JP2001300604A - Method of manufacturing sheet by pack rolling - Google Patents

Method of manufacturing sheet by pack rolling

Info

Publication number
JP2001300604A
JP2001300604A JP2000114603A JP2000114603A JP2001300604A JP 2001300604 A JP2001300604 A JP 2001300604A JP 2000114603 A JP2000114603 A JP 2000114603A JP 2000114603 A JP2000114603 A JP 2000114603A JP 2001300604 A JP2001300604 A JP 2001300604A
Authority
JP
Japan
Prior art keywords
rolling
core material
pack
thickness
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000114603A
Other languages
Japanese (ja)
Inventor
Kenji Hirata
健二 平田
Masayuki Horie
正之 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000114603A priority Critical patent/JP2001300604A/en
Publication of JP2001300604A publication Critical patent/JP2001300604A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a sheet by pack rolling by which the wide thin materials of an alloy such as a heat resistant alloy and titanium alloy whose hot work is difficult are especially manufactured into products having small thickness deviation by hot rolling. SOLUTION: In the method for manufacturing sheets by which a pack rolled stock is formed by covering one or plural pieces of planar core materials with a spacer material and a cover material and the sheet is manufactured from the core material by rolling this pack rolled stock, by this manufacturing method of the sheet by pack rolling, draft is defined as >=15% about passes whose reduction ratio is >=3 to the initial thickness of the pack rolled stock.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一枚又は複数枚の
板状のコア材をスペーサ材とカバー材で覆ってパック圧
延材を形成し、このパック圧延材を熱間圧延してコア材
から薄板を製造するパック圧延による薄板の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolled material formed by covering one or more plate-shaped core materials with a spacer material and a cover material, and hot-rolling the rolled material. The present invention relates to a method of manufacturing a thin plate by pack rolling for manufacturing a thin plate from a thin plate.

【0002】[0002]

【従来の技術】一般に、耐熱合金やチタン合金は、変形
抵抗の温度依存性が大きく、加工中の温度低下により加
工荷重が大きくなるため加工が難しい。また、ボロン添
加オーステナイト系ステンレス鋼のように熱間加工性に
乏しい材料等もある。これらの材料は通常、難加工材と
呼ばれている。
2. Description of the Related Art In general, heat-resistant alloys and titanium alloys have a large temperature dependency of deformation resistance, and a processing load is increased due to a decrease in temperature during processing, so that processing is difficult. Further, there are materials having poor hot workability such as boron-added austenitic stainless steel. These materials are commonly referred to as difficult-to-machine materials.

【0003】これら難加工材の薄板圧延技術としては、
従来よりパック圧延(積層圧延)方法が実施されてい
る。図8はパック圧延材の一例を示す断面図である。図
8において、被圧延材料である1つ又は複数の板状のコ
ア材1は、四周部がスペーサ材3で覆われている。この
コア材1およびスペーサ材3は、上下をカバー材2によ
って挟まれている。この図は、2枚のコア材1がスペー
サ材3で覆われ、かつカバー材2によって挟まれたパッ
ク圧延材の例を示している。
[0003] As a thin plate rolling technique for these difficult-to-process materials,
Conventionally, a pack rolling (lamination rolling) method has been implemented. FIG. 8 is a sectional view showing an example of a rolled material. In FIG. 8, one or a plurality of plate-shaped core materials 1 which are materials to be rolled are covered with a spacer material 3 at four peripheral portions. The core member 1 and the spacer member 3 are sandwiched between upper and lower cover members 2. This figure shows an example of a rolled material in which two core materials 1 are covered with a spacer material 3 and sandwiched between cover materials 2.

【0004】このように、被圧延材料である板状のコア
材はスペーサ材及びカバー材で覆われているため、コア
材表面は外気やロールといった冷たい媒体に、直接触れ
ることがないので温度の低下が防止でき、薄板材の製造
が可能となる。
As described above, since the plate-shaped core material to be rolled is covered with the spacer material and the cover material, the surface of the core material does not directly come into contact with a cold medium such as the outside air or a roll, so that the temperature of the core material is reduced. The reduction can be prevented, and the production of a thin plate material becomes possible.

【0005】例えば、α+β型チタン合金としてよく知
られているTi-6Al-4V合金は、冷間加工性や超塑性特性
を確保するために、α+β域で熱間加工を加える必要が
ある。しかしその変形抵抗の温度依存性は非常に大き
く、800℃以下になると、変形抵抗が大きく上昇し、圧
延機の許容荷重を超えてそれ以降の圧延ができなくな
る。そのため、β変態点以下でかつ変形抵抗がそれほど
高くならない800〜950℃の温度域で圧延することが理想
的とされ、温度低下が小さいパック圧延が適用されてい
る。
For example, a Ti-6Al-4V alloy, which is well known as an α + β type titanium alloy, needs to be subjected to hot working in the α + β region in order to secure cold workability and superplasticity. However, the temperature dependence of the deformation resistance is very large, and when the temperature is 800 ° C. or less, the deformation resistance greatly increases, and the rolling beyond the allowable load of the rolling mill cannot be performed. Therefore, it is ideal to perform rolling in a temperature range of 800 to 950 ° C. where the deformation resistance is not so high below the β transformation point, and pack rolling in which the temperature drop is small is applied.

