JP2001506369A - 1つまたは複数の移動カメラの初期位置および向きを校正するための方法ならびに固定対象の3次元的位置測定に対してのこの方法の応用 - Google Patents

1つまたは複数の移動カメラの初期位置および向きを校正するための方法ならびに固定対象の3次元的位置測定に対してのこの方法の応用

Info

Publication number
JP2001506369A
JP2001506369A JP52338999A JP52338999A JP2001506369A JP 2001506369 A JP2001506369 A JP 2001506369A JP 52338999 A JP52338999 A JP 52338999A JP 52338999 A JP52338999 A JP 52338999A JP 2001506369 A JP2001506369 A JP 2001506369A
Authority
JP
Japan
Prior art keywords
camera
image
orientation
test object
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP52338999A
Other languages
English (en)
Other versions
JP4201059B2 (ja
Inventor
アルヌ,パトリック
ゲラン,ジャン−ピエール
レトゥリエー,ローラン
ヴィアラ,マルク
Original Assignee
コミツサリア タ レネルジー アトミーク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コミツサリア タ レネルジー アトミーク filed Critical コミツサリア タ レネルジー アトミーク
Publication of JP2001506369A publication Critical patent/JP2001506369A/ja
Application granted granted Critical
Publication of JP4201059B2 publication Critical patent/JP4201059B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/275Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing wheel alignment
    • G01B11/2755Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing wheel alignment using photoelectric detection means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • G06T7/85Stereo camera calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/12Method or fixture for calibrating the wheel aligner
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/14One or more cameras or other optical devices capable of acquiring a two-dimensional image
    • G01B2210/143One or more cameras on each side of a vehicle in the main embodiment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/30Reference markings, reflector, scale or other passive device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/30Reference markings, reflector, scale or other passive device
    • G01B2210/303Reference markings, reflector, scale or other passive device fixed to the ground or to the measuring station

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Navigation (AREA)

Abstract

(57)【要約】 移動支持体(21)上に配置されたカメラ(4,22)を校正するための方法が開示されている。カメラによって、カメラの視野内に少なくとも3つのマークを有したテスト用対象物の像を撮影する。像の解析により、テスト用対象物に対しての、カメラの初期位置および向きが得られる。この初期位置および向きは、応用に際して、既知の値として使用される。支持体(21)は、その後、カメラによる撮影の対象をなす、対象物(28)に向けて移動することができる。支持体の移動状況を正確に測定することにより、対象物の像の解析によって、カメラに対してのまたテスト用対象物に対しての、対象物の正確な位置および向きが得られる。1つの応用は、道路ネットワーク管理のためのまたはオンボード型ナビゲーションシステムのためのデータベースを得るために、道路標識(28)を記録することである。

