JP2001511044A - Intraluminal prosthesis that does not shorten - Google Patents

Intraluminal prosthesis that does not shorten

Info

Publication number
JP2001511044A
JP2001511044A JP53487598A JP53487598A JP2001511044A JP 2001511044 A JP2001511044 A JP 2001511044A JP 53487598 A JP53487598 A JP 53487598A JP 53487598 A JP53487598 A JP 53487598A JP 2001511044 A JP2001511044 A JP 2001511044A
Authority
JP
Japan
Prior art keywords
stent
annular
sections
coupling
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP53487598A
Other languages
Japanese (ja)
Inventor
ルービン,ゲイリー・エス
ホワイト,ジオフリー・ハミルトン
イエール,スリラム・エス
レッドモンド,ラッセル・ジェイ
ヴィダル,クロード・エイ
Original Assignee
エンドシステムズ・エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25171870&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2001511044(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by エンドシステムズ・エルエルシー filed Critical エンドシステムズ・エルエルシー
Publication of JP2001511044A publication Critical patent/JP2001511044A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91525Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • A61F2002/91541Adjacent bands are arranged out of phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • A61F2210/0019Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at only one temperature whilst inside or touching the human body, e.g. constrained in a non-operative shape during surgery, another temperature only occurring before the operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0029Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in bending or flexure capacity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

(57)【要約】 管腔内プロテーゼ(40)には複数の環状部材が設けられている。各環状部材は、相互に結合されて環形状を形成する複数の支柱(42,44)と頂点(46)とを含んでいる。各環状部材は、圧縮状態と拡張状態とを有し、且つ圧縮状態よりも拡張状態においてより短い長手方向寸法を有している。複数の結合部材(48)が、相互に隣接する環状部材の頂点同士を結合している。結合部材は、拡張状態における各環状部材のより短い長手方向寸法を補償するように機能する複数の交互の区分を有している。ステントは、その長さ及び/又は外周に沿って変化する可撓性を付与しても良く且つ異なる直径を有する区分を含んでも良い。 (57) [Summary] The endoluminal prosthesis (40) is provided with a plurality of annular members. Each annular member includes a plurality of struts (42, 44) and a vertex (46) that are joined together to form a ring shape. Each annular member has a compressed state and an expanded state, and has a shorter longitudinal dimension in the expanded state than in the compressed state. A plurality of connecting members (48) connect the vertices of the annular members adjacent to each other. The coupling member has a plurality of alternating sections that function to compensate for the shorter longitudinal dimension of each annular member in the expanded state. A stent may provide flexibility that varies along its length and / or circumference and may include sections having different diameters.

