JP4849757B2 - 自己校正するマルチカメラ機械視覚測定システム - Google Patents

自己校正するマルチカメラ機械視覚測定システム Download PDF

Info

Publication number
JP4849757B2
JP4849757B2 JP2001569222A JP2001569222A JP4849757B2 JP 4849757 B2 JP4849757 B2 JP 4849757B2 JP 2001569222 A JP2001569222 A JP 2001569222A JP 2001569222 A JP2001569222 A JP 2001569222A JP 4849757 B2 JP4849757 B2 JP 4849757B2
Authority
JP
Japan
Prior art keywords
calibration
relative
target
measurement
measurement device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001569222A
Other languages
English (en)
Other versions
JP2003528304A (ja
Inventor
ジャクソン,デイビッド・エイ
ロブ,マイケル・ジェイ
ワルチャク,ドナルド・エル
Original Assignee
スナップ − オン テクノロジーズ,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26923227&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4849757(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US09/576,442 external-priority patent/US6968282B1/en
Application filed by スナップ − オン テクノロジーズ,インコーポレイテッド filed Critical スナップ − オン テクノロジーズ,インコーポレイテッド
Publication of JP2003528304A publication Critical patent/JP2003528304A/ja
Application granted granted Critical
Publication of JP4849757B2 publication Critical patent/JP4849757B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • G01S5/163Determination of attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/275Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing wheel alignment
    • G01B11/2755Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing wheel alignment using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/12Method or fixture for calibrating the wheel aligner
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/14One or more cameras or other optical devices capable of acquiring a two-dimensional image
    • G01B2210/143One or more cameras on each side of a vehicle in the main embodiment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/30Reference markings, reflector, scale or other passive device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/30Reference markings, reflector, scale or other passive device
    • G01B2210/303Reference markings, reflector, scale or other passive device fixed to the ground or to the measuring station