Description

【発明の詳細な説明】 1つまたは複数の移動カメラの初期位置および向きを 校正するための方法ならびに固定対象の3次元的位置 測定に対してのこの方法の応用 本発明は、1つまたは複数の移動カメラの初期位置および向きを校正するため の方法、ならびに、固定対象の3次元的位置測定に対してのこの方法の応用に関 するものである。 対象物の少なくとも1つの像をカメラで撮影し、撮影された像上における対象 物の痕跡とカメラ位置とに基づいて対象物の位置を計算することによって、対象 物の位置を自動的に計算することは、様々なことに応用することができる。 未公開の仏国特許出願明細書第96 06749号には、そのような応用、お よび、本発明を適用可能な対応ハードウェアシステムが開示されている。このシ ステムは、道路に沿った交通標識の自動記録に関するものである。この場合、1 つまたは複数のカメラが自動車の屋根の上に固定されている。この自動車には、 また、慣性操縦ユニットと、軌道上の衛星位置に対する位置検出のためのアンテ ナ設備(例えば、GPSシステム)と、が設けられている。アンテナ設備は、地 球表面上における車両位置および車両痕跡を、非常に精度良く周期的に(数秒ご とに)もたらす。慣性操縦ユニットは、各位置ごとにおける位置情報および向き 情報の更新のために使用される。カメラは、車両が通過する各標識の一連の像を 撮影する。カメラに取り付けられた像処理システムは、各像上における各特性点 のカルマンフィルタリングを行う手段を備えているものであって、各像上におけ る対象物の特性点の痕跡を予測しチェックし評価するためのアルゴリズムによっ て、各像上においてカメラに対しての対象物の位置および向きを示す座標を提供 する。また、2つまたはそれ以上の像上における対象物の特性点位置の三角測量 をベースとした、より単純なアルゴリズムが設けられている。したがって、対象 物の位置を、この情報を使用して、また、カメラおよび車両の位置および向きに 関しての利用可能な知識を使用して、決定することができる。車両の位置および 向きは、衛星位置決めシステムおよび慣性ユニットのおかげで、(地球に関して の)固定参照フレーム内において、どの瞬間にでも知ることができる。しかしな がら、車両に対してのカメラの位置およびとりわけ向きは、校正されなければな らないままである。 カメラを搬送する移動支持体上におけるカメラの位置に関しての不確定性を克 服するための2つの手段が、提案されている。1つは、高精度をもたらし得る機 械的デバイスによって、支持体上にカメラを組み付けることである。他は、参照 点付きのカメラケースを準備し、このカメラケースを、カメラケース位置を調節 可能な機構を介して支持体に対して固定し、カメラのファインダーを支持体上の 所定方向に位置合わせさせるよう、カメラの参照点と固定参照点との間の位置調 整を行うことである。第1の手段においては、支持体上におけるカメラの位置設 定ができないような、いかなる位置設定もできないような、機械的システムが個 々のカメラ仕様に応じたものであることによりカメラの交換が困難であったり不 可能であったりするような、高価な機械的手段を必要としている。第2の手段に おいては、ファインダーの方向にしたがって参照点を正確に配置してカメラの位 置設定のずれを防止するために、カメラを工場内で校正する必要がある。そうで なければ、新たな参照点を得るために、校正操作を再度行わなければならない。 本発明の利点は、本質的に、観測対象をなす対象物の位置および特に向きを適 正に測定するために厳密な精度で移動支持体上にカメラを配置しなければならな いという上記必要性を排除することである。本発明においては、また、同一の移 動支持体上において、複数のカメラを容易に使用することができる。 いくつもの利点が、この特徴点から派生する。まず最初に、カメラを支持体上 に固定するに際して位置設定を厳密に行う必要がないことである。そして、新た な応用に際して、要望されたときには、困難性を伴うことなく、カメラの向きを 変えることができる。また、何らの欠点を伴うことなく、付加的な位置不確定性 および向き不確定性が導入されるにもかかわらず、カメラを、移動支持体上に、 とりわけ、移動支持体上に設置されている回転式タレット上に、取り付けること ができる。タレット取付の場合には、単に、タレットの移動状況を正確に測定す るだけで良い。タレットの初期位置および向きを正確に知る必要はない。タレッ トの初期位置および向きは、本発明の方法により、潜在的に決定される。このよ うなタレットは、例えば、標識記録に対する応用においては、車両が回り道をし たところにおいてカメラの視野を迅速に回転させたい場合などにおいて、連続的 な像の撮影を容易とするために使用することができる。 本発明の特徴的な測定においては、環境内に既知の位置でもって配置されたテ スト用対象物の初期像を、各カメラによって撮影する。この目的のために、車両 を移動させる。テスト用対象物の像を解析することにより、テスト用対象物に対 しての、したがって固定参照フレーム内での、カメラおよび支持体の位置および 向きを知る。その場合、対象物の連続した像を撮影するだけで十分である。次に 、固定参照フレーム内における対象物の位置を知るために、公知方法によって、 連続像が解析される。支持体の各撮影位置までの移動状況を測定することにより 、この移動状況を利用して、対象物の位置が決定される。 移動支持体の位置および向きは、テスト用対象物の像の撮影時も含めて各瞬間 において既知であることに注意されたい。 位置決めされるべき対象物が、十分に相対位置が認識されている複数の参照マ ークを備えている場合には、その対象物のただ1つの像からの位置決め方法を使 用することができる。 要約すれば、本発明は、最も一般的な形態においては、環境内の移動支持体上 に配置されたカメラの初期位置および向きを校正するための方法であって、環境 内に、既知の位置および向きでもってテスト用対象物を配置し;各カメラによっ てテスト用対象物の像を撮影し;テスト用対象物の特性点の、像上における痕跡 の位置を認識し、特性点とカメラとの間の向きおよび距離を決定し、これにより 、テスト用対象物に対してのカメラの位置および向きを決定するというようにし て、処理システムでもって前記テスト用対象物の像を解析することを特徴として いる。あるいは、わずかに異なる構成においては、環境内の移動支持体上に配置 された第1カメラの、第2カメラに対しての、初期位置および向きを校正するた めの方法であって、第1カメラに、校正用カメラを付設するとともに、第2カメ ラに、既知の位置および向きでもってテスト用対象物を付設し;校正用カメラに よってテスト用対象物の像を撮影し;テスト用対象物の特性マークの、像上にお ける痕跡の位置を認識し、特性マークと校正用カメラとの間の向きおよび距離を 決定し、テスト用対象物に対しての校正用カメラの位置および向きを決定し、こ れにより、第2カメラに対しての第1カメラの位置および向きを決定するという ようにして、処理システムでもってテスト用対象物の像を解析することを特徴と している。 有利には、テスト用対象物は、カメラの視野内において、少なくとも3つのマ ークを備えている。さらに有利には、互いに同一平面上には位置していないよう に配置された4つ以上のマークを備えている。 本発明は、また、移動支持体上に配置された1つまたは複数のカメラによって 、固定された対象物の3次元的位置測定を行うための方法に関するものであって 、校正方法を適用した後に、移動状況を測定しつつ支持体を対象物に向けて移動 させ;支持体の移動途中に1つまたは複数のカメラによって対象物の像を撮影し ;処理システムによって対象物の像を解析することにより、対象物と1つまたは 複数のカメラとの間の方向および距離を決定し;最後に、対象物とカメラとの間 の方向および距離と、支持体の移動状況と、を使用して、対象物の位置を計算す ることを特徴としている。 以下、添付図面を参照して本発明について詳細に説明する。 図1は、テスト用対象物を使用してカメラの初期位置および向きの設定を行い 得る各部材を概略的に示す全体図である。 図2は、カメラによって撮影された像上におけるテスト用対象物のマークの痕 跡を検索するための技術を示す図である。 図3および図4は、像上におけるマークの痕跡のモデル化を示す図である。 図5は、カメラの位置および向きの決定方法を説明するための幾何的な図であ る。 図6は、位置決めカメラ22または4が搭載されている車両を示す図である。 図7は、ある応用においてテスト用対象物によってカメラの位置を決定するた めの方法を示す図である。 図8は、本発明の他の応用を示す図である。 図9は、本発明の方法を使用した他の形態を示す図である。 まず最初に、カメラによって撮影される対象物の像の外観は、カメラの11個 のパラメータに依存することに注意されたい。つまり、カメラの6個の外因性パ ラメータ、すなわち、対象物に対してのカメラの向きおよび位置の座標と、少な くとも5個の内因性パラメータ、とりわけ、カメラセンサの光学中心の位置を決 定する2つの座標と、対象物の焦点距離を考慮した2つの値と、少なくとも1つ の径方向捻れ因子と、である。これら内因性パラメータは、カメラの構成部材が 組み立てられた直後に行われる公知の校正によって決定することができる。これ ら内因性パラメータは、その後は、不変のままである。本発明の目的であるカメ ラ位置の決定は、実際、外因性パラメータの決定に関連している。外因性パラメ ータの決定は、カメラをカメラの支持体上に取り付けたときに、また、取り外し て再取り付けするたびごとに、また、支持体の位置を調整したときに、そして、 実用的には時々、行わなければならない。このために、固定されたテスト用対象 物が使用される。外因性パラメータの計算方法について、以下、詳述する。 本方法においてカメラの外因性パラメータを得るために使用される単眼的位置 決めは、既知寸法のテスト用対象物の使用、および、カメラによってこのテスト 用対象物を撮影した1枚の像の使用、に基づいて行われる。ある種の公知の決定 方法は、解析的であって、テスト用対象物の参照点すなわちマークの位置をテス ト用対象物の像から決定するために、非線形等式系を解く必要がある。これは、 高速ではあるものの、測定ノイズに敏感であって、多数の識別マークを必要とす る。 他の手段は、反復手段によって構成される。この場合、参照点の位置が評価さ れて、その後、カメラによって記録された像と参照点の評価位置によって得られ た像との間の誤差基準(誤差の大きさ)を最小化するために、参照点の位置が補 正される。このような手法は、精度が高いものであって、測定ノイズにあまり敏 感ではなく、可変数の参照点を使用できる。しかしながら、このような手法は、 収束が極めて遅いという欠点があり、また、第1評価が解に近くなければならず 、そうでなければ、収束が得られないという欠点がある。 参照マークを付帯した対象物の位置を決定するためのインバースデバイス(in verse device)が、DeMen thon氏およびDavis氏によって、International Journ al of Computer Vision,vol.15,p.123-141,1995における“Model-based ob ject pose in 25 lines of code”と題する文献において、開示されている。こ の場合、近似的であって使用が簡単なアルゴリズムによって第1解析評価が得ら れ、その次に、カメラにより撮影された像上に参照点の位置評価を投影しこの投 影に対して近似アルゴリズムを適用するという反復プロセスによって、初期的位 置評価が修正される。これにより、以前のものよりも精度が高められた、参照点 の新たな位置評価が得られる。 ここで提案される位置決め方法は、単眼的光学方法という分類に属するもので あって、上記文献のものに非常に類似した第1位置評価アルゴリズムを使用した 反復解法を使用する。本方法は、従来方法に対して、とりわけ、最終評価アルゴ リズムがより良好であること、および、測定ノイズによって影響を受けにくいこ と、において相違しており、また、像上における参照点の位置決定を改良する特 別のステップを備えている点において、また、像の位置の最終決定における精度 要求を満足させ得るような参照点位置の特性において、相違している。 最終3次元評価アルゴリズムは、像内のマークの痕跡の2次元位置を改良する というステップからくる品質係数を注入した非線形最小2乗法計算を使用して行 われる。この計算は、有利には、数値安定性が単精度(32ビット)浮遊小数点 演算で確保されるようなカルマンフィルタによって、置き換えることができる。 非線形最小2乗法計算には、倍精度(64ビット)での演算を必要とし、これは 、すべてのコンピュータハードウェアでは利用することができない。特に、DS P(デジタル信号処理プロセッサ)を備えたオンボードシステムでは利用するこ とかできない。 未公開の仏国特許出願明細書第97 02426号には、固定されかつ既知位 置とされたカメラの視野内に参照マークを付帯した移動対象物の位置および向き を決定するための、本発明の方法と同様の方法が開示されていることに注意され たい。 図1は、二面角をなしかつカメラ4を向く2つの平面上に複数のマーク3を付 帯したテスト用対象物1を示している。マーク3は、色付きの点あるいは周囲光 を反射する点といったような、小面積のパターンとすることができる。