JP2001313176A - 有機電界発光素子 - Google Patents

有機電界発光素子

Info

Publication number
JP2001313176A
JP2001313176A JP2000129529A JP2000129529A JP2001313176A JP 2001313176 A JP2001313176 A JP 2001313176A JP 2000129529 A JP2000129529 A JP 2000129529A JP 2000129529 A JP2000129529 A JP 2000129529A JP 2001313176 A JP2001313176 A JP 2001313176A
Authority
JP
Japan
Prior art keywords
organic electroluminescent
electroluminescent device
layer
organic
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000129529A
Other languages
English (en)
Inventor
Tetsuo Otsubo
徹夫 大坪
Yoshio Aso
芳雄 安蘇
Takashi Okai
隆 岡井
Yohei Kawaguchi
洋平 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000129529A priority Critical patent/JP2001313176A/ja
Publication of JP2001313176A publication Critical patent/JP2001313176A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

(57)【要約】 【課題】 高い輝度を示す有機発光物質と、製造が容
易で、安定性が高く、輝度を自在に調整することが可能
な有機電界発光素子を提供する。 【解決手段】 少なくとも陽極、該陽極より陰極側に正
孔輸送性有機発光層、該正孔輸送性有機発光層より陰極
側に絶縁層、および該絶縁層より反陽極側に陰極を有す
る有機電界発光素子とする。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】この出願の発明は有機発光物
質と、有機電界発光素子に関するものである。さらに詳
しくは、この出願の発明は、高い正孔輸送性と電子輸送
性を有する有機発光物質と、該有機発光物質を用いた有
機電界発光素子に関するものである。
【0002】
【従来の技術とその課題】低電圧で高い輝度を示す有機
電界発光素子(有機EL素子)は、次世代のディスプレ
ーや光通信素子として注目されている。
【0003】有機電界発光素子としては、これまで、単
層型有機電界発光素子と多層型有機電界発光素子が検討
されている。単層型有機電界発光素子は、正孔輸送性、
電子輸送性、および発光性を併せ持つ単一化合物、また
はそれぞれの特性を有する物質の混合物を、単一膜層と
して形成し、電子と正孔が層内を移動し、層内で両者が
再結合する時の発光を用いるものである(例えば、特許
第2,939,051号)。
【0004】しかし、単層型有機電界発光素子では、そ
の発光輝度が0.11mW/cm2(約110cd/m2)と小
さく、実用化には不十分な性能のものであった。そし
て、両方の輸送性質を併せ持ち、かつ実用レベルの発光
輝度を示す物質や混合物は、未だに報告されていないの
が実情である。
【0005】そこで、発光層の前後に正孔輸送層および
/または電子輸送層を配置して再結合の効率を高くした
2層ないし3層構造を有する多層有機電界発光素子が開
発された(例えば、特開平11-102787号)。また、Hung
らは、陰極と発光・電子輸送層の間にLiF薄膜(厚さ0.5
〜1.0nm)を配置した、発光・電子輸送層、正孔輸送
層、バッファ層の3層型有機電界発光素子を作製し、電
子注入の効率が改善されることを報告した(Appl.Phys.
Lett., 70(2), 152-154, 13 January 1997)。
【0006】このような多層型有機電界発光素子では、
正孔輸送性と電子輸送性を複数の層で分担するため、電
子輸送と正孔輸送のバランスが得られ、発光の輝度が高
くなるという利点があった。
【0007】しかし、多層型電界発光素子では、その製
造において、異なる物質の層を形成し、各層毎に適した
条件で加工を行うことが必要となるため、製造工程が複
雑で、大量生産に適さないという問題があった。
【0008】したがって、多層型有機電界発光素子で実
現されるような高い輝度を有し、単層型有機電界発光素
子のように簡便に製造できる新しい有機電界発光素子が