【0006】パック圧延においては、コア材同士の間、
およびコア材とカバー材との間には剥離材が塗布され、
圧延によるコア材同士の圧着およびコア材とカバー材と
の圧着を防止する。また、この剥離材が伝熱抵抗となる
ことによって、コア材の温度低下の防止にも寄与してい
る。コア材をスペーサ材とカバー材で囲んだ後、スペー
サ材とカバー材の間を溶接することにより、パックスラ
ブの組立が完成する。パック圧延においては、このよう
に組立てられたパックスラブを熱間にて圧延し、パック
圧延材を製造する。その後パック圧延材を解体し、薄板
圧延されたコア材を取出す。
[0006] In pack rolling, between core materials,
And a release material is applied between the core material and the cover material,
Prevents pressing between core materials by rolling and pressing between core material and cover material. In addition, since the release material has a heat transfer resistance, it also contributes to preventing the core material from lowering in temperature. After the core material is surrounded by the spacer material and the cover material, the space between the spacer material and the cover material is welded to complete the assembly of the pack slab. In pack rolling, the pack slab thus assembled is hot rolled to produce a rolled material. Thereafter, the rolled pack material is dismantled, and a core material that has been rolled into a thin plate is taken out.

【0007】このようなパック圧延方法においては、製
品となるコア材と圧延ロールが直接接触していないた
め、圧延時の板厚の制御が難しい。そこで、製品の板厚
精度を上げ、形状を良くするため、コア材とカバー材の
変形抵抗比や温度を制御する等の工夫がなされている。
例えば、特開平5−42302号公報には、圧延する
際、パック圧延材の表面を冷却してカバー材の変形抵抗
を上昇させることにより、コア材との変形抵抗値の差を
所定の値以内に小さくする技術が提案されている。
In such a pack rolling method, it is difficult to control the sheet thickness at the time of rolling because the core material as a product does not directly contact the rolling roll. Therefore, in order to increase the thickness accuracy of the product and improve the shape, various measures such as controlling the deformation resistance ratio and the temperature of the core material and the cover material have been devised.
For example, Japanese Patent Application Laid-Open No. 5-42302 discloses that, when rolling, the surface of a rolled material is cooled to increase the deformation resistance of a cover material so that the difference in deformation resistance value between the core material and the cover material is kept within a predetermined value. A technique for reducing the size has been proposed.

【0008】さらに、この問題と関連して、パック圧延
材においてはコア材の端部の板厚が増大するという問題
がある。この板厚不良部は製品にならないので、歩留り
の低下につながっている。これを防止する技術として
は、特開平10−216807号公報に、パック圧延材
の組立時の状態で、コア材の端部とスペーサ材との隙間
を管理することにより、板厚偏差の発生を防止する方法
が提案されている。この方法では、パック圧延材の圧延
において、コア材の側面方向への変形量を予め予測し、
上記の隙間をこれ以上となるようにパック圧延材を形成
している。
Further, in connection with this problem, there is a problem that the thickness of the end portion of the core material is increased in the pack rolled material. Since the defective thickness portion does not become a product, the yield is reduced. As a technique for preventing this, Japanese Patent Application Laid-Open No. Hei 10-216807 discloses a technique of managing the gap between the end of the core material and the spacer material in the state of assembling the rolled material to reduce the occurrence of thickness deviation. Methods to prevent this have been proposed. In this method, in the rolling of the pack rolled material, the amount of deformation of the core material in the side direction is predicted in advance,
The rolled pack is formed so that the above-mentioned gap is larger than this.

【0009】[0009]

【発明が解決しようとする課題】しかし、従来技術に
は、次のような問題がある。特開平5−42302号公
報記載の技術は、コア材との変形抵抗値の差が所定の値
以内となるようカバー材を冷却するのであるが、コア材
はカバー材で囲まれているためその温度は測定できな
い。従って、この技術では、コア材の温度をシュミレー
ション(シミュレーション)により推定している。しか
し、カバー材を冷却することによりコア材の温度も変化
するので、実際はかなり複雑な推定計算となることが予
想される。また、加工熱の予測等、推測に頼る要素も多
く温度精度上も疑問である。
However, the prior art has the following problems. According to the technique described in Japanese Patent Application Laid-Open No. 5-42302, the cover material is cooled so that the difference in the deformation resistance value from the core material is within a predetermined value. However, since the core material is surrounded by the cover material, Temperature cannot be measured. Therefore, in this technique, the temperature of the core material is estimated by simulation. However, since the temperature of the core material changes when the cover material is cooled, it is expected that the estimation calculation is actually quite complicated. In addition, there are many factors that depend on estimation, such as prediction of processing heat, and it is also questionable in terms of temperature accuracy.