Description

【発明の詳細な説明】 短縮しない管腔内プロテーゼ 発明の背景 1.発明の分野 本発明は、哺乳類の脈管内に移植するための脈管内プロテーゼ(人工器官)に 関し、より特定すると、哺乳類の脈管の内腔の内側の特定の場所に圧縮状態で供 給され、次いで、脈管を支持するために拡張状態へと展開される管腔内ステント に関する。管腔内ステントには、圧縮状態及び拡張状態の両方においてほぼ同じ 長さでプロテーゼを維持する構造的形状が備えられている。管腔内ステントには また、その長さに沿って変化する剛性又は可撓性が備えられている。 2.従来技術の説明 ステントのような管腔内プロテーゼは、一般的には、動脈瘤の治療において、 脈管のためのライナーとして又は狭窄した若しくは閉塞した脈管の潰れを防止す るための機械的な支持を提供するために使用される。これらのステントは、典型 的には、圧縮状態で脈管又はその他の管状構造の内腔の内側の特定の場所へ給送 され、次いで、その場所で展開されて拡張状態とされる。このステントは、拡張 状態では、圧縮状態のステントの直径の数倍の直径を有する。これらのステント はまた、血管内のアテローム性狭窄症の治療、特に経皮的管横断冠動脈血管形成 (PTCA)術の後においても、しばしば、手術の結果を良くするため及び狭窄 と同様の症状を減らすために展開される。 人体の脈管の内腔内の所望の位置にステントを位置決めすることは、ステント の性能及び治療方法の成功に影響を及ぼす重要なファクタである。ステントが展 開される内腔内の領域は、通常は、医師がアクセスし難いので、ステントの展開 された直径及び長さは、医師が正確な位置に正しい大きさのステントを正確に位 置決めする前に知ることができることが本質的である。例えば、人体の血管の疾 患した又は損傷を受けた区分又は領域の直径及び長さは、種々の人体の血管、疾 患の状態及び展開の目的によって変わるので、正しい直径及び長さを有するステ ントが展開のためのこの領域に給送されることが重要である。 人体の血管の内腔のこの領域を注意深く大きさを合わすことは、この領域にお ける人体の血管の正しい寸法は知っているがステントの直径及び長さについては 確実に知ってはいない多くの医師に対して困難な挑戦を提起するかもしれない。 これは、多くのステントが、圧縮状態から拡張状態へと拡張するときに受ける短 縮作用による。 この短縮作用は、図1A,1B,2A及び2Bに示されており、これらの図は 、頂点26によって結合されたV字形状の支柱又は脚部22及び24によって作 られたメッシュ形状のパターンを有するステントの部分20を示している。これ らのV字形状の支柱22,24の2つの対がステントのこの部分20に示されて いる。これらの支柱22及び24の各々は長さhを有している。図1Bは、一杯 に圧縮された状態のステントの部分20を図示しており、ここでは、長さhは、 長手方向すなわち水平方向成分l2を有しており(図2B参照)、図1Aは、一杯 に拡張された状態のステントの同じ部分20を図示しており、ここでは、長さh は、長手方向すなわち水平方向成分l1(図2A参照)を有している。図1A, 1B,2A及び2Bにおいて想像線28及び30によって示されているように、 l1はl2よりも短い。なぜならば、支柱22が水平軸に対してなす角度は、拡張 状態においてより大きく、従って、拡張した部分20の長さが圧縮された部分2 0の長さよりも2dだけ短くなるからである。この短縮は、ステントが圧縮状態 から拡張状態へと拡張されるときに、支柱22及び24の長手方向成分が短くな ることによって生じる。 この短縮作用は、この短縮される長さ2dの正しい寸法を決定することは容易 でないので、厄介なものである。医師は、ステントの材料、処置される血管及び 血管の内腔で正しく展開されたときのステントの予想される直径に基づいてこの 計算をしなければならない。例えば、短縮長さ2dは、同じステントが展開部分 において直径が異なる血管内で展開されるときに変化するであろう。 更に、血管の内腔径、解剖学的構造又は長さに沿った疾患状態の変化を経験す るある種の人体の脈管がある。このような血管において展開されるステントは、 これらの変化に対処し又はこれらの変化に適合することができる必要があるであ ろう。 このような人体の脈管の例として、頸動脈がある。血液は、総頸動脈を介して 心臓から脳へ供給される。これらの動脈は、首に沿った目のすぐ下方及び後方の 位置までたどるときに内腔が約8〜10mmである。この位置で、総頸動脈は、 血液を脳へ供給する内腔6〜8mmの内腔径を有する内頸動脈と、血液を顔及び 頭皮へ供給する内腔径が6〜8mmの外頸動脈とに分かれる。総頸動脈のアテロ ーム性動脈硬化による障害は、総頸動脈が内頸動脈と外頸動脈とに分かれるこの 分岐点のあたりで起こる傾向があり、従って、ステントは、この分岐点において 展開する必要がある場合が多い。 別の例は、総腸骨動脈において約8〜10mmの内腔径を有するが、外腸骨動 脈において約6〜7mmの内腔径に減っている腸骨動脈である。総腸骨動脈は、 全く頻繁に石灰性であり且つ通常はより大きな径方向の強度又は剛性を有するよ り短いステントを必要とするより局部的な狭窄又は閉塞障害を経験する。腸骨組 織のより広汎性のアテローム性動脈硬化による疾患は、通常は、総腸骨動脈と内 腸骨動脈との両方を含み且つ腸骨組織が経験する曲がりくねった角のある部位に おいて展開するのに適した高い可撓性を有するより長いステントを必要とするで あろう。 大腿骨膝窩組織は、同様に、局部的な或いは広い範囲の狭窄障害を経験する。 更に、ステントの可撓性は、股関節又は膝関節のような関節の動きによって影響 される血管の位置において展開される場合に重要である。 腎臓動脈は別の有用な例を提供する。腎臓動脈の入口の最初の1cm程度は、 アテローム又は石灰化によって全く堅く狭くなっている場合が多く且つ比較的真 っ直ぐであり、一方、腎臓動脈の残りの部分は比較的湾曲している。この結果と して、腎臓動脈に移植することを意図したステントは、最初の1.5cm程度が 比較的剛性であり、次いで、より可撓性で且つ従順となるべきである。 従って、一杯に圧縮された状態及び一杯に拡張された状態の両方において並び に一杯に圧縮された状態と一杯に拡張された状態との間の全ての状態で、一貫し た長さを維持することができる管腔内プロテーゼの必要性が依然としてある。ま た、変化する内腔径、種々の解剖学的構造及び種々の疾患状態に対応できるステ ントの必要性がある。 開示の概要 本発明の目的を達成するためには、複数の環状部材を有するステントが提供さ れている。各環状部材は、圧縮状態と拡張状態とを有しており且つ圧縮状態より も拡張状態においてより短い長手方向寸法を有している。複数の結合部材が、隣 接する環状部材同士を結合し、この結合部材は、拡張状態における各環状部材の より短い長手方向寸法を補償するように作動する。 本発明の一つの実施形態においては、各環状部材は、複数の支柱と、環形状を 形成するために結合された頂点と、を含んでいる。これらの結合部材は、隣接す る環状部材の頂点に結合されている。環状部材の複数の支柱は、左側及び右側の 支柱を含んでおり、これらの左側及び右側の支柱の各対は、各頂点において相互 に結合されている。各支柱は、環状部材が圧縮状態よりも拡張状態にあるときに より短い長手方向寸法を有する。 本発明の一つの実施形態においては、少なくとも一つの環状部材が、複数の交 互の支柱及び頂点が相互に結合されて閉塞された環状部材を形成するように閉塞 された形状を有しても良い。更に、複数の交互の支柱及び頂点が少なくとも一つ の場所において結合されないように、少なくとも一つの環状部材が開口した形状 を呈することも可能である。 本発明の好ましい実施形態においては、結合部材は複数の交互の区分を有して いる。一つの実施形態においては、結合部材は、交互の頂部の湾曲した頂点と底 部の頂点とを画成している複数の交互の湾曲区分を有している。別の実施形態に おいては、結合部材は、複数の交互の湾曲した区分と真っ直ぐな区分とを有して いる。別の実施形態においては、結合部材は、複数の交互の且つ角度の付けられ た真っ直ぐな区分を有している。この結合部材は、各環状部材が拡張状態にある ときに、圧縮状態よりもより長い長手方向寸法を有して、拡張状態における環状 部材のより短い長手方向寸法を補償する。 本発明によるステントは更に、隣接する環状部材及び結合部材によって画成さ れた複数の開口を含んでいる。一つの実施形態においては、ステントの種々の区 分の開口が種々の大きさを有することが可能である。 本発明によるステントは更に、複数の区分を更に有し、そのうちの少なくとも 2つは、異なる可撓性度合いを有している。一つの実施形態においては、変化す る可撓性が複数のギャップを形成することによって達成されている。これらのギ ャップは、一つ若しくはそれ以上の結合部材若しくは隣接する環状部材間の結合 部材の部分を省略すること又は支柱の一つ若しくはそれ以上を省略するか又は結 合部材及び支柱を省略することによって形成することができる。もう一つ別の実 施形態においては、変化する可撓性は、種々の支柱区分の開口に種々の大きさを 付与することによって達成される。 本発明によるステントは、更に、ステントが拡張状態にあるときに、種々の直 径を呈する区分を提供しても良い。これらの種々の直径は、ステントに、傾斜し た又は段状の形状を付与することによって達成しても良い。 本発明の好ましい実施形態においては、ステントは、ニチノール(Nitin ol)のような形状記憶合金によって作られているが、ステンレス鋼、タンタル 、チタン、エルジロイ(elgiloy)、金、白金又はその他の金属若しくは合 金又はポリマー又は十分な生体適合性、剛性、可撓性、径方向強度、放射線不透 過性及び耐血栓性を有する複合材を、ステント材料として使用することができる 。 このように、本発明によるステントは、一杯に圧縮された状態及び一杯に拡張 された状態並びに一杯に圧縮された状態と一杯に拡張された状態との間の全ての 状態の両方において、一定の長さを維持する。この結果、本発明によるステント は、正しい大きさ及び展開を容易にし、それによって、機械的な過程を簡素化し 且つそのために必要な時間を出来限り短縮することができる。更に、本発明によ るステントは、その長さ及び/又は外周に沿って変化する可撓性及び剛性を提供 すると共に、ステントの種々の区分に沿って変化する直径を提供し、それによっ て、変化する内腔径、種々の解剖学的構造及び種々の疾患状態を有する体内の脈 管の治療を容易にする。 図面の簡単な説明 図1Aは、拡張状態にある従来技術のステントの一部分の側面図であり、 図1Bは、圧縮状態にある図1Aの一部分の側面図であり、 図2Aは、ステ ントが拡張状態にあるときの図1A及び1Bのステントの支柱の長手方向成分を 図示しており、 図2Bは、ステントが圧縮状態にあるときの図1A及び1Bのステントの支柱 の長手方向成分を図示しており、 図3は、本発明によるステントの斜視図であり、 図4Aは、拡張状態にある図3のステントの一部分の側面図であり、 図4Bは、圧縮状態にある図4Aの一部分の側面図であり、 図5Aは、ステントが拡張状態にあるときの図4A及び4Bのステントの支柱 の長手方向成分と結合部材とを図示しており、 図5Bは、ステントが圧縮状態にあるときの図4A及び4Bのステントの支柱 の長手方向成分と結合部材とを図示しており、 図6Aは、拡張状態にある図3のステントの側面図であり、 図6Bは、圧縮状態にある図6Aのステントの側面図であり、 図7及び8は、本発明による結合部材の別の実施形態を示しており、 図9は、図3のステントの一部分に対する変形例を示す側面図であり、 図10は、図3のステントの一部分に対する別の変形例を示す側面図であり、 図11A〜11Cは、図3のステントに対する変形例を図示している。 好ましい実施形態の詳細な説明 以下の詳細な説明は、本発明を実施する現在のところ考えられる最も良好なモ ードである。この説明は、限定的な意味でなされたものではなく、本発明の実施 形態の一般的な原理を示す目的のためにのみなされたものである。本発明の範囲 は、請求の範囲によって最も良く規定されている。 本発明による管腔内プロテーゼは、ステントであるけれども、本発明の原理は 、ライナー及びフィルタのような他のプロテーゼに適用することもできる。この ステントは、圧縮状態で人体の脈管の内腔内の所望の位置へ給送され、次いで、 拡張状態へと拡張させることによって展開される。ステントは、一杯に圧縮され た状態及び一杯に拡張された状態及びこれら2つの状態間の全ての状態の両方に おいて、ほぼ同じ長さを維持する。ステントには、同ステントが種々の解剖学的 構造及び種々の区分に沿った変化する可撓性又は剛性を設けても良い。このステ ントはまた、同一のステントが、種々の直径を有する人体の脈管内への移植を容 易にするために、ステントの種々の部分に沿って種々の直径を有する形状で提供 さ れても良い。 本発明によるステントは、自己拡張性のステント又はバルーンを膨らませるこ と若しくは拡張部材によって径方向に拡張されることができるステント又はステ ントがその大きさを変化させる熱を付与する高周波の使用によって拡張されるス テントとすることができる。このステントはまた、結合されたステント移植プロ テーゼを形成するために、PTFE、ダクロン若しくはその他の生体適合性材料 からなる被覆によってコーティングしても良い。本発明のステントが拡張され得 る脈管としては、導管、動脈、気管、静脈、尿管及び食道のような天然の体内脈 管に限定されず、移植片のような人工脈管も含まれる。 1.好ましい実施形態 本発明によるステント40が拡張状態で図3〜6に図示されている。図3を参 照すると、ステント40は、管形状を有しており且つ頂点において結合されたほ ぼV字形状の支柱の複数の対であって、V字形状の支柱の各対の頂点に複数の結 合部材を係合することによる複数の対によって作られている。図4A及び4Bは 、ステント40の一部分を更に詳細に図示している。ステント40は、交互の左 側支柱42と右側支柱44との複数の対を有している。左側支柱と右側支柱42 ,44の各対は、頂点46において結合されて、対のためのほぼV字形状を形成 している。左側の支柱42は、各頂点46の左側のものであるとして規定されて おり、右側支柱44は、各頂点46の右側のものとして規定されている。左側の 支柱42と右側支柱44とは、交互になっている。なぜならば、一対のV字形状 の支柱のうちの左側の支柱42もまた隣接するV字形状の対の左側の支柱でもあ り、一対のV字形状の支柱のうちの右側の支柱44もまた隣接するV字形状の支 柱の右側の支柱でもあるからである。このようにして、交互の左側及び右側支柱 42及び44は、環状ステント40の周囲に環状形態で延びて環状部材を形成し ている。各頂点46は、結合部材48によって別の頂点46に結合されている。 従って、ステント40は、それら自体に結合されたV字形状の支柱42,44の 対によって形成され且つ結合部材48によって結合されたそれらの頂点46を有 している管状格子に似ている。図3に示されているように、ステント40の両端 は、両端の末端がこれらの交互の左側及び右側の支柱42,44の頂点46によ って 画成されている、複数の交互の左側及び右側の支柱42,44によって画成され ている。 結合部材48は、複数の又はパターン状の交互の区分を含んでいる形状を有し ている。結合部材48の非限定的な第1の好ましい実施形態が図4A及び4Bに 図示されている。各結合部材48は、頂点46から長手方向延長部52に沿って 長手方向に延び、次いで、湾曲した区分54に沿って頂部の湾曲した頂点56ま で上方に傾斜し、そこから湾曲した区分58に沿って底部の湾曲した頂点60ま で下方に傾斜している。結合部材48は、次いで、湾曲した区分62に沿って頂 部の湾曲した頂点64へと上方に傾斜している。結合部材48は、頂部の湾曲し た頂点64から湾曲した区分66に沿って反対側の頂点46の長手延長部68ま で下方に傾斜している。従って、結合部材48は、交互の頂部及び底部の頂点5 6,60及び64によって画成されている複数の交互の湾曲区分を有している。 結合部材48は、2つの機能を達成するために提供されている。第1に、結合 部材48は、頂点46の対を結合する。第2に、結合部材48は、各支柱42及 び44の長手方向成分が受ける短縮を補償して、ステント40を常にほぼ同じ長 さに維持するように機能する。これは、結合部材48に、圧縮されたときにその 長さを短縮するように交互の区分と結合する自然の付勢及び弾力性を設けること によって達成される。拡張することを許容されたときに、結合部材48は、その 自然のすなわち本来の位置へと戻るように付勢されて、各支柱42及び44の長 手方向成分が経験する短縮を補償するように結合部材48を長くする。 この作用は、図4A,4B,5A及び5Bに示されている。ステント40が圧 縮状態にあるとき、結合部材48は、結合部材48が拡張状態にあるときの長さ L1よりも短い長さL2を有する。結合部材48が圧縮状態にあるとき、交互の波 形曲線は、拡張状態にあるときよりもより高い振幅とより小さい波長とを有する (図4Aと4Bとを比較せよ)。従って、L2とL1との差は、結合部材48の両端 における支柱42,44のl1とl2との差を補償する。図4A及び4Bにおける 線70及び72は、ステント40の関連する部分が如何なる短縮をも経験しない ことを示しており、図6A及び6Bにおける線74及び76は、ステント40全 体がその全ての状態に亘って一定の長さを維持することを示している。 図4A,4B,5A及び5Bにおいては、結合部材48は特定の形状を呈する ものとして説明したが、結合部材48は、本発明の精神及び範囲を逸脱すること なく他の形状を呈することができることは、当業者によって理解されるであろう 。例えば、結合部材48は、これらが、各支柱42及び44の長手方向成分が経 験する短縮を補償するように機能する限り、如何なる湾曲した又は部分的に湾曲 した又はその他の形状で設けることができる。 図7は、結合部材48の非限定的な第2の好ましい実施形態を示しており、こ の実施形態においては、結合部材48aは、交互の湾曲した区分80と真っ直ぐ な区分82とを有している。結合部材48aが圧縮されるとき、その湾曲した区 分80もまた、それが拡張状態にあるときよりもより高い振幅とより短い波長と を有する。図8は、非限定的な第3の好ましい実施形態を示しており、この実施 形態においては、結合部材48bは、相互に角度が付けられた交互の真っ直ぐな 区分84及び86を有している。 ステント40が一杯に拡張された状態にあるとき、同ステントは、このステン トが展開される体内脈管の領域の内径よりも若干大きい外形を有するのが好まし い。これによって、ステント40は、所望の位置にしっかりと係留されることが でき且つステント40が展開位置から離れて侵入するのを防止する。 ステント40は、その長さに沿った種々の部分又は区分に種々の可撓性又は剛 性が付与されて、このような種々の可撓性又は剛性を必要とする体内脈管におけ る展開を容易にする。この種々の可撓性又は剛性は、結合部材48及び支柱42 ,44を省略すること又は一以上の支柱42,44及び/又は結合部材48を結 合しないことによって、ステント40に沿った一以上の位置で”ギャップ”を形 成することによって達成することができる。これらの位置は、ステント40の長 さ及び/又は外周に沿ったどこであっても良い。更に、ステント40の種々の度 合いの可撓性は、これらのギャップのパターンを変えることによって達成するこ とができる。非限定的な例は、図9に示されているようなほぼ螺旋状のパターン の省略された支柱42,44及び/又は結合部材48を提供するものである。省 略された支柱42,44及び結合部材48は、図9において符号47(支柱42 ,44のためのもの)及び符号49(結合部材48のためのもの)によって想像 線 (すなわち破線)で示されている。例えば、省略された支柱47は、図9の頂部 左隅から図9の底部右隅までステント40の長さに沿った比較的螺旋状のパター ンを呈し且つステント40の外周に沿って延びることができる。同様に、省略さ れた結合部材49は、図9の底部左隅から図9の頂部右隅までステント40の長 さに沿って比較的螺旋状のパターンを呈し且つステント40の外周に沿って延び ることができる。 他の非限定的な代替例は、ステント40の一端又は両端からステント40の中 心に向かってこれらのギャップ47,49の数を増すか又はステント40の中心 からステント40の一端又は両端に向かってこれらのギャップ47,49の数を 増すためのものである。ある結合部材48の一部分のみ及びこれらの結合部材4 8のうちの全部でないいくつかを省略することも可能である。多数のギャップ4 7,49を有するステント40の一部分は、より大きい可撓性又はより低い剛性 を有する。 支柱47を省略した結果として、交互の支柱42及び44によって作られてい る環状部材のいくつかが閉じているか又は完全に結合された環状部材を構成し、 一方、これらの環状部材のいくつかが開口した環状部材であることが可能である 。 種々の可撓性又は剛性は、支柱42及び44と結合部材48との間に画成され た、開口した領域又は開口78(例えば、図4A及び10参照)の大きさが、ス テント40の長さ及び/又は外周に沿って、ステント40の種々の部分又は区分 において変化する構造的な形状を提供することによって達成することができる。 非限定的な実施形態においては、ステント40の一つの区分内の全ての開口78 は、ほぼ同じ第1の大きさを有し、ステント40の別の区分は、ほぼ同じ第2の 大きさを有しており、この第1の大きさと第2の大きさとは異なっている。各々 が、その区分における他の開口78とほぼ同じ大きさの開口78を有するが、他 の区分においては開口78と異なる大きさを有している付加的な区分を設けるこ ともできる。 開口78の大きさを変えることは、支柱42及び44並びに結合部材48の長 さを変えることによって達成することができる。例えば、より小さい開口78は 、支柱42及び44並びに特定の開口した領域78を画成している結合部材48 の 長さを短縮することによって提供することができる。類似した開口78を備えた ステント40の部分は、より大きい開口78を備えたステント40の部分よりも より剛性で且つ可撓性がより低い。このことにより、ステント40は、ステント 40が一端でより剛性であり、この剛性の端部から徐々に可撓性となる必要があ る体内脈管内で展開することができる。このような体内脈管の例としては、上記 した腎臓及び腸骨動脈がある。 開口78の大きさを変えることは、他の重要な目的としても機能する。例えば 、ステント40の両端により小さい開口78を設けることによって、脈管の壁の 適用範囲を増し又はより緊密にし、それによって、疾患した脈管壁の改良された 支持をし及び血小板の破片が塞栓した堆積物として除去されるのを防止する。堆 積物の除去は、除去された堆積物が脳へ運ばれておそらく脳卒中を生じ得る頸動 脈のようなある種の脈管においては危険である。ステント40のある場所におい てより大きな開口78を提供する別の例は、別の体内脈管の側方分岐の閉塞を防 止する際に重要であるかもしれない広い開口78領域を提供する。これらのより 広い開口した領域もまた、ガイドワイヤ、カテーテル、ステント、移植片及びそ の他の展開部材がステント40の本体を通ってこれらの側方分岐内へと通過する のを許容する。 ステント40はまた、圧縮状態においては一定の直径を呈するが、一杯に拡張 された状態のときにはステント40の種々の部分が異なる直径を呈するような形 態にて設けることができる。拡張可能なステント40に異なる部分において異な る直径を呈する能力を備えることは、ステント40が内腔径が変わるある種の体 内脈管又は体内脈管の分岐において使用される場合に重要である。このような体 内脈管及び分岐の例として、上記した頸動脈及び腸骨動脈がある。 変化するステント40の直径は、多くの方法で設けることができる。第1の非 限定的な代替え例は、図11Aに示すように、ステント40の次第に傾斜が付け られた形状を設けることである。傾斜が付けられた形状は、次第に狭くなること を経験する体内脈管における使用に最も適している。第2の非限定的な代替え例 は、各々が比較的一貫しているが異なる直径を有する2つのステント40の区分 間に段形状のような突然の遷移部分を設けることである。この段部は、図11C に示されている隆起した段40Cまたは図11Bに示されている落ち込んだ段4 0bのためのものとすることができる。更に、ステント40に、特定の解剖学的 な要件に合致するためにその長さに沿って直径にいくつかの変化を設けることが できる。 ステントの形状の傾斜又は遷移は、予め整形することによって達成することが でき且つ(1)ステント材料の厚み、(2)開口78の大きさ及び(3)ギャッ プ47,49、を変えることによって高めることができる。 上記に加えて、ステント40の長さ及び/又は外周に沿ったある位置でステン ト40材料の幅及び厚みを変えることによっても、種々の可撓性及び剛性を達成 することができることも当業者は理解するであろう。 展開方法に応じて多くの材料が、ステント40及びその支柱42及び44並び に結合部材48の両方のために使用することができる。自己拡張型のステントと して使用される場合には、ステント40(その支柱42及び44並びに結合部材 48を含む)は、”機械的”記憶及び訓練の特異な性能を有するニチノールのよ うな形状記憶超弾性合金によって作られるのが好ましい。この合金は、遷移温度 範囲以上で第1の所定の形状に形成することができる。この合金は、遷移温度範 囲以下で第2の形状に弾性的に変形させても良いが、この合金は、遷移温度範囲 を超える温度まで暖め戻されると、それ本来の(第1の所定の)形状へと完全に 復帰する。ニチノールは、約50%のニッケルと約50%のチタンとの組成物を 有するのが好ましい。ニチノールのような形状記憶合金及びそれらのステントに おける使用特性は、文献に詳しく記載されており、T.W.Duerig,A. R.Pelton及びD.Stockelによる”医学における超弾性の使用( The Use of Superelasticity in Medici ne)”という名称の文献を参考にすることができる。この文献のコピーが本明 細書に添付されており且つあたかも本明細書において十分に記載されているかの ように特定の参照符によって特に本明細書に組み入れられている。 別の方法として、ステント40(その支柱42及び44並びに結合部材48を 含む)は、ステンレス鋼、タンタル、チタン、エルジロイ、金、白金又はその他 のあらゆる金属若しくは合金又はポリマー又は十分な生体適合性、剛性、可撓性 、 径方向強度、放射線非透過性及び耐血栓性を有する複合材料によって作ることが できる。 結合部材48は、支柱42及び44と同じ材料を有するものとして上記したけ れども、本発明の精神及び範囲から逸脱することなく異なる材料によって結合部 材48を提供することができる。このような材料は、弾性があり且つ結合部材4 8が支柱42及び44が経験する短縮を補償するために長手方向において圧縮さ れ或いは拡張されるのを可能にできなければならない。このような材料の非限定 的な例には、ステント40のための上記した材料のいずれもが含まれ得る。 2.製造方法 ステント40は、このステントの材料及び展開の所望の性質に応じて多くの方 法のうちの一つによって作ることができる。 非限定的な第1の好ましい方法においては、ステント40は、ステントが一杯 に圧縮された状態にあるときにステントと等しい寸法の固体ニチノール管によっ て作られている。ステント40(すなわち、支柱42及び44並びに結合部材4 8)のパターンは、コンピュータ制御のレーザーカッター又はレース内にプログ ラムされ、このレーザーカッター又はレースは、支柱42及び44と結合部材4 8との間の区分を、ステント40の外径及び壁厚を厳密に制御する方法で切り取 る。 切断工程の後に、ステント40は、完全に拡張された状態に達するまで徐々に 拡張される。拡張は、内側拡張取り付け具によって達成することができるが、本 発明の精神及び範囲から逸脱することなく、他の拡張装置及び方法を使用するこ とができる。ステント40の全長は、ステント40の完全に圧縮された状態から 完全に拡張された状態までの拡張全体に亘って一定に維持されなければならない 。 ステント40が一杯に拡張された状態へと拡張されると、ニチノール材料の形 状記憶を一杯に拡張された寸法に”設定”するために熱処理される。ステント4 0は、次いで、洗浄され且つ電解研磨される。 次の段階において、ステント40は、穿刺による給送か又は最少侵入外科方法 によって、脈管内に給送できる寸法に再び圧縮される。特に、ステント40は、 給送器具によって脈管内の所望の場所へ給送することができるように、より小さ い状態に圧縮されなければならない。限定的ではないが、チューブ、カテーテル 又はシースのようなあらゆる一般的な給送器具を使用することができる。この圧 縮は、ステント40を例えば摂氏零度の低温まで冷却し且つこの温度を維持しな がらステント40を圧縮してステント40が給送装置の内側へ挿入できるように することによって達成される。ステント40は、一旦給送装置の内側へ挿入され ると、給送装置によって室温で圧縮状態に維持される。 非限定的な第2の好ましい方法においては、バルーンで拡張可能なステント4 0を、支柱42及び44並びに結合部材48の所望の形状に曲げられ且つ成形さ れた複数のワイヤを結合することによって製造することができる。この結合は、 溶接、縛り付け、接着又はその他の一般的な方法によって達成することができる 。別の方法として、ワイヤー放電加工を使用することができる。ワイヤは、ステ ント40が圧縮され或いは拡張されるときに、塑性変形を経験することができる 。ステント40の圧縮又は拡張状態への塑性変形がなされると、ステント40は 、ステント40を再び塑性的に変形する別の力が加わるまでこの状態のままであ る。 ある種の製造方法を上記したが、本発明の精神及び範囲から逸脱することなく 、他の製造方法を利用することができることは当業者によって理解されるであろ う。 3.展開方法 ステント40は、多くの給送装置及び給送方法によって展開させることができ る。これらの給送装置及び方法は、ステント40が、自己拡張、径方向拡張力又 は高周波によって拡張されるか否かに応じて変わるであろう。 上記の説明は、本発明の特定の実施形態に言及しているが、本発明の精神から 逸脱することなく多くの変形を施してもよいことは理解されるであろう。請求の 範囲は、本発明の真の範囲及び精神内に包含されるこのような変形を含むことを 意図している。Detailed Description of the Invention Intraluminal Prosthesis without Contraction Background of the Invention Field of the invention The present invention relates to an endovascular prosthesis for implantation into a mammalian vessel, and more particularly, to be delivered in a compressed state to a specific location inside the lumen of a mammalian vessel and then to the vessel. An endoluminal stent deployed to an expanded state to support the stent. Intraluminal stents are provided with a structural shape that maintains the prosthesis at approximately the same length in both the compressed and expanded states. Intraluminal stents also have varying stiffness or flexibility along their length. 2. Description of the prior art Endoluminal prostheses, such as stents, generally provide mechanical support as a liner for vessels or to prevent stenotic or occluded vessel collapse in the treatment of aneurysms Used for These stents are typically delivered in a compressed state to a specific location inside the lumen of a vessel or other tubular structure, and then deployed and expanded there. The stent has a diameter in the expanded state that is several times the diameter of the stent in the compressed state. These stents are also often used for the treatment of atherosclerosis in blood vessels, especially after percutaneous transluminal coronary angioplasty (PTCA), to improve the outcome of the operation and to reduce the symptoms similar to stenosis. Expanded to reduce. Positioning a stent at a desired location within the lumen of a human vessel is an important factor that affects the performance of the stent and the success of the treatment procedure. Since the area within the lumen in which the stent is deployed is usually inaccessible to the physician, the deployed diameter and length of the stent may be less than the physician's ability to accurately position the correct size stent at the correct location. It is essential to be able to know. For example, the diameter and length of a diseased or injured section or region of a human blood vessel can vary depending on various human blood vessels, disease states and the purpose of the deployment, so that a stent having the correct diameter and length can be deployed. It is important to be fed into this area for. Careful sizing of this area of the lumen of the body vessel is a challenge to many physicians who know the correct dimensions of the body vessel in this area but do not know for certain the diameter and length of the stent. It may pose a difficult challenge. This is due to the shortening effect that many stents undergo when expanding from a compressed state to an expanded state. This shortening action is illustrated in FIGS. 1A, 1B, 2A and 2B, which show a mesh-shaped pattern created by V-shaped struts or legs 22 and 24 connected by vertices 26. 1 shows a portion 20 of a stent having the same. Two pairs of these V-shaped struts 22, 24 are shown in this portion 20 of the stent. Each of these posts 22 and 24 has a length h. FIG. 1B illustrates the portion 20 of the stent in a fully compressed state, where the length h is the longitudinal or horizontal component l. Two (See FIG. 2B) and FIG. 1A illustrates the same portion 20 of the stent in a fully expanded state, where the length h 1 is the longitudinal or horizontal component l. 1 (See FIG. 2A). As indicated by phantom lines 28 and 30 in FIGS. 1A, 1B, 2A and 2B, 1 Is l Two Shorter than. This is because the angle made by the struts 22 with respect to the horizontal axis is greater in the expanded state, and thus the length of the expanded portion 20 is 2d shorter than the length of the compressed portion 20. This shortening is caused by the shortening of the longitudinal components of struts 22 and 24 when the stent is expanded from the compressed state to the expanded state. This shortening effect is cumbersome because it is not easy to determine the correct dimensions of this shortened length 2d. The physician must make this calculation based on the stent material, the vessel to be treated, and the expected diameter of the stent when correctly deployed in the lumen of the vessel. For example, the shortened length 2d will change when the same stent is deployed in vessels of different diameters in the deployed section. In addition, there are certain human vessels that experience changes in disease state along the lumen diameter, anatomy or length of the blood vessel. A stent deployed in such a vessel would need to be able to cope with or adapt to these changes. An example of such a human vessel is the carotid artery. Blood is supplied from the heart to the brain via the common carotid artery. These arteries have a lumen of about 8-10 mm when tracing to locations just below and behind the eye along the neck. At this position, the common carotid artery has an internal carotid artery with a lumen diameter of 6-8 mm supplying blood to the brain, and an external carotid artery with a lumen diameter of 6-8 mm supplying blood to the face and scalp. Divided into Damage due to atherosclerosis of the common carotid artery tends to occur around this bifurcation where the common carotid artery divides into internal and external carotid arteries, so the stent needs to be deployed at this bifurcation. There are many cases. Another example is the iliac artery having a lumen diameter of about 8-10 mm in the common iliac artery, but reducing to a lumen diameter of about 6-7 mm in the external iliac artery. The common iliac artery is quite often calcified and experiences a more localized stenosis or obstruction disorder that usually requires a shorter stent with greater radial strength or stiffness. Diseases due to more diffuse atherosclerosis of the iliac tissue usually involve both the common iliac artery and the internal iliac artery and develop at the serpentine corners experienced by the iliac tissue. Would require a longer stent with high flexibility suitable for The femoral popliteal tissue also experiences localized or widespread stenosis disorders. In addition, the flexibility of the stent is important when deployed at locations in the blood vessel that are affected by movement of the joint, such as the hip or knee. The renal artery provides another useful example. The first 1 cm or so of the entrance to the renal artery is often quite tight and narrow due to atheroma or calcification, while the rest of the renal artery is relatively curved. As a result, stents intended for implantation in the renal arteries should be relatively stiff for the first 1.5 cm or so and then be more flexible and compliant. Thus, maintaining a consistent length both in the fully compressed state and in the fully expanded state, and in all states between the fully compressed state and the fully expanded state, can be achieved. There remains a need for a possible endoluminal prosthesis. There is also a need for stents that can accommodate varying lumen diameters, different anatomical structures, and different disease states. SUMMARY OF THE DISCLOSURE To achieve the objects of the present invention, a stent having a plurality of annular members is provided. Each annular member has a compressed state and an expanded state and has a shorter longitudinal dimension in the expanded state than in the compressed state. A plurality of coupling members couple adjacent annular members, and the coupling members operate to compensate for a shorter longitudinal dimension of each annular member in the expanded state. In one embodiment of the present invention, each annular member includes a plurality of struts and vertices joined to form an annular shape. These coupling members are coupled to the vertices of adjacent annular members. The plurality of struts of the annular member include left and right struts, and each pair of left and right struts are interconnected at each vertex. Each strut has a shorter longitudinal dimension when the annular member is in an expanded state than in a compressed state. In one embodiment of the invention, at least one annular member may have a closed shape such that a plurality of alternating struts and vertices are joined together to form a closed annular member. . Furthermore, it is also possible for at least one annular member to have an open shape such that a plurality of alternating struts and vertices are not joined at at least one location. In a preferred embodiment of the invention, the coupling member has a plurality of alternating sections. In one embodiment, the coupling member has a plurality of alternating curved sections defining alternating top and bottom vertices. In another embodiment, the coupling member has a plurality of alternating curved sections and straight sections. In another embodiment, the coupling member has a plurality of alternating and angled straight sections. The coupling member has a longer longitudinal dimension than the compressed state when each annular member is in the expanded state to compensate for the shorter longitudinal dimension of the annular member in the expanded state. The stent according to the present invention further includes a plurality of openings defined by adjacent annular members and coupling members. In one embodiment, the openings in the different sections of the stent can have different sizes. The stent according to the invention furthermore has a plurality of sections, at least two of which have different degrees of flexibility. In one embodiment, varying flexibility is achieved by forming a plurality of gaps. These gaps can be achieved by omitting one or more coupling members or portions of coupling members between adjacent annular members, or by omitting one or more of the columns or by omitting the coupling members and columns. Can be formed. In another embodiment, varying flexibility is achieved by providing different sizes of openings in different strut sections. The stent according to the present invention may further provide sections exhibiting various diameters when the stent is in the expanded state. These various diameters may be achieved by imparting a beveled or stepped shape to the stent. In a preferred embodiment of the invention, the stent is made of a shape memory alloy such as Nitinol, but with stainless steel, tantalum, titanium, elgiloy, gold, platinum or other metals or Alloys or polymers or composites with sufficient biocompatibility, stiffness, flexibility, radial strength, radiopacity and thrombus resistance can be used as stent materials. Thus, the stent according to the present invention has a constant in both the fully compressed and fully expanded states and in all states between the fully compressed and fully expanded states. Maintain length. As a result, the stent according to the invention facilitates correct sizing and deployment, thereby simplifying the mechanical process and minimizing the time required for it. Further, stents according to the present invention provide varying flexibility and stiffness along their length and / or outer circumference, as well as providing varying diameters along various sections of the stent, thereby varying. Facilitates the treatment of vasculature in the body with lumen diameter, different anatomical structures and different disease states. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a side view of a portion of a prior art stent in an expanded state, FIG. 1B is a side view of a portion of FIG. 1A in a compressed state, and FIG. 1A and 1B illustrate the longitudinal component of the strut of the stent of FIGS. 1A and 1B when in the retracted state, and FIG. 2B illustrates the longitudinal component of the strut of the stent of FIGS. 1A and 1B when the stent is in a compressed state. FIG. 3 is a perspective view of a stent according to the invention, FIG. 4A is a side view of a portion of the stent of FIG. 3 in an expanded state, and FIG. 4B is a portion of FIG. 4A in a compressed state. FIG. 5A illustrates the longitudinal components of the struts and the coupling members of the stent of FIGS. 4A and 4B when the stent is in an expanded state, and FIG. 5B illustrates when the stent is in a compressed state. 4A and 4 of FIG. 6A illustrates the longitudinal components of the struts of the stent of FIG. 6 and the coupling member, FIG. 6A is a side view of the stent of FIG. 3 in an expanded state, and FIG. 6B is a side view of the stent of FIG. 6A in a compressed state. 7 and 8 show another embodiment of the coupling member according to the invention, FIG. 9 is a side view showing a modification to a part of the stent of FIG. 3, and FIG. FIG. 11B is a side view showing another modification example of a part of the stent of FIG. 3, and FIGS. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following detailed description is the best currently contemplated mode of practicing the invention. This description has not been made in a limiting sense, but is for the purpose of illustrating the general principles of embodiments of the present invention. The scope of the present invention is best defined by the appended claims. Although the endoluminal prosthesis according to the present invention is a stent, the principles of the present invention can be applied to other prostheses such as liners and filters. The stent is delivered in a compressed state to a desired location within the lumen of a human vessel, and then deployed by expanding to an expanded state. The stent maintains approximately the same length in both the fully compressed and fully expanded states and all states between these two states. The stent may be provided with varying flexibility or stiffness along different anatomical structures and different sections. The stent may also be provided with different diameters along different portions of the stent to facilitate implantation of the same stent into a human vessel having different diameters. Stents according to the present invention can be expanded by the use of high-frequency, self-expanding stents or balloons that can be inflated or expanded radially by an expansion member or that impart heat to change the size of the stent. Stent. The stent may also be coated with a coating of PTFE, Dacron or other biocompatible material to form a bonded stent-graft prosthesis. The vessels to which the stents of the present invention can be expanded are not limited to natural bodily vessels such as conduits, arteries, trachea, veins, ureters and esophagus, but also include artificial vessels such as grafts. 1. Preferred embodiment A stent 40 according to the present invention is illustrated in FIGS. Referring to FIG. 3, a stent 40 has a plurality of pairs of generally V-shaped struts having a tubular shape and joined at a vertex, with a plurality of pairs at the apex of each pair of V-shaped struts. It is made by a plurality of pairs by engaging a coupling member. 4A and 4B illustrate a portion of the stent 40 in more detail. The stent 40 has multiple pairs of alternating left struts 42 and right struts 44. Each pair of left and right columns 42,44 is joined at a vertex 46 to form a substantially V-shape for the pair. The left column 42 is defined as being on the left side of each vertex 46, and the right column 44 is defined as being on the right side of each vertex 46. The left support 42 and the right support 44 are alternated. This is because the left column 42 of the pair of V-shaped columns is also the left column of the adjacent V-shaped pair, and the right column 44 of the pair of V-shaped columns is also adjacent. This is because it is also a right-side column of the V-shaped column. In this manner, the alternating left and right struts 42 and 44 extend in an annular configuration around the annular stent 40 to form an annular member. Each vertex 46 is connected to another vertex 46 by a connecting member 48. Thus, the stents 40 resemble a tubular lattice formed by a pair of V-shaped struts 42,44 joined to themselves and having their vertices 46 joined by a joining member 48. As shown in FIG. 3, both ends of the stent 40 have a plurality of alternating left and right ends, the ends of which are defined by the vertices 46 of these alternating left and right struts 42,44. The columns 42 and 44 define the columns. The coupling member 48 has a shape that includes a plurality or alternating sections in a pattern. A first non-limiting preferred embodiment of the coupling member 48 is illustrated in FIGS. 4A and 4B. Each coupling member 48 extends longitudinally from a vertex 46 along a longitudinal extension 52 and then slopes up along a curved section 54 to a top curved vertex 56 from there to a curved section 58. It slopes down to a curved apex 60 at the bottom. The coupling member 48 then slopes up along the curved section 62 to the top curved apex 64. The coupling member 48 slopes down from the top curved vertex 64 along the curved section 66 to a longitudinal extension 68 of the opposite vertex 46. Thus, coupling member 48 has a plurality of alternating curved sections defined by alternating top and bottom vertices 56,60 and 64. Coupling members 48 are provided to accomplish two functions. First, coupling member 48 couples a pair of vertices 46. Second, the coupling member 48 functions to compensate for the foreshortening experienced by the longitudinal components of each strut 42 and 44 so that the stent 40 is always maintained at approximately the same length. This is accomplished by providing the coupling member 48 with a natural bias and resiliency that couples with the alternating sections to reduce its length when compressed. When allowed to expand, coupling member 48 is biased back to its natural or home position to compensate for the shortening experienced by the longitudinal component of each strut 42 and 44. The connecting member 48 is lengthened. This effect is illustrated in FIGS. 4A, 4B, 5A and 5B. When the stent 40 is in the compressed state, the coupling member 48 has a length L when the coupling member 48 is in the expanded state. 1 Length L shorter than Two Having. When the coupling member 48 is in the compressed state, the alternating waveform curve has a higher amplitude and a smaller wavelength than when in the expanded state (compare FIGS. 4A and 4B). Therefore, L Two And L 1 Is different from that of the struts 42, 44 at both ends of the coupling member 48. 1 And l Two To compensate for the difference. The lines 70 and 72 in FIGS. 4A and 4B show that the relevant portions of the stent 40 do not experience any foreshortening, and the lines 74 and 76 in FIGS. 6A and 6B indicate that the entire stent 40 is in its entirety. It shows that a constant length is maintained throughout. 4A, 4B, 5A and 5B, the coupling member 48 has been described as having a particular shape, but the coupling member 48 may have other shapes without departing from the spirit and scope of the present invention. Will be understood by those skilled in the art. For example, the coupling members 48 can be provided in any curved or partially curved or other shape as long as they function to compensate for the shortening experienced by the longitudinal component of each strut 42 and 44. . FIG. 7 shows a non-limiting second preferred embodiment of the coupling member 48, in which the coupling member 48a has alternating curved sections 80 and straight sections 82. I have. When the coupling member 48a is compressed, its curved section 80 also has a higher amplitude and a shorter wavelength than when it is in the expanded state. FIG. 8 shows a third non-limiting preferred embodiment, in which the coupling member 48b has alternating straight sections 84 and 86 that are angled with respect to each other. . When the stent 40 is in the fully expanded state, it preferably has a profile slightly larger than the inner diameter of the region of the body vessel in which the stent is to be deployed. This allows the stent 40 to be securely anchored at the desired location and prevent the stent 40 from entering away from the deployed position. The stent 40 may be provided with various flexibility or rigidity at various portions or sections along its length to facilitate deployment in a body vessel that requires such various flexibility or rigidity. I do. This varying flexibility or stiffness may be achieved by omitting the connecting member 48 and the struts 42, 44 or by not connecting one or more of the struts 42, 44 and / or the connecting member 48 to one or more along the stent 40. This can be achieved by forming a "gap" at the location. These locations can be anywhere along the length and / or circumference of the stent 40. Further, varying degrees of flexibility of the stent 40 can be achieved by altering the pattern of these gaps. A non-limiting example is to provide the struts 42, 44 and / or coupling members 48 in a generally helical pattern as shown in FIG. The omitted struts 42, 44 and coupling member 48 are shown in phantom lines (ie, dashed lines) in FIG. 9 by reference numeral 47 (for columns 42, 44) and reference numeral 49 (for coupling member 48). ing. For example, the omitted struts 47 may exhibit a relatively helical pattern along the length of the stent 40 from the top left corner of FIG. 9 to the bottom right corner of FIG. . Similarly, the omitted coupling member 49 exhibits a relatively helical pattern along the length of the stent 40 from the bottom left corner of FIG. 9 to the top right corner of FIG. Can be. Other non-limiting alternatives include increasing the number of these gaps 47,49 from one or both ends of the stent 40 toward the center of the stent 40 or from the center of the stent 40 to one or both ends of the stent 40. This is to increase the number of these gaps 47 and 49. It is also possible to omit only some of the coupling members 48 and some but not all of these coupling members 48. A portion of the stent 40 having a number of gaps 47,49 has more flexibility or less stiffness. As a result of omitting the strut 47, some of the annular members formed by the alternating struts 42 and 44 constitute closed or fully joined annular members, while some of these annular members are It can be an open annular member. The varying flexibility or rigidity is such that the size of the open area or opening 78 (see, for example, FIGS. 4A and 10) defined between the struts 42 and 44 and the coupling member 48 is the length of the stent 40. This can be achieved by providing a varying structural shape at various portions or sections of the stent 40 along the length and / or circumference. In a non-limiting embodiment, all the openings 78 in one section of the stent 40 have substantially the same first size, and another section of the stent 40 has the substantially same second size. And the first size and the second size are different. Each has an opening 78 that is approximately the same size as the other openings 78 in that section, but additional sections may be provided in other sections that have a different size than the openings 78. Changing the size of the opening 78 can be achieved by changing the length of the posts 42 and 44 and the coupling member 48. For example, a smaller opening 78 can be provided by reducing the length of the struts 42 and 44 and the coupling member 48 defining a particular open area 78. Portions of the stent 40 with similar openings 78 are stiffer and less flexible than portions of the stent 40 with larger openings 78. This allows the stent 40 to be deployed in a body vessel where the stent 40 is more rigid at one end and needs to become increasingly flexible from this rigid end. Examples of such body vessels include the above-mentioned renal and iliac arteries. Changing the size of the opening 78 also serves another important purpose. For example, providing smaller openings 78 at both ends of the stent 40 may increase or tighten the coverage of the vessel wall, thereby providing improved support of the diseased vessel wall and platelet debris emboli. To prevent it from being removed as sediment. Removal of sediment is dangerous in certain vessels, such as the carotid artery, where the removed sediment can be carried to the brain and possibly cause a stroke. Another example of providing a larger opening 78 at one location of the stent 40 provides a larger opening 78 area that may be important in preventing occlusion of the lateral bifurcation of another body vessel. These wider open areas also allow guidewires, catheters, stents, grafts, and other deployment members to pass through the body of stent 40 and into these lateral branches. The stent 40 can also be configured to have a constant diameter in the compressed state, but different portions of the stent 40 when in the fully expanded state. Providing the expandable stent 40 with the ability to exhibit different diameters in different portions is important when the stent 40 is used in certain body vessels or branches of body vessels of varying lumen diameter. Examples of such internal vessels and branches include the carotid and iliac arteries described above. The varying diameter of the stent 40 can be provided in a number of ways. A first non-limiting alternative is to provide a gradually tapered shape of the stent 40, as shown in FIG. 11A. The beveled shape is best suited for use in body vessels that experience tapering. A second non-limiting alternative is to provide an abrupt transition, such as a step, between sections of two stents 40, each having a relatively consistent but different diameter. This step may be for the raised step 40C shown in FIG. 11C or the depressed step 40b shown in FIG. 11B. Further, the stent 40 can be provided with some variation in diameter along its length to meet particular anatomical requirements. The inclination or transition of the shape of the stent can be achieved by pre-shaping and enhanced by changing (1) the thickness of the stent material, (2) the size of the openings 78 and (3) the gaps 47,49. be able to. In addition to the above, those skilled in the art will appreciate that varying flexibility and stiffness can also be achieved by varying the width and thickness of the stent 40 material at certain locations along the length and / or circumference of the stent 40. You will understand. Many materials can be used for both the stent 40 and its struts 42 and 44 and the coupling member 48, depending on the deployment method. When used as a self-expanding stent, the stent 40 (including its struts 42 and 44 and the coupling member 48) is made of a shape memory memory such as Nitinol with the unique performance of "mechanical" memory and training. It is preferably made of an elastic alloy. The alloy can be formed into a first predetermined shape above the transition temperature range. The alloy may be elastically deformed to a second shape below the transition temperature range, but when the alloy is warmed back to a temperature above the transition temperature range, it returns to its original (first predetermined). It completely returns to its shape. Nitinol preferably has a composition of about 50% nickel and about 50% titanium. Shape memory alloys such as Nitinol and their use properties in stents are well described in the literature and are described in W. Duerig, A .; R. Pelton and D.M. Reference may be made to the document by Stockel entitled "The Use of Superelasticity in Medicine". Copies of this document are attached to this specification and are specifically incorporated herein by specific reference numbers as if fully set forth herein. Alternatively, the stent 40 (including its struts 42 and 44 and the connecting member 48) may be made of stainless steel, tantalum, titanium, elgiloy, gold, platinum or any other metal or alloy or polymer or sufficient biocompatible, It can be made of a composite material that has rigidity, flexibility, radial strength, radiopacity and thrombus resistance. Although coupling member 48 has been described above as having the same material as struts 42 and 44, coupling member 48 can be provided by a different material without departing from the spirit and scope of the present invention. Such a material must be resilient and capable of allowing the coupling member 48 to be compressed or expanded longitudinally to compensate for the shortening experienced by the struts 42 and 44. Non-limiting examples of such materials can include any of the materials described above for stent 40. 2. Production method The stent 40 can be made in one of many ways, depending on the material of the stent and the desired properties of the deployment. In a first non-limiting preferred method, the stent 40 is made of solid Nitinol tubing of the same size as the stent when the stent is in a fully compressed state. The pattern of the stent 40 (i.e., the struts 42 and 44 and the coupling members 48) is programmed into a computer controlled laser cutter or race, which cuts between the struts 42 and 44 and the coupling members 48. Are cut out in such a way that the outer diameter and wall thickness of the stent 40 are tightly controlled. After the cutting step, the stent 40 is gradually expanded until it reaches a fully expanded state. Expansion can be accomplished by an inner expansion mount, but other expansion devices and methods can be used without departing from the spirit and scope of the present invention. The overall length of the stent 40 must be kept constant throughout the expansion of the stent 40 from a fully compressed state to a fully expanded state. Once the stent 40 is expanded to its fully expanded state, it is heat treated to "set" the shape memory of the Nitinol material to the fully expanded dimensions. The stent 40 is then cleaned and electropolished. In the next step, the stent 40 is recompressed to a size that can be delivered intravascularly, either by puncture or by minimally invasive surgery. In particular, the stent 40 must be compressed to a smaller state so that it can be delivered to the desired location within the vessel by the delivery device. Any common delivery device such as, but not limited to, a tube, catheter or sheath can be used. This compression is accomplished by cooling the stent 40 to a low temperature, for example, zero degrees Celsius, and maintaining the temperature while compressing the stent 40 so that the stent 40 can be inserted inside the delivery device. Once inserted into the delivery device, the stent 40 is maintained in a compressed state at room temperature by the delivery device. In a second non-limiting preferred method, the balloon expandable stent 40 is fabricated by joining a plurality of wires bent and shaped into the desired shape of the struts 42 and 44 and the joining member 48. can do. This connection can be achieved by welding, tying, gluing or other common methods. Alternatively, wire electrical discharge machining can be used. The wire can undergo plastic deformation when the stent 40 is compressed or expanded. Once the stent 40 has been plastically deformed to a compressed or expanded state, the stent 40 remains in this state until another force is applied that plastically deforms the stent 40 again. While certain manufacturing methods have been described above, it will be appreciated by those skilled in the art that other manufacturing methods may be utilized without departing from the spirit and scope of the invention. 3. Deployment method The stent 40 can be deployed by a number of delivery devices and delivery methods. These delivery devices and methods will vary depending on whether the stent 40 is expanded by self-expansion, radial expansion force, or high frequency. While the description above refers to particular embodiments of the present invention, it will be understood that many modifications may be made without departing from the spirit of the invention. The appended claims are intended to cover such modifications as would fall within the true scope and spirit of the invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 イエール,スリラム・エス アメリカ合衆国アラバマ州35244,バーミ ンガム,チェスナット・オークス・ドライ ブ 3127 (72)発明者 レッドモンド,ラッセル・ジェイ アメリカ合衆国カリフォルニア州93117, ゴレタ,ノース・フェアビュー・アベニュ ー 1148 (72)発明者 ヴィダル,クロード・エイ アメリカ合衆国カリフォルニア州93111, サンタ・バーバラ,サン・パトリチオ・ド ライブ 5426────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventors Yale, Suriram S             35244, Bami, Alabama, United States             Ngam, Chestnut Oaks Dry             Step 3127 (72) Redmond, Russell Jay             United States California 93117,             Goleta, North Fairview Avenue             ー 1148 (72) Inventor Vidal, Claude Ay             United States California 93111,             Santa Barbara, Sao Patricio do             Live 5426