望まれていた。しかし、実際には、前述のとおり、正孔
と電子の両方の輸送性質を併せ持ち、かつ実用レベルの
発光輝度を示す物質や混合物は、これまで知られていな
かったのが実情である。
【0009】また、これまで知られている有機電界発光
素子では、多くの場合、その輝度は発光物質の特性に依
存するものであり、輝度を調整することは困難であっ
た。さらに、通常、有機電界発光素子では、正孔および
電子の移動が関与するため、発熱しやすく、発熱による
劣化が生じ易いという問題もあった。そのため、有機電
界発光素子の開発においては、熱安定性の高い材料の選
定が必要となり、その実用化をさらに困難なものとして
いたのである。
【0010】この出願の発明は、以上のとおりの事情に
鑑みてなされたものであり、従来技術の限界を克服し、
高い輝度を示す有機発光物質と、製造が容易で、安定性
が高く、輝度を自在に調整することが可能な有機電界発
光素子を提供することを課題としている。
【0011】
【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、まず第1には、少なくと
も陽極、該陽極より陰極側に正孔輸送性有機発光層、該
正孔輸送性有機発光層より陰極側に絶縁層、および該絶
縁層より反陽極側に陰極を有することを特徴とする有機
電界発光素子を提供する。
【0012】また、この出願の発明は、第2には、上記
有機電界発光素子において、該絶縁層が、トンネル効果
を示す材料からなること、第3には、絶縁層が、厚さ0.
6〜1.0nmのフッ化リチウム(LiF)層であることを態
様として提供する。
【0013】さらに、第4には、この出願の発明は、前
記正孔輸送性有機発光層が、5×107Ωcm-1以下の比抵
抗を有することを、上記有機電界発光素子の態様として
提供する。
【0014】この出願の発明は、また、第5には、以下
の化学式(1);
【0015】
【化3】
【0016】で表される有機発光物質をも提供する。ま
た、第6には、この出願の発明は、以下の化学式
(2);
【0017】
【化4】
【0018】で表される有機発光物質をも提供する。そ
して、第7には、この出願の発明は、前記の有機電界発
光素子において、正孔輸送性有機発光層が上記のいずれ
かの有機発光物質もしくは上記の有機発光物質の混合物
からなることを特徴とする有機電界発光素子をも提供す
る。
【0019】
【発明の実施の形態】この出願の発明の有機電界発光素
子は、発明者らが鋭意研究の結果、これまで単独では発
光しないと考えられていた正孔輸送性の高い有機物質を
電界発光させる新たな方法を見出したことから、そのよ
うな有機物質を正孔輸送性有機発光層として用いること
を考案し、実施に至ったものである。
【0020】つまり、この出願の発明の有機電界発光素
子における最大の特徴は、正孔輸送性の有機物質を発光
させることにより、単層型の有機電界発光素子が得られ
ることにある。このような発光の機構は、次のようなも
のと考えられる。
【0021】図1は、この出願の発明の有機電界発光素
子を例示した概略摸式図である。まず、陽極(1)から
注入された正孔は、正孔輸送性の有機発光層(2)中を
移動して陰極(4)に向かう。しかし、正孔は、陰極
(4)の手前に設置された絶縁層(3)によってブロッ
クされ、陰極(4)へ移動できない。このとき、陰極
(4)への多量の正孔の移動が妨げられるため、正孔に
よる無効電流が阻止され、発熱も抑制される。
【0022】一方、陰極(4)の自由電子は、絶縁層
(3)によって陽極(1)への移動が妨げられることに
なる。したがって、有機電界発光素子に適切な電圧をか
けることにより、絶縁層(3)において強い電界が発生
する。電子は、電界の強さに応じて、トンネル効果によ
り絶縁層(3)内を通りぬけることが可能となり、正孔
輸送性有機発光層(2)に移動する。つまり、この出願
の発明の有機電界発光素子では、正孔輸送性有機発光層
(2)に注入する電子の量を、印加する電圧の大きさに
より電気的に調整できるため、輝度の制御が容易となる
のである。そして、正孔輸送性有機発光層(2)内で正
孔と電子が再結合し、発光物質が発光するのである。
【0023】したがって、この出願の発明の有機電界発
光素子は、少なくとも陽極(1)、その陰極(4)側に
有機発光層として作用する正孔輸送性有機物質からなる
正孔輸送性有機発光層(2)、さらに陰極(4)側に絶
縁層(3)、そして、絶縁層(3)より反陽極側に陰極
(4)を有することにより、以上のような機構で有機電
界発光素子としての作用を示すのである。
【0024】この出願の発明の有機電界発光素子におい
て、陽極(1)は、導電性物質であればよく、その材質
はとくに限定されない。一般的には、陽極(1)の仕事
関数が大きいほど正孔輸送性有機発光層(2)への正孔