【0010】また、冷却技術上の観点からも、数メート
ル四方の広い面積にわたって一様に冷却するのは困難で
ある。さらに、仮に前述の高精度のシミュレーション計
算が可能だとしても、既存の冷却方法では、その目標温
度となるように精度良く冷却することも通常の冷却技術
では困難である。
[0010] Also, from the viewpoint of cooling technology, it is difficult to cool uniformly over a wide area of several meters square. Further, even if the above-described high-precision simulation calculation is possible, it is difficult for the existing cooling method to accurately cool to the target temperature by the ordinary cooling technique.

【0011】特開平10−216807号公報記載の技
術は、幅方向端部の板厚偏差の解消には効果的である
が、圧下比が大きい場合は長手方向端部の板厚偏差がか
なり大きくなるため、あまり有効ではなくなる。これ
は、圧延の進行に伴い長手方向端部に発生する平面形状
の不良部、いわゆるクロップが成長し、通常のスペーサ
材との隙間では吸収できなくなるためである。
The technique described in Japanese Patent Application Laid-Open No. 10-216807 is effective for eliminating the thickness deviation at the width direction end, but when the rolling reduction ratio is large, the thickness deviation at the longitudinal direction end is considerably large. Therefore, it is not very effective. This is because a defective portion having a planar shape, that is, a so-called crop, which occurs at an end portion in the longitudinal direction with the progress of rolling grows and cannot be absorbed in a gap with a normal spacer material.

【0012】そこで、そのクロップの成長を見越して隙
間を大きめに設定しておくことが考えられる。しかし、
そのような大きな隙間を設けておいても、圧延中に隙間
の上下のカバー材が接触し、隙間が閉塞してしまうと当
然効果もなくなるという問題がある。
In view of this, it is conceivable to set a large gap in anticipation of the growth of the crop. But,
Even if such a large gap is provided, there is a problem that if the cover materials above and below the gap come into contact during rolling and the gap is closed, the effect is naturally lost.

【0013】本発明は、上記の問題点を解決し、耐熱合
金やチタン合金等の熱間加工が難しい合金の広幅・薄物
材を熱間圧延にて特に板厚偏差の少ない製品を製造でき
る、パック圧延による薄板の製造方法を提供することを
目的とする。
[0013] The present invention solves the above problems, and can produce a wide and thin material of an alloy which is difficult to hot work such as a heat-resistant alloy or a titanium alloy by hot rolling, in particular, a product having a small thickness deviation. An object of the present invention is to provide a method for manufacturing a thin plate by pack rolling.

【0014】[0014]

【課題を解決するための手段】上記の課題は次の発明に
より解決される。その発明は、一枚又は複数枚の板状の
コア材をスペーサ材とカバー材で覆ってパック圧延材を
形成し、このパック圧延材を圧延してコア材から薄板を
製造する薄板の製造方法において、パック圧延材の最初
の板厚に対して圧下比が3以上となるパスについては、
圧下率を15%以上とすることを特徴とするパック圧延
による薄板の製造方法である。
The above object is achieved by the following invention. The invention provides a method of manufacturing a thin plate in which one or a plurality of plate-shaped core materials are covered with a spacer material and a cover material to form a rolled pack material, and the rolled pack material is rolled to manufacture a thin plate from the core material. In, for the pass where the reduction ratio is 3 or more with respect to the initial thickness of the rolled material,
A method for producing a thin plate by pack rolling, wherein the rolling reduction is 15% or more.

【0015】この発明は、パック圧延で生じる板厚偏差
の原因について鋭意検討する中でなされた。その過程
で、コア材とスペーサ材の間の隙間が変化し、板厚偏差
が生じることに着目して、圧延中のパック圧延材の変形
挙動について検討を行った。コア材長手方向の先後端部
に板厚偏差が生じることは、その部分のコア材の実質的
な圧下率が、パック圧延材全体の圧下率より小さくなる
ということであり、それを防止する方法を種々検討し
た。
The present invention has been made while diligently studying the cause of the thickness deviation occurring in pack rolling. In the process, the deformation behavior of the rolled pack during rolling was examined, paying attention to the fact that the gap between the core material and the spacer material changed and a thickness deviation occurred. The occurrence of the thickness deviation at the front and rear ends in the longitudinal direction of the core material means that the substantial reduction ratio of the core material at that portion is smaller than the reduction ratio of the entire pack rolled material, and a method for preventing it. Were examined in various ways.