Claims (1)

【特許請求の範囲】 1.複数の環状部材であって、該環状部材の各々が圧縮状態と拡張状態とを有 し、各環状部材が、圧縮状態よりも拡張状態において、より短い長手方向寸法を 有する複数の環状部材と、 隣接する環状部材同士を結合する少なくとも一つの結合部材であって、拡張状 態における環状部材のより短い長手方向寸法を補償するように機能する結合部材 と、からなるステント。 2.請求項1に記載のステントであって、 各環状部材が、相互に結合されてほぼ環形状を形成する複数の交互の支柱と頂 点とを含んでいる、ステント。 3.請求項2に記載のステントであって、 前記結合部材が、隣接する環状部材の頂点に結合されている、ステント。 4.請求項2に記載のステントであって、 前記複数の支柱が左側及び右側支柱を含み、同左側及び右側支柱の各々が、頂 点において相互に結合されている、ステント。 5.請求項2に記載のステントであって、 各支柱が、環状部材が圧縮状態よりも拡張状態にあるときに、各支柱がより短 い長手方向寸法を有する、ステント。 6.請求項2に記載のステントであって、 環状部材が拡張状態よりも圧縮状態にあるときに、各支柱がより短い長手方向 寸法を有する、ステント。 7.請求項1に記載のステントであって、 前記結合部材が複数の交互の区分を有する、ステント。 8.請求項7に記載のステントであって、 前記結合部材が、交互の頂部及び底部の湾曲した頂点を画成している複数の交 互の湾曲した区分を有する、ステント。 9.請求項8に記載のステントであって、 前記複数の交互の湾曲した区分が、環状部材が圧縮状態にあるときにより高い 振幅及びより短い波長を有する、ステント。 10.請求項7に記載のステントであって、 前記結合部材が、複数の交互の湾曲した区分と真っ直ぐな区分とを有する、ス テント。 11.請求項7に記載のステントであって、 前記結合部材が、複数の交互の且つ角度が付けられた真っ直ぐな区分を有する 、ステント。 12.請求項1に記載のステントであって、 前記結合部材が、各環状部材が圧縮状態にあるときよりも拡張状態にあるとき のほうがより長い長手方向寸法を有して、拡張状態における環状部材のより短い 長手方向寸法を補償するようになされた、ステント。 13.請求項1に記載のステントであって、 前記結合部材が、各環状部材が拡張状態にあるときよりも圧縮状態にあるとき のほうがより短い長手方向寸法を有して、圧縮状態における環状部材のより長い 長手方向寸法を補償するようになされた、ステント。 14.請求項1に記載のステントであって、 当該ステントが形状記憶合金によって作られている、ステント。 15.請求項14に記載のステントであって、 前記形状記憶合金がニチノールである、ステント。 16.請求項1に記載のステントであって、 当該ステントが、その長さに沿った複数の区分を有し、同区分の各々が、当該 ステントが拡張状態にあるときに異なる直径を呈する、ステント。 17.請求項16に記載のステントであって、 当該ステントが、ステントの直径が一つの区分から他の区分へ移るときに徐々 に変化する傾斜が付けられた形状を有する、ステント。 18.請求項16に記載のステントであって、 当該ステントの直径が、一つの区分から他の区分に移るところで突然に遷移す る段形状を有する、ステント。 19.請求項2に記載のステントであって、 前記環状部材のうちの少なくとも一つが閉じていて、前記複数の交互の支柱と 頂点とが相互に結合されて閉じた環状部材を形成するようになされている、ステ ント。 20.請求項19に記載のステントであって、 前記環状部材のうちの少なくとも一つが開いていて、前記複数の交互の支柱と 頂点とが少なくとも一つの位置で結合されていないようになされている、ステン ト。 21.請求項1に記載のステントであって、 生体適合性の移植片による被覆と組み合わせられたステント。 22.複数の区分を全長に沿って有するステントであって、 各々が圧縮状態と拡張状態とを有する複数の環状部材と、 隣接する環状部材を相互に結合する少なくとも一つの結合部材と、 隣接する環状部材と結合部材とによって画成された複数の開口と、を含み、 異なるステントの区分の開口が異なる大きさを有している、ステント。 23.請求項22に記載のステントであって、 各環状部材が、ほぼ環形状を形成するために相互に結合された複数の交互の支 柱と頂点とを含み、 前記結合部材は、隣接する環状部材の頂点に結合され、隣接する支柱と結合部 材とによって開口が画成されている、ステント。 24.請求項22に記載のステントであって、 当該ステントの各区分が、同ステントが拡張状態にあるときに異なる直径を呈 する、ステント。 25.請求項24に記載のステントであって、 当該ステントの直径が、一つの区分から他の区分へ移るところで次第に変化す る傾斜が付けられた形状を有する、ステント。 26.請求項24に記載のステントであって、 当該ステントの直径が、一つの区分から他の区分へ移るところで突然に遷移す る段形状を有する、ステント。 27.複数の区分を有するステントであって、 各々が圧縮状態と拡張状態とを有する複数の環状部材と、 隣接する環状部材を相互に結合する少なくとも一つの結合部材と、 当該ステントの複数の区分のうちの二つに、異なる程度の可撓性を付与する手 段と、を含むステント。 28.請求項27に記載のステントであって、 当該ステントの複数の区分のうちの二つに異なる程度の可撓性を付与する手段 が、隣接する環状部材の間の結合部材のうちの少なくとも一つを省略することに よって形成された複数のギャップを含む、ステント。 29.請求項27に記載のステントであって、 各環状部材が、ほぼ環形状を形成するために相互に結合された複数の交互の支 柱及び頂点を含み、前記結合部材が、隣接する環状部材の頂点に結合されている 、ステント。 30.請求項29に記載のステントであって、 当該ステントの複数の区分のうちの二つに異なる程度の可撓性を付与する前記 手段が、前記支柱のうちの少なくとも一つを省略することによって形成された複 数のギャップを含む、ステント。 31.請求項30に記載のステントであって、 前記複数のギャップが、隣接する環状部材間の結合部材のうちの少なくとも一 つを省略することによって更に形成されている、ステント。 32.請求項27に記載のステントであって、 隣接する環状部材と結合部材とによって画成された複数の開口を更に含み、 当該ステントの複数の区分のうちの二つに異なる程度の可撓性を付与する前記 手段が、異なるステントの区分の開口に異なる大きさを付与することを含む、ス テント。[Claims]   1. A plurality of annular members, each of which has a compressed state and an expanded state. Each annular member has a shorter longitudinal dimension in the expanded state than in the compressed state. A plurality of annular members having   At least one coupling member for coupling adjacent annular members together, Member operable to compensate for the shorter longitudinal dimension of the annular member in the configuration And a stent consisting of:   2. The stent according to claim 1,   Each annular member has a plurality of alternating struts and vertices joined together to form a generally annular shape. A stent, including a spot.   3. The stent according to claim 2, wherein   The stent, wherein the coupling member is coupled to a vertex of an adjacent annular member.   4. The stent according to claim 2, wherein   The plurality of columns include left and right columns, and each of the left and right columns is A stent that is interconnected in points.   5. The stent according to claim 2, wherein   Each strut is shorter when the annular member is in an expanded state than in a compressed state. A stent having a long longitudinal dimension.   6. The stent according to claim 2, wherein   Each strut has a shorter longitudinal direction when the annular member is in a compressed state than in an expanded state. A stent having dimensions.   7. The stent according to claim 1,   The stent, wherein the coupling member has a plurality of alternating sections.   8. The stent according to claim 7,   The coupling member includes a plurality of interconnects defining alternating top and bottom curved vertices. A stent having mutually curved sections.   9. 9. The stent according to claim 8, wherein   The plurality of alternating curved sections are higher when the annular member is in a compressed state. A stent having an amplitude and a shorter wavelength.   10. The stent according to claim 7,   The coupling member having a plurality of alternating curved sections and a straight section; tent.   11. The stent according to claim 7,   The coupling member has a plurality of alternating and angled straight sections , Stent.   12. The stent according to claim 1,   When the coupling member is in an expanded state than when each annular member is in a compressed state. Has a longer longitudinal dimension and a shorter length of the annular member in the expanded state. A stent adapted to compensate for a longitudinal dimension.   13. The stent according to claim 1,   When the coupling member is in a more compressed state than when each of the annular members is in an expanded state. Has a shorter longitudinal dimension and a longer length of the annular member in the compressed state. A stent adapted to compensate for a longitudinal dimension.   14. The stent according to claim 1,   A stent, wherein the stent is made of a shape memory alloy.   15. The stent according to claim 14, wherein   The stent, wherein the shape memory alloy is nitinol.   16. The stent according to claim 1,   The stent has a plurality of sections along its length, each of the sections comprising A stent that exhibits different diameters when the stent is in an expanded state.   17. The stent according to claim 16, wherein   As the stent moves from one section to another as the stent diameter moves A stent having a beveled shape that changes to:   18. The stent according to claim 16, wherein   The diameter of the stent suddenly transitions from one section to another. A stent having a stepped shape.   19. The stent according to claim 2, wherein   At least one of the annular members is closed and the plurality of alternating struts are A step, the vertices being joined together to form a closed annular member. And   20. 20. The stent according to claim 19,   At least one of the annular members is open and the plurality of alternating struts are The stainless steel is such that the vertices are not joined in at least one position. G.   21. The stent according to claim 1,   Stents combined with a biocompatible graft coating.   22. A stent having a plurality of sections along its length,   A plurality of annular members each having a compressed state and an expanded state,   At least one coupling member for coupling adjacent annular members to each other;   A plurality of openings defined by adjacent annular members and coupling members;   A stent wherein the openings in the different stent sections have different sizes.   23. The stent according to claim 22, wherein   Each annular member has a plurality of alternating supports interconnected to form a generally annular shape. Including pillars and vertices,   The coupling member is coupled to a vertex of an adjacent annular member, and is connected to an adjacent strut and a coupling portion. A stent, the opening of which is defined by a material.   24. The stent according to claim 22, wherein   Each section of the stent exhibits a different diameter when the stent is in the expanded state. Yes, a stent.   25. The stent according to claim 24,   The diameter of the stent changes gradually from one section to another A stent having a beveled shape.   26. The stent according to claim 24,   The diameter of the stent suddenly transitions from one section to another. A stent having a stepped shape.   27. A stent having a plurality of sections,   A plurality of annular members each having a compressed state and an expanded state,   At least one coupling member for coupling adjacent annular members to each other;   A hand that imparts different degrees of flexibility to two of the sections of the stent. A step, and a stent.   28. 28. The stent of claim 27,   Means for imparting different degrees of flexibility to two of the plurality of sections of the stent But omit at least one of the coupling members between adjacent annular members. A stent comprising a plurality of gaps thus formed.   29. 28. The stent of claim 27,   Each annular member has a plurality of alternating supports interconnected to form a generally annular shape. A post and a vertex, wherein the coupling member is coupled to a vertex of an adjacent annular member , Stent.   30. 30. The stent according to claim 29,   Providing a different degree of flexibility to two of the plurality of sections of the stent. Means are formed by omitting at least one of the struts. A stent that includes a number of gaps.   31. 31. The stent of claim 30, wherein   The plurality of gaps include at least one of coupling members between adjacent annular members. A stent further formed by omitting one.   32. 28. The stent of claim 27,   Further comprising a plurality of openings defined by adjacent annular members and coupling members;   Providing a different degree of flexibility to two of the plurality of sections of the stent. The means includes providing different sizes for the openings of the different stent sections. tent.
JP53487598A 1997-02-07 1998-02-04 Intraluminal prosthesis that does not shorten Pending JP2001511044A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/797,814 US5827321A (en) 1997-02-07 1997-02-07 Non-Foreshortening intraluminal prosthesis
US08/797,814 1997-02-07
PCT/US1998/002175 WO1998034668A1 (en) 1997-02-07 1998-02-04 Non-foreshortening intraluminal prosthesis

Publications (1)

Publication Number Publication Date
JP2001511044A true JP2001511044A (en) 2001-08-07

Family

ID=25171870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53487598A Pending JP2001511044A (en) 1997-02-07 1998-02-04 Intraluminal prosthesis that does not shorten

Country Status (5)

Country Link
US (7) US5827321A (en)
EP (1) EP1028772A4 (en)
JP (1) JP2001511044A (en)
CA (1) CA2280131C (en)
WO (1) WO1998034668A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537072A (en) * 2002-09-02 2005-12-08 アンソン メディカル リミテッド Flexible stent graft
JP4825665B2 (en) * 2003-02-26 2011-11-30 ボストン サイエンティフィック リミテッド Lumen device with enhanced mounting characteristics
JP2017018330A (en) * 2015-07-10 2017-01-26 有限会社Ptmc研究所 Stent graft
JP2017023779A (en) * 2009-07-08 2017-02-02 コンセントリック メディカル,インク. Device and method for treating vessel and internal duct