これらパ ターンは、有利には、3個よりも数が多いものであり、かつ、同一平面上にば位 置していないものである。しかしながら、3次元的位置を初期化するという付加 的ステップにおいては、発生するあいまいさを除去することにより、ただ3つだ けの参照マークを使用することができる。これは、本発明の範囲内で取り扱うこ とができる高精度3次元位置応用においては、最終結果に近い良好な値が非常に しばしば得られることがわかっているからであり、このことは、プロセスの初期 化を可能とする。さらに、より良好な精度が要望される場合には、有利には、パ ターン数を増やすことができる。マーク3が、カメラ4に対して所定の不変の向 きであることは本質的ではなく、逆に、マーク3は、検出精度を損なうことなく 、斜めとして存在することができる。このことは、カメラ4の配置に関しての制 約を低減させる。 このような能動的なマークは、好ましくは、当該分野で通常的であるような発 光性マークとすることができる。このような発光性マークは、視認性を高めるこ とができるものの、エッジの判別性が悪い。このことは、後述の位置評価向上ア ルゴリズムによる利益享受を妨害する。 位置決め方法の第1ステップは、カメラ4によって撮影された像上においてマ ーク3の痕跡を探すことである。それは、各々がマーク3のいずれかの痕跡を含 んでいる、いくつかのサブイメージまたは像区画を識別するというステップであ る。図2は、このステップにおいては、先に撮影された校正像9に対しての、カ メラ4による像10の相関を求めることを示している。マーク3のうちのいずれ かの痕跡が校正像3の参照点領域すなわちサブイメージ11内に含有されている ことを考慮するならば、位置決めプログラムは、引き続いて、像10上のxy座 標に関しての識別領域としてサブイメージ12を形成し、そして、以下の式(1 )にしてがってサブイメージ11,12の点の光強度の相関係数Cを計算する。ここで、Covは共分散であり、Eは期待値であり、σは光強度の標準偏差である 。MoおよびMkは、サブイメージ11および12の内容物すなわち光パターンを 示している。この計算は、xおよびyを可変とすることによってサブイメージ1 2のすべての位置に関して繰り返される。これにより、像10の相関表が得られ る。各点には、−1〜+1の数が付与される。ここで、−1は、考慮したxy座 標に関してパターンMoとMkとが負の相関であることを示しており、0は、相関 がないことを示しており、+1は、完全な相関があることを示している。+1と いう状況は、サブイメージ12が参照用サブイメージ11と同一である場合に現 れる。相関は、相関表を読むことによって、像10上において、サブイメージ1 1に対して最良の相関を示す場所を正確に拾うよう機能する。よって、像10内 から、観測対象物のマーク3のいずれかの痕跡13を含有した所定数のサブイメ ージ12を識別することができる。複数のマーク3が同一のものである場合には 、複数のサブイメージ12に対して、ただ1つの参照用サブイメージ11を準備 するだけで良い。そうでない場合には、1つの参照用サブイメージ11に対して 、対応した1つのサブイメージ12が見つけられる。 この方法は、マーク3どうしの間に光量変化があったにしても、あるいは、像 10と校正像9との間に光量変化があったにしても、マーク3の痕跡を発見でき るという、大いに有利な利点を有している。 しかしながら、この方法をより有効でありかつより信頼性高いものとするため には、いくつかの注意が必要である。実際、これら相関の計算が、時間を要する ものであって高価なものであることを了解する必要がある。この理由のために、 相関計算は、実際、数少ない像において行われ、オリジナルイメージの点(画素 )の選択数が少数化される。このようにして得られた少なめの相関表から、候補 をなすサブイメージに対応した複数の点が、探しているサブイメージ12の数よ りも多めに選択される。候補サブイメージは、完全な候補サブイメージ上におい て、すなわち、イメージ数の絞り込みにあたって除外されたすべての点が計算さ れているサブイメージ上において、チェック相関を行うことにより、第2回目の 選択を受ける。最終的に採用された複数のサブイメージ12は、参照用サブイメ ージ11に対して最良のチェック相関を有したものである。このような注意点に よって、漂遊光や他の人工物がシステムに誤差をもたらしたりまた実際の痕跡1 3ではなくてこれらの漂遊光や他の人工物のところに痕跡13があると錯覚させ たりしかねないような実際の処理条件に付随する誤差発生のリスクを防止するこ とが可能となる。さらに、チェック相関は、各計算のたびごとに、サブイメージ 12を、各候補サブイメージの周辺に構築された所定寸法のウィンドウ14の領 域内において移動させながら、何回にもわたって計算することができる。サブイ メージ12の決定のために採用されたウィンドウ14内において最良の相関を示 す位置が採用されることは、もちろんである。これにより、サブイメージ12内 において不適切に痕跡13をセンタリングすることによって痕跡13の端を切っ てしまうというリスクが、大幅に低減される。 付加的ではあるものの本発明の重要な要素は、サブイメージ12上におけるマ ーク3の痕跡13の位置を、精度高く評価することである。提案された方法によ ると、この位置のサブ画素配置を行うことができる。つまり、像のある点の幅よ りも良好な精度でもって配置を行うことができる。よって、安価な低解像度のカ メラ4であっても、満足な位置決め結果を得ることがてき、安価な低解像度のカ メラ4からの像を即座に使用することができる。例えばサブイメージ12上にお ける痕跡13の中心位置を計算するために、痕跡13のサブイメージ12と、サ ブイメージ11のような原始イメージと、の間の相関を、ベースとして使用する ことができる。しかしながら、この種の方法は、テスト用対象物1が校正時にお いて像撮影以外の入射角度で観測される場合には、サブイメージ12上における 像が捻れることから、無効となる。このため、以下の式(2)のような式による サブイメージ12上における痕跡13のモデル化が、提案される。 ここで、Iはサブイメージ12上における光強度であり、a、b、c、dは定数 である。定数a、b、cは、サブイメージ12の背景の光強度を評価するために 機能し、定数dは、痕跡13の全体的光強度を評価するために機能する。mx、 myは、痕跡13の中心の座標を表している。σx、σyは、サブイメージ12の 主軸に対して(角度θだけ)傾斜しているかもしれない痕跡13の主軸の、x方 向およびy方向における幅を表している。rxyは、痕跡の広がりを表している。 数学的な観点からは、a、b、cは、楕円状2次元部分からなるガウス関数の 平面係数であり、dは高さであり、mx、myは平均であり、σx、σyは標準偏差 であり、rxyは、相関係数である。図3および図4ば、このことをグラフで表現 している。 このモデル化が、マーク3が移動することの結果としてサブイメージ12上に おいて痕跡13が狭まってしまうこと、および、テスト用対象物1が傾いている ことの結果として痕跡13が捻れてしまうこと、を考慮していることは、理解さ )とすれば、なすべきことは、式(3)の関数Cminを最小化することである。 この最小化は、これにより与えられる光強度が測定値に対して最良に一致するよ うに、この関数の変数すなわちモデル化パラメータを変化させることにより行わ れる。これにより、痕跡13の正確なモデル化が得られる。特に、mx、myの値 から中心を推測することができる。したがって、カメラ4の既知の当初校正を使 用して、カメラ4に対しての、考慮されているサブイメージ12に関してのマー ク3の方向を推測することができる。 上記において与えられたモデルは、環状のマーク3に対して適切である。しか しながら、単純な形状の他のマークに適するように変更することは、容易である 。 マーク3に対してのカメラ4の位置を決定することが残ったままてある。図5 により、以下の説明を理解することができるであろう。 カメラ4の対象物によって引き起こされた幾何的捻れが、カメラの本来的パラ メータの径方向捻れ因子によって大いに補正されている場合には、あるいは、写 真測量法によってカメラ4の当初校正時に補正されている場合には、マーク3の 中心に位置する点Pは、像10上において対応痕跡13の中心Ppを通りかつ焦 点Fを通る投影線L上に、位置している。カメラの参照フレームの軸は、焦点F を原点として、i、j、kで示されている。この場合、軸kは、像10に対して 垂直なものとされている。カメラ4によってとらえられる空間のすべての点は、 焦点Fを通る直線によって、像10上に投影される。このような収束投影法は、 「透視画法」と称される。したがって、テスト用対象物1がカメラ4の視野内の 所定位置を占めるときには、痕跡13の中心をなす点Ppを推測することができ る。問題なのは、点Ppを点Pへと変換するような逆投影関係を見つけることで ある。しかしながら、点Pの座標からの点Ppの座標の計算を可能とする投影関 係を逆にすることによって得られる厳密な意味での逆投影関係は、非線形等式系 から構成されていることのために、容易には利用することができないことに注意 されたい。 このため、点Pの位置の第1評価に依存することが、推奨される。この第1評 価は、近似的なものてはあるけれども、容易に得ることができて、真の解に向け ての収束方法に適用することができる。採用された原理においては、点Pを像1 0上へと、2段階で投影する。すなわち、まず最初に、像10がなす平面に対し て平行な中間平面Π上へと直角に投影して点P’を得、それから、焦点Fに向け てこの点P’を透視的に投影する。これにより、像10上において、点Pp’が 得られる。このような疑似投影点は、真の投影点Ppに近いものとなる。点Pの 位置の第1評価は、像10上における点Ppに関して、逆投影を行うことによっ て、すなわち上述の疑似投影の逆操作を行うことによって、得られる。これによ り、符号°Pで示す点が得られる。 上記原理は、行うべき計算をより正確に記述する必要がある。 テスト用対象物1の状況は、下記の行列(4)に示すような、回転Rと並進t とによって表すことができる。これらは、上記のようなビデオカメラ4の参照フ レームから、テスト用対象物1に関連した固定参照フレームへの変化を引き起こ す。 ここで、tx、ty、tzは、カメラ4の参照フレームの軸i、j、kにおいて表 現された並進座標である。i、j、kは、テスト用対象物1の参照フレーム内で 表現されたカメラ4の参照フレームの基本ベクトルである。 平面Πは、テスト用対象物1の参照フレームの原点0が平面Π上に位置してい るように、選択されている。このことは、焦点Fが、平面Πから距離tzだけ離 間していることを意味している。 テスト用対象物1の参照フレーム内における点Pの座標を、°x、°y、°z と が得られる。 これら等式は、以下の式(6)に示すように、テスト用対象物1の点Pの数n に対して、一般化することができる。 次なる課題は、InおよびJnの量を計算することである。これらの計算は、以 下の式(8)によって行われる。ここで、行列Bは、Aの疑似逆行列である。すなわち、B=(ATA)-1Tであ る。 行列R、tのパラメータi、j、kおよびtx、ty、tzは、単に以下のステ ップを順序通り行うことにより、得ることができる。 −ノルム(norm)nI=‖(I1,I2,I3T‖、および、nJ=‖(J1,J2, J3T‖の計算。 −平均ノルムn=(nI+nJ)/2の計算。 −i=(I1,I2,I3)T/nI、および、j=(J1,J2,J3T/nJの計算 。 −ベクトルi、jのベクトル積を求めることによるkの計算。 −成分tz=1/nの計算。 −tx=I4z、および、ty=J4zの計算。 点Pの位置評価のための点°Pの位置が上記計算によって得られたときには、 点°Pの位置は、図5を参照して説明した原理の誤差のために、修正すべきであ る。点°Pは、焦点Fへと向かう直線に沿って、像10が乗っている平面上へと この式(9)は、式(5)と同様であるが、式(5)よりも単純である。 テスト用対象物1の配置パラメータの最終評価、すなわち、テスト用対象物1 の参照フレームの位置および向きを与える行列R、tの係数の各値は、像10上 って得られる。痕跡13のモデル化によって評価された点Ppの座標に関する不 確定性が、考慮される(このような不確定性は、予め評価しておくことのできる 係数からなる行列Λによって表現することができる)。言い換えれば、以下の式 (10)によって与えられる量Cminを最小化できるように思われる。 像10上における投影点°Ppの位置に基づいて点°Pが移動するたびごとに 、反復計算が行われる。反復は、投影点が痕跡13の中心Ppに向けて十分に収 束するまで行われる。テスト対象物1の位置が固定参照フレーム内において既知 であることから、逆変換を計算することによって、同じ参照フレーム内における ビデオカメラ4の位置を知ることができる。 以下、本発明による位置決め方法の具体的応用について説明する。位置決めカ メラ4は、図6に示すように、車両21の屋根上に取り付けられたタレット20 のプラットホーム上に配置することができる。この車両21は、道路を走行しつ つ、関連する管理やサービスの道路交通標識28を記録することを意図したもの である、あるいは、市販され始めているような道路案内ソフトウェアプログラム のために使用可能なデータベースを構築することを意図したものである。