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の分野】
この発明は一般に、2つ以上のカメラを有する機械視覚測定システムの校正に関し、より詳細には、自動車ホイール用のコンピュータ支援3次元アライナ(aligner)の自動自己校正を提供する装置および方法に関する。
【0002】
【発明の背景】
2つ以上のカメラを有する機械視覚測定システムは、多くの用途に用いられている。たとえば、自動車のホイールが、コンピュータ支援3次元(3D)機械視覚アライメント装置および関連するアライメント方法を用いて、アライメントラック上でアライメントを行なう場合がある。自動車の3Dアライメントに役に立つ方法および装置の例が、米国特許第5,724,743号「自動車ホイールのアライメントを判断するための方法および装置(Method and apparatus for determining the alignment of motor vehicle wheels)」、および米国特許第5,535,522号「自動車ホイールのアライメントを判断するための方法および装置(Method and apparatus for determining the alignment of motor vehicle wheels)」に記載されている。これらの文献に記載された装置は、「3Dアライナ」または「アライナ」と呼ばれることがある。
【0003】
自動車ホイールのアライメントを判断するには、そのような3Dアライナは、ホイールに取付けられた目標を見るカメラを用いる。これらのアライナは一般に、アライナを最初に作業現場に設置した後に行なわれるべき校正プロセスを必要とする。車両の一側のホイールと車両の他側のホイールとの位置を正確に判断するためには、アライナはあるカメラが他のカメラに対してどこに位置付けられているかを知らなければならない。ある校正方法によれば、大きな目標がカメラの視野内に、通常、アライメントラックの中心線に沿って、かつカメラから遠ざかって位置付けられる。次に、各カメラから得られた情報を用いて、カメラの相対的な位置および配向が判断される。各カメラはそれ自体に対して目標がどこにあるかを示しているため、また、各々は同じ目標を見ているため、システムは各カメラが他に対してどこに位置し配向しているかを計算できる。これは、相対カメラ位置(RCP)校正と呼ばれる。
【0004】
このような校正により、車両の一側から得られた結果を他と比較できるようになる。このため、2つのカメラを互いに対し固定して取付け、次にRCP校正を行なうことによって、システムはそれ以降、車両の一側のホイールを車両の他側に対して配置するために使用できる。RCP伝達関数が、1つのカメラの座標系を他のカメラの座標系へ変換するために用いられ、そのため1つのカメラが見る目標を他のカメラが見る目標に直接関連付けることができる。RCPを行なうための1つのアプローチが、1998年9月22日にジャクソン(Jackson)他に発行された米国特許第5,809,658号「自動車ホイールのアライメントに用いられるカメラを校正するための方法および装置(Method and Apparatus for Calibrating Cameras Used in the Alignment of Motor Vehicle Wheels)」に開示されている。
【0005】
RCP校正は正確であるが、実行するには特殊な取付具と訓練されたオペレータとを必要とする。このため、アライナ用のより簡単で単純な校正プロセスが必要とされている。
【0006】
さらに、校正が行なわれた後でさえ、時がたつにつれてアライナが校正を失う場合がある。前述の文献に開示されたアライナは、校正の損失を最小限に押さえるよう設計されたブームの上に取付けられたカメラを有している。しかし、カメラが震動したりまたは取外された場合、もしくはブーム自体が曲がった場合、アライナは校正を失う。アライナはそれ自体の校正の損失を検出できない。校正の損失は通常、技術者が校正チェックまたは全体校正を行なわない限り検出されない。アライナの校正がずれていることに技術者が気づくまでに長い時間が経過するおそれがある。
【0007】
また、ブームは大きく、高価であり、アライメントラックに入って出ていく車両に障害物を提示する。車両が整備施設内へ前進し、アライメントを受け、次に前進して整備施設を出るという「ドライブスルー」アライメントアプローチが用いられる場合がある。これにより、他の自動車が整備中の車両の後ろに列を作ることが可能となり、アライメント整備の速度および効率を向上させる。固定ブームを有するドライブスルーアライメントのあるアプローチでは、各車両が通過するにつれてカメラブームを進路から上昇させる必要がある。これは、時間がかかり、費用もかかり、ぎこちなくなり得る。
【0008】
前記に基づいて、2つ以上のカメラを有する機械視覚測定システムの自動自己校正を提供する装置および方法に対する明らかな要求が、この分野において存在する。
【0009】
設置現場で校正せずにアライメント整備施設に設置されてもよいアライナに対する要求もあり、それにより、余分なハードウェアおよび訓練されたオペレータの必要性がなくなる。
【0010】
カメラが震動したりまたは取外された場合、もしくはブームが曲がった場合に、自動的にそれ自体を再校正できるアライナに対する要求も存在する。
【0011】
アライナが不正確に測定していたと技術者が判断した場合、またはアライナのカメラの相対位置が変わったのではないかと技術者が疑う場合に、速やかに再校正され得るアライナへの要求も存在する。
【0012】
動作用に固定取付ブームを必要とせず、したがって、ビームおよびカメラを上昇させる必要なくドライブスルーアライメントが可能となるような3Dアライナを有することも、有利である。
【0013】
【発明の概要】
前述の要求と目的、および以下の説明から明らかとなる他の要求は、この発明の実施例によって実現され、それは、一局面では、機械測定システムを校正するための装置を含む。一実施例では、第1のカメラと第2のカメラとを有する機械測定システムは、機械視覚測定システムの第1のカメラに予め定められた関係で取付けられた第1の校正目標と、機械測定システムの第2のカメラに予め定められた関係で取付けられた第3のカメラとを含む。校正目標は第3のカメラから見られる。データプロセッサは、第3のカメラに対する第1の校正目標の相対位置に基づいて、機械測定システムの相対カメラ位置値を計算するよう構成されており、相対カメラ位置値は、第2のカメラに対する第1のカメラの相対位置を表わす。この校正はたびたび、たとえば第1および第2のカメラがホイール目標などの対象物を測定するたびに行なうことができる。
【0014】
この発明を、限定のためではなく例示のために、添付図面の図に示す。同じ参照符号は同様の要素を指している。
【0015】
【好ましい実施例の詳細な説明】
2つ以上のカメラを有する機械視覚測定システムの自動校正のための方法および装置を記載する。以下の記載では、説明のために、多数の特定の詳細がこの発明の完全な理解を提供するために述べられている。しかし、この発明がこれらの特定の詳細なしに実施されてもよいということは、当業者には明らかである。他の場合、この発明を不必要に不明瞭にしないよう、周知の構成およびデバイスはブロック図の形で示されている。
【0016】
−−構造上の概要
図1は、自動車のホイールにアライメントを行なうために用いられる左カメラモジュール2と右カメラモジュール4とを一般に含むコンピュータ支援3D自動車ホイールアライメントシステム(アライナ)のある要素の概略平面図である。このようなアライナは、2つ以上のカメラを有する機械視覚測定システムの一例であるが、この発明は自動車アライナという状況に限定されず、それは、2つ以上のカメラを有するあらゆる機械視覚測定システムに、または2つ以上の測定デバイスを有するあらゆる機械測定システムに同等に適用可能である。また、「左」および「右」という用語は便宜上用いられており、特定の要素が別の要素に対して特定の場所に、または特定の関係で配置されることを要求する意図はない。「左」の要素であると述べられたいずれの要素も、「右」の場所に配置されてもよく、その逆も当てはまる。
【0017】
矢印30は、アライメントを受けている自動車を概略的に表わしている。車両は、左フロントホイール22Lおよび右フロントホイール22Rと、左リアホイール24Lおよび右リアホイール24Rとを含む。アライメント目標80a、80b、80c、80dは、ホイール22L、22R、24L、24Rの各々に、それぞれ固定されている。各アライメント目標は一般に、目標情報がその上に刻み込まれているプレート82と、目標をホイールに固定するためのクランプ機構88とを含む。
【0018】
左カメラモジュール2は、左アライメントカメラ10Lと校正カメラ20とを含む。左アライメントカメラ10Lは車両に面しており、軸42に沿って左側の目標80a、80bを見る。左アライメントカメラ10Lは、米国特許第5,724,743号「自動車ホイールのアライメントを判断するための方法および装置(Method and apparatus for determining the alignment of motor vehicle wheels)」、および米国特許第5,535,522号「自動車ホイールのアライメントを判断するための方法および装置(Method and apparatus for determining the alignment of motor vehicle wheels)」に記載されたアライナにおけるアライメントカメラのうちの1つとして機能してもよい。カメラ10Lは、左剛性取付台12に固定して取付けられている。
【0019】
校正カメラ20は右カメラモジュール4に面しており、軸46に沿って校正目標16を見る。校正カメラ20も取付台12に固定して取付けられている。一実施例では、軸42と軸46とは約90°の角度を張っている。しかし、この特定の角度関係は要求または必要とされていない。
【0020】
この例示的な実施例では、校正カメラ20は、左カメラモジュール2の一部を形成するものとして図示されている。しかし、校正カメラ20は、右カメラモジュール4の一部としても構成されてもよく、その場合、そのビューは左カメラモジュール2へと左に向けられる。
【0021】
右カメラモジュール4は、車両に面して3Dアライメントシステムにおける第2のアライメントカメラとして機能する右カメラ10Rを含む。右カメラ10Rは、剛性のカメラ取付台14に取付けられる。校正目標16は、カメラ取付台14に、軸46に沿って校正カメラ20から見える位置に固定して取付けられている。
【0022】
校正カメラ20と左カメラ10Lとは、予め定められた公知の位置に固定されている。同様に、右カメラ10Rと校正目標16とは、予め定められた公知の位置に固定されている。このため、左カメラ10Lに対する校正カメラの相対位置は公知であり、校正目標16に対する右カメラ10Rの相対位置も公知である。左カメラモジュールに含まれる2つのカメラの相対位置は、精密カメラ取付ハードウェアを用いることにより得られる。別のアプローチとしては、2つのカメラの位置を工場校正し、それらを保存して後に使用することが挙げられる。
【0023】
左カメラ10Lおよび校正カメラ20の左取付台12への取付けは、カメラが取付台に対して動いた場合に生じうる校正誤差を招かないよう、堅固である必要がある。同様に、右カメラ10Rおよび校正目標16の取付台14への取付けも、堅固である必要がある。
【0024】
校正目標16およびホイール目標80a−80dを照らすため、左カメラモジュール2と右カメラモジュール4とは、光源62、64、66をさらに含んでいてもよい。一実施例では、第1の光源62は軸46に垂直に整列され、その軸に沿って光を向けて校正目標16を照らす。第2の光源64は、軸42に垂直に整列され、その軸に沿って光を向けて左側のホイール目標80a、80bを照らす。第3の光源66は軸44に垂直に整列され、その軸に沿って光を向けて右側のホイール目標80c、80dを照らす。一実施例では、光源62、64、66の各々は、複数の発光ダイオード(LED)がその上に取付けられ、照明方向に面した回路基板またはその他の基板を含む。しかし、他のいかなる光源を使用してもよい。
【0025】
図2は、アライメントシステムが左直立材52と右直立材54とを含む、代替的な実施例の図である。各直立材52、54は、アライメントラックまたは整備施設の床に取付けられた剛性ポストを含んでいてもよい。左アライメントカメラ10Lと校正カメラ20とは、保護筐体および剛性取付台として機能する左直立材52内に取付けられている。カメラは、アライメント中の自動車とアライメント目標16とを、直立材52の好適な穴または窓を通して見てもよい。右アライメントカメラ10Rは、右直立材54内に取付けられて封入されており、カメラ10Rは右直立材54の好適な穴または窓を通して車両を見てもよい。
【0026】