注入が起こりやすくなる(小さな印加電圧で正孔が注入
される)ことから、陽極(1)は、高い仕事関数を有す
る材料とすることが好ましい。具体的には、炭素、アル
ミニウム、バナジウム、鉄、コバルト、ニッケル、銅、
亜鉛、タングステン、銀、錫、金など、およびそれらの
合金、または、酸化錫、酸化インジウム、酸化アンチモ
ン、酸化亜鉛、酸化ジルコニウムなどの導電性金属化合
物が例示される。さらには、陽極(1)は、これらの材
料に例示されるような、4eVよりも大きな仕事関数を
有する材料であることが好ましい。
【0025】有機電界発光素子では、発光した光を取り
出すために、陽極または陰極の少なくとも一方が光透過
性の層であることが必要である。したがって、例えば図
1に例示された有機電界発光素子のように、陽極(1)
側に光を取り出す場合には、市販されているガラス等を
基板(5)とし、その上にインジウムスズ酸化物(IT
O)等の陽極材料を蒸着し、透明陽極とすることが好ま
しい。
【0026】正孔輸送性有機発光層(2)としては、正
孔輸送性の高い有機物質であればどのようなものであっ
てもよく、種々の公知の物質から、有機電界発光素子の
用途、機能に応じて適切なものを選択できる。このよう
な有機物質としては、蛍光性を示す物質や蛍光を示さな
い物質があるが、蛍光を示す物質である場合は、物質単
独で正孔輸送性有機発光層(2)とすることができる。
一方、正孔輸送性の有機物質が蛍光性を示さない場合、
あるいは、もとの色とは異なる色に発光を変えたい場合
などは、該有機物質とともに別の蛍光物質を混合して正
孔輸送性有機発光層(2)とすることができる。
【0027】また、前述の機構で発光を起こすために
は、絶縁層(3)の手前で高い電界を得ることが必要と
なる。このとき、正孔輸送性有機発光層(2)内の比抵
抗は小さいことが好ましい。具体的には、比抵抗が5×1
07Ωcm-1以下であることが好ましい。比抵抗が5×107
Ωcm-1より大きい場合は、正孔輸送性有機発光層
(2)において大きな電界が発生し、絶縁層(3)にお
けるトンネル注入に必要な強い電界を得るために、さら
に大きな印加電圧が必要となる。このような大きな印加
電圧(駆動電圧)を必要とする有機電界発光素子では、
発熱が生じやすいため好ましくない。
【0028】さらに、高い正孔輸送性を有する有機発光
物質としては、以下の化学式(1)および(2)に示さ
れる新規な化合物が考慮される。
【0029】
【化5】
【0030】
【化6】
【0031】これらの化合物(1)および(2)は、発
明者らが、前述の機構による発光を可能とする、正孔輸
送性と発光性を併せもつ物質として開発したものであ
る。化合物(1)および(2)は、正孔輸送性が高いた
め、無効電流が少なく、正孔と電子の再結合率が高い。
したがって、単層であっても輝度の高い電界発光が可能
となる。あわせて、無効電流が少ないため、発熱も小さ
く、熱による電界発光物質の劣化が起こりにくいという
利点も得られる。
【0032】この出願の発明の有機電界発光素子では、
また、絶縁層(3)は、トンネル効果を示す絶縁性物質
であれば特に限定されず、どのようなものであってもよ
い。とくに、フッ化リチウム(LiF)が好ましく用いら
れる。このとき、LiF層の厚さはとくに限定されない
が、0.6〜1.0nmとすることが好ましい。0.6nm未満
の場合や、1.0nmより厚い場合には、発光が弱くなっ
たり、見られなくなったりする。
【0033】LiF等の絶縁層(3)の形成方法として
は、通常の抵抗過熱法やスパッタリング法、EB蒸着
法、イオンプレーティング法、イオン化蒸着法などの公
知の蒸着方法で成膜できる。もちろん、これら以外の方
法で形成されていてもよい。
【0034】さらに、この出願の発明の有機電界発光素
子では、陰極(4)の材料は、通常用いられる種々の材
料から選択され、特に限定されない。一般的に、陰極の
仕事関数が小さいほど、電子注入が起こりやすくなるた
め、陰極(4)の材料としては、より小さな仕事関数を
有するものが好ましい。具体的には、マグネシウム、カ
ルシウム、チタニウム、イットリウム、リチウム、ガド
リニウム、イッテルビウム、ルテニウム、マンガンおよ
びそれらの合金が例示される。より好ましくは、4eV
よりも小さな仕事関数を有する金属材料とする。中で
も、製造プロセスが確立しているアルミニウムが陰極
(4)材料としては最も好ましい。
【0035】また、前述のとおり、この出願の発明の有
機電界発光素子では、陽極(1)または陰極(4)の一
方を光透過性の材料とすることが必要である。したがっ
て、例えば陽極(1)側に光を取り出す場合には、陽極
(1)の基板(5)として透明材料を設けてもよい。こ
のような基板(5)の材料としては、透明で、適度の強
度を有し、蒸着等による熱の影響を受けないものであれ
ば特に限定されない。例えば、ガラス、ポリエチレン、
ポリプロピレン、ポリエーテルスルホン、ポリエーテル
エーテルケトン等の透明な樹脂などが考慮される。最も
好ましくは、透明性、耐熱性ともに高いガラス基板であ
る。もちろん、陰極側から光を取り出す場合には、陰極
(4)材料をこのような透明な基板(5)上に施して、
透明陰極とすることができる。
【0036】さらに、この出願の発明の有機電界発光素
子では、以上のとおりの陽極(1)、正孔輸送性有機発
光層(2)、絶縁層(3)、陰極(4)だけでなく、他
にも、補助的な正孔注入層を陽極(1)と正孔輸送性有
機発光層(2)の間に設けてもよい。また、電界発光を
妨げなければ、導電層や支持体層、さらには、強度保持
のための層などを必要に応じて設けてもよい。
【0037】以下、添付した図面に沿って実施例を示
し、この発明の実施の形態についてさらに詳しく説明す
る。もちろん、この発明は以下の例に限定されるもので
はなく、細部については様々な態様が可能であることは
言うまでもない。
【0038】
【実施例】参考例1、2 この出願の発明の新規有機発光物質の電圧・電流密度特
性を測定した。 <構成> 陽極:ITO 正孔輸送性発光物質:Py-db3T-Py(参考例1)、Py-db4
T-Py(参考例2)(膜厚=100nm) 陰極:アルミニウム 図2に、電圧・電流密度(VJ)曲線を示した。
【0039】電圧10Vにおいて260mA/cm2の電流密
度が得られたことから、この出願の発明の有機発光物質
(化合物(1)および(2))における抵抗率が約4×1
07Ωcm-1であることが確認された。実施例1、2 以下の構成の有機電界発光素子を作製し、電圧・輝度
(VL)特性、および電圧・電流密度(VJ)特性を測
定した。 <構成> 陽極:ITO 正孔輸送性発光物質:Py-db3T-Py(実施例1)、Py-db4
T-Py(実施例2)(膜厚=100nm) 絶縁層:LiF (膜厚:0.6nm) 陰極:アルミニウム 結果を図3に示した。
【0040】図3のVJ曲線を図2のVJ曲線と比較す
ると、6V以上でトンネル効果が発生し、電子が注入さ
れていることが分かる。これより、絶縁層としては、電
界強度が6V/0.6nm=1010V/m以下でトンネル効果
を示すものが好ましいことが明らかになった。
【0041】また、6Vで発光が開始し、10Vでは輝度
は、約820cd/cm2となり、十分に実用的な輝度が得
られることが確認された。さらに、正孔輸送性発光物質
(Py-db3T-Py)の外光による発光と、有機電界発光素子
を作製した際に得られた電界発光のスペクトルをそれぞ
れ測定し、図4に示した。
【0042】これより、外光による発光と電界発光のス
ペクトルがほぼ一致していることが確認された。したが
って、実施例における電界発光が正孔輸送性有機発光層
において生じていることが確認された。比較例1 LiF層の膜厚を有さない有機電界発光素子を作製した。 <構成> 陽極:ITO 正孔輸送性発光物質:Py-db3T-Py(膜厚=100nm) 陰極:アルミニウム このような有機電界発光素子では、輝度は、14cd/m
2(16V、310mA/cm2)と小さかった。したがっ
て、高い輝度を得るためには、絶縁層が必要であること
が確認された。
【0043】
【発明の効果】以上詳しく説明した通り、この発明によ
って、高い輝度を示す有機電界発光素子が提供される。
この有機電界発光素子は、正孔輸送性の有機発光物質か
らなる単層型有機電界発光素子であるため、製造が容易
であり、有機電界発光素子を迅速、かつ安価に製造する
ことが可能となる。したがって、実用化に向けた大量生
産も可能となる。
【0044】さらに、この出願の発明により提供される
有機電界発光素子は、発光層に注入する電子量を電気的
に調整できるため、輝度の制御が容易となる。また、こ
の出願の発明の有機電界発光素子は、無効電流が少な
く、発熱量が少ないため、素子の安定性が高いという利
点もある。
【図面の簡単な説明】
【図1】この出願の発明の有機電界発光素子の構成を例
示した概略摸式図である。
【図2】この出願の発明の有機発光物質の電圧・電流密
度特性を示す図である。
【図3】この出願の発明の有機電界発光物質の実施例に
おける電圧・発光輝度、および電圧・電流密度特性を示
す図である。
【図4】この出願の発明の有機電界発光素子における正
孔輸送性有機発光層の外光発光と電界発光のスペクトル
を示す図である。
【符号の説明】
1 陽極 2 正孔輸送性有機発光層 3 絶縁層 4 陰極 5 基板 6 電源
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3K007 AB02 AB03 AB11 AB18 CA01 CB01 DA01 DB03 EA02 EB00