他の固 定型位置決めカメラ22が、車両21の屋根の上に直接的に取り付けられている 。標識28が様々な寸法や形態であり、また、泥で汚れていたり傾いていたり、 また、部分的に葉や他の障害物で隠されていたり、また、予想外の場所にあった りするものであるにしても、10センチメートル程度といったような高精度での 標識28の位置決めと、標識28の完全な記録すなわち一切の見落としのない標 識28の記録とが、要求される。したがって、車両21には、屋根上に、投光器 23と位置決めアンテナ24とが設けられている。また、乗員隔室内には、制御 キャビネット25が設けられている。成膜キャビネット25は、コンピュータと 、計算および制御のためのソフトウェアと、ジャイロ式慣性ユニット26と、少 なくとも1つの走行距離計27と、を備えている。これら構成要素は、公知のも のであるので、詳細には説明しない。ただ、走行距離計27は、車両21の少な くとも1つの車輪の回転を計測するための手段を有することができる。反射性標 識28を検知するためのカメラ22または色付き標識を検知するためのカメラ4 と、アンテナ24と、慣性ユニット26と、走行距離計27とは、制御キャビネ ット25に対して接続されている。 まず最初に、標識28の検知方法について簡単に説明する。この目的のために は、近赤外あたりの波長に対して敏感なカメラ22、および、反射性標識を検知 するための投光器23、および/または、色付き標識を検知するためのカメラ4 が使用される。他の方法が可能であるけれども、カメラ4は、カメラ4による像 が多数の平行測定チェインによって2つの異なる方法で処理されるように、選択 されている。可視スペクトルにおいて撮影された環境の像が、まず最初に、記録 した背景における複数の基本色(赤、緑、および、青)のうちのそれぞれ1つず つを有した3つの像に分離される。標識28が特定の幾何的形態によって認識さ れ、そのような幾何的形態と、本発明の目的ではないソフトウェアプログラムに よって決定された色とによって、時には標識が付帯している文字を解読すること によって、識別される。他の測定方法として、近赤外光で背景像を同時に撮影す ることができる。投光器23は、車両21の前方に向けて、そのような光を投射 する。このことは、他の使用者には見えないという利点がある。このような光は 、標識28によって、カメラ22へと向けて、反射される。これは、完全なる記 録を行うための付加的手段をなす。カメラ22による近赤外における像は、単色 であることにより、処理が容易である。 アンテナ24は、円形軌道上の衛星ネットワークから位置情報を受け取る。こ の位置情報により、公知方法によって、車両を所望の精度でもって数秒という短 時間で配置することができる。所望の精度を得るために、いわゆる差分GPS位 置決め方法が使用される。車両21の移動距離は、走行距離計27によって定期 的に測定され、方向変化は、慣性ユニット26によって測定される。走行距離計 27および慣性ユニット26は、比較的大きなドリフトを受けるけれども、アン テナ24に関与する衛星の2つの位置の間において実際に現れるための時間を有 してはいない。 よって、走行距離計27および慣性ユニット26は、短期的には位置決めに関 して高精度で動作することができ、大きな繰返し速度(50ヘルツ)で動作する ことができる。これにより、各回ごとにカメラ位置を正確に計算することができ 、障害物に応じたGPS衛星からの信号損失を補償することができる。 GPSと慣性とのこのような公知の組合せ技術は、これによる結果も含めて記 録された記録を、後で解析する際に使用することができる。有利には、車両の経 路とデジタルマップ背景とのマッチング技術(マップマッチング)を併用するこ とができる。 したがって、標識28の位置決めを行うこの方法に固有の不確定性は、本質的 には、地上における車両21の向きと、車両21のタレット20上における位置 決めカメラ4,22の向きと、に由来する。本発明においては、固定されたテス ト用対象物によってカメラ位置を位置決めするという上記方法を、図7に示すよ うな方法で、適用することができる。ここでは符号101で示されているテスト 用対象物は、建物32の壁に対して取り付けられた一群の反射材31を備えるこ とができる。建物は、例えば、測定後に車両21が戻る車庫である。車両21は 、建物の前方を定期的に通ることとなる。次なる測定のための再度の設定を行う に際しては、車両21は、建物32の前でしばらく停止して、車両操作により位 置決めカメラ22が反射材31を向くようにする、あるいは、タレット20を操 作することにより位置決めカメラ4が反射材31を向くようにするだけで十分で ある。これにより、テスト用対象物101の像を撮影することができる。この像 を上記方法によって解析することで、量t、Rで表現されるような、位置決めカ メラ4の外因性パラメータを求めることができる。位置決めカメラ4の位置およ び向きは、固定参照フレーム内で決定され、移動工程中のどの瞬間においても既 知のままである。特に標識28の撮影時においては、タレット20の回転移動を 測定することにより、慣性ユニット26によって車両21の方向変化を測定する ことにより、走行距離計27および位置決めシステムにより車両移動を測定する ことにより、既知のままである。したがって、所望精度での地上における標識位 置の計算を、確実に行うことができる。本発明の特別の実施形態においては、符 号104や204で示すような、標識28を撮影するためのいくつかの他の位置 決めカメラが、同じタレット20上にあるいは可能であれば近隣の同様のタレッ ト上に、配置されている。これら付加的なカメラ104,204は、テスト用対 象物101に対して、同時に位置決めされる。 実際、カメラのセットは、広い視野を有しており、異なるカメラでもって連続 的に撮影された像28により標識28を観測することができる。このことは、す べてのカメラを搭載しているタレット20を、よりゆっくりと回転させることを 可能とする、あるいは、回転させずにそのままの状態を維持させることができる 。さらに、本発明は、全体的に、タレット20無しで実施することができる。そ の場合、1つまたは複数のカメラは、車両21といった移動支持体に対して直接 的に取り付けられる。 標識28の位置決めは、この特別の位置決め方法に関する説明を参照すること ができる仏国特許出願明細書第96 06749号における方法以外にも、いく つもの公知方法によって行うことができる。いくつかの方法は、Faugeras氏によ る“Three dimensional computer vision.A geometric viewpoint")(The MIT Press,1993)、Kraus氏による“Photogrammetry Fundamentals and standard pr ocess"(Bonn,Fred.Dummler Verlag,1993,4th edition)、あるいは、Zhang氏 およびFaugeras氏による“3D dynamic scene analysis:a stereo based approac h"(Springer-Verlag,1992)、に開示されている。対象物が既知の相対配置でも って複数のマークを付帯している場合には、マーク位置は、テスト用対象物に対 して使用した位置決め方法をその対象物に対して適用することによっても、計算 することができる。 同じ位置決め原理に基づいた他の応用について、図8を参照して説明する。遠 隔操作デバイス40は、操作者41によって制御される。操作者は、閉塞チャン バ39内における放射性等のような危険な環境から操作者を隔離する厚い保護壁 42の向こう側に、位置している。操作者は、厚い窓ガラス43を通して、わず かの領域しか見ることができない。したがって、遠隔操作デバイス40のアーム の操作部材44を、所望位置へと配置することが、困難である。しかしながら、 上記と同一のカメラ4が遠隔操作デバイス上において操作部材44近傍に取り付 けられていて、そのため、標識28に対して行われた像解析と同様の像解析によ って、操作部材44近傍の周囲状況の3次元的像が得られている場合には、テス ト用対象物201の像を撮影することによって、定期的にカメラ4の位置決めを 行うことができる。この場合、テスト用対象物201には、上記テスト用対象物 1と同様に、少なくとも4つの円形マーク3が、共通平面内に突出することなく 、壁上にペイントされている。そして、カメラ4による像解析により、環境内に おける部材の位置を知ることができる。これにより、試行錯誤を繰り返すことな く、操作部材44の移動制御を行って、操作部材44を所望位置へと導くことが できる。操作部材44は、チャンバ39の隅であっても、対象物を把持するとか 、それを他の場所に置くとか、あるいは、溶接されるべく隣接配置されたプレー トどうしの溶接箇所へと正確に溶接トーチを配置して保持するとか、いった作業 を正確に行うことができる。そのような遠隔操作デバイス40の端部に配置され たカメラ4は、カメラをすぐに損傷してしまうような劣悪環境のために、頻繁に 交換しなければならないこと、また、交換のたびごとにカメラが異なる位置に取 り付けられることが、遠隔操作デバイス40の学習を複雑化してしまうこと、に は注意が必要である。したがって、テスト用対象物201の位置決めは、カメラ 4が交換されるたびごとに行われる。 カメラ位置を決めるという原理の他の応用は、移動ヘッド上に搭載された複数 のカメラのそれぞれの位置を校正することに利用することができる。このことは 、自動車検査センターにおける車両形状(車輪配置)のチェックに関連している (図9参照)。検査に際しては、検査されるべき車両55の車輪56に対して、 反射性マーク57を備えたプレート54を取り付ける。そして、2つのカメラ5 1,52を、車両の後方側において両サイドに配置する。各カメラの視野内に位 置するようにプレートを3次元的に配置することにより、各車輪56のカメラ5 1,52に対しての角度状態を正確に決定することができる。したがって、車両 の一方サイドにおける2つの車輪56どうしが平行であるかどうかを決定するこ とができる。というのは、両チェックプレートが、参照フレームをもたらす同一 カメラ51または52の視野内に入っているからである。 互いに反対サイドにおいて同軸配置されている2つの車輪の配向をチェックす るためには、2つのカメラ間の参照フレーム関係を正確に知る必要がある。1つ の手段としては、2つのカメラ51,52を横方向支持体に対して堅固に固定し 、そして、本発明による技術を使用して両カメラ51,52の位置を校正するこ とである。各カメラの位置を知るために、2つのカメラの視野内に、マーク付き のテスト用対象物を配置する必要がある。参照フレーム内のテスト用対象物の相 違によって、2つのカメラ51,52の間の位置関係を知ることができる。 このような車両形状チェック装置は、堅固でありかつ安定な機械的設置を必要 とする。これは設置が重く、かさばることとなる。 有利には、図9の装置においては、2つのカメラ51,52は、車両の両サイ ドにおいて、共に軽量でありかつ互いに個別とされている支持体60(三脚)上 に、設置することができる。カメラ52には、マーク58付きのプレート59が 設けられている。このプレート59は、カメラ51を向く側に設けられている。 第3のカメラ53が、カメラ52を向いた状態で、カメラ51の支持体に対して 堅固に固定されている。 カメラ53によって撮影されたプレート59の像を解析するといった、本発明 の技術を使用すれば、プレート59に対してのカメラ53の実際の位置を連続的 に(位置決め測定のたびごとに)知ることがてきる。カメラ53を搭載したカメ ラ51と、マーク58付きのプレート59を付帯したカメラ52という、2つの 構成要素は、これらの所定幾何パラメータを知るために、他のカメラを搭載した 測定ベンチと関連したテスト用対象物とを使用して、予め工場内で校正される。 よって、このような軽量装置を使用して、検査ステーションにおいてリアルタ イムで車両の4つの車輪の配置状況をチェックするために必要な、カメラ51と カメラ52との間における参照フレーム変換関係を、知ることができる。このこ とは、操作者が三脚60の配置を、厳密な位置決めをせず、いい加減に(近似的 に)行った場合であっても、問題なく可能である。 校正カメラ53によって撮影された像の使用は、上記と同様にして行われ、カ メラ51,52の相対位置および相対的な向きを決定することができる。 このような方法は、単一のかつ同一の対象物を観測するためのまたは単一のか つ同一の対象物内の複数の隣接部分を観測するためのまたは単一のかつ同一の空 間内の複数の隣接部分を観測するための、いくつかのカメラと、これらカメラを 隣接配置して対象物を観測したり被観測空間の特性を決定したりするために、互 いに相関づけられる複数の視野と、を備えた任意のシステムに対して、一般化す ることができる。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 レトゥリエー,ローラン フランス国 92260 フォントネ オ ロ ーズ リュ オーギュスト エルヌール 7 (72)発明者 ヴィアラ,マルク フランス国 78280 ギヤンクール クロ アルフォンス ドーデ 6