校正目標16は、直立材54の外部表面に、校正カメラ20から見える位置に取付けられてもよい。またこれに代えて、校正目標16は、直立材54内に取付けられ、直立材54の好適な穴または窓を通して校正カメラ20に見られてもよい。
【0027】
光源62、64、66は、直立材52、54の外部表面に取付けられていてもよい。
【0028】
−−第1のカメラモジュール(第1および第3のカメラ)の校正の概要
アライナが使用可能となる前に、カメラモジュールまたはポッド(1つのポッドが第1および第3のカメラを有し、第2のポッドが第2のカメラおよび校正目標を有する)の各々についてその構成要素の相対位置が決定されねばならない。
【0029】
剛性取付台12が高い許容公差(たとえば、0.01″および0.01°)で製造されている場合、左カメラ10Lと校正カメラ20との相対位置はわかっており、それら2つのカメラの相対位置を校正する必要はない。それらの相対位置は公知であろうし、同じことがすべてのアセンブリについて言えるであろう。しかし、コストを減じる方法として、ポッド内のカメラまたは目標のそれぞれについて相対位置を校正または測定してもよい。
【0030】
図6Aは、3つ以上のカメラを有する機械視覚測定システムの第1のカメラモジュールを校正するプロセスを示すフロー図である。
【0031】
一般に、一実施例において、左カメラモジュール10Lの校正のために、互いに対して固定的に取付けられた2つの目標が、複数のカメラのうち1つのカメラの視野内に配置される。そのカメラは、3つのカメラのうちのいずれか1つであってもよいし、製造の際のセットアップを容易にする目的で、別のカメラであってもよい。コンピュータは、2つの目標の相対位置(RTP)を計算する。その後、それらの目標が、第1のカメラが一方の目標を、第3のカメラが第2の目標を見るように動かされる。目標位置の測定値が計算される。RTPおよび今しがた測定された目標の位置に基づいて、第1のカメラおよび第3のカメラの位置が計算される。
【0032】
このアライメントカメラと校正カメラの相対位置を校正するサブプロセスについて、図3A、図3B、図3C、図3Dおよび図6Aを参照して以下に説明する。
【0033】
ブロック602において、第1のカメラおよび校正カメラを有する左カメラモジュールをセットアップする。ブロック604において、複数の目標を左カメラの視野内にセットアップする。たとえば、図3Aは、左アライメントカメラ10Lと校正カメラ20との相対位置を測定および校正するための方法において使用され得る装置を示す図である。目標アセンブリ70は、フレーム76に固定された2つの目標72、74を含む。目標アセンブリは、両方の目標72、74が左アライメントカメラ10Lから見えるように、そのカメラ10Lの視野内に軸42に沿って配置される。この配置により、カメラ10Lは目標72、74を、ほぼ図3Bに示される構成で見るようになる。カメラ10Lによって画像90が生成されるが、これは目標72、74の目標画像92を含む。
【0034】
ブロック606において、相対目標位置値が計算される。たとえば、公知の機械視覚技術を使用して、適切なソフトウェアに従ってプログラムされたデータプロセッサが、画像90を受取って、目標画像92に基づいて各目標72、74の場所を測定することが可能である。このデータプロセッサはその後、目標72、74の各々について相対目標位置(RTP)値を計算することができる。
【0035】
ブロック608において、複数の目標が、一方の目標が第1のカメラの視野内に、他方の目標が校正カメラから見えるようにセットアップされる。たとえば、図3Cを参照して、目標アセンブリは、目標72、74がそれぞれ左アライメントカメラ10Lおよび校正カメラ20によって見えるように動かされる。目標フレームは、校正を行なう技術者によって手動で動かされてもよく、電動装置によって動かされてもよい。この位置で、左アライメントカメラ10Lは図3Dに示される画像90に似た画像を形成する。画像90は、カメラ10Lが見た目標72のビューを表わす目標画像94を含む。ブロック610に示すように、現時点における目標位置値が計算される。たとえば、各カメラに対する各目標72、74の位置値が、機械視覚画像分析技術を使用して計算される。
【0036】
その後、ブロック612に示すように、校正カメラに対する第1のカメラの位置が計算される。たとえば、RTP値および目標位置値に基づいて、校正カメラ20に対する左アライメントカメラ10Lの相対カメラ位置を表わす値(「RCP左モジュール値」)が計算される。
【0037】
−−第2のカメラモジュール(第2のカメラおよび校正目標)の校正の概要
カメラと目標とを含むポッドまたはモジュール、たとえば右カメラモジュール10Rを校正するためのプロセスを、図6Bのフローチャートを参照して以下に説明する。ブロック613で示されるように、右カメラモジュール10Rがまずセットアップされる。右カメラモジュール10Rは厳しい許容公差で製造されてもよいが、コストを減じるために、相対位置の測定を含む校正アプローチが用いられてもよい。一般に、図4A、図4Bおよび図4Cに示すように、データ目標が第2のカメラの視野内に配置される。別のカメラ(「セットアップカメラ」)が、校正目標とデータ目標の両方を見る位置に配置される。セットアップカメラはコンピュータと協働して、2つの目標のRTPを測定する。第2のカメラはデータ目標の位置を測定し、コンピュータはRTP値に基づいて、第2のカメラに対する校正目標の位置を判断する。
【0038】
図4Aは、校正目標16に対する右カメラ10Rの位置を測定しかつしたがって校正するための方法において使用され得る装置を示す図である。この装置は、右カメラと校正目標との相対位置が予めわかっていないときに使用され得る。一実施例において、図4Aの装置は、アライナの工場校正プロセスの一部として作製される。
【0039】
ブロック614に示すように、セットアップカメラおよび付加的な目標(「データ目標」)が適所に配置され得る。データ目標104は右カメラモジュール4の正面に位置付けられて、右アライメントカメラ10Rによって見えるようにされる。付加的なカメラであるセットアップカメラ100は、右カメラモジュール4の側方に位置付けられて、データ目標104および校正目標16の両方を見ることができるようにされる。
【0040】
ブロック616に示すように、相対目標位置値が、セットアップカメラのビューを使用して、データ目標と校正目標との位置に基づいて計算される。たとえば、図4Bは、上述の構成においてセットアップカメラ100によって見られるビュー106を示す図である。ビュー106は、校正目標の第1の画像16′と、データ目標104の第2の画像104′とを含む。このビューを機械視覚処理システムへの入力として用いることで、データ目標104および校正目標16の位置がセットアップカメラ100を使用して測定される。これらの測定値から、データ目標104と校正目標16との相対目標位置についての値(「RTPセットアップ値」)が得られる。
【0041】
ブロック617において、第2のカメラに対するデータ目標の相対位置が得られる。ブロック618に示すように、相対目標位置セットアップ値と、第2のカメラに対するデータ目標の相対位置とに基づいて、相対カメラ目標位置値が計算される。
【0042】
たとえば、図4Cは、上述の構成において右アライメントカメラ10Rによって見られるビュー108を示す図である。ビュー108は、データ目標104の第2の画像104″を含む。ビュー108を機械視覚処理システムへの入力として使用して、右アライメントカメラ10Rに対するデータ目標104の位置が測定される。右アライメントカメラ10Rに対するデータ目標104の相対位置を表わす値およびRTPセットアップ値を使用して、相対カメラ目標位置値(RCTP)が計算される。このRCTP値は、右校正目標16に対する右アライメントカメラ10Rの関係を表わす。
【0043】
この時点において、左アライメントカメラ10Lと校正カメラ20との相対位置が今やRCP左モジュール値の形でわかっている。さらに、校正目標16に対する右アライメントカメラ10Rの相対位置もまた、RCTP値の形でわかっている。左アライメントカメラ10Lが校正カメラ20に対して固定的に取付けられており、また、右アライメントカメラ10Rが校正目標16に対して固定的に取付けられているので、それらの相対位置が変化することはない。一実施例において、上記工程は通常、アライナシステムが製造される製造業者の敷地(サイト)で行なわれる。アライナシステムはしたがって、ブロック620に示すように、製造業者のサイトで校正される。
【0044】
−−製造業者のサイトで校正されたシステムの使用
製造業者のサイトにおいて校正が済んでいるシステムで、アライメントを行なうことができる。図1に示すように、カメラモジュール2および4はアライメントされるべき車両の正面に配置されている。左カメラモジュール2は、左アライメントカメラ10Lがその車両の左側を見、校正カメラ20が右カメラモジュール4の校正目標10を見ることができるように配向される。右カメラモジュール4は、右アライメントカメラ10Rが車両の右側を見、校正目標16が校正カメラ20から見えるように位置付けられている。これは図1に示すとおりである。
【0045】
図5Aは、アライメント作業が行なわれている間にこの構成における左アライメントカメラ10Lから見えるビュー110を示す図である。ビュー110は、アライメントが行なわれている車両の左ホイール上にあるアライメント目標80a、80bの画像を含む。
【0046】
図5Bは、この構成において校正カメラ20が見るビュー112を示す図である。ビュー112は、校正目標16の画像16″を含む。
【0047】
図5Cは、右アライメントカメラ10Rによって見られるビュー114を示す図である。ビュー114は、アライメントが行なわれている車両の右ホイール上にあるアライメント目標80c、80dの画像を含む。
【0048】
図6Cは、自動車アライメント作業中にカメラ校正を行なうプロセスを示すフロー図である。これは一実施例においては仕事場で行なわれる。ブロック629において、第1のカメラ、第2のカメラ、校正カメラおよび校正目標を有するアライナが上述のようにセットアップされる。ブロック630において、自動車ホイールアライメント作業またはプロセスが開始される。ブロック630は、車両をアライメントラックに移動し、ホイール目標を車両のホイールに取付け、アライナを初期化し、アライナのカメラでホイール目標を視野に捉える工程を含み得る。
【0049】
ブロック632において、校正カメラが、その校正カメラに対する校正目標の位置および配向を測定する。たとえば、アライナが設置されたとき、および、使用中または自動車のアライメント中に周期的に、校正カメラ20はその校正カメラに対する校正目標16の位置および配向を測定し得る。
【0050】
ブロック634において、RCP値およびRCTP値が、典型的にメモリから得られる。一実施例において、これらの値は上述のように計算されてメモリに記憶される。ブロック636に示すように、これらの値(RCP左モジュール値、RCTP右モジュール値および校正目標位置)に基づいて、左アライメントカメラ10Lと右アライメントカメラ10Rとの相対位置を表わす値が計算される。これらの値は、アライナの相対カメラ位置(RCP)と呼ばれる。アライナはその後、ブロック638に示すように、車両を前方に見て、車両のアライメント測定を進めることができる。
【0051】
校正プロセスは、コンピュータがアライメントにおける他の通常の機能を実行している間に、「バックグラウンド」モードまたはバックグラウンドプロセッサで行なうことができる。
【0052】
RCP値の計算はいつ行なわれてもよく、車両アライメント測定の前、その間またはその後に行なわれてもよい。たとえば、RCP値の計算は、正確なアライメントを提供するために、1秒につき数回、1日1回、仕事日の開始時または最後に、と、適宜行なうことができる。
【0053】
−−変形例
代替的な実施例において、現場の環境またはサービスショップにおいてアライナが使用される前に、左カメラモジュール2の校正カメラ20と左アライメントカメラ10Lの相対位置や右カメラモジュール4のカメラ対目標位置を工場で測定することなく、上述の装置およびプロセスが使用され得る。この代替例においては、第1および第2のカメラのRCPを計算するための上記特許文献に述べられたRCP手順または等価なプロセスを使用して、標準的な現場校正が実行される。その後、校正カメラ20が校正目標16の位置を測定するが、校正カメラ20は周期的に校正目標16を見て、その相対位置を測定する。その測定値が校正カメラ20と目標16の相対位置の変化を示した場合、左カメラモジュール2が右カメラモジュール4に対して動いたことになる。その変化の値を使用して、アライナのRCP値を再計算し更新することが可能である。
【0054】
別の代替的な実施例においては、プロセスをさらに簡略化するために、アライナのRCP値が計算された後に、校正カメラ20と校正目標16との相対位置が測定される。この測定値は、アライナの設定時に行なわれた校正目標16に対する校正カメラ20の相対位置の当初測定値と、周期的に比較される。これら2つの測定値が所定の許容公差を超えて異なった場合、アライナはオペレータに対して、そのアライナがもはや校正できていないことを知らせる。これに応じて、オペレータまたはサービス技術者は、たとえばRCP方法を使用して、校正を再び行なうことができる。
【0055】
また別の代替的な実施例においては、アライナに3つ以上のアライメントカメラモジュールが備えられる。該装置は、各々の付加的なアライメントカメラモジュールにつき、付加的な校正カメラおよび校正目標を含む。付加的な各アライメントカメラモジュールは、上述のプロセスに従って、その付加的なモジュールを校正する付加的な処理工程で校正される。付加的な各モジュールにおける各カメラがその関連する校正目標に対して固定的に取付けられていれば、装置全体は自動的に校正され得る。
【0056】
また別の実施例においては、校正カメラと校正目標とが異なる測定モジュール上に取付けられる。この構成は、ホイールがアライメントしているかどうかを判断するための1または複数のレーザシステムを使用する非接触アライナとともに使用され得る。
【0057】
さらに、ここで説明するプロセスは、校正カメラ20の機能を実行するカメラ以外の要素を使用する実施例においても使用され得る。ある実施例においては、ビデオカメラが必須ではないが使用されてもよく、また、どのような好適な画像取込デバイスまたはどのような従来の測定デバイスが使用されてもよい。たとえば、1または複数のアライメントカメラ10L、10Rの互いに対するまたは固定点に対する運動を検出するのに、重力ゲージまたはストリングゲージを配置してもよい。これに代えて、LED光源を1つのカメラモジュールに取付けて、対向するカメラモジュールに取付けられた検出器に光ビームを当てるようにしてもよい。その検出器は検出器表面上で最大の光強度を有する点を判断するが、もしその点が時間の経過とともに動けば、カメラが移動したものと判断され、RCP値が更新されるか、または、そのシステムが校正できていないことを示すフラグがセットされる。
【0058】
−−コンピュータベースの数学的計算
図8は、上述のシステムにおいて使用される数値のコンピュータベースの数学的計算の基礎を提供する、カメラと座標系の幾何学的関係を示す簡略図である。
【0059】
図8において、CSA(座標系A)は、第1のアライメントカメラに関連する第1の3次元座標系を特定する。CSBは、第2のアライメントカメラに関連する第2の座標系を特定する。CSWは、基準の目的で使用される左ホイール座標系を特定する。CAは、CSWの原点からCSAの原点へのベクトルである。CBは、CSWの原点からCSBの原点へのベクトルである。Pは空間内の点である。
【0060】
PWは、CSWの原点からPへのベクトルである。CSWに対する、PWの成分は以下のとおりである。ここで、・は、ドット積の計算を示す。
【0061】
【数1】
Figure 0004849757
【0062】
UA0、UA1およびUA2は、CSAの単位ベクトル、すなわち、そのx軸、y軸およびz軸である。CSWに対して、UA0の成分は以下のとおりである。
【0063】
【数2】
Figure 0004849757
【0064】
UA1、UA2、UB0、UB1およびUB2の成分は、同様に計算することができる。
【0065】
PAは、CSAの原点からPへのベクトルである。CSAに対して、PAの成分は以下のとおりである。
【0066】
【数3】
Figure 0004849757
【0067】
PBは、CSBの原点からPへのベクトルである。CSBに対して、PBの成分は以下のとおりである。
【0068】
【数4】
Figure 0004849757
【0069】
したがって、一実施例においては、コンピュータ記憶装置を用いて、MWAの4×4行列の値を使用して、CSWに対するCSAを完全に記述することができる。MWAの最初の3列の4ベクトルは、CSWに対するCSAの単位3ベクトルであり、その第4の成分はゼロの値を有する。MWAの最後の4ベクトルは、CSAに対する、CSWの原点(中心)からCSAの原点への3ベクトルであり、その第4の成分は1の値を有する。これらの4ベクトルおよび4×4行列を「同次座標("homogeneous coordinates")」と呼ぶ。
【0070】
左上方の3×3行列は単にCSAをCSWに対応付ける回転行列(rotation matrix)であり、最右行は平行移動または並進(translation)である。
【0071】
CSAに対する任意の点(すなわち、CSAにおけるその点の座標、これは、CSAの単位ベクトルに対する、CSAの原点からその点へのベクトルの成分である)が与えられると、行列MWAは、CSWにおける当該点の座標をどのように計算すべきかを示す。すなわち、PA(CSAに対する座標ベクトル)をMWAで乗算することにより、PW(CSWに対する座標ベクトル)が得られる。
【0072】
それぞれの値が行列の形で得られたので、行列数学(matrix mathematics)を使用することができる。特定的に、もしPW=MWA*PAであれば、PA=MWA-1*PWである。
【0073】
上の定義により、4×4行列MWA-1は、CSAに対するCSWを完全に特徴付けるかまたは記述する。上記はまた、PAがPWで置換されかつMWAがMWA-1で置換された場合にも当てはまる。MWA-1を得るのに、以下のプロセスが用いられる。
【0074】
1.左上方の3×3行列を転置(transpose)する。
2.最右列のベクトル(CAx、CAy、CAz、1)、すなわち、CSWに対する、CSWの原点からCSAへのベクトルを、(−CA0、−CA1、−CA2、1)、すなわち、CSAに対する、CSAの原点からCSWの原点へのベクトル(後者は、CSWの原点からCSAの原点へのベクトルCAとは反対方向である)に置き換える。
【0075】
【数5】
Figure 0004849757
【0076】
上の3×3行列は、4×4行列MWAにおける左上方の3×3行列の転置であり、MWA-1の左上方の3×3行列位置に入るものである。したがって、以下のとおりとなる。
【0077】
【数6】
Figure 0004849757
【0078】
表記を一致させる目的で、4×4行列MWAがCSWに対するCSAを完全に特徴付けるかまたは記述し、かつMWA-1がCSAに対するCSWを完全に特徴付けるかまたは記述する場合には、MWA-1=MAWである。
【0079】
【数7】
Figure 0004849757
【0080】
4×4行列MABは、CSAに対するCSBを完全に特徴付けるかまたは記述する。したがって、MABはRCPまたはRTP行列である。
【0081】
ある例示的なソフトウェア実現においては、VECTOR(ベクトル)構造は3つの数字のアレイとして定義され、MATRIX(行列)構造は3つのVECTORのアレイとして定義され、PLANE(平面)構造は1つのMATRIXおよび1つのVECTORである。MATRIXは3×3の回転行列であり、そのVECTORは座標系の3つの単位ベクトルであり、各VECTORはその座標系の原点へのベクトルである。これらすべてのVECTORの成分は、ベース座標系に対して表わされる。
【0082】
ある例示的な関数においては、WCSに対して定義される平面1はMWAであり、WCSに対して定義される平面2はMWBであり、平面1に対して定義される平面2はMABであり、平面2に対して定義される平面1はMBAである。そこで、APIを有する関数が以下のように定義され得る。
【0083】
【数8】
Figure 0004849757
【0084】
積4×4行列MWBの左上方の3×3は、MWAとMABの左上方における3×3行列値の積である。これは、すべての4×4行列の最下行における0値の結果である。積4×4行列MWBの最右列は、MWAの左上方3×3およびMABの最右列ベクトルの積と、MWAの最右列ベクトルとの和であり、これもまた、すべての4×4行列の最下行における0値および1値の結果である。
【0085】
計算時間を短縮するために、一実施例においては、4×4行列の最下行について0または1による乗算は行なわれない。したがって、3×3行列および3ベクトルの乗算、加算および転置演算が行なわれる。
【0086】
他の変換(transformation)についても、同様の関数が以下のように定義され得る。
【0087】
【数9】
Figure 0004849757
【0088】
上記の説明から、MWAの4×4行列の値を使用して、CSWに対するCSAを完全に記述できることがわかる。さらに、MWAの逆行列である行列MWA-1が、CSAに対するCSWを完全に記述する。したがって、以下が成り立つ。
【0089】
【数10】
Figure 0004849757
【0090】
機械視覚分析技術を使用して、上述のシステムは、目標のカメラ画像、たとえば図3Bに示す画像90を得て、そのカメラに対するその目標の座標系を計算することができる。
【0091】
相対目標位置(RTP)の計算について、図3Aを参照して以下に説明する。RTPを計算する目的で、
CSLを左カメラ10Lの座標系とする。
【0092】
CSAを目標72の座標系とする。
MLAはCSLに対するCSAを表わす。
【0093】
CSBを目標74の座標システムとする。
MLBはCSLに対するCSBを表わす。
【0094】
左カメラ画像90が目標72および74の画像92を含むとすると、機械視覚分析技術により、行列MLAおよびMLBが作成され記憶される。したがって、(目標72と目標74との間の)RTP値は以下によって得られる。
【0095】
【数11】
Figure 0004849757
【0096】
これに基づいて、該システムは、MLBからMLAをまたその反対を、以下によって計算することができる。
【0097】
【数12】
Figure 0004849757
【0098】
RTPの値が作成され記憶されると、目標アセンブリ70を、左カメラ10Lが目標72を見、校正カメラ20が目標74を見るように動かすことができる。CSCが校正カメラ20の座標系であるとする。左カメラ画像90が目標70の画像94(図3D)を含むものとし、また、校正カメラ画像96が目標74の画像98(図3D)を含むものとして、機械視覚分析技術により、CSLに対するCSAを記述する行列MLA、および、CSCに対するCSBを記述するMCBが作成されかつ記憶される。
【0099】
これらの行列に基づいて、校正カメラ20に対する左カメラ10Lの相対カメラ位置RCPの値を、以下のように計算することができる。
【0100】
【数13】
Figure 0004849757
【0101】
また、左カメラ10Lに対する校正カメラ20の相対カメラ位置RCPを、以下のように計算することができる。
【0102】
【数14】
Figure 0004849757
【0103】
次に、右カメラ10Rに関する値の計算を提示する。図4Aを参照して、
CSSがセットアップカメラ100の座標系であるとする。
【0104】
CSRが右カメラ10Rの座標系であるとする。
CSQが校正目標16の座標系であるとする。
【0105】
CSDがデータ目標104の座標系であるとする。
図4Bのセットアップカメラ画像106が校正目標16およびデータ目標104の画像16′および104′を含むものとすると、機械視覚分析技術により、CSSに対するCSQを記述する行列MSQと、CSSに対するCSDを記述するMSDとが作成され記憶される。さらに、右カメラ画像108がデータ目標104の画像104″を含むものとすると、機械視覚分析技術により、CSRに対するCSDを記述する行列MRDが作成され記憶される。MAQは、校正目標16とデータ目標104との間のRTP(CSQに対するCSD)を記述する。
【0106】
その後、右カメラに対する校正目標16の座標系、すなわちCSRに対するCSQが、以下によって得られる。
【0107】
【数15】
Figure 0004849757
【0108】
したがって、左カメラに対する校正カメラを記述するMLCの値、および、右カメラに対する校正目標を記述するMRQの値を計算することができる。
【0109】
通常の動作において、システムは、図5A、図5B、図5Cに示される種類の画像を生成する。左カメラ10Lは、2つの左ホイール目標の画像110(図5A)を生成する。機械視覚分析技術により、左カメラの座標系におけるホイール目標の座標系に関する値が作成され記憶される。左カメラの座標系がワールド座標系として規定される場合には、左ホイール目標がワールド座標系へと転置される。
【0110】
校正カメラ20は、校正目標の画像112(図5B)を生成する。機械視覚分析技術により、校正カメラの座標系、MCQにおける、校正目標の座標系に関する値が作成され記憶される。
【0111】
右カメラ10Lは、2つの右ホイールの目標について図5Cに示す画像114を生成する。機械視覚分析技術により、右カメラの座標系、MRWにおける、それらホイール目標の座標系に関する値が作成され記憶される。ここでの「W」は「ワールド」ではなく「ホイール」を意味する。通常、左カメラの座標系がワールド座標系として機能する。
【0112】
右ホイール目標の値は、MLW、すなわち左(ワールド)座標系における右ホイール目標を計算することによって、左ホイール目標と同じワールド座標系へと転置することができる。校正プロセスから、MLCおよびMRQの値はわかっている。該システムは、図5Bの画像に基づいてMCQを測定し、図5Cの画像に基づいてMRWを測定する。したがって、以下が成り立つ。
【0113】
【数16】
Figure 0004849757
【0114】
−−ハードウェアの概要
図7は、本発明の実施例を実現することが可能なコンピュータシステム700を示すブロック図である。コンピュータシステム700は、デバイス100の一部もしくはすべてのための配列として、または、デバイス100と通信する外部コンピュータもしくはワークステーションの配列のために、使用され得る。
【0115】
コンピュータシステム700は、情報を通信するためのバス702または他の通信機構と、バス702に結合されて情報を処理するためのプロセッサ704とを含む。コンピュータシステム700はまた、バス702に結合されてプロセッサ704によって実行されるべき命令および情報を記憶するための、ランダムアクセスメモリ(RAM)または他の動的記憶デバイス等のメインメモリ706を含む。メインメモリ706は、プロセッサ704によって実行されるべき命令の実行中に、一時的な変数または他の中間情報を記憶するのにも使用され得る。コンピュータシステム700はさらに、バス702に結合されてプロセッサ704のための命令および静的な情報を記憶するための、読出専用メモリ(ROM)708または他の静的な記憶デバイスを含む。磁気ディスクまたは光ディスク等の記憶デバイス710が、情報および命令を記憶するために備えられ、バス702に結合される。
【0116】
コンピュータシステム700は、バス702を介して、コンピュータユーザに対して情報を表示するための陰極線管(CRT)等のディスプレイ712に結合され得る。英数その他のキーを含む入力デバイス714がバス702に結合されて、プロセッサ704に対して情報およびコマンド選択を通信する。ユーザ入力デバイスの別の種類として、マウス、トラックボールまたはカーソル指示キー等のカーソルコントロール716があるが、これは、プロセッサ704に対して指示情報およびコマンド選択を通信し、また、ディスプレイ712上のカーソルの動きを制御する。この入力デバイスは典型的に2つの軸、すなわち第1の軸(たとえばx)および第2の軸(たとえばy)で2度の自由度を有し、これにより該デバイスは、平面内の位置を特定することができる。
【0117】
本発明の複数の実施例は、アライナの自動校正のためのコンピュータシステム700の使用に関連する。本発明の一実施例に従えば、アライナの自動校正は、プロセッサ704がメインメモリ706に含まれる1または複数の命令の1または複数のシーケンスを実行することに応答して、コンピュータシステム700によって提供される。それらの命令は、記憶デバイス710等の別のコンピュータ可読媒体からメインメモリ706内に読込まれ得る。メインメモリ706に含まれる命令のシーケンスの実行により、プロセッサ704はここに記載されたプロセス工程を行なう。代替的な実施例においては、この発明を実現するソフトウェア命令に代えて、またはそれらのソフトウェア命令と組合せて、ハードワイヤード回路が使用され得る。したがって、本発明の実施例は、ハードウェア回路およびソフトウェアのどのような特定的な組合せにも限定されることはない。
【0118】
ここで使用される「コンピュータ可読媒体」という語は、命令を実行のためにプロセッサ704に提供することに関わるどのような媒体をも意味する。そのような媒体は、限定するものではないが、不揮発性媒体、揮発性媒体および伝送媒体を含む、多数の形をとることができる。不揮発性媒体は、たとえば、記憶デバイス710のような光または磁気ディスクを含む。揮発性媒体は、メインメモリ706のような動的メモリを含む。伝送媒体は、バス702を構成するワイヤを含む、同軸ケーブル、銅製ワイヤおよび光ファイバを含む。伝送媒体はまた、電波および赤外線データ通信中に生成されるような、音波または光波の形をとってもよい。
【0119】
コンピュータ可読媒体の一般的な形として、たとえば、フロッピー(R)ディスク、フレキシブルディスク、ハードディスク、磁気テープ、もしくは他の磁気媒体、CD−ROM、その他の光学媒体、パンチカード、紙テープ、その他の穴のパターンを有する物理的媒体、RAM、PROMおよびEPROM、FLASH−EPROM、その他のメモリチップもしくはカートリッジ、以下に記載するような搬送波、および、コンピュータで読取り可能なその他の媒体、が挙げられる。
【0120】
コンピュータ可読媒体の種々の形は、プロセッサ704で実行されるように1または複数の命令の1または複数のシーケンスを搬送することに関連し得る。たとえば、それらの命令はまず、遠隔コンピュータの磁気ディスク上で搬送され得る。遠隔コンピュータは、それらの命令をその動的メモリへとロードし、モデムを使用して電話線を介して送信することができる。コンピュータシステム700に対してローカルなモデムは、その電話線上のデータを受信して、赤外線トランスミッタを使用してそのデータを赤外線信号に変換することができる。赤外線検出器は、赤外線信号で搬送されたデータを受信することができ、適切な回路がそのデータをバス702上に置くことができる。バス702はそのデータをメインメモリ706へと搬送し、プロセッサ704はそこから命令を取出して実行する。メインメモリ706によって受取られた命令は、プロセッサ704によって実行される前にまたはその後に、記憶デバイス710に適宜記憶され得る。
【0121】
コンピュータシステム700はまた、バス702に結合された通信インターフェイス718を含む。通信インターフェイス718は、ローカルネットワーク722に接続されたネットワークリンク720に結合して双方向データ通信を提供する。たとえば、通信インターフェイス718は、対応する種類の電話線へのデータ通信接続を提供する、総合デジタル通信網(ISDN)カードまたはモデムであってもよい。別の例として、通信インターフェイス718は、互換性のあるLANへのデータ通信接続を提供する、ローカルエリアネットワーク(LAN)カードであってもよい。無線リンクが実現されてもよい。どのような実現においても、通信インターフェイス718は、種々の情報を表わすデジタルデータストリームを搬送する電気信号、電磁信号または光学信号を送受信する。
【0122】
ネットワークリンク720は典型的に、1または複数のネットワークを介した他のデータデバイスとのデータ通信を提供する。たとえば、ネットワークリンク720は、ローカルネットワーク722を介したホストコンピュータ724への、またはインターネットサービスプロバイダ(ISP)726によって動作するデータ機器への接続を提供し得る。そしてISP726は、今では一般に「インターネット」728と称されるワールドワイドパケットデータ通信ネットワークを介して、データ通信サービスを提供する。ローカルネットワーク722およびインターネット728はいずれも、デジタルデータストリームを搬送する電気信号、電磁信号または光学信号を使用する。種々のネットワークを通る信号および、デジタルデータをコンピュータシステム700との間で搬送する通信インターフェイス718を通るネットワークリンク720上の信号は、情報を運搬する搬送波の例示的な形である。
【0123】
コンピュータシステム700は、1または複数のネットワーク、ネットワークリンク720および通信インターフェイス718を介して、メッセージを送信しかつプログラムコードを含むデータを受信することができる。インターネットの例においては、サーバ730がインターネット728、ISP726、ローカルネットワーク722および通信インターフェイス718を介して、アプリケーションプログラムに必要とされるコードを伝送し得る。本発明の実施例に従えば、そのようなダウンロードされたあるアプリケーションが、ここに記載したアライナの自動校正を可能にする。
【0124】
受取られたコードは、そのままの形で、プロセッサ704によって実行され、および/または、後に実行できるように記憶デバイス710もしくは他の不揮発性記憶装置に記憶され得る。このようにして、コンピュータシステム700は、搬送波の形でアプリケーションコードを得ることができる。
【0125】
−−利点およびさらなる変形例
本書に開示された実施例は、他のコンテキストにも適用可能である。特に、これらの実施例は、2つ以上のカメラを有する機械視覚測定システムを校正するのに有益である。さらに、これらの実施例は、リクレーション用車両(RV)のアライメントに関連して使用することができる。RVのためのアライナは、通常、標準的なアライナよりも幅の広いブームを必要とするが、本書に開示された実施例を使用すれば、RV用のアライナは、新たなハードウェアを必要とせずに、単にその直立材同士の幅をわずかに広げてボルト固定することによって構築することができる。
【0126】
上述の装置は自己校正するので、セットアップ後の校正は不要であり、したがって、携帯用アライナに組込むことが可能である。携帯用アライメント作業は、駐車場、ガレージまたは同様の環境において、時間のかかる校正を必要とせずに、三脚上の2つのカメラを使用して、行なうことができる。したがって、該装置を使用して、全く新しいサービス、遠隔アライメントまたは現場アライメントを容易にすることが可能である。
【0127】
さらに、上述の、右カメラに対する左カメラの相対位置を測定(または校正)する技術は、複数のデバイスを有するシステムにおいて用いることができる。これらの技術は、複数のデバイスのうち、1つのデバイスの別のデバイスに対する相対位置を測定するのに使用される。このような条件で、複数のデバイスのうち、第1のデバイスおよび第2のデバイスを含むいずれかのデバイスの対を、上述の技術における左カメラと右カメラの対として取扱うことが可能である。この場合、校正デバイスは第1のデバイスの近くに取付けられ、第1のデバイスに対する校正デバイスの相対位置は予め定められている。同様に、校正目標は第2のデバイスの近くに取付けられ、第2のデバイスに対する校正目標の相対位置は予め定められている。その後、校正目標に対する校正デバイスの相対位置が測定される。最後に、第2のデバイスに対する第1のデバイスの相対位置が、1)第1のデバイスに対する校正デバイスの相対位置と、2)第2のデバイスに対する校正目標の相対位置と、3)校正目標に対する校正デバイスの相対位置とに基づいて計算される。一実施例において、校正デバイスは、校正目標に対する校正デバイスの相対位置を測定するように構成される。
【0128】
上記明細書に本発明を特定的な実施例を参照して説明したが、本発明のより広範な精神および範囲から離れることなく種々の修正および変更をそれらに加えることができることは明らかであろう。したがって、本明細書および図面は、限定的な意味ではなく例示的な意味で捉えられるべきである。
【図面の簡単な説明】
【図1】 3D自動車アライメントシステムの概略平面図である。
【図2】 アライメントシステムの直立要素の図である。
【図3A】 アライメントカメラと校正カメラとの相対位置を測定し、校正するための方法における相対目標位置を測定するステップに用いられてもよい装置の図である。
【図3B】 カメラが見るビューの図である。
【図3C】 アライメントカメラと校正カメラとの相対位置を測定し、校正するための方法における相対カメラ位置を測定するステップに用いられてもよい装置の図である。
【図3D】 アライメントカメラと校正カメラとが見るビューの図である。
【図4A】 アライメントカメラと校正目標との相対位置を測定し、校正するための方法において用いられてもよい装置の図である。
【図4B】 図4Aの装置のセットアップカメラが見るビューの図である。
【図4C】 図4Aの装置のアライメントカメラが見るビューの図である。
【図5A】 図1の装置の第1のアライメントカメラが見るような、2つのホイール目標のビューの図である。
【図5B】 校正中に図1の装置の校正カメラが見るビューの図である。
【図5C】 図1の装置の第2のアライメントカメラが見るような、2つのホイール目標のビューの図である。
【図6A】 2つのカメラを有するカメラモジュールを校正するプロセスを示すフロー図である。
【図6B】 カメラと校正目標とを有するカメラモジュールを校正するプロセスを示すフロー図である。
【図6C】 アライメント中にカメラ校正を実行することを含むアライメントプロセスのフロー図である。
【図7】 一実施例が実現されるかもしれないコンピュータシステムのブロック図である。
【図8】 上述のシステムに用いられる数値のコンピュータベース数学計算の基礎を提供する、カメラおよび座標系の幾何学的関係の簡易図である。