【0016】その過程で、板厚偏差が生じる板厚偏差部
の板厚が、正常部に対して相対的に増加している量を板
厚増加量と呼ぶと、この板厚増加量が、圧延条件により
変化することを見出した。個々のパスにおける板厚増加
量は、そのパス圧下が行われるときの圧下比と圧下率に
依存することを突き止めた。検討結果に基づき、この発
明では、圧延が進み圧下比が3以上となった段階では、
圧下率15%(図中0.15)以上の強圧下を行うことによ
り、板厚増加量を抑制する。
In the process, the amount by which the thickness of the sheet thickness deviation portion where the sheet thickness deviation occurs is relatively increased with respect to the normal portion is called the sheet thickness increase amount. It has been found that it changes depending on the rolling conditions. It has been found that the amount of increase in the thickness of each pass depends on the reduction ratio and the reduction ratio when the pass is reduced. Based on the examination results, in the present invention, at the stage where the rolling progresses and the reduction ratio becomes 3 or more,
By performing a strong reduction at a reduction ratio of 15% or more (0.15 in the figure) or more, the increase in the sheet thickness is suppressed.

【0017】圧延条件の限定理由は次のようになる。ま
ず、圧延初期の圧下比3未満の領域では1パス当たりの
圧下率は高い方が望ましいものの、特に強圧下としなく
ても板厚増加量は圧下率の増加により低減できる。しか
し、圧下比3以上の領域になると、1パス当たりの圧下
率が低い場合、板厚増加量が拡大する傾向がある。従っ
て、この領域では強圧下を行う必要がある。圧下率とし
ては、15%未満では板厚増加量を低下させる効果がな
く、15%以上必要である。以上より、圧下比3以上の
圧延パスでは、圧下率15%以上の強圧下を行う。
The reasons for limiting the rolling conditions are as follows. First, in the region where the rolling reduction ratio is less than 3 at the beginning of rolling, it is desirable that the rolling reduction per pass is higher, but the increase in the sheet thickness can be reduced by increasing the rolling reduction without using a particularly strong rolling. However, in the region where the reduction ratio is 3 or more, when the reduction ratio per pass is low, the thickness increase tends to increase. Therefore, it is necessary to perform strong pressure reduction in this region. When the rolling reduction is less than 15%, there is no effect of reducing the amount of increase in sheet thickness, and it is necessary to be 15% or more. As described above, in a rolling pass having a reduction ratio of 3 or more, a strong reduction with a reduction ratio of 15% or more is performed.

【0018】[0018]

【発明の実施の形態】まず、パック圧延で板厚偏差が生
じる機構について、発明の実施上の参考のため調べてお
く。簡単のため、圧延前のコア材とスペーサ材の間の隙
間が0、即ち初期隙間がない場合を考える。まず、後端
部についてはコア材の後端部がロールバイト内に噛み込
まれる前に、コア材とカバー材の変形抵抗の差および実
質圧下率の差に起因した伸び量の違いから、コア材とス
ペーサ材の間には隙間が生じている。この隙間は、図1
に示すように、コア材後端部1Bがロールバイト内から
抜け出る前にすでに閉鎖される。コア材後端部1Bは、
この閉鎖された部分が壁となって長手方向の伸びが抑制
される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a mechanism in which a thickness deviation occurs in pack rolling will be examined for reference in practicing the present invention. For simplicity, consider a case where the gap between the core material and the spacer material before rolling is 0, that is, there is no initial gap. First, before the rear end portion of the core material is bitten into the roll bite, the core material and the cover material are subjected to a difference in the amount of elongation caused by a difference in deformation resistance and a difference in a substantial rolling reduction. There is a gap between the material and the spacer material. This gap is shown in FIG.
As shown in (1), the core material rear end 1B is already closed before coming out of the roll bite. The core material rear end 1B
The closed portion serves as a wall to suppress longitudinal elongation.

【0019】また、隙間5の閉鎖される位置におけるカ
バー材2の実質圧下率は小さいので、カバー材2の伸び
量も小さくなる。そのため、カバー材2とコア材1の相
対的な伸び量の差も小さくなる。これらの原因により、
コア材後端部1Bでは、局所的に長手方向の圧縮力を受
けるので、コア材後端部近傍で板厚が増加する。
Further, since the substantial rolling reduction of the cover material 2 at the position where the gap 5 is closed is small, the amount of elongation of the cover material 2 is also small. Therefore, the difference in the relative elongation between the cover member 2 and the core member 1 is also reduced. For these reasons,
Since the rear end portion 1B of the core material is locally subjected to a compressive force in the longitudinal direction, the plate thickness increases near the rear end portion of the core material.