Claims (1)

  1. 【特許請求の範囲】 1.環境内の移動支持体(21,40)上に配置されたカメラ(4,22)の初 期位置および向きを校正するための方法であって、 前記環境内に、既知の位置および向きでもってテスト用対象物(1,101, 201)を配置し; 前記カメラによって前記テスト用対象物の像を撮影し; 前記テスト用対象物の特性マーク(3)の、前記像上における痕跡の位置(Pp )を認識し、前記特性マークと前記カメラとの間の向きおよび距離を決定し、 これにより、前記テスト用対象物に対しての前記カメラの位置および向きを決定 するというようにして、処理システムでもって前記テスト用対象物の像を解析す ることを特徴とする方法。 2.環境内の移動支持体(60)上に配置された第1カメラ(51)の、第2カ メラ(52)に対しての、初期位置および向きを校正するための方法であって、 前記第1カメラに、校正用カメラ(53)を付設するとともに、前記第2カメ ラに、既知の位置および向きでもってテスト用対象物(58)を付設し; 前記校正用カメラによって前記テスト用対象物の像を撮影し; 前記テスト用対象物の特性マーク(3)の、前記像上における痕跡の位置(Pp )を認識し、前記特性マークと前記校正用カメラとの間の向きおよび距離を決 定し、前記テスト用対象物に対しての前記校正用カメラ(53)の位置および向 きを決定し、これにより、前記第2カメラ(52)に対しての前記第1カメラ( 51)の位置および向きを決定するというようにして、処理システムでもって前 記テスト用対象物の像を解析することを特徴とする方法。 3.請求項1または2記載の方法において、 前記テスト用対象物に、校正されるべきカメラの視野内において、少なくとも 3つのマークを設ける、有利には、4つ以上のマークを設けることを特徴とする 方法。 4.請求項1〜3のいずれかに記載の方法において、 前記テスト用対象物に対しての、前記校正用カメラの位置および向きを、前記 テスト用対象物に関連した参照フレームに対しての、校正されるべきカメラの位 置(t)および向き(R)という形態で決定することを特徴とする方法。 5.請求項1〜4のいずれかに記載の方法において、 まず最初に、前記テスト用対象物の前記特性マーク(3)の痕跡の中心を、前 記テスト用対象物の参照フレームの原点を通りかつ前記像が乗っている平面に対 して平行な平行平面(Π)に対して、単一焦点(F)へと向かう収束線に沿って 、逆投影し、次に、前記平行平面に対して垂直な向きに空間内へと投影を行うこ とにより、逆投影点(°P)を獲得し、その後、該逆投影点(°P)を、前記焦 点(F)へと向かう収束線に沿って、前記像(10)が乗っている平面上へと投 影することにより、投影点(°Pp)を獲得し、前記特性マーク(3)の痕跡の 中心(Pp)と前記投影点(OPp)との間の誤差評価基準を最小化するように、 前記逆投影点の位置を修正し、前記逆投影点の獲得操作および前記逆投影点位置 の修正操作を繰り返すことにより、前記特性マークと前記校正用カメラ(4,2 2)との間の位置および向きの決定を行うことを特徴とする方法。 6.移動支持体(21,40)上に配置されたカメラ(4,22)によって、固 定対象物(28)の3次元的位置測定を行うための方法であって、 請求項1記載の校正方法を適用した後に、 移動状況を測定しつつ前記支持体(21,40)を前記対象物(28)に向け て移動させ; 前記支持体の移動途中に前記カメラによって前記対象物の像を撮影し; 処理システムによって前記対象物の前記像を解析することにより、前記対象物 (28)と前記カメラ(4)との間の方向および距離を決定し; 前記対象物と前記カメラとの間の前記方向および前記距離と、前記支持体の前 記移動状況と、を使用して、前記対象物の位置を計算することを特徴とする方法 。 7.請求項6記載の方法において、 前記支持体上に、互いに異なる観測方向を有した複数のカメラ(4,104, 204)を配置し、 前記カメラの各々によって、テスト用対象物の像を撮影し、 各カメラの相対的な位置および向きを決定し、 それぞれのカメラでもって、前記対象物の複数の像を撮影し、 前記対象物の像を解析し、 前記相対的な位置および向きを使用して、前記対象物と前記カメラとの間の方 向および距離を決定し、前記対象物の位置を計算することを特徴とする方法。 8.請求項6または7記載の方法の応用であって、 各道路交通標識(28)を前記対象物として、環境としての道路ネットワーク 上において、衛星位置決めシステム(24,25)と慣性方向検知システム(2 6)とを備えてなる、前記移動支持体としての車両(21)によって、道路交通 標識(28)の記録に対して応用することを特徴とする応用。 9.請求項6または7記載の方法の応用であって、 前記カメラ(4)の前記支持体としての遠隔操作アームによって、遠隔操作に 対して応用することを特徴とする応用。 10.請求項2記載の方法の応用であって、 単一空間内に配置された複数のカメラによる複数の部分的視野から、前記単一 空間の内容物を観測することに対して応用することを特徴とする応用。
JP52338999A 1997-10-24 1998-10-23 1つまたは複数の移動カメラの初期位置および向きを校正するための方法ならびに固定対象の3次元的位置測定に対してのこの方法の応用 Expired - Fee Related JP4201059B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9713375A FR2770317B1 (fr) 1997-10-24 1997-10-24 Procede d'etalonnage de la position et de l'orientation d'origine d'une ou plusieurs cameras mobiles et son application a la mesure de position tridimentionnelle d'objets fixes
FR97/13375 1997-10-24
PCT/FR1998/002270 WO1999022281A1 (fr) 1997-10-24 1998-10-23 Procede d'etalonnage de la position et de l'orientation d'origine d'une ou plusieurs cameras mobiles