Claims (22)

  1. 第1の測定デバイスと第2の測定デバイスとを有する機械測定システムであって、第1の測定デバイスおよび第2の測定デバイスは、車両に取り付けられた少なくとも1つの目標の画像を取込むように構成された画像取込デバイスであり、前記システムは、
    機械測定システムの第1の測定デバイスに予め定められた関係で取付けられた第1の校正目標と、
    機械測定システムの第2の測定デバイスに予め定められた関係で取付けられた校正デバイスと、
    校正デバイスに対する第1の校正目標の位置を表す校正値を記憶するためのメモリと、
    校正デバイスに対する第1の校正目標の前記相対位置に基づいて、第2の測定デバイスに対する第1の測定デバイスの位置を計算するよう構成されたデータプロセッサとを含み、校正デバイスは、機械測定システムの動作中に、校正デバイスに対する第1の校正目標の新しい位置を表わす新しい値を定期的に測定するように構成され、
    動作中、校正値と新しい値との差は、第1の測定デバイスと第2の測定デバイスとの間の相対位置の更新に用いられ、校正値が許容可能量を超えて新しい値と異なる場合、警戒警報が発される、システム。
  2. 動作中、校正値が許容可能量を超えて新しい値と異なることを認識すると、第1の測定デバイスと第2の測定デバイスとの間の相対位置値が再計算される、請求項1に記載のシステム。
  3. データプロセッサは、
    校正デバイスに対する第2の測定デバイスの位置を表わす相対測定デバイス位置値と、
    第1の校正目標に対する第1の測定デバイスの位置を表わす相対測定デバイス位置値とに基づいて、第1の測定デバイスと第2の測定デバイスとの間の相対位置を計算するようさらに構成されている、請求項1または2に記載のシステム。
  4. 動作中、第1の校正目標に対する第1の測定デバイスの位置を表わす相対測定デバイス目標位置値は、第2の校正目標に対する第1の校正目標の位置に基づいて計算される、請求項3に記載のシステム。
  5. 動作中、第2の校正目標に対する第1の校正目標の位置は、第2の校正目標に対する第1の校正目標の位置を計算するための情報を提供する第3の測定デバイスを用いることによって得られる、請求項4に記載のシステム。
  6. 動作中、
    第2の校正目標に対する第1の校正目標の位置は、画像取込デバイスによって得られ、
    第1の校正目標および第2の校正目標の画像は、画像取込デバイスのビュー内に位置付けられた第1の校正目標および第2の校正目標によって提供され、
    第1の校正目標および第2の校正目標の画像は、データプロセッサに入力され、第2の校正目標に対する第1の校正目標の相対位置が計算される、請求項4に記載のシステム。
  7. データプロセッサは、機械測定システムの第1の測定デバイスおよび第2の測定デバイスが測定中の対象の目標を測定している間に、第1の測定デバイスと第2の測定デバイスとの間の相対位置を計算するよう、さらに構成されている、請求項1〜6のいずれかに記載のシステム。
  8. データプロセッサは、
    機械測定システムの第1の測定デバイスおよび第2の測定デバイスが測定中の対象の目標を測定している間、第1の測定デバイスと第2の測定デバイスとの間の相対位置を計算し、
    第1の測定デバイスと第2の測定デバイスとの間の相対位置に基づいて、測定中の対象の目標を測定することにより生成された測定値を修正するよう、さらに構成されている、請求項1〜7のいずれかに記載のシステム。
  9. データプロセッサは、第1の測定デバイスと第2の測定デバイスとの間の修正された相対位置が予め定められた値を超えて第1の測定デバイスと第2の測定デバイスとの間の相対位置と異なるときのみ、第1の測定デバイスと第2の測定デバイスとの間の修正された相対位置に基づいて、測定中の対象の目標を測定することにより生成された測定値を修正するよう、さらに構成されている、請求項8に記載のシステム。
  10. 校正デバイスは、画像を取込むことにより対象の測定を行なう画像取込みデバイスであるシステムである、請求項1〜9のいずれかに記載のシステム。
  11. データプロセッサは、校正デバイスに対する第2の測定デバイスの位置を特定する予め定められた情報に基づき、および第2の測定デバイスに対する第1の測定デバイスの位置の変化を示す、校正デバイスから受取った情報に基づいて、第2の測定デバイスに対する第1の測定デバイスの位置を測定するよう構成されたデータプロセッサとを含む、請求項1〜10のいずれかに記載のシステム。
  12. 光源が、第1の校正目標を照らすために、第2の測定デバイスに固定された関係で取付けられる、請求項1〜11のいずれかに記載のシステム。
  13. 第1の測定デバイスと第2の測定デバイスとを有する機械測定システムを校正するための方法であって、
    第1の測定デバイスおよび第2の測定デバイスに対して、車両に取り付けられた少なくとも1つの目標の画像を取込むように構成された画像取込デバイスを設けるステップと、
    第1の校正目標を、機械測定システムの第1の測定デバイスに、予め定められた関係で取付けるステップと、
    校正デバイスを、機械測定システムの第2の測定デバイスに、予め定められた関係で取付けるステップと、
    校正デバイスに対する第1の校正目標の位置を表わす値を校正値として記憶するステップと、
    校正デバイスに対する第1の校正目標の位置に基づいて、第2の測定デバイスに対する第1の測定デバイスの位置を計算するステップと、
    機械測定システムの動作中に、校正デバイスに対する第1の校正目標の新しい位置を表わす新しい値を定期的に測定するステップと、
    校正値と新しい値との差を、第1の測定デバイスと第2の測定デバイスとの間の相対位置の更新に適用するステップと、
    校正値が許容可能量を超えて新しい値と異なる場合、警戒警報を発するステップとを含む、方法。
  14. 校正デバイスに対する第2の測定デバイスの位置を表わす第1の相対測定デバイス位置値と、
    第1の校正目標に対する第1の測定デバイスの位置を表わす相対測定デバイス目標位置値とに基づいて、第1の測定デバイスと第2の測定デバイスとの間の相対位置を計算するステップをさらに含む、請求項13に記載の方法。
  15. 第2の相対測定デバイス目標位置値は、第2の校正目標に対する第1の校正目標の位置に基づいて計算される、請求項14に記載の方法。
  16. 第2の校正目標に対する第1の校正目標の位置は、第2の校正目標に対する第1の校正目標の位置を計算するための情報を提供する第3の測定デバイスを用いることによって得られる、請求項15に記載の方法。
  17. 第2の校正目標に対する第1の校正目標の位置は、画像取込デバイスを用いることによって得られ、
    第1の校正目標および第2の校正目標の画像は、画像取込デバイスのビュー内に第1の校正目標および第2の校正目標を配置することによって提供され、
    第1の校正目標および第2の校正目標の画像を適用して、第2の校正目標に対する第1の校正目標の相対位置を計算する、請求項15に記載の方法。
  18. 機械測定システムの第1の測定デバイスおよび第2の測定デバイスが測定中の対象の目標を測定している間に、第1の測定デバイスと第2の測定デバイスとの間の相対位置を計算するステップをさらに含む、請求項13〜17のいずれかに記載の方法。
  19. 機械測定システムの第1の測定デバイスおよび第2の測定デバイスが測定中の対象の目標を測定している間、第1の測定デバイスと第2の測定デバイスとの間の修正された相対位置を計算するステップと、
    第1の測定デバイスと第2の測定デバイスとの間の修正された相対位置に基づいて、測定中の対象の目標を測定することにより生成された測定値を修正するステップとをさらに含む、請求項13〜18のいずれかに記載の方法。
  20. 第1の測定デバイスと第2の測定デバイスとの間の修正された相対位置に基づいて、測定中の対象の目標を測定することにより生成された測定値を修正するステップは、第1の測定デバイスと第2の測定デバイスとの間の修正された相対位置が予め定められた値を超えて第1の測定デバイスと第2の測定デバイスとの間の相対位置と異なるときのみ行なわれる、請求項13〜18のいずれかに記載の方法。
  21. 第2の測定デバイスに対する第1の測定デバイスの位置の測定は、校正デバイスに対する第1の測定デバイスの位置を特定する予め定められた情報に基づき、および第2の測定デバイスに対する第1の測定デバイスの位置の変化を示す、校正デバイスから受取った情報に基づく、請求項13〜20のいずれかに記載の方法。
  22. 校正目標を照らすために、第2の測定デバイスに固定された関係で取付けられた光源を用いるステップを含む、請求項21に記載の方法。
JP2001569222A 2000-03-23 2001-03-16 自己校正するマルチカメラ機械視覚測定システム Expired - Lifetime JP4849757B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US22936200P 2000-03-23 2000-03-23
US60/229,362 2000-03-23
US09/576,442 US6968282B1 (en) 2000-05-22 2000-05-22 Self-calibrating, multi-camera machine vision measuring system
US09/576,442 2000-05-22
PCT/US2001/008584 WO2001071280A2 (en) 2000-03-23 2001-03-16 Self-calibrating, multi-camera machine vision measuring system

Publications (2)

Publication Number Publication Date
JP2003528304A JP2003528304A (ja) 2003-09-24
JP4849757B2 true JP4849757B2 (ja) 2012-01-11

Family

ID=26923227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001569222A Expired - Lifetime JP4849757B2 (ja) 2000-03-23 2001-03-16 自己校正するマルチカメラ機械視覚測定システム

Country Status (7)

Country Link
US (1) US6959253B2 (ja)
EP (1) EP1266188B1 (ja)
JP (1) JP4849757B2 (ja)
CN (1) CN1224824C (ja)
AU (1) AU2001245834A1 (ja)
DE (1) DE60119708T2 (ja)
WO (1) WO2001071280A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354439B2 (en) 1996-09-30 2013-01-15 Otsuka Pharmaceutical Co., Ltd. Agent for inhibition of cytokine production and agent for inhibition of cell adhesion
US10872432B2 (en) 2018-01-05 2020-12-22 Panasonic Intellectual Property Management Co., Ltd. Disparity estimation device, disparity estimation method, and program

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1224824C (zh) 2000-03-23 2005-10-26 捷装技术公司 自校准、多相机机器视觉测量系统
US6968282B1 (en) 2000-05-22 2005-11-22 Snap-On Incorporated Self-calibrating, multi-camera machine vision measuring system
CN1306246C (zh) 2000-08-14 2007-03-21 捷装技术公司 用于机动车辆车轮对准的自校准三维机器测量系统
DE10043354A1 (de) * 2000-09-02 2002-03-14 Beissbarth Gmbh Fahrwerkvermessungseinrichtung
US7062861B2 (en) 2001-06-28 2006-06-20 Snap-On Incorporated Self-calibrating position determination system and user interface
FR2830932B1 (fr) * 2001-10-15 2004-07-09 Muller Bem Dispositif de controle de geometrie de vehicule a roue
DE60234308D1 (de) 2002-02-04 2009-12-24 Corghi Spa Vorrichtung zur Messung der charakteristischen Lageparameter eines Kraftfahrzeuges
US7453559B2 (en) * 2003-10-09 2008-11-18 Hunter Engineering Company Vehicle lift reference system for movable machine-vision alignment system sensors
CN102074007B (zh) * 2005-05-20 2012-07-18 丰田自动车株式会社 车辆用图像处理装置
FR2888968B1 (fr) * 2005-07-25 2008-05-09 Airbus Sas Procede de traitement de donnees en vue de la determination de motifs visuels dans une scene visuelle
US7424387B1 (en) 2007-04-18 2008-09-09 Snap-On Incorporated Method for use with an optical aligner system for positioning a fixture relative to a vehicle
US7640673B2 (en) * 2007-08-01 2010-01-05 Snap-On Incorporated Calibration and operation of wheel alignment systems
US8179448B2 (en) * 2008-08-26 2012-05-15 National Taiwan University Auto depth field capturing system and method thereof
TWI382267B (zh) * 2008-09-24 2013-01-11 Univ Nat Taiwan 自動景深捕捉系統及自動景深捕捉方法
EP2236980B1 (en) * 2009-03-31 2018-05-02 Alcatel Lucent A method for determining the relative position of a first and a second imaging device and devices therefore
US20110010122A1 (en) * 2009-07-07 2011-01-13 Delta Design, Inc. Calibrating separately located cameras with a double sided visible calibration target for ic device testing handlers
US11699247B2 (en) * 2009-12-24 2023-07-11 Cognex Corporation System and method for runtime determination of camera miscalibration
CN101975588B (zh) 2010-08-20 2012-07-11 北京航空航天大学 一种多传感器视觉测量系统的刚性杆全局校准方法及装置
DE102010062696A1 (de) 2010-12-09 2012-06-14 Robert Bosch Gmbh Verfahren und Vorrichtung zum Kalibrieren und Justieren eines Fahrzeug-Umfeldsensors.
TWI426775B (zh) * 2010-12-17 2014-02-11 Ind Tech Res Inst 攝影機再校正系統及其方法
DE102012202054A1 (de) 2012-02-10 2013-08-14 Robert Bosch Gmbh Vorrichtung, System und Verfahren zur Fahrzeugvermessung
CN103512557B (zh) * 2012-06-29 2016-12-21 联想(北京)有限公司 电子设备间相对位置确定方法及电子设备
DE102013107597A1 (de) 2013-01-11 2014-08-14 Stephan Hörmann Vermessungsverfahren für gebäudeöffnungen und gebäudeabschlussherstellverfahren sowie vorrichtungen zur durchführung derselben
DE102013016486A1 (de) 2013-09-13 2015-04-02 Stephan Hörmann Vermessungsverfahren für Gebäudeöffnungen und Gebäudeabschlussherstellverfahren sowie Vorrichtungen zur Durchführung derselben
CN103499355B (zh) * 2013-10-18 2016-02-10 武汉大学 一种激光投线仪校准系统
KR101510336B1 (ko) * 2013-11-14 2015-04-07 현대자동차 주식회사 차량용 운전자 지원 시스템의 검사 장치
KR101510338B1 (ko) * 2013-11-22 2015-04-07 현대자동차 주식회사 차량용 차선 이탈 경보 시스템의 검사 장치
US10521671B2 (en) 2014-02-28 2019-12-31 Second Spectrum, Inc. Methods and systems of spatiotemporal pattern recognition for video content development
US11120271B2 (en) 2014-02-28 2021-09-14 Second Spectrum, Inc. Data processing systems and methods for enhanced augmentation of interactive video content
US10769446B2 (en) 2014-02-28 2020-09-08 Second Spectrum, Inc. Methods and systems of combining video content with one or more augmentations
US10713494B2 (en) 2014-02-28 2020-07-14 Second Spectrum, Inc. Data processing systems and methods for generating and interactive user interfaces and interactive game systems based on spatiotemporal analysis of video content
US11861906B2 (en) 2014-02-28 2024-01-02 Genius Sports Ss, Llc Data processing systems and methods for enhanced augmentation of interactive video content
CN103873258A (zh) * 2014-03-27 2014-06-18 北京控制工程研究所 一种多测量相机系统的身份识别方法
CN104266602A (zh) * 2014-10-17 2015-01-07 云南电网公司电力科学研究院 一种运行干式电抗器应变检测的视觉系统
CN104316335B (zh) * 2014-11-19 2017-01-18 烟台开发区海德科技有限公司 3d汽车车轮定位仪多相机标定系统及多相机标定方法
TWI577493B (zh) 2014-12-26 2017-04-11 財團法人工業技術研究院 校正方法與應用此方法的自動化設備
US9982998B2 (en) 2015-01-07 2018-05-29 Snap-On Incorporated Rolling virtual wheel spindle calibration
CN204649448U (zh) * 2015-05-11 2015-09-16 李开文 一种举升机汽车四轮3d定位仪
CN105136484A (zh) * 2015-06-02 2015-12-09 深圳科澳汽车科技有限公司 轴间四轮定位检测装置及检测方法
CN108139193B (zh) 2015-10-06 2021-05-28 实耐宝公司 具有高级诊断和不停止定位的车轮对准器
CN109923371B (zh) 2016-08-16 2021-11-26 实耐宝公司 车轮定位方法和系统
CN107809610B (zh) 2016-09-08 2021-06-11 松下知识产权经营株式会社 摄像头参数集算出装置、摄像头参数集算出方法以及记录介质
CN106840111A (zh) * 2017-03-27 2017-06-13 深圳市鹰眼在线电子科技有限公司 物体间位置姿态关系实时统一系统及方法
JP7038345B2 (ja) 2017-04-20 2022-03-18 パナソニックIpマネジメント株式会社 カメラパラメタセット算出方法、カメラパラメタセット算出プログラム及びカメラパラメタセット算出装置
JP7016058B2 (ja) 2017-04-28 2022-02-04 パナソニックIpマネジメント株式会社 カメラパラメタセット算出方法、カメラパラメタセット算出プログラム及びカメラパラメタセット算出装置
JP7002007B2 (ja) 2017-05-01 2022-01-20 パナソニックIpマネジメント株式会社 カメラパラメタセット算出装置、カメラパラメタセット算出方法及びプログラム
US10477186B2 (en) * 2018-01-17 2019-11-12 Nextvr Inc. Methods and apparatus for calibrating and/or adjusting the arrangement of cameras in a camera pair
WO2019183235A1 (en) * 2018-03-21 2019-09-26 Second Spectrum, Inc. Methods and systems of spatiotemporal pattern recognition for video content development
JP2021522513A (ja) 2018-04-30 2021-08-30 ビーピージー・セールス・アンド・テクノロジー・インヴェストメンツ・エルエルシーBpg Sales And Technology Investments, Llc センサ校正のための車両の位置合わせ
US11781860B2 (en) 2018-04-30 2023-10-10 BPG Sales and Technology Investments, LLC Mobile vehicular alignment for sensor calibration
US11597091B2 (en) 2018-04-30 2023-03-07 BPG Sales and Technology Investments, LLC Robotic target alignment for vehicle sensor calibration
US11243074B2 (en) 2018-04-30 2022-02-08 BPG Sales and Technology Investments, LLC Vehicle alignment and sensor calibration system
US11835646B2 (en) 2018-04-30 2023-12-05 BPG Sales and Technology Investments, LLC Target alignment for vehicle sensor calibration
CN112470188B (zh) * 2018-05-25 2024-07-30 派克赛斯有限责任公司 用于多相机放置的系统和方法
CN108592953B (zh) * 2018-06-29 2024-05-24 易思维(杭州)科技股份有限公司 立体标定靶及将其应用于视觉测量中定位被测物的方法
WO2020056303A1 (en) 2018-09-13 2020-03-19 Snap-On Incorporated Automotive aligner with improved accuracy and no-stop positioning using a drive direction calculation
US11113535B2 (en) 2019-11-08 2021-09-07 Second Spectrum, Inc. Determining tactical relevance and similarity of video sequences
CN113001535B (zh) 2019-12-18 2022-11-15 财团法人工业技术研究院 机器人工件坐标系自动校正系统与方法
CN111498142B (zh) * 2020-05-06 2021-12-14 南京航空航天大学 一种飞机航电成品安装校准方法
EP4165368A4 (en) * 2020-06-15 2024-07-10 Snap On Incorporated DEVICE AND METHOD FOR CALIBRATING AND ALIGNMENT OF MOTOR VEHICLE SENSORS
CN116379984B (zh) * 2023-04-03 2023-10-03 广州橘子电气有限公司 一种工业机器人定位精度校准方法和系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012503A1 (en) * 1996-09-18 1998-03-26 Snap-On Technologies, Inc. Calibrating cameras used in alignment of wheels
WO1999022281A1 (fr) * 1997-10-24 1999-05-06 Commissariat A L'energie Atomique Procede d'etalonnage de la position et de l'orientation d'origine d'une ou plusieurs cameras mobiles

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007642A (en) 1975-05-14 1977-02-15 Nortron Corporation System and method for identifying angular location and amount of wheel balancing weights
DE2948573A1 (de) 1979-12-03 1981-06-04 Siemens AG, 1000 Berlin und 8000 München Verfahren und anordnung zur beruehrungslosen achsvermessung an kraftfahrzeugen
US4341119A (en) 1980-03-18 1982-07-27 Nortron Corporation Data input system for dynamic balancing machine
US4435982A (en) 1981-02-20 1984-03-13 Balco, Inc. Machine and method for balancing wheels
US5148591A (en) 1981-05-11 1992-09-22 Sensor Adaptive Machines, Inc. Vision target based assembly
US4507964A (en) 1982-11-29 1985-04-02 Willy Borner Slow speed dynamic wheel balancer
EP0149690A1 (de) * 1984-01-18 1985-07-31 Alpha Technologies Ltd. Verfahren zum Vermessen und Bestimmen von Raumpunkten
US4741211A (en) 1984-01-19 1988-05-03 Willy Borner Heavy wheel balancer
DE4041723A1 (de) * 1990-12-24 1992-06-25 Thiedig Ullrich Verfahren und vorrichtung zur bestimmung der position eines messpunktes relativ zu einem bezugspunkt
WO1994005969A1 (en) 1992-09-04 1994-03-17 Balco, Incorporated Method and apparatus for determining the alignment of motor vehicle wheels
US5724743A (en) * 1992-09-04 1998-03-10 Snap-On Technologies, Inc. Method and apparatus for determining the alignment of motor vehicle wheels
US5531030A (en) 1993-09-17 1996-07-02 Fmc Corporation Self-calibrating wheel alignment apparatus and method
US5532522A (en) * 1994-06-06 1996-07-02 Delco Electronics Corp. Printed circuit reader/exciter coil for vehicle security system
US6298284B1 (en) 1995-12-28 2001-10-02 Hunter Engineering Company Apparatus and method with improved field of view for determining vehicle wheel alignment measurements from three dimensional wheel positions and orientations
DE69622530T2 (de) 1996-04-23 2003-03-06 G.S. S.R.L., Correggio Verfahren zur Bestimmung der Fahrzeugradausrichtung
US5845410A (en) 1996-08-08 1998-12-08 Boker; Donald W. Miter device and method
FR2764992B1 (fr) * 1997-06-24 1999-09-03 Romain Granger Dispositif de reperage positionnel d'un objet dans l'espace et procede d'utilisation de ce dispositif
IT1294940B1 (it) 1997-08-01 1999-04-23 Corghi Spa Metodo e dispositivo per regolare l'assetto di un autoveicolo
SE515134C2 (sv) * 1998-09-11 2001-06-11 Qualisys Ab System och metod för kamerapositionering i en virtuell studio
FR2786268B1 (fr) 1998-11-20 2001-04-13 Cie Europ D Equipements De Gar Installation et procede optiques de determination des positions relatives d'au moins deux objets dans l'espace
CN1224824C (zh) 2000-03-23 2005-10-26 捷装技术公司 自校准、多相机机器视觉测量系统
DE10043354A1 (de) 2000-09-02 2002-03-14 Beissbarth Gmbh Fahrwerkvermessungseinrichtung
DE20021784U1 (de) * 2000-12-22 2001-03-01 Stabila-Messgeräte Gustav Ullrich GmbH & Co KG, 76855 Annweiler Lasernivellierer mit Schutzgehäuse

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012503A1 (en) * 1996-09-18 1998-03-26 Snap-On Technologies, Inc. Calibrating cameras used in alignment of wheels
JP2001501730A (ja) * 1996-09-18 2001-02-06 スナップ オン テクノロジーズ インク 自動車両車輪のアライメントで使用されるカメラを校正するための方法および装置
WO1999022281A1 (fr) * 1997-10-24 1999-05-06 Commissariat A L'energie Atomique Procede d'etalonnage de la position et de l'orientation d'origine d'une ou plusieurs cameras mobiles
JP2001506369A (ja) * 1997-10-24 2001-05-15 コミツサリア タ レネルジー アトミーク 1つまたは複数の移動カメラの初期位置および向きを校正するための方法ならびに固定対象の3次元的位置測定に対してのこの方法の応用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354439B2 (en) 1996-09-30 2013-01-15 Otsuka Pharmaceutical Co., Ltd. Agent for inhibition of cytokine production and agent for inhibition of cell adhesion
US10872432B2 (en) 2018-01-05 2020-12-22 Panasonic Intellectual Property Management Co., Ltd. Disparity estimation device, disparity estimation method, and program

Also Published As

Publication number Publication date
US6959253B2 (en) 2005-10-25
EP1266188A2 (en) 2002-12-18
EP1266188B1 (en) 2006-05-17
CN1224824C (zh) 2005-10-26
US20030225536A1 (en) 2003-12-04
DE60119708T2 (de) 2007-01-11
WO2001071280A3 (en) 2002-02-21
DE60119708D1 (de) 2006-06-22
JP2003528304A (ja) 2003-09-24
WO2001071280A2 (en) 2001-09-27
AU2001245834A1 (en) 2001-10-03
CN1464970A (zh) 2003-12-31

Similar Documents

Publication Publication Date Title
JP4849757B2 (ja) 自己校正するマルチカメラ機械視覚測定システム
US6968282B1 (en) Self-calibrating, multi-camera machine vision measuring system
US6731382B2 (en) Self-calibrating 3D machine measuring system useful in motor vehicle wheel alignment
EP3472555B1 (en) Vehicle wheel alignment method and system
EP0880677B1 (en) Method and apparatus for determining the alignment of motor vehicle wheels
EP0674759B1 (en) Method and apparatus for determining the alignment of motor vehicle wheels
EP0927335B1 (en) Calibrating cameras used in alignment of wheels
US20060152711A1 (en) Non-contact vehicle measurement method and system
US6526665B2 (en) Glint-resistant position determination system
US20050096807A1 (en) Camera technique for adaptive cruise control (ACC) sensor adjustment
US20090040312A1 (en) Calibration apparatus and method thereof
CN210198312U (zh) 相机安装于举升机上的定位adas标定目标板位置的装置
AU669211C (en) Method and apparatus for determining the alignment of motor vehicle wheels
CN112837377A (zh) 一种相机内外参联合标定系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100817

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100824

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100915

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110309

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R150 Certificate of patent or registration of utility model

Ref document number: 4849757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term