Families Citing this family (509)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE176587T1 (en) * 1994-05-19 1999-02-15 Scimed Life Systems Inc IMPROVED TISSUE SUPPORT DEVICES
US7204848B1 (en) * 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
CA2186029C (en) * 1995-03-01 2003-04-08 Brian J. Brown Improved longitudinally flexible expandable stent
US6602281B1 (en) * 1995-06-05 2003-08-05 Avantec Vascular Corporation Radially expansible vessel scaffold having beams and expansion joints
US5702418A (en) * 1995-09-12 1997-12-30 Boston Scientific Corporation Stent delivery system
KR19990064209A (en) 1995-10-13 1999-07-26 트랜스바스큘라, 인코포레이티드 Apparatus, Systems, and Methods for Interstitial Acupoint Intervention
US5776161A (en) * 1995-10-16 1998-07-07 Instent, Inc. Medical stents, apparatus and method for making same
JP2000505316A (en) 1996-02-02 2000-05-09 トランスバスキュラー インコーポレイテッド Method and apparatus for joining openings formed in adjacent blood vessels or other anatomical structures
US6796997B1 (en) 1996-03-05 2004-09-28 Evysio Medical Devices Ulc Expandable stent
WO1997032544A1 (en) * 1996-03-05 1997-09-12 Divysio Solutions Ulc. Expandable stent and method for delivery of same
CA2192520A1 (en) 1996-03-05 1997-09-05 Ian M. Penn Expandable stent and method for delivery of same
US5868780A (en) * 1996-03-22 1999-02-09 Lashinski; Robert D. Stents for supporting lumens in living tissue
US6241760B1 (en) * 1996-04-26 2001-06-05 G. David Jang Intravascular stent
US20040106985A1 (en) 1996-04-26 2004-06-03 Jang G. David Intravascular stent
US6235053B1 (en) 1998-02-02 2001-05-22 G. David Jang Tubular stent consists of chevron-shape expansion struts and contralaterally attached diagonal connectors
JP4636634B2 (en) * 1996-04-26 2011-02-23 ボストン サイエンティフィック サイムド,インコーポレイテッド Intravascular stent
US6666883B1 (en) 1996-06-06 2003-12-23 Jacques Seguin Endoprosthesis for vascular bifurcation
US7238197B2 (en) * 2000-05-30 2007-07-03 Devax, Inc. Endoprosthesis deployment system for treating vascular bifurcations
US7686846B2 (en) 1996-06-06 2010-03-30 Devax, Inc. Bifurcation stent and method of positioning in a body lumen
US8728143B2 (en) 1996-06-06 2014-05-20 Biosensors International Group, Ltd. Endoprosthesis deployment system for treating vascular bifurcations
US6432127B1 (en) 1996-10-11 2002-08-13 Transvascular, Inc. Devices for forming and/or maintaining connections between adjacent anatomical conduits
IL131063A (en) * 1997-01-24 2005-07-25 Kentucky Oil N V Bistable spring construction for a stent and other medical apparatus
US8353948B2 (en) * 1997-01-24 2013-01-15 Celonova Stent, Inc. Fracture-resistant helical stent incorporating bistable cells and methods of use
US8663311B2 (en) 1997-01-24 2014-03-04 Celonova Stent, Inc. Device comprising biodegradable bistable or multistable cells and methods of use
US20040267350A1 (en) * 2002-10-30 2004-12-30 Roubin Gary S. Non-foreshortening intraluminal prosthesis
US5827321A (en) * 1997-02-07 1998-10-27 Cornerstone Devices, Inc. Non-Foreshortening intraluminal prosthesis
DE29702671U1 (en) * 1997-02-17 1997-04-10 Jomed Implantate GmbH, 72414 Rangendingen Stent
US20020133222A1 (en) * 1997-03-05 2002-09-19 Das Gladwin S. Expandable stent having a plurality of interconnected expansion modules
US6033433A (en) * 1997-04-25 2000-03-07 Scimed Life Systems, Inc. Stent configurations including spirals
US6451049B2 (en) * 1998-04-29 2002-09-17 Sorin Biomedica Cardio, S.P.A. Stents for angioplasty
IT1292295B1 (en) * 1997-04-29 1999-01-29 Sorin Biomedica Cardio Spa ANGIOPLASTIC STENT
DE69835634T3 (en) 1997-05-07 2010-09-23 Cordis Corp. Intravascular stent and insertion system (obstruction of the ostium of a vessel)
DE29708879U1 (en) * 1997-05-20 1997-07-31 Jomed Implantate GmbH, 72414 Rangendingen Coronary stent
US5836966A (en) * 1997-05-22 1998-11-17 Scimed Life Systems, Inc. Variable expansion force stent
EP0884029B1 (en) * 1997-06-13 2004-12-22 Gary J. Becker Expandable intraluminal endoprosthesis
ES2214600T3 (en) * 1997-06-30 2004-09-16 Medex Holding Gmbh INTRALUMINAL IMPLANT.
DE19834956B9 (en) * 1997-08-01 2005-10-20 Eckhard Alt Supporting prosthesis (stent)
EP0898947A3 (en) * 1997-08-15 1999-09-08 GRIESHABER & CO. AG SCHAFFHAUSEN Method and apparatus to improve the outflow of the aqueous humor of an eye
US6890546B2 (en) 1998-09-24 2005-05-10 Abbott Laboratories Medical devices containing rapamycin analogs
US6013091A (en) 1997-10-09 2000-01-11 Scimed Life Systems, Inc. Stent configurations
US6309414B1 (en) * 1997-11-04 2001-10-30 Sorin Biomedica Cardio S.P.A. Angioplasty stents
US6533807B2 (en) 1998-02-05 2003-03-18 Medtronic, Inc. Radially-expandable stent and delivery system
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
US5931866A (en) * 1998-02-24 1999-08-03 Frantzen; John J. Radially expandable stent featuring accordion stops
US5938697A (en) * 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
US6179868B1 (en) * 1998-03-27 2001-01-30 Janet Burpee Stent with reduced shortening
JP4583597B2 (en) * 1998-05-05 2010-11-17 ボストン サイエンティフィック リミテッド Smooth end stent
DE19822157B4 (en) * 1998-05-16 2013-01-10 Abbott Laboratories Vascular Enterprises Ltd. Radially expandable stent for implantation in a body vessel
ATE342014T1 (en) * 1998-06-19 2006-11-15 Endologix Inc SELF-EXPANDING BRANCHING ENDOVASCULAR PROSTHESIS
US6261319B1 (en) * 1998-07-08 2001-07-17 Scimed Life Systems, Inc. Stent
US6461380B1 (en) 1998-07-28 2002-10-08 Advanced Cardiovascular Systems, Inc. Stent configuration
US7887578B2 (en) 1998-09-05 2011-02-15 Abbott Laboratories Vascular Enterprises Limited Stent having an expandable web structure
US20020019660A1 (en) * 1998-09-05 2002-02-14 Marc Gianotti Methods and apparatus for a curved stent
US6755856B2 (en) 1998-09-05 2004-06-29 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection, coupled with improved protection against restenosis and thrombus formation
US6682554B2 (en) 1998-09-05 2004-01-27 Jomed Gmbh Methods and apparatus for a stent having an expandable web structure
US7815763B2 (en) 2001-09-28 2010-10-19 Abbott Laboratories Vascular Enterprises Limited Porous membranes for medical implants and methods of manufacture
DE19840645A1 (en) 1998-09-05 2000-03-09 Jomed Implantate Gmbh Stent
US6193744B1 (en) * 1998-09-10 2001-02-27 Scimed Life Systems, Inc. Stent configurations
US7960405B2 (en) * 1998-09-24 2011-06-14 Abbott Laboratories Compounds and methods for treatment and prevention of diseases
US6042597A (en) 1998-10-23 2000-03-28 Scimed Life Systems, Inc. Helical stent design
US6733523B2 (en) 1998-12-11 2004-05-11 Endologix, Inc. Implantable vascular graft
US6660030B2 (en) 1998-12-11 2003-12-09 Endologix, Inc. Bifurcation graft deployment catheter
JP4189127B2 (en) 1998-12-11 2008-12-03 エンドロジックス、インク Intraluminal artificial blood vessels
US6187036B1 (en) 1998-12-11 2001-02-13 Endologix, Inc. Endoluminal vascular prosthesis
US6743252B1 (en) 1998-12-18 2004-06-01 Cook Incorporated Cannula stent
US6355057B1 (en) 1999-01-14 2002-03-12 Medtronic, Inc. Staggered endoluminal stent
US6251134B1 (en) * 1999-02-28 2001-06-26 Inflow Dynamics Inc. Stent with high longitudinal flexibility
US6273910B1 (en) 1999-03-11 2001-08-14 Advanced Cardiovascular Systems, Inc. Stent with varying strut geometry
US8034100B2 (en) 1999-03-11 2011-10-11 Endologix, Inc. Graft deployment system
US6261316B1 (en) 1999-03-11 2001-07-17 Endologix, Inc. Single puncture bifurcation graft deployment system
DE19913978A1 (en) * 1999-03-18 2000-09-28 Schering Ag Asymmetric stent containing irregularly distributed active agents or radioisotopes useful e.g. for treating atherosclerosis and preventing restenosis
US6464723B1 (en) * 1999-04-22 2002-10-15 Advanced Cardiovascular Systems, Inc. Radiopaque stents
US6273911B1 (en) 1999-04-22 2001-08-14 Advanced Cardiovascular Systems, Inc. Variable strength stent
US8016873B1 (en) 1999-05-03 2011-09-13 Drasler William J Intravascular hinge stent
US6245101B1 (en) 1999-05-03 2001-06-12 William J. Drasler Intravascular hinge stent
US6375676B1 (en) 1999-05-17 2002-04-23 Advanced Cardiovascular Systems, Inc. Self-expanding stent with enhanced delivery precision and stent delivery system
US6997951B2 (en) * 1999-06-30 2006-02-14 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US6409754B1 (en) * 1999-07-02 2002-06-25 Scimed Life Systems, Inc. Flexible segmented stent
US6569193B1 (en) * 1999-07-22 2003-05-27 Advanced Cardiovascular Systems, Inc. Tapered self-expanding stent
US6544279B1 (en) * 2000-08-09 2003-04-08 Incept, Llc Vascular device for emboli, thrombus and foreign body removal and methods of use
DE19937638B4 (en) * 1999-08-12 2006-11-02 Alveolus Inc. Tracheal Stent
US6371980B1 (en) * 1999-08-30 2002-04-16 Cardiovasc, Inc. Composite expandable device with impervious polymeric covering and bioactive coating thereon, delivery apparatus and method
US6293968B1 (en) 1999-09-02 2001-09-25 Syde A. Taheri Inflatable intraluminal vascular stent
US20010047200A1 (en) * 1999-10-13 2001-11-29 Raymond Sun Non-foreshortening intraluminal prosthesis
US6610087B1 (en) 1999-11-16 2003-08-26 Scimed Life Systems, Inc. Endoluminal stent having a matched stiffness region and/or a stiffness gradient and methods for providing stent kink resistance
US6585758B1 (en) 1999-11-16 2003-07-01 Scimed Life Systems, Inc. Multi-section filamentary endoluminal stent
US6361555B1 (en) 1999-12-15 2002-03-26 Advanced Cardiovascular Systems, Inc. Stent and stent delivery assembly and method of use
US6443979B1 (en) 1999-12-20 2002-09-03 Advanced Cardiovascular Systems, Inc. Expandable stent delivery sheath and method of use
US6423090B1 (en) 2000-02-11 2002-07-23 Advanced Cardiovascular Systems, Inc. Stent pattern with staged expansion
US6723119B2 (en) * 2000-03-01 2004-04-20 Medinol Ltd. Longitudinally flexible stent
US8920487B1 (en) 2000-03-01 2014-12-30 Medinol Ltd. Longitudinally flexible stent
US8202312B2 (en) * 2000-03-01 2012-06-19 Medinol Ltd. Longitudinally flexible stent
US7828835B2 (en) 2000-03-01 2010-11-09 Medinol Ltd. Longitudinally flexible stent
US8496699B2 (en) * 2000-03-01 2013-07-30 Medinol Ltd. Longitudinally flexible stent
US7758627B2 (en) * 2000-03-01 2010-07-20 Medinol, Ltd. Longitudinally flexible stent
US7141062B1 (en) * 2000-03-01 2006-11-28 Medinol, Ltd. Longitudinally flexible stent
US7621947B2 (en) * 2000-03-01 2009-11-24 Medinol, Ltd. Longitudinally flexible stent
EP1132058A1 (en) * 2000-03-06 2001-09-12 Advanced Laser Applications Holding S.A. Intravascular prothesis
US6451050B1 (en) 2000-04-28 2002-09-17 Cardiovasc, Inc. Stent graft and method
US20030114918A1 (en) 2000-04-28 2003-06-19 Garrison Michi E. Stent graft assembly and method
US6520984B1 (en) 2000-04-28 2003-02-18 Cardiovasc, Inc. Stent graft assembly and method
US6616689B1 (en) * 2000-05-03 2003-09-09 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6602282B1 (en) * 2000-05-04 2003-08-05 Avantec Vascular Corporation Flexible stent structure
JP2003533335A (en) 2000-05-22 2003-11-11 オーバス メディカル テクノロジーズ インク. Self-expanding stent
US6652576B1 (en) 2000-06-07 2003-11-25 Advanced Cardiovascular Systems, Inc. Variable stiffness stent
US7632303B1 (en) 2000-06-07 2009-12-15 Advanced Cardiovascular Systems, Inc. Variable stiffness medical devices
US6652579B1 (en) 2000-06-22 2003-11-25 Advanced Cardiovascular Systems, Inc. Radiopaque stent
US6799637B2 (en) 2000-10-20 2004-10-05 Schlumberger Technology Corporation Expandable tubing and method
DE10040630A1 (en) * 2000-08-16 2002-03-07 Thomas Hupp Stent for implantation in the carotid artery
US7766956B2 (en) 2000-09-22 2010-08-03 Boston Scientific Scimed, Inc. Intravascular stent and assembly
US20020072792A1 (en) * 2000-09-22 2002-06-13 Robert Burgermeister Stent with optimal strength and radiopacity characteristics
US6695833B1 (en) 2000-09-27 2004-02-24 Nellix, Inc. Vascular stent-graft apparatus and forming method
AU2002233936A1 (en) * 2000-11-07 2002-05-21 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal stent, self-fupporting endoluminal graft and methods of making same
US6929660B1 (en) 2000-12-22 2005-08-16 Advanced Cardiovascular Systems, Inc. Intravascular stent
NO335594B1 (en) 2001-01-16 2015-01-12 Halliburton Energy Serv Inc Expandable devices and methods thereof
US6998060B2 (en) 2001-03-01 2006-02-14 Cordis Corporation Flexible stent and method of manufacture
US6679911B2 (en) 2001-03-01 2004-01-20 Cordis Corporation Flexible stent
EP2158875B1 (en) 2001-03-13 2019-07-03 Medinol Ltd. Stent for improving blood flow
DE10118944B4 (en) 2001-04-18 2013-01-31 Merit Medical Systems, Inc. Removable, essentially cylindrical implants
US6749628B1 (en) 2001-05-17 2004-06-15 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US20040176837A1 (en) * 2001-05-17 2004-09-09 Atladottir Svava Maria Self-expanding stent and catheter assembly and method for treating bifurcations
US7087088B2 (en) * 2001-05-24 2006-08-08 Torax Medical, Inc. Methods and apparatus for regulating the flow of matter through body tubing
US6629994B2 (en) 2001-06-11 2003-10-07 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6939373B2 (en) 2003-08-20 2005-09-06 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6673106B2 (en) * 2001-06-14 2004-01-06 Cordis Neurovascular, Inc. Intravascular stent device
US6818013B2 (en) * 2001-06-14 2004-11-16 Cordis Corporation Intravascular stent device
GB0114918D0 (en) 2001-06-19 2001-08-08 Vortex Innovation Ltd Devices for repairing aneurysms
US6635083B1 (en) 2001-06-25 2003-10-21 Advanced Cardiovascular Systems, Inc. Stent with non-linear links and method of use
US20030109886A1 (en) 2001-06-27 2003-06-12 Martin Keegan Catheter
US6749629B1 (en) 2001-06-27 2004-06-15 Advanced Cardiovascular Systems, Inc. Stent pattern with figure-eights
EP1399085B1 (en) 2001-06-27 2016-02-17 Salviac Limited A catheter
CA2454871C (en) 2001-07-26 2008-09-30 Alveolus Inc Removable stent and method of using the same
IES20010828A2 (en) * 2001-09-12 2003-03-19 Medtronic Inc Medical device for intraluminal endovascular stenting
DE50105476D1 (en) * 2001-09-18 2005-04-07 Abbott Lab Vascular Entpr Ltd stent
US8262689B2 (en) * 2001-09-28 2012-09-11 Advanced Cardiovascular Systems, Inc. Embolic filtering devices
DE60231733D1 (en) 2001-11-09 2009-05-07 Angioscore Inc
US20040111108A1 (en) 2001-11-09 2004-06-10 Farnan Robert C. Balloon catheter with non-deployable stent
US6776794B1 (en) 2001-11-28 2004-08-17 Advanced Cardiovascular Systems, Inc. Stent pattern with mirror image
US20030176914A1 (en) * 2003-01-21 2003-09-18 Rabkin Dmitry J. Multi-segment modular stent and methods for manufacturing stents
EP1917931A3 (en) 2001-12-03 2013-02-27 Intek Technology LLC Multi-segment modular stent and methods for manufacturing stents
US7147661B2 (en) * 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
US6964681B2 (en) * 2002-01-29 2005-11-15 Medtronic Vascular, Inc. Flared stent and method of use
US7445629B2 (en) * 2002-01-31 2008-11-04 Boston Scientific Scimed, Inc. Medical device for delivering biologically active material
US7291165B2 (en) 2002-01-31 2007-11-06 Boston Scientific Scimed, Inc. Medical device for delivering biologically active material
US7326245B2 (en) * 2002-01-31 2008-02-05 Boston Scientific Scimed, Inc. Medical device for delivering biologically active material
JP4512369B2 (en) * 2002-01-31 2010-07-28 ラディ・メディカル・システムズ・アクチェボラーグ Stent
US7695427B2 (en) * 2002-04-26 2010-04-13 Torax Medical, Inc. Methods and apparatus for treating body tissue sphincters and the like
US20050197715A1 (en) * 2002-04-26 2005-09-08 Torax Medical, Inc. Methods and apparatus for implanting devices into non-sterile body lumens or organs
US7637935B2 (en) 2002-05-06 2009-12-29 Abbott Laboratories Endoprosthesis for controlled contraction and expansion
EP1503700B1 (en) 2002-05-08 2012-09-26 Abbott Laboratories Endoprosthesis having foot extensions
US8303617B2 (en) * 2002-05-13 2012-11-06 Salviac Limited Embolic protection system
US7195648B2 (en) 2002-05-16 2007-03-27 Cordis Neurovascular, Inc. Intravascular stent device
US7794492B2 (en) * 2002-05-20 2010-09-14 Kawasumi Laboratories, Inc. Stent and stent graft
US6656220B1 (en) 2002-06-17 2003-12-02 Advanced Cardiovascular Systems, Inc. Intravascular stent
US8425549B2 (en) 2002-07-23 2013-04-23 Reverse Medical Corporation Systems and methods for removing obstructive matter from body lumens and treating vascular defects
US9561123B2 (en) 2002-08-30 2017-02-07 C.R. Bard, Inc. Highly flexible stent and method of manufacture
US6878162B2 (en) 2002-08-30 2005-04-12 Edwards Lifesciences Ag Helical stent having improved flexibility and expandability
US20040054398A1 (en) * 2002-09-13 2004-03-18 Cully Edward H. Stent device with multiple helix construction
WO2004026183A2 (en) 2002-09-20 2004-04-01 Nellix, Inc. Stent-graft with positioning anchor
US20040093056A1 (en) 2002-10-26 2004-05-13 Johnson Lianw M. Medical appliance delivery apparatus and method of use
US20040087886A1 (en) * 2002-10-30 2004-05-06 Scimed Life Systems, Inc. Linearly expandable ureteral stent
US7959671B2 (en) 2002-11-05 2011-06-14 Merit Medical Systems, Inc. Differential covering and coating methods
US7637942B2 (en) 2002-11-05 2009-12-29 Merit Medical Systems, Inc. Coated stent with geometry determinated functionality and method of making the same
US7527644B2 (en) 2002-11-05 2009-05-05 Alveolus Inc. Stent with geometry determinated functionality and method of making the same
US7875068B2 (en) 2002-11-05 2011-01-25 Merit Medical Systems, Inc. Removable biliary stent
PL377190A1 (en) 2002-11-07 2006-01-23 Abbott Laboratories Prosthesis with multiple drugs in discrete unmixed droplets
WO2004041126A1 (en) 2002-11-08 2004-05-21 Jacques Seguin Endoprosthesis for vascular bifurcation
US7316710B1 (en) * 2002-12-30 2008-01-08 Advanced Cardiovascular Systems, Inc. Flexible stent
US6849084B2 (en) * 2002-12-31 2005-02-01 Intek Technology L.L.C. Stent delivery system
US8080026B2 (en) 2003-01-21 2011-12-20 Angioscore, Inc. Apparatus and methods for treating hardened vascular lesions
US20050021070A1 (en) * 2003-01-21 2005-01-27 Angioscore, Inc. Methods and apparatus for manipulating vascular prostheses
US7686824B2 (en) * 2003-01-21 2010-03-30 Angioscore, Inc. Apparatus and methods for treating hardened vascular lesions
US7179286B2 (en) * 2003-02-21 2007-02-20 Boston Scientific Scimed, Inc. Stent with stepped connectors
ATE492246T1 (en) 2003-03-19 2011-01-15 Advanced Bio Prosthetic Surfac ENDOLUMINAL STENT WITH CENTER CONNECTING LINKS
US7637934B2 (en) 2003-03-31 2009-12-29 Merit Medical Systems, Inc. Medical appliance optical delivery and deployment apparatus and method
US7604660B2 (en) 2003-05-01 2009-10-20 Merit Medical Systems, Inc. Bifurcated medical appliance delivery apparatus and method
US7625398B2 (en) 2003-05-06 2009-12-01 Abbott Laboratories Endoprosthesis having foot extensions
US8048146B2 (en) 2003-05-06 2011-11-01 Abbott Laboratories Endoprosthesis having foot extensions
US7625401B2 (en) 2003-05-06 2009-12-01 Abbott Laboratories Endoprosthesis having foot extensions
US7112216B2 (en) * 2003-05-28 2006-09-26 Boston Scientific Scimed, Inc. Stent with tapered flexibility
US6916336B2 (en) * 2003-06-09 2005-07-12 Avantec Vascular Corporation Vascular prosthesis
US7131993B2 (en) * 2003-06-25 2006-11-07 Boston Scientific Scimed, Inc. Varying circumferential spanned connectors in a stent
DE10328882B4 (en) * 2003-06-26 2010-06-02 Admedes Schuessler Gmbh Use of a flexible shaft as a hose-like insertion device
DE10335649A1 (en) 2003-07-30 2005-02-24 Jotec Gmbh Braid stent for implantation in a blood vessel
US7959665B2 (en) * 2003-07-31 2011-06-14 Abbott Cardiovascular Systems Inc. Intravascular stent with inverted end rings
US20080033570A1 (en) * 2003-08-01 2008-02-07 Blitz Benjamin T Prostatic stent placement device
DE10342757A1 (en) * 2003-09-16 2005-04-07 Campus Gmbh & Co. Kg Stent with terminal anchoring elements
US20050149168A1 (en) * 2003-12-30 2005-07-07 Daniel Gregorich Stent to be deployed on a bend
US8454676B1 (en) 2004-01-20 2013-06-04 Advanced Cardiovascular Systems, Inc. Transition matching stent
JP4447356B2 (en) * 2004-03-19 2010-04-07 パイオニア株式会社 Speaker device
US8431145B2 (en) 2004-03-19 2013-04-30 Abbott Laboratories Multiple drug delivery from a balloon and a prosthesis
US20070027523A1 (en) * 2004-03-19 2007-02-01 Toner John L Method of treating vascular disease at a bifurcated vessel using coated balloon
US20100030183A1 (en) 2004-03-19 2010-02-04 Toner John L Method of treating vascular disease at a bifurcated vessel using a coated balloon
EP2301619B1 (en) 2004-03-19 2017-05-10 Abbott Laboratories Multiple drug delivery from a balloon and a prosthesis
US7686825B2 (en) 2004-03-25 2010-03-30 Hauser David L Vascular filter device
DE102004022044B4 (en) * 2004-05-03 2008-12-18 Qualimed Innovative Medizinprodukte Gmbh stent
US20060122686A1 (en) * 2004-05-10 2006-06-08 Ran Gilad Stent and method of manufacturing same
US20060122692A1 (en) * 2004-05-10 2006-06-08 Ran Gilad Stent valve and method of using same
US20060122693A1 (en) * 2004-05-10 2006-06-08 Youssef Biadillah Stent valve and method of manufacturing same
US8048145B2 (en) 2004-07-22 2011-11-01 Endologix, Inc. Graft systems having filling structures supported by scaffolds and methods for their use
US20060060266A1 (en) * 2004-09-01 2006-03-23 Pst, Llc Stent and method for manufacturing the stent
US7780721B2 (en) * 2004-09-01 2010-08-24 C. R. Bard, Inc. Stent and method for manufacturing the stent
GB0419954D0 (en) 2004-09-08 2004-10-13 Advotek Medical Devices Ltd System for directing therapy
US7927346B2 (en) * 2004-09-10 2011-04-19 Stryker Corporation Diversion device to increase cerebral blood flow
WO2006034436A2 (en) 2004-09-21 2006-03-30 Stout Medical Group, L.P. Expandable support device and method of use
US7887579B2 (en) 2004-09-29 2011-02-15 Merit Medical Systems, Inc. Active stent
JP4203476B2 (en) * 2005-01-24 2009-01-07 シャープ株式会社 Portable information device
FR2881946B1 (en) * 2005-02-17 2008-01-04 Jacques Seguin DEVICE FOR THE TREATMENT OF BODILY CONDUIT AT BIFURCATION LEVEL
JP5271697B2 (en) * 2005-03-23 2013-08-21 アボット ラボラトリーズ Delivery of highly lipophilic drugs through medical devices
WO2006108010A2 (en) 2005-04-04 2006-10-12 Burpee Materials Technology, Llc Flexible stent
DE102005016103B4 (en) * 2005-04-08 2014-10-09 Merit Medical Systems, Inc. Duodenumstent
US7947207B2 (en) 2005-04-12 2011-05-24 Abbott Cardiovascular Systems Inc. Method for retaining a vascular stent on a catheter
US7763198B2 (en) 2005-04-12 2010-07-27 Abbott Cardiovascular Systems Inc. Method for retaining a vascular stent on a catheter
US8628565B2 (en) * 2005-04-13 2014-01-14 Abbott Cardiovascular Systems Inc. Intravascular stent
DE102005019649A1 (en) * 2005-04-26 2006-11-02 Alveolus Inc. Flexible stent for positioning in lumen of esophagus comprises tube and stabilization members defined circumferentially about tube, where each member extends inwardly in tube to define inner diameter that is less than inner diameter of tube
JP5112295B2 (en) * 2005-04-27 2013-01-09 スタウト メディカル グループ,エル.ピー. Expandable support and method of use
US20060253193A1 (en) * 2005-05-03 2006-11-09 Lichtenstein Samuel V Mechanical means for controlling blood pressure
US10076641B2 (en) 2005-05-11 2018-09-18 The Spectranetics Corporation Methods and systems for delivering substances into luminal walls
US7731654B2 (en) 2005-05-13 2010-06-08 Merit Medical Systems, Inc. Delivery device with viewing window and associated method
WO2007008600A2 (en) 2005-07-07 2007-01-18 Nellix, Inc. Systems and methods for endovascular aneurysm treatment
EP1903949A2 (en) 2005-07-14 2008-04-02 Stout Medical Group, L.P. Expandable support device and method of use
US20070050011A1 (en) * 2005-08-26 2007-03-01 Medlogics Device Corporation Lumen-supporting stents and methods for creating lumen-supporting stents with various open/closed designs
US8518100B2 (en) * 2005-12-19 2013-08-27 Advanced Cardiovascular Systems, Inc. Drug eluting stent for the treatment of dialysis graft stenoses
US20070173924A1 (en) * 2006-01-23 2007-07-26 Daniel Gelbart Axially-elongating stent and method of deployment
US20070191926A1 (en) * 2006-02-14 2007-08-16 Advanced Cardiovascular Systems, Inc. Stent pattern for high stent retention
EP1983931B1 (en) * 2006-02-14 2017-01-04 Angiomed GmbH & Co. Medizintechnik KG Highly flexible stent and method of manufacture
US7678440B1 (en) * 2006-03-01 2010-03-16 Mcknight Geoffrey P Deformable variable-stiffness cellular structures
US8475074B1 (en) 2006-03-01 2013-07-02 Hrl Laboratories, Llc Variable stiffness joint mechanism
WO2007131002A2 (en) 2006-05-01 2007-11-15 Stout Medical Group, L.P. Expandable support device and method of use
US20070276444A1 (en) * 2006-05-24 2007-11-29 Daniel Gelbart Self-powered leadless pacemaker
US20070276465A1 (en) * 2006-05-25 2007-11-29 Rosaire Mongrain Stent
EP2020956A2 (en) 2006-05-26 2009-02-11 Nanyang Technological University Implantable article, method of forming same and method for reducing thrombogenicity
US9259336B2 (en) * 2006-06-06 2016-02-16 Cook Medical Technologies Llc Stent with a crush-resistant zone
US20070287879A1 (en) * 2006-06-13 2007-12-13 Daniel Gelbart Mechanical means for controlling blood pressure
CA2936752A1 (en) 2006-06-22 2007-12-27 Ams Research Corporation Adjustable tension incontinence sling assemblies
US8029558B2 (en) 2006-07-07 2011-10-04 Abbott Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US10004584B2 (en) 2006-07-10 2018-06-26 First Quality Hygienic, Inc. Resilient intravaginal device
US8613698B2 (en) 2006-07-10 2013-12-24 Mcneil-Ppc, Inc. Resilient device
US10219884B2 (en) 2006-07-10 2019-03-05 First Quality Hygienic, Inc. Resilient device
US8047980B2 (en) 2006-07-10 2011-11-01 Mcneil-Ppc, Inc. Method of treating urinary incontinence
WO2008008794A2 (en) 2006-07-10 2008-01-17 Mc Neil-Ppc, Inc. Resilient device
US8252041B2 (en) 2006-08-23 2012-08-28 Abbott Laboratories Stent designs for use in peripheral vessels
US7988720B2 (en) * 2006-09-12 2011-08-02 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
WO2008060360A2 (en) * 2006-09-28 2008-05-22 Surmodics, Inc. Implantable medical device with apertures for delivery of bioactive agents
US8778009B2 (en) 2006-10-06 2014-07-15 Abbott Cardiovascular Systems Inc. Intravascular stent
US9387100B2 (en) 2007-01-08 2016-07-12 Cardinal Health Switzerland GmbH Intraluminal medical device having variable axial flexibility about the circumference of the device
FR2911063B1 (en) 2007-01-09 2009-03-20 Stentys S A S Soc Par Actions RUPTIBLE BRIDGE STRUCTURE FOR STENT, AND STENT INCLUDING SUCH BRIDGE STRUCTURES.
US8523931B2 (en) 2007-01-12 2013-09-03 Endologix, Inc. Dual concentric guidewire and methods of bifurcated graft deployment
EP2120785B1 (en) * 2007-02-12 2021-12-01 C.R. Bard, Inc. Highly flexible stent and method of manufacture
US8333799B2 (en) 2007-02-12 2012-12-18 C. R. Bard, Inc. Highly flexible stent and method of manufacture