Publications (2)

Publication Number Publication Date
JP2001506369A true JP2001506369A (ja) 2001-05-15
JP4201059B2 JP4201059B2 (ja) 2008-12-24

Family

ID=9512627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52338999A Expired - Fee Related JP4201059B2 (ja) 1997-10-24 1998-10-23 1つまたは複数の移動カメラの初期位置および向きを校正するための方法ならびに固定対象の3次元的位置測定に対してのこの方法の応用

Country Status (8)

Country Link
US (1) US6594600B1 (ja)
EP (1) EP0948760B1 (ja)
JP (1) JP4201059B2 (ja)
CA (1) CA2275957C (ja)
DE (1) DE69806894T2 (ja)
ES (1) ES2181283T3 (ja)
FR (1) FR2770317B1 (ja)
WO (1) WO1999022281A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001285681A (ja) * 2000-01-27 2001-10-12 Matsushita Electric Ind Co Ltd キャリブレーションシステム、ターゲット装置およびキャリブレーション方法
JP2003014421A (ja) * 2001-07-04 2003-01-15 Minolta Co Ltd 測定装置及び測定方法
JP2003014435A (ja) * 2001-07-04 2003-01-15 Minolta Co Ltd 測定装置及び測定方法
JP2003050107A (ja) * 2001-08-07 2003-02-21 Matsushita Electric Ind Co Ltd カメラ校正装置
US6542840B2 (en) 2000-01-27 2003-04-01 Matsushita Electric Industrial Co., Ltd. Calibration system, target apparatus and calibration method
WO2003073658A1 (fr) * 2002-02-27 2003-09-04 Tasada Works Inc. Appareil de recherche d'obstacles a la communication
JP2003528304A (ja) * 2000-03-23 2003-09-24 スナップ − オン テクノロジーズ,インコーポレイテッド 自己校正するマルチカメラ機械視覚測定システム
JP2004125795A (ja) * 2002-10-02 2004-04-22 Robert Bosch Gmbh 画像センサシステムのキャリブレーション方法および装置
CN100360897C (zh) * 2001-06-15 2008-01-09 斯耐普昂技术有限公司 自校准位置确定系统
WO2008114531A1 (ja) * 2007-03-22 2008-09-25 Honda Motor Co., Ltd. 位置検出方法および位置検出装置
JP2009513957A (ja) * 2005-10-26 2009-04-02 トリンブル イエナ ゲゼルシャフト ミット ベシュレンクテル ハフツング 測量方法及び測量装置
US7567688B2 (en) 2004-11-30 2009-07-28 Honda Motor Co., Ltd. Apparatus for and method of extracting image
US7590263B2 (en) 2004-11-30 2009-09-15 Honda Motor Co., Ltd. Vehicle vicinity monitoring apparatus
JP2009535878A (ja) * 2006-04-28 2009-10-01 ノキア コーポレイション 較正
US7599521B2 (en) 2004-11-30 2009-10-06 Honda Motor Co., Ltd. Vehicle vicinity monitoring apparatus
US7616806B2 (en) 2004-11-30 2009-11-10 Honda Motor Co., Ltd. Position detecting apparatus and method of correcting data therein
US7620237B2 (en) 2004-11-30 2009-11-17 Honda Motor Co., Ltd. Position detecting apparatus and method of correcting data therein
JP2012507011A (ja) * 2008-10-28 2012-03-22 ザ・ボーイング・カンパニー 空間照会のための手持ち型位置決めインタフェース
JPWO2016143395A1 (ja) * 2015-03-11 2017-07-13 ナルックス株式会社 位置測定部を備えた部品及び測定方法
CN108137096A (zh) * 2015-11-26 2018-06-08 宝马股份公司 用于停放车辆的系统
WO2020138345A1 (ja) * 2018-12-27 2020-07-02 日本電気通信システム株式会社 物品位置管理装置、物品位置管理システム、物品位置管理方法及びプログラム
WO2020195731A1 (ja) * 2019-03-27 2020-10-01 オムロン株式会社 報知システム、報知装置

