (en) | 1998-03-04 | 1999-08-17 | Scimed Life Systems, Inc. | Stent having variable properties |
US6273911B1 (en) * | 1999-04-22 | 2001-08-14 | Advanced Cardiovascular Systems, Inc. | Variable strength stent |
US6245101B1 (en) | 1999-05-03 | 2001-06-12 | William J. Drasler | Intravascular hinge stent |
US20010047200A1 (en) * | 1999-10-13 | 2001-11-29 | Raymond Sun | Non-foreshortening intraluminal prosthesis |
US6398806B1 (en) | 2000-12-26 | 2002-06-04 | Scimed Life Systems, Inc. | Monolayer modification to gold coated stents to reduce adsorption of protein |
-
1997
- 1997-02-07 US US08/797,814 patent/US5827321A/en not_active Expired - Lifetime
-
1998
- 1998-02-04 CA CA002280131A patent/CA2280131C/en not_active Expired - Fee Related
- 1998-02-04 EP EP98903920A patent/EP1028772A4/en not_active Withdrawn
- 1998-02-04 JP JP53487598A patent/JP2001511044A/en active Pending
- 1998-02-04 WO PCT/US1998/002175 patent/WO1998034668A1/en active IP Right Grant
- 1998-10-26 US US09/179,021 patent/US6106548A/en not_active Expired - Lifetime
-
2000
- 2000-08-17 US US09/641,121 patent/US6475236B1/en not_active Expired - Lifetime
-
2002
- 2002-10-30 US US10/283,957 patent/US6764506B2/en not_active Expired - Lifetime
-
2007
- 2007-03-21 US US11/726,660 patent/US8882823B2/en not_active Expired - Fee Related
- 2007-03-21 US US11/726,430 patent/US20070213806A1/en not_active Abandoned
- 2007-03-21 US US11/726,537 patent/US20070213807A1/en not_active Abandoned
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005537072A (en) * | 2002-09-02 | 2005-12-08 | アンソン メディカル リミテッド | Flexible stent graft |
JP4774211B2 (en) * | 2002-09-02 | 2011-09-14 | アンソン メディカル リミテッド | Flexible stent graft |
US8998972B2 (en) | 2002-09-02 | 2015-04-07 | Anson Medical, Ltd. | Flexible stent-graft |
JP4825665B2 (en) * | 2003-02-26 | 2011-11-30 | ボストン サイエンティフィック リミテッド | Lumen device with enhanced mounting characteristics |
JP2017023779A (en) * | 2009-07-08 | 2017-02-02 | コンセントリック メディカル,インク. | Device and method for treating vessel and internal duct |
JP2017018330A (en) * | 2015-07-10 | 2017-01-26 | 有限会社Ptmc研究所 | Stent graft |
US10695163B2 (en) | 2015-07-10 | 2020-06-30 | Ptmc Institute | Stent-graft |
Also Published As
Publication number | Publication date |
---|---|
CA2280131A1 (en) | 1998-08-13 |
US20070213807A1 (en) | 2007-09-13 |
EP1028772A4 (en) | 2006-07-05 |
US20070213806A1 (en) | 2007-09-13 |
US5827321A (en) | 1998-10-27 |
WO1998034668A1 (en) | 1998-08-13 |
US6106548A (en) | 2000-08-22 |
US6764506B2 (en) | 2004-07-20 |
EP1028772A1 (en) | 2000-08-23 |
US8882823B2 (en) | 2014-11-11 |
US6475236B1 (en) | 2002-11-05 |
US20070213808A1 (en) | 2007-09-13 |
US20030055490A1 (en) | 2003-03-20 |
CA2280131C (en) | 2007-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001511044A (en) | Intraluminal prosthesis that does not shorten | |
US5817152A (en) | Connected stent apparatus | |
US8721705B2 (en) | Non-foreshortening intraluminal prosthesis | |
US6695877B2 (en) | Bifurcated stent | |
US20040267350A1 (en) | Non-foreshortening intraluminal prosthesis | |
US20030105517A1 (en) | Non-foreshortening stent | |
JPH10328216A (en) | Stent for treating bifurcate vessel and stent graft | |
JP2008508033A (en) | Stent with end member having lateral extension | |
JP2008516668A (en) | Small tube stent design | |
US20030074051A1 (en) | Flexible stent | |
US20200046525A1 (en) | Flange stent device and modular stent system thereof | |
AU741551B2 (en) | Non-foreshortening intraluminal prosthesis | |
AU757660B2 (en) | Non-foreshortening intraluminal prosthesis | |
CA2538001C (en) | Non-foreshortening intraluminal prosthesis | |
EP0786971A1 (en) | Connected stent apparatus | |
AU2006203363A1 (en) | Non-foreshortening intraluminal prosthesis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061024 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20070123 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20070312 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070612 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20070911 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20071022 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071116 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080318 |