AT504975B1 (en) * 2007-02-19 2013-12-15 Arc Austrian Res Centers Gmbh GRID PART OF METAL AND METHOD FOR PRODUCING A GRID PART
US8623070B2 (en) 2007-03-08 2014-01-07 Thomas O. Bales Tapered helical stent and method for manufacturing the stent
US8974514B2 (en) 2007-03-13 2015-03-10 Abbott Cardiovascular Systems Inc. Intravascular stent with integrated link and ring strut
DE102007019058A1 (en) * 2007-04-23 2008-10-30 Stengel, Max, Dr.Dr. Vascular implant for the treatment of an aneurysm
US20080269746A1 (en) 2007-04-24 2008-10-30 Osteolign, Inc. Conformable intramedullary implant with nestable components
US8128679B2 (en) 2007-05-23 2012-03-06 Abbott Laboratories Vascular Enterprises Limited Flexible stent with torque-absorbing connectors
US8016874B2 (en) 2007-05-23 2011-09-13 Abbott Laboratories Vascular Enterprises Limited Flexible stent with elevated scaffolding properties
US7867273B2 (en) * 2007-06-27 2011-01-11 Abbott Laboratories Endoprostheses for peripheral arteries and other body vessels
US9144508B2 (en) * 2007-07-19 2015-09-29 Back Bay Medical Inc. Radially expandable stent
US8663318B2 (en) * 2007-07-23 2014-03-04 Hocor Cardiovascular Technologies Llc Method and apparatus for percutaneous aortic valve replacement
US8663319B2 (en) * 2007-07-23 2014-03-04 Hocor Cardiovascular Technologies Llc Methods and apparatus for percutaneous aortic valve replacement
US7988723B2 (en) 2007-08-02 2011-08-02 Flexible Stenting Solutions, Inc. Flexible stent
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
AU2008308474B2 (en) 2007-10-04 2014-07-24 Trivascular, Inc. Modular vascular graft for low profile percutaneous delivery
US20090105687A1 (en) * 2007-10-05 2009-04-23 Angioscore, Inc. Scoring catheter with drug delivery membrane
US9198687B2 (en) 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
US10123803B2 (en) 2007-10-17 2018-11-13 Covidien Lp Methods of managing neurovascular obstructions
US9220522B2 (en) 2007-10-17 2015-12-29 Covidien Lp Embolus removal systems with baskets
US8066757B2 (en) 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US8926680B2 (en) 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US11337714B2 (en) 2007-10-17 2022-05-24 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke
US8088140B2 (en) 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US8545514B2 (en) 2008-04-11 2013-10-01 Covidien Lp Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8337544B2 (en) 2007-12-20 2012-12-25 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having flexible connectors
US20090163998A1 (en) * 2007-12-20 2009-06-25 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having rings linked by foot extensions
US8920488B2 (en) 2007-12-20 2014-12-30 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having a stable architecture
US7850726B2 (en) 2007-12-20 2010-12-14 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having struts linked by foot extensions
US8470021B2 (en) * 2007-12-28 2013-06-25 Cook Medical Technologies Llc Radially expandable stent
KR100988816B1 (en) * 2008-01-29 2010-10-20 신경민 A stent
US8940003B2 (en) 2008-02-22 2015-01-27 Covidien Lp Methods and apparatus for flow restoration
US8221494B2 (en) 2008-02-22 2012-07-17 Endologix, Inc. Apparatus and method of placement of a graft or graft system
US9039748B2 (en) * 2008-04-07 2015-05-26 Abbott Cardiovascular Systems Inc. Method of securing a medical device onto a balloon and system thereof
US8236040B2 (en) 2008-04-11 2012-08-07 Endologix, Inc. Bifurcated graft deployment systems and methods
CN101902988A (en) 2008-04-25 2010-12-01 耐利克斯股份有限公司 The induction system of stent graft
US10716573B2 (en) 2008-05-01 2020-07-21 Aneuclose Janjua aneurysm net with a resilient neck-bridging portion for occluding a cerebral aneurysm
US10028747B2 (en) 2008-05-01 2018-07-24 Aneuclose Llc Coils with a series of proximally-and-distally-connected loops for occluding a cerebral aneurysm
US20090287143A1 (en) * 2008-05-15 2009-11-19 Casey Line Small Gauge Mechanical Tissue Cutter/Aspirator Probe For Glaucoma Surgery
US20090287233A1 (en) * 2008-05-15 2009-11-19 Huculak John C Small Gauge Mechanical Tissue Cutter/Aspirator Probe For Glaucoma Surgery
WO2009149294A1 (en) 2008-06-04 2009-12-10 Nellix, Inc. Sealing apparatus and methods of use
US10022164B2 (en) 2008-06-11 2018-07-17 Eventions, Llc Orthopedic fastener device
US11207199B2 (en) 2008-06-11 2021-12-28 Q3 Medical Devices Limited Stent with anti-migration devices
US20100256731A1 (en) 2009-04-02 2010-10-07 Mangiardi Eric K Stent
US10117760B2 (en) 2009-04-02 2018-11-06 Q3 Medical Devices Limited Stent
US10245165B2 (en) 2009-04-02 2019-04-02 Q3 Medical Devices Limited Stent
US20100042202A1 (en) * 2008-08-13 2010-02-18 Kamal Ramzipoor Composite stent having multi-axial flexibility
US10898620B2 (en) * 2008-06-20 2021-01-26 Razmodics Llc Composite stent having multi-axial flexibility and method of manufacture thereof
US8206635B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US8206636B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
JP5134729B2 (en) 2008-07-01 2013-01-30 エンドロジックス、インク Catheter system
US9039756B2 (en) 2008-07-21 2015-05-26 Jenesis Surgical, Llc Repositionable endoluminal support structure and its applications
EP3878408A1 (en) 2008-07-21 2021-09-15 Jenesis Surgical, LLC Endoluminal support apparatus
US9402707B2 (en) 2008-07-22 2016-08-02 Neuravi Limited Clot capture systems and associated methods
US9005274B2 (en) 2008-08-04 2015-04-14 Stentys Sas Method for treating a body lumen
US9149376B2 (en) * 2008-10-06 2015-10-06 Cordis Corporation Reconstrainable stent delivery system
US9125720B2 (en) 2008-10-13 2015-09-08 Alcon Research, Ltd. Capsularhexis device with flexible heating element
US20100211176A1 (en) 2008-11-12 2010-08-19 Stout Medical Group, L.P. Fixation device and method
WO2010056895A1 (en) 2008-11-12 2010-05-20 Stout Medical Group, L.P. Fixation device and method
US20100137974A1 (en) * 2008-12-02 2010-06-03 Boston Scientific Scimed, Inc. Stent with Graduated Stiffness
US8137344B2 (en) 2008-12-10 2012-03-20 Alcon Research, Ltd. Flexible, automated capsulorhexis device
US8157797B2 (en) 2009-01-12 2012-04-17 Alcon Research, Ltd. Capsularhexis device with retractable bipolar electrodes
AU2010207983B2 (en) * 2009-02-02 2015-05-14 Cardinal Health 529, Llc Flexible stent design
US20100274276A1 (en) * 2009-04-22 2010-10-28 Ricky Chow Aneurysm treatment system, device and method
BRPI1013573A2 (en) * 2009-04-24 2016-04-12 Flexible Stenting Solutions Inc flexible devices
US20110054587A1 (en) 2009-04-28 2011-03-03 Endologix, Inc. Apparatus and method of placement of a graft or graft system
US10772717B2 (en) 2009-05-01 2020-09-15 Endologix, Inc. Percutaneous method and device to treat dissections
JP2012525239A (en) 2009-05-01 2012-10-22 エンドロジックス、インク Transcutaneous methods and devices for treating dissociation (priority information and incorporation by reference)
US8814854B2 (en) 2009-06-03 2014-08-26 Alcon Research, Ltd. Capsulotomy repair device and method for capsulotomy repair
US20100312252A1 (en) * 2009-06-03 2010-12-09 Guangyao Jia Capsularhexis device with flexible heating element having an angled transitional neck
CA2961767C (en) 2009-06-23 2018-08-14 Endospan Ltd. Vascular prostheses for treating aneurysms
US20110004294A1 (en) * 2009-07-02 2011-01-06 Abbott Laboratories Fatigue-resistant stent
US8529596B2 (en) 2009-07-08 2013-09-10 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US8357178B2 (en) * 2009-07-08 2013-01-22 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US8795317B2 (en) * 2009-07-08 2014-08-05 Concentric Medical, Inc. Embolic obstruction retrieval devices and methods
US8795345B2 (en) * 2009-07-08 2014-08-05 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US8357179B2 (en) * 2009-07-08 2013-01-22 Concentric Medical, Inc. Vascular and bodily duct treatment devices and methods
US8979892B2 (en) 2009-07-09 2015-03-17 Endospan Ltd. Apparatus for closure of a lumen and methods of using the same
US8491646B2 (en) 2009-07-15 2013-07-23 Endologix, Inc. Stent graft
JP5588511B2 (en) 2009-07-27 2014-09-10 エンドロジックス、インク Stent graft
DE202009010388U1 (en) 2009-07-31 2010-12-09 Düring, Klaus, Dr. Fixation device for fixing an apnea stent in the airway
US8114149B2 (en) * 2009-10-20 2012-02-14 Svelte Medical Systems, Inc. Hybrid stent with helical connectors
US9358140B1 (en) 2009-11-18 2016-06-07 Aneuclose Llc Stent with outer member to embolize an aneurysm
CN105361976B (en) 2009-11-30 2017-08-18 恩多斯潘有限公司 For implantation into the multi-part overlay film frame system in the blood vessel with multiple branches
EP2509535B1 (en) 2009-12-08 2016-12-07 Endospan Ltd Endovascular stent-graft system with fenestrated and crossing stent-grafts
US20110144577A1 (en) * 2009-12-11 2011-06-16 John Stankus Hydrophilic coatings with tunable composition for drug coated balloon
US8951595B2 (en) * 2009-12-11 2015-02-10 Abbott Cardiovascular Systems Inc. Coatings with tunable molecular architecture for drug-coated balloon
US8480620B2 (en) * 2009-12-11 2013-07-09 Abbott Cardiovascular Systems Inc. Coatings with tunable solubility profile for drug-coated balloon
GB2476479B (en) 2009-12-22 2012-06-20 Cook Medical Technologies Llc Implantable device
US20110276078A1 (en) 2009-12-30 2011-11-10 Nellix, Inc. Filling structure for a graft system and methods of use
CA2789304C (en) 2010-02-08 2018-01-02 Endospan Ltd. Thermal energy application for prevention and management of endoleaks in stent-grafts
US20110208289A1 (en) * 2010-02-25 2011-08-25 Endospan Ltd. Flexible Stent-Grafts
US9199066B2 (en) 2010-03-12 2015-12-01 Quattro Vascular Pte Ltd. Device and method for compartmental vessel treatment
WO2011119536A1 (en) 2010-03-22 2011-09-29 Abbott Cardiovascular Systems Inc. Stent delivery system having a fibrous matrix covering with improved stent retention
EP2380604A1 (en) 2010-04-19 2011-10-26 InnoRa Gmbh Improved coating formulations for scoring or cutting balloon catheters
US9241755B2 (en) 2010-05-11 2016-01-26 Alcon Research, Ltd. Capsule polishing device and method for capsule polishing
US8535380B2 (en) 2010-05-13 2013-09-17 Stout Medical Group, L.P. Fixation device and method
US8389041B2 (en) 2010-06-17 2013-03-05 Abbott Cardiovascular Systems, Inc. Systems and methods for rotating and coating an implantable device
BR112013002720A2 (en) 2010-08-02 2016-05-31 Cordis Corp flexible helical stent having intermediate non-helical region
CA2807119C (en) 2010-08-02 2017-08-01 Cordis Corporation Flexible helical stent having different helical regions
BR112013002637B1 (en) 2010-08-02 2020-12-29 CARDINAL HEALTH SWITZERLAND 515 GmbH flexible stent having protruding joints
CA2807022C (en) 2010-08-02 2016-09-06 Cordis Corporation Flexible helical stent having intermediate structural feature
EP2608747A4 (en) 2010-08-24 2015-02-11 Flexmedex Llc Support device and method for use
US8632559B2 (en) 2010-09-21 2014-01-21 Angioscore, Inc. Method and system for treating valve stenosis
US9149388B2 (en) 2010-09-29 2015-10-06 Alcon Research, Ltd. Attenuated RF power for automated capsulorhexis
WO2012052982A1 (en) 2010-10-22 2012-04-26 Neuravi Limited Clot engagement and removal system
WO2012061526A2 (en) 2010-11-02 2012-05-10 Endologix, Inc. Apparatus and method of placement of a graft or graft system
US9149286B1 (en) 2010-11-12 2015-10-06 Flexmedex, LLC Guidance tool and method for use
US9393100B2 (en) 2010-11-17 2016-07-19 Endologix, Inc. Devices and methods to treat vascular dissections
CA3035048C (en) 2010-12-23 2021-05-04 Mark Deem System for mitral valve repair and replacement
US8512395B2 (en) 2010-12-30 2013-08-20 Boston Scientific Scimed, Inc. Stent with horseshoe shaped bridges
US8801768B2 (en) 2011-01-21 2014-08-12 Endologix, Inc. Graft systems having semi-permeable filling structures and methods for their use
US9526638B2 (en) 2011-02-03 2016-12-27 Endospan Ltd. Implantable medical devices constructed of shape memory material
BR112013019925A2 (en) * 2011-02-04 2016-12-13 Concentric Medical Inc devices and methods of treatment of body and vascular duct
US9855046B2 (en) 2011-02-17 2018-01-02 Endospan Ltd. Vascular bands and delivery systems therefor
EP2680915B1 (en) 2011-03-01 2021-12-22 Endologix LLC Catheter system
WO2012117395A1 (en) 2011-03-02 2012-09-07 Endospan Ltd. Reduced-strain extra- vascular ring for treating aortic aneurysm
JP2014511247A (en) 2011-03-03 2014-05-15 ボストン サイエンティフィック サイムド,インコーポレイテッド Low strain high strength stent
WO2012119037A1 (en) 2011-03-03 2012-09-07 Boston Scientific Scimed, Inc. Stent with reduced profile
US11259824B2 (en) 2011-03-09 2022-03-01 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
EP3871617A1 (en) 2011-03-09 2021-09-01 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
US12076037B2 (en) 2011-03-09 2024-09-03 Neuravi Limited Systems and methods to restore perfusion to a vessel
WO2014139845A1 (en) * 2013-03-14 2014-09-18 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
EP2685934A4 (en) * 2011-03-17 2015-01-07 Pq Bypass Inc Differential dilation stent and method of use
US9782277B2 (en) * 2011-04-04 2017-10-10 Allium Medical Solutions Ltd. System and method for manufacturing a stent
JP5976777B2 (en) 2011-04-06 2016-08-24 エンドーロジックス インコーポレイテッド Methods and systems for the treatment of intravascular aneurysms
US9101507B2 (en) 2011-05-18 2015-08-11 Ralph F. Caselnova Apparatus and method for proximal-to-distal endoluminal stent deployment
WO2012158881A1 (en) * 2011-05-19 2012-11-22 Tyco Healthcare Group Lp Vascular remodeling device
US10092426B2 (en) * 2011-05-31 2018-10-09 Cook Medical Technologies Llc Non-foreshortening, axial tension constrainable stent
US10285798B2 (en) 2011-06-03 2019-05-14 Merit Medical Systems, Inc. Esophageal stent
US8574287B2 (en) 2011-06-14 2013-11-05 Endospan Ltd. Stents incorporating a plurality of strain-distribution locations
EP2579811B1 (en) 2011-06-21 2016-03-16 Endospan Ltd Endovascular system with circumferentially-overlapping stent-grafts
EP2723273B1 (en) 2011-06-21 2021-10-27 Twelve, Inc. Prosthetic heart valve devices
EP2729095B1 (en) 2011-07-07 2016-10-26 Endospan Ltd. Stent fixation with reduced plastic deformation
EP2747682A4 (en) 2011-08-23 2015-01-21 Flexmedex Llc Tissue removal device and method
US9839510B2 (en) 2011-08-28 2017-12-12 Endospan Ltd. Stent-grafts with post-deployment variable radial displacement
US9763780B2 (en) 2011-10-19 2017-09-19 Twelve, Inc. Devices, systems and methods for heart valve replacement
CN103974674B (en) 2011-10-19 2016-11-09 托尔福公司 Artificial heart valve film device, artificial mitral valve and related system and method
US11202704B2 (en) 2011-10-19 2021-12-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
AU2012325809B2 (en) 2011-10-19 2016-01-21 Twelve, Inc. Devices, systems and methods for heart valve replacement
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9655722B2 (en) 2011-10-19 2017-05-23 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
WO2013065040A1 (en) 2011-10-30 2013-05-10 Endospan Ltd. Triple-collar stent-graft
US8986368B2 (en) * 2011-10-31 2015-03-24 Merit Medical Systems, Inc. Esophageal stent with valve
US9597204B2 (en) 2011-12-04 2017-03-21 Endospan Ltd. Branched stent-graft system
JP2015505497A (en) 2012-02-01 2015-02-23 クアトロ・ヴァスキュラー・ピーティーイー・リミテッド Device for dilation with vascular compartments
US9216033B2 (en) 2012-02-08 2015-12-22 Quattro Vascular Pte Ltd. System and method for treating biological vessels
WO2013119735A1 (en) 2012-02-08 2013-08-15 Tanhum Feld Constraining structure with non-linear axial struts
US9579198B2 (en) 2012-03-01 2017-02-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
US9770350B2 (en) 2012-05-15 2017-09-26 Endospan Ltd. Stent-graft with fixation elements that are radially confined for delivery
KR102313261B1 (en) 2012-06-05 2021-10-14 메리트 메디컬 시스템즈, 인크. Esophageal stent
US8834556B2 (en) * 2012-08-13 2014-09-16 Abbott Cardiovascular Systems Inc. Segmented scaffold designs
US9254203B2 (en) 2012-08-20 2016-02-09 Boston Scientific Scimed, Inc. Delivery device
US9463177B2 (en) 2012-09-10 2016-10-11 The Regents Of The University Of California Compounds and methods for modulating vascular injury
US8784434B2 (en) 2012-11-20 2014-07-22 Inceptus Medical, Inc. Methods and apparatus for treating embolism
DE102012112733A1 (en) * 2012-12-20 2014-06-26 Acandis Gmbh & Co. Kg Medical system e.g. bifurcation stent system installed in blood vessel, has a mesh structure having a partly hollow truncated cone-shaped transition section, in which the distal end portions are formed in hollow cylindrical shape
CA2891225C (en) 2013-03-05 2021-03-02 Merit Medical Systems, Inc. Reinforced valve
USD707818S1 (en) 2013-03-05 2014-06-24 Alcon Research Ltd. Capsulorhexis handpiece
WO2014141232A1 (en) 2013-03-11 2014-09-18 Endospan Ltd. Multi-component stent-graft system for aortic dissections
EP4085870A1 (en) 2013-03-13 2022-11-09 Jenesis Surgical, LLC Articulated commissure valve stents
US9642635B2 (en) 2013-03-13 2017-05-09 Neuravi Limited Clot removal device
WO2014159093A1 (en) 2013-03-14 2014-10-02 Endologix, Inc. Method for forming materials in situ within a medical device
EP2967611B1 (en) 2013-03-14 2019-01-16 Neuravi Limited Devices for removal of acute blockages from blood vessels
US9433429B2 (en) 2013-03-14 2016-09-06 Neuravi Limited Clot retrieval devices
US9320592B2 (en) 2013-03-15 2016-04-26 Covidien Lp Coated medical devices and methods of making and using same
US9545301B2 (en) 2013-03-15 2017-01-17 Covidien Lp Coated medical devices and methods of making and using same
WO2014150130A1 (en) 2013-03-15 2014-09-25 Merit Medical Systems, Inc. Esophageal stent
US9907684B2 (en) 2013-05-08 2018-03-06 Aneuclose Llc Method of radially-asymmetric stent expansion
CA2910948C (en) 2013-05-20 2020-12-29 Twelve, Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
US9320628B2 (en) * 2013-09-09 2016-04-26 Boston Scientific Scimed, Inc. Endoprosthesis devices including biostable and bioabsorable regions
US10117668B2 (en) 2013-10-08 2018-11-06 The Spectranetics Corporation Balloon catheter with non-deployable stent having improved stability
CN203829102U (en) * 2013-10-09 2014-09-17 唐利龙 Support for preformed guide-wire channel
US10238406B2 (en) 2013-10-21 2019-03-26 Inari Medical, Inc. Methods and apparatus for treating embolism
CR20160240A (en) 2013-11-11 2016-08-04 Edwards Lifesciences Cardiaq Llc SYSTEMS AND METHODS FOR THE MANUFACTURE OF THE FRAME OF A CANNULA
US10603197B2 (en) 2013-11-19 2020-03-31 Endospan Ltd. Stent system with radial-expansion locking
US9668890B2 (en) 2013-11-22 2017-06-06 Covidien Lp Anti-thrombogenic medical devices and methods
CN103720529B (en) * 2013-12-30 2017-02-08 先健科技(深圳)有限公司 Arcus aortae intraoperative stent and method for manufacturing stent
USD737438S1 (en) 2014-03-04 2015-08-25 Novartis Ag Capsulorhexis handpiece
US10285720B2 (en) 2014-03-11 2019-05-14 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
US10792056B2 (en) 2014-06-13 2020-10-06 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
JP6595513B2 (en) 2014-06-13 2019-10-23 ニューラヴィ・リミテッド Device for removal of acute occlusions from blood vessels
US9545263B2 (en) 2014-06-19 2017-01-17 Limflow Gmbh Devices and methods for treating lower extremity vasculature
US10265086B2 (en) 2014-06-30 2019-04-23 Neuravi Limited System for removing a clot from a blood vessel
WO2016079649A1 (en) 2014-11-17 2016-05-26 Quattro Vascular Pte Ltd. Balloon catheter system
US11253278B2 (en) 2014-11-26 2022-02-22 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
ES2920773T3 (en) 2014-11-26 2022-08-09 Neuravi Ltd A clot removal device to remove an occlusive clot from a blood vessel
US10617435B2 (en) 2014-11-26 2020-04-14 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US9789228B2 (en) 2014-12-11 2017-10-17 Covidien Lp Antimicrobial coatings for medical devices and processes for preparing such coatings
WO2016098113A1 (en) 2014-12-18 2016-06-23 Endospan Ltd. Endovascular stent-graft with fatigue-resistant lateral tube
EP4417169A2 (en) 2015-06-30 2024-08-21 Endologix LLC Locking assembly for coupling guidewire to delivery system
WO2017015296A1 (en) * 2015-07-19 2017-01-26 Sanford Health Bridging stent graft with combination balloon expandable and self-expandable stents and methods for use
JP7111610B2 (en) 2015-08-21 2022-08-02 トゥエルヴ, インコーポレイテッド Implantable Heart Valve Devices, Mitral Valve Repair Devices, and Related Systems and Methods
US10441447B2 (en) 2015-09-11 2019-10-15 Cook Medical Technologies Llc Variable radial stiffness and variable diameter intraluminal device
FI3364891T3 (en) 2015-10-23 2023-09-25 Inari Medical Inc Device for intravascular treatment of vascular occlusion
CN110742709B (en) * 2016-03-18 2022-06-28 复旦大学附属中山医院 Aorta bare stent and aorta interlayer stent
EP3435930B1 (en) 2016-03-31 2022-11-30 Vesper Medical, Inc. Intravascular implants
WO2017189276A1 (en) 2016-04-29 2017-11-02 Medtronic Vascular Inc. Prosthetic heart valve devices with tethered anchors and associated systems and methods
BR112019003113A2 (en) 2016-08-17 2019-05-21 Neuravi Limited clot removal system to remove occlusive clot from a blood vessel
AU2017324233A1 (en) 2016-09-06 2019-04-04 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
EP4400076A3 (en) 2016-10-24 2024-10-02 Inari Medical, Inc. Devices and methods for treating vascular occlusion
US10258488B2 (en) * 2016-11-14 2019-04-16 Covidien Lp Stent
US10449069B2 (en) 2016-11-14 2019-10-22 Covidien Lp Stent
US10905572B2 (en) * 2016-11-14 2021-02-02 Covidien Lp Stent
WO2018189593A2 (en) 2017-04-10 2018-10-18 Limflow Gmbh Devices and methods for treating lower extremity vasculature
US10575950B2 (en) 2017-04-18 2020-03-03 Twelve, Inc. Hydraulic systems for delivering prosthetic heart valve devices and associated methods
US10433961B2 (en) 2017-04-18 2019-10-08 Twelve, Inc. Delivery systems with tethers for prosthetic heart valve devices and associated methods
US10702378B2 (en) 2017-04-18 2020-07-07 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
US10792151B2 (en) 2017-05-11 2020-10-06 Twelve, Inc. Delivery systems for delivering prosthetic heart valve devices and associated methods
US10646338B2 (en) 2017-06-02 2020-05-12 Twelve, Inc. Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods
US10709591B2 (en) 2017-06-06 2020-07-14 Twelve, Inc. Crimping device and method for loading stents and prosthetic heart valves
US10786352B2 (en) 2017-07-06 2020-09-29 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10729541B2 (en) 2017-07-06 2020-08-04 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10238513B2 (en) 2017-07-19 2019-03-26 Abbott Cardiovascular Systems Inc. Intravascular stent
US10849769B2 (en) 2017-08-23 2020-12-01 Vesper Medical, Inc. Non-foreshortening stent
WO2019050765A1 (en) 2017-09-06 2019-03-14 Inari Medical, Inc. Hemostasis valves and methods of use
US11628076B2 (en) 2017-09-08 2023-04-18 Vesper Medical, Inc. Hybrid stent
US10271977B2 (en) 2017-09-08 2019-04-30 Vesper Medical, Inc. Hybrid stent
US11357650B2 (en) 2019-02-28 2022-06-14 Vesper Medical, Inc. Hybrid stent
US11154314B2 (en) 2018-01-26 2021-10-26 Inari Medical, Inc. Single insertion delivery system for treating embolism and associated systems and methods
US11364134B2 (en) 2018-02-15 2022-06-21 Vesper Medical, Inc. Tapering stent
US10500078B2 (en) 2018-03-09 2019-12-10 Vesper Medical, Inc. Implantable stent
CA3114285A1 (en) 2018-08-13 2020-02-20 Inari Medical, Inc. System for treating embolism and associated devices and methods
US10842498B2 (en) 2018-09-13 2020-11-24 Neuravi Limited Systems and methods of restoring perfusion to a vessel
US11406416B2 (en) 2018-10-02 2022-08-09 Neuravi Limited Joint assembly for vasculature obstruction capture device
CN112955207A (en) 2018-10-09 2021-06-11 林弗洛公司 Apparatus and method for catheter alignment
JP7483409B2 (en) 2019-03-04 2024-05-15 ニューラヴィ・リミテッド Actuated Clot Retrieval Catheter
AU2020242051A1 (en) 2019-03-20 2021-11-04 inQB8 Medical Technologies, LLC Aortic dissection implant
US11517457B2 (en) 2019-07-03 2022-12-06 Abbott Cardiovascular Systems Inc. Intravascular stent
EP4427686A2 (en) 2019-09-11 2024-09-11 Neuravi Limited Expandable mouth catheter
WO2021076954A1 (en) 2019-10-16 2021-04-22 Inari Medical, Inc. Systems, devices, and methods for treating vascular occlusions
US11712231B2 (en) 2019-10-29 2023-08-01 Neuravi Limited Proximal locking assembly design for dual stent mechanical thrombectomy device
WO2021087294A1 (en) 2019-11-01 2021-05-06 Limflow Gmbh Devices and methods for increasing blood perfusion to a distal extremity
US11779364B2 (en) 2019-11-27 2023-10-10 Neuravi Limited Actuated expandable mouth thrombectomy catheter
US11839725B2 (en) 2019-11-27 2023-12-12 Neuravi Limited Clot retrieval device with outer sheath and inner catheter
US11517340B2 (en) 2019-12-03 2022-12-06 Neuravi Limited Stentriever devices for removing an occlusive clot from a vessel and methods thereof
US11633198B2 (en) 2020-03-05 2023-04-25 Neuravi Limited Catheter proximal joint
US11944327B2 (en) 2020-03-05 2024-04-02 Neuravi Limited Expandable mouth aspirating clot retrieval catheter
US11883043B2 (en) 2020-03-31 2024-01-30 DePuy Synthes Products, Inc. Catheter funnel extension
US11759217B2 (en) 2020-04-07 2023-09-19 Neuravi Limited Catheter tubular support
US11871946B2 (en) 2020-04-17 2024-01-16 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11730501B2 (en) 2020-04-17 2023-08-22 Neuravi Limited Floating clot retrieval device for removing clots from a blood vessel
US11717308B2 (en) 2020-04-17 2023-08-08 Neuravi Limited Clot retrieval device for removing heterogeneous clots from a blood vessel
US11737771B2 (en) 2020-06-18 2023-08-29 Neuravi Limited Dual channel thrombectomy device
US11937836B2 (en) 2020-06-22 2024-03-26 Neuravi Limited Clot retrieval system with expandable clot engaging framework
US11439418B2 (en) 2020-06-23 2022-09-13 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11395669B2 (en) 2020-06-23 2022-07-26 Neuravi Limited Clot retrieval device with flexible collapsible frame
US11864781B2 (en) 2020-09-23 2024-01-09 Neuravi Limited Rotating frame thrombectomy device
US11937837B2 (en) 2020-12-29 2024-03-26 Neuravi Limited Fibrin rich / soft clot mechanical thrombectomy device
US12029442B2 (en) 2021-01-14 2024-07-09 Neuravi Limited Systems and methods for a dual elongated member clot retrieval apparatus
US11872354B2 (en) 2021-02-24 2024-01-16 Neuravi Limited Flexible catheter shaft frame with seam
US12064130B2 (en) 2021-03-18 2024-08-20 Neuravi Limited Vascular obstruction retrieval device having sliding cages pinch mechanism
US11974764B2 (en) 2021-06-04 2024-05-07 Neuravi Limited Self-orienting rotating stentriever pinching cells
US11937839B2 (en) 2021-09-28 2024-03-26 Neuravi Limited Catheter with electrically actuated expandable mouth
US12011186B2 (en) 2021-10-28 2024-06-18 Neuravi Limited Bevel tip expandable mouth catheter with reinforcing ring

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5384A (en) * 1847-12-04 Improvement in decomposing potash-feldspar for obtaining certain salts
US3868956A (en) * 1972-06-05 1975-03-04 Ralph J Alfidi Vessel implantable appliance and method of implanting it
US4372600A (en) * 1980-04-07 1983-02-08 The Mead Corporation Bottle carrier
US4390599A (en) * 1980-07-31 1983-06-28 Raychem Corporation Enhanced recovery memory metal device
US4441215A (en) * 1980-11-17 1984-04-10 Kaster Robert L Vascular graft
SE445884B (en) * 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
US4512338A (en) * 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
ES8705239A1 (en) * 1984-12-05 1987-05-01 Medinvent Sa A device for implantation and a method of implantation in a vessel using such device.
US5102417A (en) * 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4681110A (en) * 1985-12-02 1987-07-21 Wiktor Dominik M Catheter arrangement having a blood vessel liner, and method of using it
US4649922A (en) * 1986-01-23 1987-03-17 Wiktor Donimik M Catheter arrangement having a variable diameter tip and spring prosthesis
US4878906A (en) * 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US4795458A (en) * 1987-07-02 1989-01-03 Regan Barrie F Stent for use following balloon angioplasty
US4886062A (en) * 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US4830003A (en) * 1988-06-17 1989-05-16 Wolff Rodney G Compressive stent and delivery system
US5180868A (en) * 1988-06-20 1993-01-19 Battelle Memorial Institute Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline
US4913141A (en) * 1988-10-25 1990-04-03 Cordis Corporation Apparatus and method for placement of a stent within a subject vessel
CH678393A5 (en) * 1989-01-26 1991-09-13 Ulrich Prof Dr Med Sigwart
US5226909A (en) * 1989-09-12 1993-07-13 Devices For Vascular Intervention, Inc. Atherectomy device having helical blade and blade guide
CA2026604A1 (en) * 1989-10-02 1991-04-03 Rodney G. Wolff Articulated stent
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
DE9117152U1 (en) * 1990-10-09 1996-07-11 Cook Inc., Bloomington, Ind. Stent
DE69116130T2 (en) * 1990-10-18 1996-05-15 Ho Young Song SELF-EXPANDING, ENDOVASCULAR DILATATOR
US5356423A (en) 1991-01-04 1994-10-18 American Medical Systems, Inc. Resectable self-expanding stent
JP2760666B2 (en) * 1991-03-15 1998-06-04 株式会社東芝 Method and apparatus for controlling PWM converter
US5147370A (en) * 1991-06-12 1992-09-15 Mcnamara Thomas O Nitinol stent for hollow body conduits
US5234457A (en) * 1991-10-09 1993-08-10 Boston Scientific Corporation Impregnated stent
US5354309A (en) * 1991-10-11 1994-10-11 Angiomed Ag Apparatus for widening a stenosis in a body cavity
CA2079417C (en) 1991-10-28 2003-01-07 Lilip Lau Expandable stents and method of making same
US5372600A (en) 1991-10-31 1994-12-13 Instent Inc. Stent delivery systems
US5282827A (en) * 1991-11-08 1994-02-01 Kensey Nash Corporation Hemostatic puncture closure system and method of use
FR2683449A1 (en) * 1991-11-08 1993-05-14 Cardon Alain ENDOPROTHESIS FOR TRANSLUMINAL IMPLANTATION.
US5192297A (en) * 1991-12-31 1993-03-09 Medtronic, Inc. Apparatus and method for placement and implantation of a stent
US5507767A (en) * 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5405377A (en) * 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
FR2688401B1 (en) * 1992-03-12 1998-02-27 Thierry Richard EXPANDABLE STENT FOR HUMAN OR ANIMAL TUBULAR MEMBER, AND IMPLEMENTATION TOOL.
US5201757A (en) * 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
US5540712A (en) 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
US5354308A (en) * 1992-05-01 1994-10-11 Beth Israel Hospital Association Metal wire stent
US5507771A (en) * 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
US5562725A (en) * 1992-09-14 1996-10-08 Meadox Medicals Inc. Radially self-expanding implantable intraluminal device
DE4303181A1 (en) * 1993-02-04 1994-08-11 Angiomed Ag Implantable catheter
WO1994021196A2 (en) * 1993-03-18 1994-09-29 C.R. Bard, Inc. Endovascular stents
US5441515A (en) * 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5414664A (en) 1993-05-28 1995-05-09 Macronix International Co., Ltd. Flash EPROM with block erase flags for over-erase protection
US5913897A (en) * 1993-09-16 1999-06-22 Cordis Corporation Endoprosthesis having multiple bridging junctions and procedure
GB2281865B (en) * 1993-09-16 1997-07-30 Cordis Corp Endoprosthesis having multiple laser welded junctions,method and procedure
KR970004845Y1 (en) * 1993-09-27 1997-05-21 주식회사 수호메디테크 Stent for expanding a lumen
US5445646A (en) * 1993-10-22 1995-08-29 Scimed Lifesystems, Inc. Single layer hydraulic sheath stent delivery apparatus and method
US5609627A (en) * 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
ATE188863T1 (en) 1994-02-25 2000-02-15 Fischell Robert STENT
US5643312A (en) 1994-02-25 1997-07-01 Fischell Robert Stent having a multiplicity of closed circular structures
US5843120A (en) 1994-03-17 1998-12-01 Medinol Ltd. Flexible-expandable stent
US5449373A (en) * 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US6461381B2 (en) 1994-03-17 2002-10-08 Medinol, Ltd. Flexible expandable stent
US5733303A (en) 1994-03-17 1998-03-31 Medinol Ltd. Flexible expandable stent
US5415664A (en) * 1994-03-30 1995-05-16 Corvita Corporation Method and apparatus for introducing a stent or a stent-graft
CA2502504A1 (en) * 1994-05-19 1995-11-30 Scimed Life Systems, Inc. Improved tissue supporting devices
ATE176587T1 (en) * 1994-05-19 1999-02-15 Scimed Life Systems Inc IMPROVED TISSUE SUPPORT DEVICES
US5476508A (en) * 1994-05-26 1995-12-19 Tfx Medical Stent with mutually interlocking filaments
DE4418336A1 (en) 1994-05-26 1995-11-30 Angiomed Ag Stent for widening and holding open receptacles
US5817152A (en) * 1994-10-19 1998-10-06 Birdsall; Matthew Connected stent apparatus
US5575818A (en) * 1995-02-14 1996-11-19 Corvita Corporation Endovascular stent with locking ring
CA2186029C (en) * 1995-03-01 2003-04-08 Brian J. Brown Improved longitudinally flexible expandable stent
DE19508805C2 (en) * 1995-03-06 2000-03-30 Lutz Freitag Stent for placement in a body tube with a flexible support structure made of at least two wires with different shape memory functions
US5591197A (en) * 1995-03-14 1997-01-07 Advanced Cardiovascular Systems, Inc. Expandable stent forming projecting barbs and method for deploying
EP0740928B1 (en) * 1995-04-12 2004-07-07 Corvita Europe Self-expanding stent for introducing a medical device in a body cavity and manufacturing process
AU711431B2 (en) 1995-04-26 1999-10-14 Medinol Ltd Articulated stent
US6010530A (en) * 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US5562697A (en) * 1995-09-18 1996-10-08 William Cook, Europe A/S Self-expanding stent assembly and methods for the manufacture thereof
WO1998022159A2 (en) * 1996-11-07 1998-05-28 Medtronic Instent Inc. Variable flexibility stent
US5776161A (en) * 1995-10-16 1998-07-07 Instent, Inc. Medical stents, apparatus and method for making same
US5591195A (en) * 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
US5607442A (en) * 1995-11-13 1997-03-04 Isostent, Inc. Stent with improved radiopacity and appearance characteristics
US5810868A (en) 1995-12-07 1998-09-22 Arterial Vascular Engineering, Inc. Stent for improved transluminal deployment
WO1997025937A1 (en) * 1996-01-18 1997-07-24 Jang G David Programmable variably flexible modular stents
US5895406A (en) * 1996-01-26 1999-04-20 Cordis Corporation Axially flexible stent
US5843117A (en) * 1996-02-14 1998-12-01 Inflow Dynamics Inc. Implantable vascular and endoluminal stents and process of fabricating the same
CA2192520A1 (en) * 1996-03-05 1997-09-05 Ian M. Penn Expandable stent and method for delivery of same
US5868780A (en) * 1996-03-22 1999-02-09 Lashinski; Robert D. Stents for supporting lumens in living tissue
NZ331269A (en) * 1996-04-10 2000-01-28 Advanced Cardiovascular System Expandable stent, its structural strength varying along its length
US6152957A (en) * 1996-04-26 2000-11-28 Jang; G. David Intravascular stent
US5922021A (en) * 1996-04-26 1999-07-13 Jang; G. David Intravascular stent
DE19617823A1 (en) 1996-05-03 1997-11-13 Sitomed Medizintechnik Vertrie Vascular prosthesis for coronary use
US5843244A (en) * 1996-06-13 1998-12-01 Nitinol Devices And Components Shape memory alloy treatment
US5807404A (en) * 1996-09-19 1998-09-15 Medinol Ltd. Stent with variable features to optimize support and method of making such stent
US5824045A (en) * 1996-10-21 1998-10-20 Inflow Dynamics Inc. Vascular and endoluminal stents
US5868781A (en) 1996-10-22 1999-02-09 Scimed Life Systems, Inc. Locking stent
US6551350B1 (en) * 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
US5955600A (en) * 1996-12-27 1999-09-21 Isis Pharmaceuticals, Inc. Method for the synthesis of nucleotide or oligonucleotide phosphoramidites
FR2758253B1 (en) * 1997-01-10 1999-04-02 Nycomed Lab Sa IMPLANTABLE DEVICE FOR THE TREATMENT OF A BODY DUCT
US5925061A (en) * 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US5827321A (en) * 1997-02-07 1998-10-27 Cornerstone Devices, Inc. Non-Foreshortening intraluminal prosthesis
US5810872A (en) 1997-03-14 1998-09-22 Kanesaka; Nozomu Flexible stent
US5853419A (en) * 1997-03-17 1998-12-29 Surface Genesis, Inc. Stent
US5741327A (en) * 1997-05-06 1998-04-21 Global Therapeutics, Inc. Surgical stent featuring radiopaque markers
US5836966A (en) 1997-05-22 1998-11-17 Scimed Life Systems, Inc. Variable expansion force stent
US5913895A (en) 1997-06-02 1999-06-22 Isostent, Inc. Intravascular stent with enhanced rigidity strut members
US5855600A (en) 1997-08-01 1999-01-05 Inflow Dynamics Inc. Flexible implantable stent with composite design
US5824059A (en) 1997-08-05 1998-10-20 Wijay; Bandula Flexible stent
US6042606A (en) 1997-09-29 2000-03-28 Cook Incorporated Radially expandable non-axially contracting surgical stent
US5938697A (en) 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
US6273911B1 (en) * 1999-04-22 2001-08-14 Advanced Cardiovascular Systems, Inc. Variable strength stent
US6245101B1 (en) 1999-05-03 2001-06-12 William J. Drasler Intravascular hinge stent
US20010047200A1 (en) * 1999-10-13 2001-11-29 Raymond Sun Non-foreshortening intraluminal prosthesis
US6398806B1 (en) 2000-12-26 2002-06-04 Scimed Life Systems, Inc. Monolayer modification to gold coated stents to reduce adsorption of protein

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537072A (en) * 2002-09-02 2005-12-08 アンソン メディカル リミテッド Flexible stent graft
JP4774211B2 (en) * 2002-09-02 2011-09-14 アンソン メディカル リミテッド Flexible stent graft
US8998972B2 (en) 2002-09-02 2015-04-07 Anson Medical, Ltd. Flexible stent-graft
JP4825665B2 (en) * 2003-02-26 2011-11-30 ボストン サイエンティフィック リミテッド Lumen device with enhanced mounting characteristics
JP2017023779A (en) * 2009-07-08 2017-02-02 コンセントリック メディカル,インク. Device and method for treating vessel and internal duct
JP2017018330A (en) * 2015-07-10 2017-01-26 有限会社Ptmc研究所 Stent graft
US10695163B2 (en) 2015-07-10 2020-06-30 Ptmc Institute Stent-graft

Also Published As

Publication number Publication date
CA2280131A1 (en) 1998-08-13
US20070213807A1 (en) 2007-09-13
EP1028772A4 (en) 2006-07-05
US20070213806A1 (en) 2007-09-13
US5827321A (en) 1998-10-27
WO1998034668A1 (en) 1998-08-13
US6106548A (en) 2000-08-22
US6764506B2 (en) 2004-07-20
EP1028772A1 (en) 2000-08-23
US8882823B2 (en) 2014-11-11
US6475236B1 (en) 2002-11-05
US20070213808A1 (en) 2007-09-13
US20030055490A1 (en) 2003-03-20
CA2280131C (en) 2007-03-20

Similar Documents

Publication Publication Date Title
JP2001511044A (en) Intraluminal prosthesis that does not shorten
US5817152A (en) Connected stent apparatus
US8721705B2 (en) Non-foreshortening intraluminal prosthesis
US6695877B2 (en) Bifurcated stent
US20040267350A1 (en) Non-foreshortening intraluminal prosthesis
US20030105517A1 (en) Non-foreshortening stent
JPH10328216A (en) Stent for treating bifurcate vessel and stent graft
JP2008508033A (en) Stent with end member having lateral extension
JP2008516668A (en) Small tube stent design
US20030074051A1 (en) Flexible stent
US20200046525A1 (en) Flange stent device and modular stent system thereof
AU741551B2 (en) Non-foreshortening intraluminal prosthesis
AU757660B2 (en) Non-foreshortening intraluminal prosthesis
CA2538001C (en) Non-foreshortening intraluminal prosthesis
EP0786971A1 (en) Connected stent apparatus
AU2006203363A1 (en) Non-foreshortening intraluminal prosthesis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070123

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070911

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318