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7065462B2 (en) * 1998-07-24 2006-06-20 Merilab, Inc. Vehicle wheel alignment by rotating vision sensor
US6169759B1 (en) 1999-03-22 2001-01-02 Golden Bridge Technology Common packet channel
NO313113B1 (no) * 1999-07-13 2002-08-12 Metronor Asa System for scanning av store objekters geometri
FR2801123B1 (fr) * 1999-11-12 2002-04-05 Bertrand Aube Procede de creation automatique de maquette numerique a partir de couples d'images stereoscopiques
US6968282B1 (en) * 2000-05-22 2005-11-22 Snap-On Incorporated Self-calibrating, multi-camera machine vision measuring system
US7151562B1 (en) * 2000-08-03 2006-12-19 Koninklijke Philips Electronics N.V. Method and apparatus for external calibration of a camera via a graphical user interface
US6891960B2 (en) * 2000-08-12 2005-05-10 Facet Technology System for road sign sheeting classification
EP1309832B1 (en) 2000-08-14 2008-10-22 Snap-on Incorporated Self-calibrating 3D machine measuring system useful in motor vehicle wheel alignment
US6963666B2 (en) * 2000-09-12 2005-11-08 Pentax Corporation Matching device
SE516565C2 (sv) * 2000-09-20 2002-01-29 Jan G Faeger Metod och anordning för att producera information om en omgivning och användning av anordningen
US6997387B1 (en) * 2001-03-28 2006-02-14 The Code Corporation Apparatus and method for calibration of projected target point within an image
JP3759429B2 (ja) * 2001-05-23 2006-03-22 株式会社東芝 障害物検出装置及びその方法
US7423666B2 (en) * 2001-05-25 2008-09-09 Minolta Co., Ltd. Image pickup system employing a three-dimensional reference object
US7062861B2 (en) 2001-06-28 2006-06-20 Snap-On Incorporated Self-calibrating position determination system and user interface
EP1472052A2 (en) * 2002-01-31 2004-11-03 Braintech Canada, Inc. Method and apparatus for single camera 3d vision guided robotics
US7302093B2 (en) * 2002-03-26 2007-11-27 Hunter Engineering Company Color vision vehicle wheel alignment system
FR2838198B1 (fr) * 2002-04-05 2004-06-25 Acticm Repere dispose dans un environnement a mesurer et systeme de mesure comprenant ce repere
EP1383098B1 (en) * 2002-07-09 2006-05-17 Accenture Global Services GmbH System for automatic traffic sign recognition
KR100493159B1 (ko) * 2002-10-01 2005-06-02 삼성전자주식회사 이동체의 효율적 자기 위치 인식을 위한 랜드마크 및 이를이용한 자기 위치 인식 장치 및 방법
US7602413B2 (en) * 2002-10-18 2009-10-13 Sony Corporation Information processing system and method, information processing apparatus, image-capturing device and method, recording medium, and program
US6762790B1 (en) * 2002-12-20 2004-07-13 Bendix Commercial Vehicle Systems Llc Universal camera bracket that allows 180 degree of pitch adjustment
TWI360702B (en) * 2003-03-07 2012-03-21 Semiconductor Energy Lab Liquid crystal display device and method for manuf
US7164472B2 (en) * 2003-10-09 2007-01-16 Hunter Engineering Company Common reference target machine vision wheel alignment system
DE102004010197B4 (de) * 2004-03-02 2015-04-16 Sick Ag Verfahren zur Funktionskontrolle einer Positionsermittlungs- oder Umgebungserfassungseinrichtung eines Fahrzeugs oder zur Kontrolle einer digitalen Karte
CA2569209C (en) * 2004-06-02 2014-07-29 Athena Technologies, Inc. Image-augmented inertial navigation system (iains) and method
WO2006019970A2 (en) * 2004-07-14 2006-02-23 Braintech Canada, Inc. Method and apparatus for machine-vision
US7929800B2 (en) * 2007-02-06 2011-04-19 Meadow William D Methods and apparatus for generating a continuum of image data
US8207964B1 (en) 2008-02-22 2012-06-26 Meadow William D Methods and apparatus for generating three-dimensional image data models
JP5127128B2 (ja) * 2004-12-21 2013-01-23 韓國電子通信研究院 カメラの位置及び姿勢情報補正方法及びその装置
DE102005007536A1 (de) 2005-02-17 2007-01-04 Isra Vision Systems Ag Verfahren zur Kalibrierung eines Messsystems
US7356425B2 (en) * 2005-03-14 2008-04-08 Ge Security, Inc. Method and system for camera autocalibration
US8838374B2 (en) * 2005-07-05 2014-09-16 Mi-Jack Products, Inc. Automatic correction of past position errors for location and inventory tracking
EP1941719A4 (en) * 2005-10-04 2010-12-22 Eugene J Alexander SYSTEM AND METHOD FOR CALIBRATING A SET OF PICTURE DEVICES AND CALCULATING THE 3D COORDINATES OF ELEMENTS DISCOVERED IN A LABORATORY COORDINATE SYSTEM
EP1946567A4 (en) * 2005-10-04 2009-02-18 Eugene J Alexander DEVICE FOR GENERATING THREE-DIMENSIONAL SURFACE MODELS OF MOBILE OBJECTS
US8223208B2 (en) * 2005-11-10 2012-07-17 Motion Analysis Corporation Device and method for calibrating an imaging device for generating three dimensional surface models of moving objects
JP4684147B2 (ja) * 2006-03-28 2011-05-18 任天堂株式会社 傾き算出装置、傾き算出プログラム、ゲーム装置およびゲームプログラム
WO2007149183A2 (en) * 2006-05-25 2007-12-27 Braintech Canada, Inc. System and method of robotically engaging an object
JP4820221B2 (ja) * 2006-06-29 2011-11-24 日立オートモティブシステムズ株式会社 車載カメラのキャリブレーション装置およびプログラム
WO2008036354A1 (en) * 2006-09-19 2008-03-27 Braintech Canada, Inc. System and method of determining object pose
US7839431B2 (en) * 2006-10-19 2010-11-23 Robert Bosch Gmbh Image processing system and method for improving repeatability
JP2008187564A (ja) * 2007-01-31 2008-08-14 Sanyo Electric Co Ltd カメラ校正装置及び方法並びに車両
US7558688B2 (en) * 2007-04-20 2009-07-07 Northrop Grumman Corporation Angle calibration of long baseline antennas
DE102007030378A1 (de) * 2007-06-29 2009-01-02 Spatial View Gmbh Dresden System zur Bestimmung der Lage eines Kamerasystems
US7957583B2 (en) * 2007-08-02 2011-06-07 Roboticvisiontech Llc System and method of three-dimensional pose estimation
TW200937348A (en) * 2008-02-19 2009-09-01 Univ Nat Chiao Tung Calibration method for image capturing device
US8320613B2 (en) * 2008-06-04 2012-11-27 Lockheed Martin Corporation Detecting and tracking targets in images based on estimated target geometry
US8918302B2 (en) * 2008-09-19 2014-12-23 Caterpillar Inc. Machine sensor calibration system
US20100076710A1 (en) * 2008-09-19 2010-03-25 Caterpillar Inc. Machine sensor calibration system
US9279882B2 (en) * 2008-09-19 2016-03-08 Caterpillar Inc. Machine sensor calibration system
US8180487B1 (en) 2008-09-30 2012-05-15 Western Digital Technologies, Inc. Calibrated vision based robotic system
US8559699B2 (en) * 2008-10-10 2013-10-15 Roboticvisiontech Llc Methods and apparatus to facilitate operations in image based systems
US8135208B1 (en) 2009-01-15 2012-03-13 Western Digital Technologies, Inc. Calibrated vision based robotic system utilizing upward and downward looking cameras
US8698875B2 (en) * 2009-02-20 2014-04-15 Google Inc. Estimation of panoramic camera orientation relative to a vehicle coordinate frame
JP4690476B2 (ja) * 2009-03-31 2011-06-01 アイシン精機株式会社 車載カメラの校正装置
US8855929B2 (en) * 2010-01-18 2014-10-07 Qualcomm Incorporated Using object to align and calibrate inertial navigation system
KR101001842B1 (ko) * 2010-01-28 2010-12-17 팅크웨어(주) 차량용 내비게이션 및 내비게이션 시스템의 블랙박스 정상 위치 유도 방법
FR2958196B1 (fr) * 2010-04-02 2012-06-15 Dcns Procede et systeme d'aide au positionnement d'une piece sur un element de structure.
US9229089B2 (en) 2010-06-10 2016-01-05 Qualcomm Incorporated Acquisition of navigation assistance information for a mobile station
FR2962581B1 (fr) 2010-07-06 2013-07-05 Imajing Methode de calibration de l'orientation d'une camera video embarquee
CN101975588B (zh) * 2010-08-20 2012-07-11 北京航空航天大学 一种多传感器视觉测量系统的刚性杆全局校准方法及装置
US8593535B2 (en) 2010-09-10 2013-11-26 Apple Inc. Relative positioning of devices based on captured images of tags
US8611594B2 (en) 2010-09-10 2013-12-17 Apple Inc. Dynamic display of virtual content on several devices using reference tags
US9160980B2 (en) 2011-01-11 2015-10-13 Qualcomm Incorporated Camera-based inertial sensor alignment for PND
US8775064B2 (en) * 2011-05-10 2014-07-08 GM Global Technology Operations LLC Sensor alignment process and tools for active safety vehicle applications
WO2013053103A1 (zh) * 2011-10-11 2013-04-18 Ji Ying 手术器械方向校准参数和作用方向的确定方法及校准工具
US8853634B2 (en) * 2012-03-12 2014-10-07 The Boeing Company Resin detection system
US8798357B2 (en) * 2012-07-09 2014-08-05 Microsoft Corporation Image-based localization
US9420275B2 (en) 2012-11-01 2016-08-16 Hexagon Technology Center Gmbh Visual positioning system that utilizes images of a working environment to determine position
US9441974B2 (en) 2013-03-15 2016-09-13 Novatel Inc. System and method for calculating lever arm values photogrammetrically
US10033989B2 (en) 2013-07-05 2018-07-24 Mediatek Inc. Synchronization controller for multi-sensor camera device and related synchronization method
JP6375660B2 (ja) * 2014-01-21 2018-08-22 セイコーエプソン株式会社 位置検出装置、プロジェクター、位置検出システム、及び、位置検出装置の制御方法
GB201411028D0 (en) * 2014-06-20 2014-08-06 Inst Of Technology Blanchardstown Mobile road sign reflectometer
DE102014213175A1 (de) * 2014-07-07 2016-01-07 Conti Temic Microelectronic Gmbh Vorrichtung zur entfernungsmessung, fahrzeug und verfahren
US9569693B2 (en) * 2014-12-31 2017-02-14 Here Global B.V. Method and apparatus for object identification and location correlation based on received images
CN104637300B (zh) * 2015-02-06 2017-01-04 南京理工大学 公路交通标志牌信息化普查分析与展示系统
EP3158412B8 (en) * 2015-05-23 2019-05-22 SZ DJI Technology Co., Ltd. Sensor fusion using inertial and image sensors
EP3158293B1 (en) * 2015-05-23 2019-01-23 SZ DJI Technology Co., Ltd. Sensor fusion using inertial and image sensors
US10088318B2 (en) * 2015-08-27 2018-10-02 Qualcomm Incorporated Cradle rotation insensitive inertial navigation
JP6639181B2 (ja) * 2015-10-13 2020-02-05 キヤノン株式会社 撮像装置、生産システム、撮像方法、プログラム及び記録媒体
US11205283B2 (en) 2017-02-16 2021-12-21 Qualcomm Incorporated Camera auto-calibration with gyroscope
DE102017211038A1 (de) * 2017-06-29 2019-01-03 Robert Bosch Gmbh Verfahren zum Einstellen einer Kamera
CN111052188B (zh) * 2017-07-27 2023-11-24 西屋电气有限责任公司 在工作空间内定位远程操作车辆的方法以及采用这种方法的远程检查系统
SG11201907126SA (en) * 2017-08-25 2019-09-27 Maker Trading Pte Ltd A general monocular machine vision system and method for identifying locations of target elements
CN107907711A (zh) * 2017-10-31 2018-04-13 北京航天计量测试技术研究所 一种小型化加速度计测试设备
CN109389650B (zh) * 2018-09-30 2021-01-12 京东方科技集团股份有限公司 一种车载相机的标定方法、装置、车辆和存储介质
EP3946825A1 (en) * 2019-03-25 2022-02-09 ABB Schweiz AG Method and control arrangement for determining a relation between a robot coordinate system and a movable apparatus coordinate system
CN110174105B (zh) * 2019-06-14 2022-02-11 西南科技大学 一种复杂环境下智能体自主导航算法及系统
CN110658918B (zh) * 2019-09-25 2023-12-12 京东方科技集团股份有限公司 用于视频眼镜的眼球追踪相机的定位方法、设备及介质
CN110673155A (zh) * 2019-09-30 2020-01-10 国网湖南省电力有限公司 一种输电线路结构物的探测装置、探测系统及其方法
US10846880B1 (en) 2020-01-03 2020-11-24 Altec Industries, Inc. Camera embedded joystick
US11870973B2 (en) * 2021-07-27 2024-01-09 Deere & Company Camera calibration tool
CN116038719B (zh) * 2023-04-03 2023-07-18 广东工业大学 一种机械臂末端位姿跟踪测量方法、装置及设备
CN117134117A (zh) * 2023-09-12 2023-11-28 佛山市粤海信通讯有限公司 一种天线辐射方向校准器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396942A (en) * 1979-04-19 1983-08-02 Jackson Gates Video surveys
US4753569A (en) * 1982-12-28 1988-06-28 Diffracto, Ltd. Robot calibration
US4831561A (en) * 1986-06-19 1989-05-16 Tokico Ltd. Work position error detecting apparatus
US4831549A (en) * 1987-07-28 1989-05-16 Brigham Young University Device and method for correction of robot inaccuracy
US4893183A (en) * 1988-08-11 1990-01-09 Carnegie-Mellon University Robotic vision system
DE3941144C2 (de) * 1989-12-13 1994-01-13 Zeiss Carl Fa Koordinatenmeßgerät zur berührungslosen Vermessung eines Objekts
US5073819A (en) * 1990-04-05 1991-12-17 Computer Scaled Video Surveys, Inc. Computer assisted video surveying and method thereof
IT1262820B (it) * 1993-02-16 1996-07-04 Corghi Spa Sistema per il rilevamento degli angoli caratteristici dell'assetto delle ruote di un autotelaio e mezzi di misura relativi.
FR2706345B1 (fr) * 1993-06-11 1995-09-22 Bertin & Cie Procédé et dispositif de repérage dans l'espace d'un objet mobile tel qu'un capteur ou un outil porté par un robot.
JP3522317B2 (ja) * 1993-12-27 2004-04-26 富士重工業株式会社 車輌用走行案内装置
FR2749419B1 (fr) * 1996-05-31 1998-08-28 Sagem Procede et dispositif d'identification et de localisation d'objets fixes le long d'un trajet
FR2760277B1 (fr) * 1997-02-28 1999-03-26 Commissariat Energie Atomique Procede et dispositif de localisation d'un objet dans l'espace
US6310644B1 (en) * 1997-03-26 2001-10-30 3Dm Devices Inc. Camera theodolite system
GB9803364D0 (en) * 1998-02-18 1998-04-15 Armstrong Healthcare Ltd Improvements in or relating to a method of an apparatus for registering a robot
EP1309832B1 (en) * 2000-08-14 2008-10-22 Snap-on Incorporated Self-calibrating 3D machine measuring system useful in motor vehicle wheel alignment