【0020】次に、先端部については、後端部1Bと同
様にコア材1の先端部1Tがロールバイト内に噛み込ま
れる前に、コア材1とスペーサ材3の間には隙間5が生
じている。その後、コア材先端部1Tがロールバイト内
に噛み込まれると、この隙間5は徐々に閉鎖されてい
き、ある時点から壁となるため、コア材先端部1Tの伸
びが抑制される。また、コア材後端部1Bと同様、カバ
ー材2とコア材先端部1Tの相対的な伸び量の差も小さ
くなる。従って、コア材先端部1Tについても、コア材
後端部1Bと同様、板厚偏差が生じる。
Next, at the leading end, a gap 5 is formed between the core material 1 and the spacer material 3 before the leading end 1T of the core material 1 is bitten into the roll bite similarly to the rear end 1B. Has occurred. Thereafter, when the core material tip 1T is bitten into the roll bite, the gap 5 is gradually closed and becomes a wall from a certain point, so that the elongation of the core material tip 1T is suppressed. Further, similarly to the core material rear end portion 1B, the difference in the relative elongation amount between the cover material 2 and the core material front end portion 1T also becomes small. Therefore, the thickness deviation also occurs at the leading end 1T of the core material, similarly to the trailing end 1B of the core material.

【0021】なお、圧延の進行に伴い、コア材とカバー
材の実質圧下率の差が、純粋に変形抵抗の差に対応する
値となるため、コア材への長手方向圧縮力の影響がなく
なる。また、コア材とスペーサ材に初期隙間が存在する
場合についても、上記の現象は当然起こる。
As the rolling progresses, the difference between the substantial rolling reduction of the core material and the cover material becomes a value purely corresponding to the difference of the deformation resistance, so that the influence of the longitudinal compressive force on the core material is eliminated. . The above-described phenomenon naturally occurs even when an initial gap exists between the core material and the spacer material.

【0022】ところで、先端部と後端部では、コア材と
スペーサ材の間に生じる隙間とコア材端部の内、どちら
が先にロールバイト内に噛み込まれるかという点に違い
があるため、先端部より後端部の方が板厚偏差が大きく
なる。すなわち、後端部では、ほぼ完全に閉鎖された隙
間が壁となり、コア材の伸びが抑制される。これに対し
て、先端部では、ロールバイト内のあるところから閉鎖
される隙間が徐々に壁となるため、コア材の伸びも徐々
に抑制される。その結果、先端部では、板厚偏差が後端
部ほど大きくはならない。
By the way, there is a difference between the front end portion and the rear end portion in which one of the gap formed between the core material and the spacer material and the end portion of the core material is bitten into the roll bite first. The thickness deviation is larger at the rear end than at the front end. That is, at the rear end, the gap that is almost completely closed becomes a wall, and the elongation of the core material is suppressed. On the other hand, at the tip end, the gap that is closed from a certain position in the roll bite gradually becomes a wall, so that the elongation of the core material is also gradually suppressed. As a result, the thickness deviation does not become as large at the front end as at the rear end.

【0023】先端部と後端部の板厚偏差の違いは、圧延
方法として、通常のパック圧延で行われるレバース圧延
の代わりに、一方向圧延を行うことにより確認できる。
その実験結果を図3に示す。この図より、先端部より後
端部の板厚偏差の方が、大きくなっていることが確認で
きる。コア材長手方向の先後端部に生じる板厚偏差を防
止するには、コア材とスペーサ材の間に生じる隙間を閉
鎖しにくくすること、およびコア材の板厚が増加するの
を抑制する方向に力を作用させること、が挙げられる。
The difference in thickness deviation between the leading end portion and the trailing end portion can be confirmed by performing unidirectional rolling as a rolling method instead of reversing rolling which is usually performed by pack rolling.
FIG. 3 shows the experimental results. From this figure, it can be confirmed that the thickness deviation of the rear end portion is larger than that of the front end portion. In order to prevent the thickness deviation occurring at the front and rear ends in the longitudinal direction of the core material, it is difficult to close a gap generated between the core material and the spacer material, and a direction in which the thickness of the core material is suppressed from increasing. To apply force.

【0024】ここで、これらに影響を及ぼすパラメータ
として、接触弧長ldと平均板厚hmの比ld/hm(ロール間
隙形状比)および圧下率に注目した。このパラメータの
影響を詳細に調査するために行ったモデル圧延実験の結
果を、図4と図5に示す。図中、圧下率比とは、「コア
材板厚偏差部の圧下率/コア材定常部の圧下率」を示
し、この比が1に近いほど、板厚偏差部と定常部の圧下
率の差が小さく、板厚偏差部の定常部に対する相対的な
板厚増加量が小さいことを意味する。
Here, attention was paid to the ratio ld / hm (roll gap shape ratio) of the contact arc length ld to the average plate thickness hm and the rolling reduction as parameters affecting these. FIGS. 4 and 5 show the results of a model rolling experiment performed to investigate the effect of this parameter in detail. In the figure, the reduction ratio indicates “the reduction ratio of the core material thickness deviation portion / the reduction ratio of the core material steady portion”. As this ratio is closer to 1, the reduction ratio of the sheet thickness deviation portion and the steady portion is reduced. The difference is small, which means that the thickness increase relative to the steady portion of the thickness deviation portion is small.

【0025】まず、ロール間隙形状比ld/hmの影響につ
いては、図4に示すように、圧下率一定でld/hmが大き
いほど圧下率比は小さくなり、板厚偏差部の定常部に対
する板厚増加が大きくなる。これは、ld/hmが大きいほ
ど、隙間が閉鎖し易くなるためであると考えられる。ま
た、圧下率の影響については、図5に示すように、ld/h
m一定で圧下率が大きいほど、圧下率比は大きくなり板
厚偏差部の板厚増加が小さい。これは、圧下率が大きい
ほど、隙間も閉鎖し易くはなるが、それ以上にコア材長
手方向の端部で、コア材の板厚が増加するのを抑制する
方向の効果が大きいことによる。
First, regarding the influence of the roll gap shape ratio ld / hm, as shown in FIG. 4, the reduction ratio becomes smaller as the reduction ratio is constant and ld / hm is larger, and the plate thickness deviation portion has a smaller thickness than the steady portion. The increase in thickness increases. This is considered to be because the larger the ld / hm, the easier the gap is to close. Also, as shown in FIG.
As the rolling reduction is constant at a constant m, the rolling reduction ratio increases and the increase in the thickness of the thickness deviation portion is small. This is because the larger the rolling reduction, the easier the gap is to be closed, but the greater the effect of suppressing the increase in the thickness of the core material at the end in the core material longitudinal direction.

【0026】このように、コア材の先後端部の板厚偏差
をなくすためには、各パスのロール間隙形状比ld/hmが
小さいほど、また、圧下率が大きいほど、有利であるこ
とがわかる。しかしながら、実操業を考えた場合、ロー
ル径は一定であるため、圧下率が大きいほどld/hmも大
きくなり、これら2つのパラメータを独立に制御するこ
とはできない。さらに、実際には、カバー材とコア材の
各パスにおける熱間変形抵抗の推移などに基づき、最適
なld/hmと圧下率の兼ね合いを考慮しなければならな
い。
As described above, in order to eliminate the thickness deviation at the front and rear ends of the core material, it is advantageous that the roll gap shape ratio ld / hm of each pass is smaller and the rolling reduction is larger. Understand. However, considering the actual operation, since the roll diameter is constant, ld / hm increases as the rolling reduction increases, and these two parameters cannot be controlled independently. Furthermore, in practice, it is necessary to consider the optimal balance between ld / hm and rolling reduction based on the transition of hot deformation resistance in each pass of the cover material and the core material.

【0027】実操業における圧下率と板厚増加量の関係
を図6に示す。圧下率と板厚増加量の関係は、圧下比に
より異なり、パック圧延材の入側板厚が厚い、圧下比<
3の条件では、圧下率が大きいほど板厚増加量が小さく
なる。一方、入側板厚が薄い、圧下比≧3の条件では、
圧下率を上げても板厚増加量はほとんど変化していな
い。しかし、圧下率15%(図中0.15)以上の強圧下を
行うと、圧下率の増加とともに板厚増加量が小さくなる
という新たな知見を得た。これより、パック圧延材の圧
下比が3以上となるパスについては、圧下率を15%以
上とする必要がある。
FIG. 6 shows the relationship between the rolling reduction and the thickness increase in the actual operation. The relationship between the rolling reduction and the amount of increase in the thickness differs depending on the rolling reduction ratio.
Under condition 3, the greater the rolling reduction, the smaller the thickness increase. On the other hand, under the condition that the inlet side plate thickness is thin and the reduction ratio ≧ 3,
The increase in the sheet thickness hardly changed even when the rolling reduction was increased. However, a new finding was obtained that when the rolling reduction was 15% or more (0.15 in the figure) or more, the increase in the sheet thickness became smaller as the rolling reduction increased. From this, it is necessary to set the rolling reduction to 15% or more for the path where the rolling reduction of the rolled material becomes 3 or more.

【0028】[0028]

【実施例】本発明の製造方法により、Ti-6Al-4V合金の
薄板をパック圧延方法により製造した。カバー材および
スペーサ材にはSS330を用い、板厚10mmのTi-6Al-4V合金
のコア材を2枚重ねて、板厚100mmのカバー材をコア材の
上下に1枚ずつ積層した。この220mm厚のパックスラブ
に対して11パスからなる圧延を行い、最終板厚を32mm
として、パック圧延材を解体し、1.4mm厚の薄板を2枚製
造した。パック圧延材のパススケジュールとしては、表
1に示すように、強圧下スケジュール(パターン1)と
通常スケジュール(パターン2:比較例、全15パス)
とした。
EXAMPLE According to the production method of the present invention, a thin plate of a Ti-6Al-4V alloy was produced by a pack rolling method. SS330 was used as a cover material and a spacer material, and two core materials of a Ti-6Al-4V alloy having a thickness of 10 mm were laminated, and a cover material having a thickness of 100 mm was laminated one above and below the core material. Rolling of 11 passes is performed on this 220 mm thick pack slab, and the final thickness is 32 mm.
As a result, the rolled material was dismantled to produce two thin plates having a thickness of 1.4 mm. As shown in Table 1, the pass schedule of the rolled material is as follows: a heavy rolling schedule (pattern 1) and a normal schedule (pattern 2: comparative example, all 15 passes).
And

【0029】[0029]

【表1】 [Table 1]

【0030】圧下比が3以上となるパス(パターン1:
パス7〜10、パターン2:パス8〜15)の圧下率
は、パターン1では20%前後の強圧下であるのに対し
て、パターン2では10%前後の軽圧下である。それぞ
れのコア材について、先後端部の板厚偏差(最終板厚増
加量)を図7に示す。なお板厚偏差は先後端部ほぼ同程
度であり、図には大きい方の値を示した。これより、発
明例(パターン1)では最終板厚増加量が0.75mmである
のに対して、比較例(パターン2)では1.40mmであり、
発明例の方が先後端部における強圧下が有効に作用した
ことが分かる。
The path where the reduction ratio becomes 3 or more (pattern 1:
The rolling reduction of the passes 7 to 10 and the pattern 2: the passes 8 to 15) is a strong reduction of about 20% in the pattern 1, whereas it is a light reduction of about 10% in the pattern 2. FIG. 7 shows the thickness deviation (final thickness increase) of the front and rear ends of each core material. The sheet thickness deviation is almost the same at the front and rear ends, and the larger value is shown in the figure. From this, the final thickness increase in the invention example (pattern 1) is 0.75 mm, whereas in the comparative example (pattern 2) it is 1.40 mm.
It can be seen that in the invention example, the strong reduction at the front and rear ends worked more effectively.

【0031】[0031]

【発明の効果】この発明は、パック圧延材の圧下比が3
以上となるパスについては、圧下率15%以上の強圧下
とすることにより、コア材の先後端部の実質的な圧下率
を全体の圧下率に近づけることができ、長手方向端部の
板厚偏差を生じにくくすることが可能となる。その結
果、歩留が向上するとともに、圧延後に板厚を合わせる
ための端部の機械加工が不要となり、生産効率および経
済性が向上する。
According to the present invention, the reduction ratio of the rolled material is 3
With respect to the above paths, the substantial reduction at the front and rear end portions of the core material can be made close to the overall reduction ratio by applying a strong reduction at a reduction ratio of 15% or more. It is possible to make the deviation hard to occur. As a result, the yield is improved, and machining of the end portion for adjusting the thickness after rolling is not required, thereby improving the production efficiency and the economic efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 コア材後端部での板厚偏差発生のメカニズム
を示す図。
FIG. 1 is a view showing a mechanism of occurrence of a sheet thickness deviation at a rear end portion of a core material.

【図2】 コア材先端部での板厚偏差発生のメカニズム
を示す図。
FIG. 2 is a view showing a mechanism of occurrence of a thickness deviation at a core material tip.

【図3】 一方向圧延を行った場合のコア材の長手方向
板厚偏差を示す図。
FIG. 3 is a view showing a thickness deviation in a longitudinal direction of a core material when unidirectional rolling is performed.

【図4】 圧下率比に及ぼすld/hmの影響を示す図。FIG. 4 is a graph showing the influence of ld / hm on the reduction ratio.

【図5】 圧下率比に及ぼす圧下率の影響を示す図。FIG. 5 is a diagram showing the effect of the reduction ratio on the reduction ratio.

【図6】 圧下率と板厚増加量の関係を示す図。FIG. 6 is a diagram showing a relationship between a draft and a thickness increase.

【図7】 先後端部の板厚偏差を示す図。FIG. 7 is a diagram showing a thickness deviation at front and rear ends.

【図8】 パック圧延材の一例を示す断面図。FIG. 8 is a sectional view showing an example of a rolled material.

【符号の説明】[Explanation of symbols]

1 コア材 1T コア材先端部 1B コア材後端部 2 カバー材 3 スペーサ材 5 隙間 6 剥離材 DESCRIPTION OF SYMBOLS 1 Core material 1T Core material front end 1B Core material rear end 2 Cover material 3 Spacer material 5 Gap 6 Release material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一枚又は複数枚の板状のコア材をスペー
サ材とカバー材で覆ってパック圧延材を形成し、このパ
ック圧延材を圧延してコア材から薄板を製造する薄板の
製造方法において、パック圧延材の最初の板厚に対して
圧下比が3以上となるパスについては、圧下率を15%
以上とすることを特徴とするパック圧延による薄板の製
造方法。
1. A method for manufacturing a thin plate in which one or a plurality of plate-like core materials are covered with a spacer material and a cover material to form a rolled pack material, and the rolled pack material is rolled to manufacture a thin plate from the core material. In the method, for a pass having a reduction ratio of 3 or more with respect to the initial thickness of the rolled material, the reduction ratio is set to 15%.
A method for producing a thin plate by pack rolling, characterized in that:
JP2000114603A 2000-04-17 2000-04-17 Method of manufacturing sheet by pack rolling Pending JP2001300604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000114603A JP2001300604A (en) 2000-04-17 2000-04-17 Method of manufacturing sheet by pack rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000114603A JP2001300604A (en) 2000-04-17 2000-04-17 Method of manufacturing sheet by pack rolling

Publications (1)

Publication Number Publication Date
JP2001300604A true JP2001300604A (en) 2001-10-30

Family

ID=18626387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000114603A Pending JP2001300604A (en) 2000-04-17 2000-04-17 Method of manufacturing sheet by pack rolling

Country Status (1)

Country Link
JP (1) JP2001300604A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254772A (en) * 2006-03-20 2007-10-04 Osaka Univ Hot-dip galvanized steel sheet and its manufacturing method
KR20210030640A (en) * 2019-09-10 2021-03-18 재단법인 포항산업과학연구원 Rolling method of titanium sheet
WO2022162814A1 (en) 2021-01-28 2022-08-04 日本製鉄株式会社 Titanium alloy thin plate, and method for producing titanium alloy thin plate
WO2022162816A1 (en) 2021-01-28 2022-08-04 日本製鉄株式会社 Titanium alloy plate, titanium alloy coil, method for producing titanium alloy plate and method for producing titanium alloy coil

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254772A (en) * 2006-03-20 2007-10-04 Osaka Univ Hot-dip galvanized steel sheet and its manufacturing method
KR20210030640A (en) * 2019-09-10 2021-03-18 재단법인 포항산업과학연구원 Rolling method of titanium sheet
KR102518087B1 (en) * 2019-09-10 2023-04-04 재단법인 포항산업과학연구원 Rolling method of titanium sheet
WO2022162814A1 (en) 2021-01-28 2022-08-04 日本製鉄株式会社 Titanium alloy thin plate, and method for producing titanium alloy thin plate
WO2022162816A1 (en) 2021-01-28 2022-08-04 日本製鉄株式会社 Titanium alloy plate, titanium alloy coil, method for producing titanium alloy plate and method for producing titanium alloy coil
KR20230110601A (en) 2021-01-28 2023-07-24 닛폰세이테츠 가부시키가이샤 Titanium alloy plate and titanium alloy coil, method for manufacturing titanium alloy plate and method for manufacturing titanium alloy coil
KR20230118978A (en) 2021-01-28 2023-08-14 닛폰세이테츠 가부시키가이샤 Titanium alloy thin plate and manufacturing method of titanium alloy thin plate

Similar Documents

Publication Publication Date Title
EP2394752B1 (en) Titanium material for hot rolling and manufacturing method thereof
JP4759499B2 (en) A method to reduce shear and crop loss in rolling of assembled slabs.
US10570492B2 (en) Titanium cast product for hot rolling having excellent surface properties after hot rolling even when slabbing step and finishing step are omitted, and method for producing same
JP4701762B2 (en) Hot rolled steel sheet rolling method
JP2001300604A (en) Method of manufacturing sheet by pack rolling
KR20120074653A (en) Titanium plate and method of manufacturing it
JP2001300603A (en) Method of manufacturing sheet by pack rolling
JP3446016B2 (en) Pack rolling method
JP4617929B2 (en) Hot rolled steel sheet rolling method
JP3591194B2 (en) Operating method of double cold rolling mill for manufacturing ultra-thin steel sheet
JP4333321B2 (en) Steel plate production line and steel plate production method
CN114700698B (en) Processing technology of nickel-based corrosion-resistant alloy strip
CN115216591B (en) Intrinsic strain reconstruction and quenching residual stress control method based on cooling rate control
JPH0525924B2 (en)
JP3844622B2 (en) Method for producing austenitic stainless steel bar wire
JP3073734B1 (en) Method of manufacturing Fe-Ni alloy material for shadow mask
TWI645917B (en) Method of producing titanium alloy wire rod
JP2001137909A (en) Manufacture of ba-finished stainless steel having high gloss using tandem mill
JPH07251202A (en) Manufacture of hot rolled plate of pure titanium
JP2004098068A (en) Hot rolling method of steel plate
JP3212256B2 (en) Continuous hot rolling of billets
JP2006255731A (en) Method for producing hot rolled steel sheet
JP2001121206A (en) Pack rolling method
JP2005103600A (en) Method for hot-rolling continuously cast slab of high nickel alloy steel
JPH10216807A (en) Method of pack rolling

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921