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 少なくとも陽極、該陽極より陰極側に正
    孔輸送性有機発光層、該正孔輸送性有機発光層より陰極
    側に絶縁層、および該絶縁層より反陽極側に陰極を有す
    ることを特徴とする有機電界発光素子。
  2. 【請求項2】 絶縁層が、トンネル効果を示す材料から
    なることを特徴とする請求項1記載の有機電界発光素
    子。
  3. 【請求項3】 絶縁層が、厚さ0.6〜1.0nmのフッ化リ
    チウム(LiF)層であることを特徴とする請求項1また
    は2記載のいずれかの有機電界発光素子。
  4. 【請求項4】 正孔輸送性有機発光層が、5×107Ωcm
    -1以下の比抵抗を有することを特徴とする請求項1ない
    し3記載のいずれかの有機電界発光素子。
  5. 【請求項5】 以下の化学式(1); 【化1】 で表される有機発光物質。
  6. 【請求項6】 以下の化学式(2); 【化2】 で表される有機発光物質。
  7. 【請求項7】 正孔輸送性有機発光層が請求項5または
    6に記載されるいずれかの有機発光物質、もしくは請求
    項5および6記載の有機発光物質の混合物からなること
    を特徴とする請求項1ないし4記載のいずれかの有機電
    界発光素子。
JP2000129529A 2000-04-28 2000-04-28 有機電界発光素子 Pending JP2001313176A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000129529A JP2001313176A (ja) 2000-04-28 2000-04-28 有機電界発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000129529A JP2001313176A (ja) 2000-04-28 2000-04-28 有機電界発光素子

Publications (1)

Publication Number Publication Date
JP2001313176A true JP2001313176A (ja) 2001-11-09

Family

ID=18638795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000129529A Pending JP2001313176A (ja) 2000-04-28 2000-04-28 有機電界発光素子

Country Status (1)

Country Link
JP (1) JP2001313176A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019198A1 (en) * 2003-08-15 2005-03-03 3M Innovative Properties Company Acene-thiophene semiconductors
JP2008247810A (ja) * 2007-03-30 2008-10-16 Chemiprokasei Kaisha Ltd 多環式複素環化合物、該化合物よりなるホール輸送材料、ホール発光材料、該化合物を用いた電界効果トランジスタおよび有機el素子
CN100443483C (zh) * 2005-12-08 2008-12-17 中国科学院长春应用化学研究所 稠环单元封端的齐聚噻吩类高迁移率有机半导体材料及用途
EP1605532A3 (en) * 2004-06-10 2009-11-11 Xerox Corporation Device with small molecular thiophene compound
EP2208745A1 (en) * 2007-09-28 2010-07-21 Sumitomo Chemical Company, Limited Polymer compound, method for producing the same, and composition containing the polymer compound

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019198A1 (en) * 2003-08-15 2005-03-03 3M Innovative Properties Company Acene-thiophene semiconductors
US6998068B2 (en) 2003-08-15 2006-02-14 3M Innovative Properties Company Acene-thiophene semiconductors
US7276395B2 (en) 2003-08-15 2007-10-02 3M Innovative Properties Company Acene-thiophene semiconductors
EP1605532A3 (en) * 2004-06-10 2009-11-11 Xerox Corporation Device with small molecular thiophene compound
US7700787B2 (en) 2004-06-10 2010-04-20 Xerox Corporation Small molecular thiophene compound
CN100443483C (zh) * 2005-12-08 2008-12-17 中国科学院长春应用化学研究所 稠环单元封端的齐聚噻吩类高迁移率有机半导体材料及用途
JP2008247810A (ja) * 2007-03-30 2008-10-16 Chemiprokasei Kaisha Ltd 多環式複素環化合物、該化合物よりなるホール輸送材料、ホール発光材料、該化合物を用いた電界効果トランジスタおよび有機el素子
EP2208745A1 (en) * 2007-09-28 2010-07-21 Sumitomo Chemical Company, Limited Polymer compound, method for producing the same, and composition containing the polymer compound
EP2208745A4 (en) * 2007-09-28 2012-03-28 Sumitomo Chemical Co POLYMER CONNECTION, MANUFACTURING METHOD AND COMPOSITION CONTAINING THE POLYMER COMPOUND

Similar Documents

Publication Publication Date Title
US5811833A (en) Electron transporting and light emitting layers based on organic free radicals
JP4581355B2 (ja) 有機エレクトロルミネッセンス素子
JP5180369B2 (ja) 有機エレクトロルミネッセント素子
US7868536B2 (en) Organic light emitting device
JPH05202356A (ja) 有機エレクトロルミネッセンス素子
JP4966176B2 (ja) 有機エレクトロルミネッセンス素子
WO2011074633A1 (ja) 有機エレクトロルミネッセンス素子
JP2006319070A (ja) 有機エレクトロルミネッセンス素子
KR20060136232A (ko) Mg-Ag 단일 박막층을 사용한 음극 전극 형성 단계를 포함하는 유기발광소자의 제조 방법 및 이에 의해 제조된 유기발광소자
JPH0517764A (ja) 有機エレクトロルミネツセンス素子
KR20070000262A (ko) Mg-Ag 단일 박막층을 사용한 음극 전극 형성 단계를 포함하는 유기발광소자의 제조 방법 및 이에 의해 제조된 유기발광소자
JP2000223278A (ja) 有機エレクトロルミネッセンス素子及びパネル
JP2001237080A (ja) 有機エレクトロルミネッセンス素子
JP2010092741A (ja) 有機エレクトロルミネッセンス素子
US6917158B2 (en) High-qualty aluminum-doped zinc oxide layer as transparent conductive electrode for organic light-emitting devices
JP2001176670A (ja) 光透過型有機エレクトロルミネッセンス素子及びその製造方法
JP2006114844A (ja) 有機el素子材料の選択方法、有機el素子の製造方法及び有機el素子
JPH1050480A (ja) 発光素子およびその製造方法
JP2001313176A (ja) 有機電界発光素子
JP2003282265A (ja) 有機電界発光素子
JP2010033973A (ja) 有機エレクトロルミネッセンス素子
JPH07268317A (ja) 発光素子
JPH11329746A (ja) 有機el素子
JPH11339969A (ja) 有機el素子
JP2002260869A (ja) 有機発光ダイオードデバイス

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060822