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6542840B2 (en) 2000-01-27 2003-04-01 Matsushita Electric Industrial Co., Ltd. Calibration system, target apparatus and calibration method
JP2001285681A (ja) * 2000-01-27 2001-10-12 Matsushita Electric Ind Co Ltd キャリブレーションシステム、ターゲット装置およびキャリブレーション方法
JP4849757B2 (ja) * 2000-03-23 2012-01-11 スナップ − オン テクノロジーズ,インコーポレイテッド 自己校正するマルチカメラ機械視覚測定システム
JP2003528304A (ja) * 2000-03-23 2003-09-24 スナップ − オン テクノロジーズ,インコーポレイテッド 自己校正するマルチカメラ機械視覚測定システム
CN100360897C (zh) * 2001-06-15 2008-01-09 斯耐普昂技术有限公司 自校准位置确定系统
JP2003014435A (ja) * 2001-07-04 2003-01-15 Minolta Co Ltd 測定装置及び測定方法
JP2003014421A (ja) * 2001-07-04 2003-01-15 Minolta Co Ltd 測定装置及び測定方法
JP2003050107A (ja) * 2001-08-07 2003-02-21 Matsushita Electric Ind Co Ltd カメラ校正装置
WO2003073658A1 (fr) * 2002-02-27 2003-09-04 Tasada Works Inc. Appareil de recherche d'obstacles a la communication
JP2004125795A (ja) * 2002-10-02 2004-04-22 Robert Bosch Gmbh 画像センサシステムのキャリブレーション方法および装置
US7616806B2 (en) 2004-11-30 2009-11-10 Honda Motor Co., Ltd. Position detecting apparatus and method of correcting data therein
US7620237B2 (en) 2004-11-30 2009-11-17 Honda Motor Co., Ltd. Position detecting apparatus and method of correcting data therein
US7567688B2 (en) 2004-11-30 2009-07-28 Honda Motor Co., Ltd. Apparatus for and method of extracting image
US7590263B2 (en) 2004-11-30 2009-09-15 Honda Motor Co., Ltd. Vehicle vicinity monitoring apparatus
US7599521B2 (en) 2004-11-30 2009-10-06 Honda Motor Co., Ltd. Vehicle vicinity monitoring apparatus
JP2009513957A (ja) * 2005-10-26 2009-04-02 トリンブル イエナ ゲゼルシャフト ミット ベシュレンクテル ハフツング 測量方法及び測量装置
JP2009535878A (ja) * 2006-04-28 2009-10-01 ノキア コーポレイション 較正
US8201436B2 (en) 2006-04-28 2012-06-19 Nokia Corporation Calibration
JP2008232950A (ja) * 2007-03-22 2008-10-02 Honda Motor Co Ltd 位置検出方法および位置検出装置
WO2008114531A1 (ja) * 2007-03-22 2008-09-25 Honda Motor Co., Ltd. 位置検出方法および位置検出装置
US8295586B2 (en) 2007-03-22 2012-10-23 Honda Motor Co., Ltd. Position detecting method and position detecting apparatus in consideration of non-pinhole characteristic of a camera
JP2012507011A (ja) * 2008-10-28 2012-03-22 ザ・ボーイング・カンパニー 空間照会のための手持ち型位置決めインタフェース
JPWO2016143395A1 (ja) * 2015-03-11 2017-07-13 ナルックス株式会社 位置測定部を備えた部品及び測定方法
CN108137096A (zh) * 2015-11-26 2018-06-08 宝马股份公司 用于停放车辆的系统
US10800405B2 (en) 2015-11-26 2020-10-13 Bayerische Motoren Werke Aktiengesellschaft System for parking a vehicle
CN108137096B (zh) * 2015-11-26 2021-05-18 宝马股份公司 用于停放车辆的系统
WO2020138345A1 (ja) * 2018-12-27 2020-07-02 日本電気通信システム株式会社 物品位置管理装置、物品位置管理システム、物品位置管理方法及びプログラム
CN113226952A (zh) * 2018-12-27 2021-08-06 日本电气通信系统株式会社 物品位置管理装置、物品位置管理系统、物品位置管理方法和程序
JPWO2020138345A1 (ja) * 2018-12-27 2021-11-04 日本電気通信システム株式会社 物品位置管理装置、物品位置管理システム、物品位置管理方法及びプログラム
WO2020195731A1 (ja) * 2019-03-27 2020-10-01 オムロン株式会社 報知システム、報知装置
US11967183B2 (en) 2019-03-27 2024-04-23 Omron Corporation Notification system and notification device

Also Published As

Publication number Publication date
US6594600B1 (en) 2003-07-15
ES2181283T3 (es) 2003-02-16
EP0948760B1 (fr) 2002-07-31
CA2275957A1 (fr) 1999-05-06
CA2275957C (fr) 2011-12-20
FR2770317B1 (fr) 2000-12-08
DE69806894D1 (de) 2002-09-05
EP0948760A1 (fr) 1999-10-13
FR2770317A1 (fr) 1999-04-30
DE69806894T2 (de) 2003-03-13
WO1999022281A1 (fr) 1999-05-06
JP4201059B2 (ja) 2008-12-24

Similar Documents

Publication Publication Date Title
JP4201059B2 (ja) 1つまたは複数の移動カメラの初期位置および向きを校正するための方法ならびに固定対象の3次元的位置測定に対してのこの方法の応用
US9171225B2 (en) Device, method, and recording medium for detecting and removing mistracked points in visual odometry systems
US8107722B2 (en) System and method for automatic stereo measurement of a point of interest in a scene
US6915228B2 (en) Method and device for calibrating an image sensor system in a motor vehicle
US7342669B2 (en) Three-dimensional shape measuring method and its device
US9998660B2 (en) Method of panoramic 3D mosaicing of a scene
US7659921B2 (en) Distance measurement apparatus, distance measurement method, and distance measurement program
US10909395B2 (en) Object detection apparatus
JP3494075B2 (ja) 移動体の自己位置標定装置
US20040234122A1 (en) Surface shape measurement apparatus, surface shape measurement method, surface state graphic apparatus
JPH10253322A (ja) 空間内で物体を位置指定する方法および装置
EP3086284A1 (en) Camera extrinsic parameters estimation from image lines
CN109596121A (zh) 一种机动站自动目标检测与空间定位方法
CN114283391A (zh) 一种融合环视图像与激光雷达的自动泊车感知方法
CN109871739A (zh) 基于yolo-sioctl的机动站自动目标检测与空间定位方法
CN110044266A (zh) 基于散斑投影的摄影测量系统
Roh et al. Aerial image based heading correction for large scale SLAM in an urban canyon
CN113327192B (zh) 一种通过三维测量技术测算汽车行驶速度的方法
US10859377B2 (en) Method for improving position information associated with a collection of images
JPH09329440A (ja) 複数枚の画像の各計測点の対応づけ方法
EP3060879B1 (en) Optical device and method for wheel alignment
Rönnholm et al. A method for interactive orientation of digital images using backprojection of 3D data
Jarron Wide-angle Lens Camera Calibration using Automatic Target Recognition
McLean Image warping for calibration and removal of lens distortion
He Co-registration between imagery and point cloud acquired by mls platform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070928

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees