JP2001300603A - Method of manufacturing sheet by pack rolling - Google Patents

Method of manufacturing sheet by pack rolling

Info

Publication number
JP2001300603A
JP2001300603A JP2000114602A JP2000114602A JP2001300603A JP 2001300603 A JP2001300603 A JP 2001300603A JP 2000114602 A JP2000114602 A JP 2000114602A JP 2000114602 A JP2000114602 A JP 2000114602A JP 2001300603 A JP2001300603 A JP 2001300603A
Authority
JP
Japan
Prior art keywords
thickness
core material
rolling
pack
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000114602A
Other languages
Japanese (ja)
Inventor
Kenji Hirata
健二 平田
Masayuki Horie
正之 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000114602A priority Critical patent/JP2001300603A/en
Publication of JP2001300603A publication Critical patent/JP2001300603A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a sheet by pack rolling by which yield is improved, especially while raising the accuracy of thickness of the wide thin material of an alloy such as a heat resistant alloy and titanium alloy whose hot working is difficult. SOLUTION: In the manufacturing method of the sheet by which a pack rolled stock is formed by covering one or plural pieces of planar core materials with a spacer material and a cover material and the sheets are manufactured from the core materials by rolling this pack rolled stock, by this manufacturing method of the sheet by the pack rolling, the initial thickness of the cover material is set so that the ratio of the thickness of the core material to the thickness of the pack rolled material is >=0.25. Furthermore, the rolling of the pack rolled stock is performed under conditions that the hot deformation resistance of the cover material is smaller than the hot deformation resistance of the core material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一枚又は複数枚の
板状のコア材をスペーサ材とカバー材で覆ってパック圧
延材を形成し、このパック圧延材を圧延してコア材から
薄板を製造するパック圧延による薄板の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolled pack formed by covering one or more plate-shaped core members with a spacer and a cover material, and rolling the pack rolled material to form a thin plate from the core material. And a method for producing a thin plate by pack rolling.

【0002】[0002]

【従来の技術】一般に、耐熱合金やチタン合金は、変形
抵抗の温度依存性が大きく、加工中の温度低下により加
工荷重が大きくなるため加工が難しい。また、ボロン添
加オーステナイト系ステンレス鋼のように熱間加工性に
乏しい材料等もある。これらの材料は通常、難加工材と
呼ばれている。
2. Description of the Related Art In general, heat-resistant alloys and titanium alloys have a large temperature dependency of deformation resistance, and a processing load is increased due to a decrease in temperature during processing, so that processing is difficult. Further, there are materials having poor hot workability such as boron-added austenitic stainless steel. These materials are commonly referred to as difficult-to-machine materials.

【0003】これら難加工材の薄板圧延技術として、従
来よりパック圧延(積層圧延)方法が実施されている。
図12はパック圧延材の一例を示す断面図である。図1
2において、1つ又は複数の被圧延材料である板状のコ
ア材1は、四周部がスペーサ材3で覆われている。この
コア材1およびスペーサ材3は、上下をカバー材2によ
って挟まれている。この図は、2枚のコア材1がスペー
サ材3で覆われ、かつカバー材2によって挟まれたパッ
ク圧延材の例を示している。
[0003] As a thin plate rolling technique for these difficult-to-process materials, a pack rolling (lamination rolling) method has conventionally been implemented.
FIG. 12 is a sectional view showing an example of a rolled material. FIG.
In 2, a plate-shaped core material 1 which is one or a plurality of materials to be rolled is covered with a spacer material 3 at four peripheral portions. The core member 1 and the spacer member 3 are sandwiched between upper and lower cover members 2. This figure shows an example of a rolled material in which two core materials 1 are covered with a spacer material 3 and sandwiched between cover materials 2.

【0004】このように、被圧延材料である板状のコア
材はスペーサ材及びカバー材で覆われているため、コア
材表面は外気やロールといった冷たい媒体に、直接触れ
ることがないので温度の低下が防止でき、薄板材の製造
が可能となる。
As described above, since the plate-shaped core material to be rolled is covered with the spacer material and the cover material, the surface of the core material does not directly come into contact with a cold medium such as the outside air or a roll, so that the temperature of the core material is reduced. The reduction can be prevented, and the production of a thin plate material becomes possible.

【0005】例えば、α+β型チタン合金としてよく知
られているTi-6Al-4V合金は、冷間加工性や超塑性特性
を確保するために、α+β域で熱間加工を加える必要が
ある。しかしその変形抵抗の温度依存性は非常に大き
く、800℃以下になると、変形抵抗が大きく上昇し、圧
延機の許容荷重を超えてそれ以上の圧延ができなくな
る。そのため、β変態点以下で、かつ変形抵抗がそれほ
ど高くならない800〜950℃の温度域で圧延することが理
想的とされる。そこで、温度低下の小さいパック圧延が
適用されている。
For example, a Ti-6Al-4V alloy, which is well known as an α + β type titanium alloy, needs to be subjected to hot working in the α + β region in order to secure cold workability and superplasticity. However, the temperature dependence of the deformation resistance is very large, and when the temperature is 800 ° C. or less, the deformation resistance greatly increases, and the rolling exceeds the allowable load of the rolling mill and further rolling cannot be performed. Therefore, it is ideal to perform rolling in a temperature range of 800 to 950 ° C. below the β transformation point and at which the deformation resistance does not become so high. Therefore, pack rolling with a small decrease in temperature is applied.

【0006】パック圧延においては、コア材同士の間、
およびコア材とカバー材との間には、圧延によるコア材
同士およびコア材とカバー材との圧着を防止し、また伝
熱抵抗となることによってコア材の温度低下を防止する
目的で、剥離材が塗布される。コア材をスペーサ材とカ
バー材で囲んだ後、スペーサ材とカバー材の間を溶接す
ることにより、パックスラブの組立が完成する。パック
圧延においては、このように組立てられたパックスラブ
を熱間にて圧延し、パック圧延材を製造する。その後パ
ック圧延材を解体し、薄板圧延されたコア材を取出す。
[0006] In pack rolling, between core materials,
In addition, between the core material and the cover material, peeling is performed for the purpose of preventing pressure bonding between the core materials and between the core material and the cover material by rolling, and preventing a decrease in the temperature of the core material due to heat transfer resistance. The material is applied. After the core material is surrounded by the spacer material and the cover material, the space between the spacer material and the cover material is welded to complete the assembly of the pack slab. In pack rolling, the pack slab thus assembled is hot rolled to produce a rolled material. Thereafter, the rolled pack material is dismantled, and a core material that has been rolled into a thin plate is taken out.

【0007】このようなパック圧延方法においては、製
品となるコア材と圧延ロールが直接接触していないた
め、圧延時の板厚の制御が難しい。そこで、製品の板厚
精度を上げ、形状を良くするため、コア材とカバー材の
温度や変形抵抗を制御する等の工夫がなされている。例
えば、特開平5−42302号公報には、圧延する際、
パック圧延材の表面を冷却してカバー材の変形抵抗を上
昇させることにより、コア材との変形抵抗値の差を所定
の値以内に小さくする技術が提案されている。
In such a pack rolling method, it is difficult to control the sheet thickness at the time of rolling because the core material as a product does not directly contact the rolling roll. Therefore, in order to increase the thickness accuracy of the product and improve the shape, various measures have been taken such as controlling the temperature and deformation resistance of the core material and the cover material. For example, in Japanese Patent Application Laid-Open No. 5-42302,
A technique has been proposed in which the surface of a rolled material is cooled to increase the deformation resistance of the cover material, thereby reducing the difference in deformation resistance value between the core material and the core material within a predetermined value.

【0008】さらに、この問題と関連して、パック圧延
材においてはコア材の端部の板厚が増大するという問題
がある。この板厚不良部は製品にならないので、歩留り
の低下につながっている。これを防止する技術として
は、特開平10−216807号公報に、パック圧延材
の組立時の状態で、コア材の端部とスペーサ材との隙間
を管理することにより、板厚偏差の発生を防止する方法
が提案されている。この方法では、パック圧延材の圧延
において、コア材の側面方向への変形量を予め予測し、
上記のコア材端部の隙間をこれより大きくとってパック
圧延材を形成している。
Further, in connection with this problem, there is a problem that the thickness of the end portion of the core material is increased in the pack rolled material. Since the defective thickness portion does not become a product, the yield is reduced. As a technique for preventing this, Japanese Patent Application Laid-Open No. Hei 10-216807 discloses a technique of managing the gap between the end of the core material and the spacer material in the state of assembling the rolled material to reduce the occurrence of thickness deviation. Methods to prevent this have been proposed. In this method, in the rolling of the pack rolled material, the amount of deformation of the core material in the side direction is predicted in advance,
The gap between the ends of the core material is made larger to form a rolled pack material.

【0009】[0009]

【発明が解決しようとする課題】しかし、従来技術に
は、次のような問題がある。特開平5−42302号公
報記載の技術は、コア材との変形抵抗値の差が所定の値
以内となるようカバー材を冷却するのであるが、コア材
はカバー材で囲まれているためその温度は測定できな
い。従って、この技術では、コア材の温度をシュミレー
ション(シミュレーション)により推定している。しか
し、カバー材を冷却することによりコア材の温度も変化
するので、実際はかなり複雑な推定計算となることが予
想される。また、加工熱の予測等、推測に頼る要素も多
く、温度精度上も疑問である。
However, the prior art has the following problems. According to the technique described in Japanese Patent Application Laid-Open No. 5-42302, the cover material is cooled so that the difference in the deformation resistance value from the core material is within a predetermined value. However, since the core material is surrounded by the cover material, Temperature cannot be measured. Therefore, in this technique, the temperature of the core material is estimated by simulation. However, since the temperature of the core material changes when the cover material is cooled, it is expected that the estimation calculation is actually quite complicated. In addition, there are many factors that depend on estimation, such as the prediction of processing heat, and the temperature accuracy is questionable.

【0010】また、冷却技術上の観点からも、数メート
ル四方の広い面積にわたって一様に冷却するのは困難で
ある。さらに、仮に前述の高精度のシミュレーション計
算が可能だとしても、既存の冷却方法では、その目標温
度となるように精度良く冷却することも通常の冷却技術
では困難である。
[0010] Also, from the viewpoint of cooling technology, it is difficult to cool uniformly over a wide area of several meters square. Further, even if the above-described high-precision simulation calculation is possible, it is difficult for the existing cooling method to accurately cool to the target temperature by the ordinary cooling technique.

【0011】特開平10−216807号公報記載の技
術は、幅方向端部の板厚偏差の解消には効果的である
が、圧下比が大きい場合は長手方向端部の板厚偏差がか
なり大きくなるため、あまり有効ではなくなる。これ
は、圧延の進行に伴い長手方向端部に発生する平面形状
の不良部、いわゆるクロップが成長し、通常のスペーサ
材との隙間では吸収できなくなるためである。
The technique described in Japanese Patent Application Laid-Open No. 10-216807 is effective for eliminating the thickness deviation at the width direction end, but when the rolling reduction ratio is large, the thickness deviation at the longitudinal direction end is considerably large. Therefore, it is not very effective. This is because a defective portion having a planar shape, that is, a so-called crop, which occurs at an end portion in the longitudinal direction with the progress of rolling grows and cannot be absorbed in a gap with a normal spacer material.

【0012】そこで、そのクロップの成長を見越して隙
間を大きめに設定しておくことが考えられる。しかし、
そのような大きな隙間を設けておいても、圧延中に隙間
の上下のカバー材が接触し、隙間が閉塞してしまうと当
然効果もなくなるという問題がある。
In view of this, it is conceivable to set a large gap in anticipation of the growth of the crop. But,
Even if such a large gap is provided, there is a problem that if the cover materials above and below the gap come into contact during rolling and the gap is closed, the effect is naturally lost.

【0013】本発明は、上記の問題点を解決し、耐熱合
金やチタン合金等の熱間加工が難しい合金の広幅・薄物
材を熱間圧延にて特に板厚精度を高めて歩留りを向上さ
せるようにした、パック圧延による薄板の製造方法を提
供することを目的とする。
The present invention solves the above problems and improves the yield by increasing the thickness accuracy of a wide and thin material such as a heat-resistant alloy or a titanium alloy which is difficult to hot work by hot rolling, in particular. It is an object of the present invention to provide a method for manufacturing a thin plate by pack rolling.

【0014】[0014]

【課題を解決するための手段】上記の課題は次の発明に
より解決される。第1の発明は、一枚又は複数枚の板状
のコア材をスペーサ材とカバー材で覆ってパック圧延材
を形成し、このパック圧延材を圧延して前記コア材から
薄板を製造する薄板の製造方法において、カバー材の初
期板厚を、パック圧延材の板厚に対するコア材の板厚の
比率が少なくとも0.25以上となる板厚に、設定する
ことを特徴とするパック圧延による薄板の製造方法であ
る。
The above object is achieved by the following invention. According to a first aspect of the present invention, there is provided a thin plate, wherein one or a plurality of plate-shaped core materials are covered with a spacer material and a cover material to form a rolled pack material, and the rolled pack material is rolled to produce a thin plate from the core material. Wherein the initial thickness of the cover material is set to a thickness at which a ratio of the thickness of the core material to the thickness of the rolled material is at least 0.25 or more. It is a manufacturing method of.

【0015】この発明は、パック圧延で生じる板厚偏差
の原因について鋭意検討する中でなされた。その過程
で、コア材とスペーサ材の間の隙間が変化し、板厚偏差
が生じることに着目して、圧延中のパック圧延材の変形
挙動について検討を行った。コア材長手方向の先後端部
に板厚偏差が生じることは、その部分のコア材の実質的
な圧下率が、パック圧延材全体の圧下率より小さくなる
ということであり、それを防止する方法を種々検討し
た。その結果、パック圧延材の全体に占めるコア材の比
率を大きくすることにより、コア材の実質的な圧下率が
パック圧延材全体の圧下率に近づくことを見出した。
The present invention has been made while diligently studying the cause of the thickness deviation occurring in pack rolling. In the process, the deformation behavior of the rolled pack during rolling was examined, paying attention to the fact that the gap between the core material and the spacer material changed and a thickness deviation occurred. The occurrence of the thickness deviation at the front and rear ends in the longitudinal direction of the core material means that the substantial reduction ratio of the core material at that portion is smaller than the reduction ratio of the entire pack rolled material, and a method for preventing it. Were examined in various ways. As a result, it has been found that by increasing the ratio of the core material to the entire packed rolled material, the substantial rolling reduction of the core material approaches the rolling reduction of the whole packed rolled material.

【0016】この発明では、パック圧延材の組立比、即
ち全体の厚さに対するコア材の厚さの比率を制御する。
従来技術のようにコア材の板厚がパック圧延材全体のの
板厚に比べて薄いと、コア材の先後端部の実質的な圧下
率はパック圧延材全体の圧下率に比べて低い比率に止ま
る。その比率としては、少なくとも0.25以上とする
必要がある。このようにコア材の厚さの比率を制御する
ことにより、板厚偏差を生じにくくすることが可能とな
る。
In the present invention, the assembly ratio of the rolled material, that is, the ratio of the thickness of the core material to the total thickness is controlled.
When the thickness of the core material is thinner than that of the entire rolled material as in the prior art, the substantial reduction ratio of the front and rear ends of the core material is lower than the reduction ratio of the entire rolled material. Stop at. The ratio must be at least 0.25 or more. By controlling the ratio of the thickness of the core material in this way, it is possible to make it difficult for a thickness deviation to occur.

【0017】カバー材の初期板厚については、できる限
り薄い方がよいが、板厚の下限はカバー材の保温効果等
から自ずから決定される。特に、コア材に高い仕上温度
が要求されれば、カバー材を厚くしてコア材の温度低下
を防止することは言うまでもない。
The initial thickness of the cover material is preferably as thin as possible, but the lower limit of the thickness is naturally determined from the heat retaining effect of the cover material. In particular, if a high finishing temperature is required for the core material, it goes without saying that the cover material is made thick to prevent the core material from lowering in temperature.

【0018】第2の発明は、カバー材の熱間変形抵抗が
コア材の熱間変形抵抗より小さくなる条件で、パック圧
延材の圧延を行うことを特徴とする第1の発明のパック
圧延による薄板の製造方法である。
According to a second aspect of the present invention, there is provided the pack rolling device according to the first aspect, wherein the rolled material is rolled under a condition that the hot deformation resistance of the cover material is smaller than the hot deformation resistance of the core material. This is a method for manufacturing a thin plate.

【0019】この発明は、コア材よりカバー材の方が熱
間変形抵抗が小さい状態で圧延を行うことにより、カバ
ー材の伸びがコア材を常に上回るようにしている。これ
により、コア材の座屈などの形状不良を防止することが
できる。
According to the present invention, the cover material is rolled in a state where the hot deformation resistance is smaller than that of the core material so that the elongation of the cover material always exceeds the core material. Thereby, shape defects such as buckling of the core material can be prevented.

【0020】[0020]

【発明の実施の形態】簡単のため、圧延前のコア材とス
ペーサ材の間の隙間が0、即ち初期隙間がない場合を考
える。まず、後端部についてはコア材の後端部がロール
バイト内に噛み込まれる前に、コア材とカバー材の変形
抵抗の差および実質圧下率の差に起因した伸び量の違い
から、コア材とスペーサ材の間には隙間が生じている。
この隙間は、図1に示すように、コア材後端部1Bがロ
ールバイト内から抜け出る前にすでに閉鎖される。コア
材後端部1Bは、この閉鎖された部分が壁となって長手
方向の伸びが抑制される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS For the sake of simplicity, it is assumed that a gap between a core material and a spacer material before rolling is zero, that is, there is no initial gap. First, before the rear end portion of the core material is bitten into the roll bite, the core material and the cover material are subjected to a difference in the amount of elongation caused by a difference in deformation resistance and a difference in a substantial rolling reduction. There is a gap between the material and the spacer material.
As shown in FIG. 1, this gap is already closed before the core material rear end 1B comes out of the roll bite. In the core material rear end 1B, the closed portion serves as a wall to suppress longitudinal elongation.

【0021】また、隙間5の閉鎖される位置におけるカ
バー材2の実質圧下率は小さいので、カバー材2の伸び
量も小さくなる。そのため、カバー材2とコア材1の相
対的な伸び量の差も小さくなる。これらの原因により、
コア材後端部1Bでは、長手方向の応力が局所的には圧
縮力となり、板厚が増加する。
Further, since the substantial reduction ratio of the cover member 2 at the position where the gap 5 is closed is small, the amount of elongation of the cover member 2 is also reduced. Therefore, the difference in the relative elongation between the cover member 2 and the core member 1 is also reduced. For these reasons,
At the core material rear end 1B, the stress in the longitudinal direction locally becomes a compressive force, and the plate thickness increases.

【0022】先端部については、図2に示すように、後
端部1Bと同様にコア材1の先端部1Tがロールバイト
内に噛み込まれる前に、コア材1とスペーサ材3の間に
は隙間5が生じている。この隙間5は、コア材先端部1
Tがロールバイト内に噛み込まれると、徐々に閉鎖され
ていき、ある時点から壁となるため、コア材先端部1T
の伸びが抑制される。また、コア材後端部1Bと同様、
カバー材2とコア材先端部1Tの相対的な伸び量の差も
小さくなる。従って、コア材先端部1Tについても、コ
ア材後端部1Bと同様、板厚偏差が生じる。
As shown in FIG. 2, the leading end 1T of the core material 1 is located between the core material 1 and the spacer material 3 before the leading end 1T of the core material 1 is bitten into the roll bite, as shown in FIG. Has a gap 5. This gap 5 is provided at the tip 1 of the core material.
When T is bitten into the roll bite, it gradually closes and becomes a wall from a certain point.
Is suppressed. Also, like the core material rear end 1B,
The difference in the relative elongation between the cover material 2 and the core material tip 1T is also reduced. Therefore, the thickness deviation also occurs at the leading end 1T of the core material, similarly to the trailing end 1B of the core material.

【0023】なお、圧延の進行に伴い、コア材とカバー
材の実質圧下率が、純粋に変形抵抗の差に対応する値と
なるため、コア材への長手方向圧縮力の影響がなくな
る。また、コア材とスペーサ材に初期隙間が存在する場
合についても、上記の現象は当然見られる。
Note that, as the rolling progresses, the substantial reduction ratio of the core material and the cover material becomes a value purely corresponding to the difference in deformation resistance, so that the influence of the longitudinal compressive force on the core material is eliminated. In addition, the above phenomenon can be naturally observed even when an initial gap exists between the core material and the spacer material.

【0024】ところで、先端部と後端部では、コア材と
スペーサ材の間に生じる隙間とコア材端部の内、どちら
が先にロールバイト内に噛み込まれるかという点に違い
があるため、先端部より後端部の方が板厚偏差が大きく
なる。すなわち、後端部では、ほぼ完全に閉鎖された隙
間が壁となり、コア材の伸びが抑制される。これに対し
て、先端部では、ロールバイト内のあるところから閉鎖
される隙間が徐々に壁となるため、コア材の伸びも徐々
に抑制される。その結果、先端部では、板厚偏差が後端
部ほど大きくはならない。
By the way, there is a difference between the front end portion and the rear end portion in which one of the gap formed between the core material and the spacer material and the end portion of the core material is bitten into the roll bite first. The thickness deviation is larger at the rear end than at the front end. That is, at the rear end, the gap that is almost completely closed becomes a wall, and the elongation of the core material is suppressed. On the other hand, at the tip end, the gap that is closed from a certain position in the roll bite gradually becomes a wall, so that the elongation of the core material is also gradually suppressed. As a result, the thickness deviation does not become as large at the front end as at the rear end.

【0025】先端部と後端部の板厚偏差の違いは、圧延
方法として、通常のパック圧延で行われるレバース圧延
の代わりに、一方向圧延を行うことにより確認できる。
その実験結果を図3に示す。この図より、先端部より後
端部の板厚偏差の方が、大きくなっていることが確認で
きる。また、先後端部の板厚偏差の違いは、圧延方法が
不適切であるとさらに助長されることもわかる。
The difference in thickness deviation between the leading end portion and the trailing end portion can be confirmed by performing unidirectional rolling as a rolling method instead of reversing rolling which is usually performed by pack rolling.
FIG. 3 shows the experimental results. From this figure, it can be confirmed that the thickness deviation of the rear end portion is larger than that of the front end portion. It can also be seen that the difference in thickness deviation between the front and rear ends is further promoted when the rolling method is inappropriate.

【0026】コア材長手方向の先後端部に生じる板厚偏
差を防止するには、コア材とスペーサ材の間に生じる隙
間を閉鎖しにくくすること、およびコア材の板厚が増加
するのを抑制する方向に力を作用させること、が挙げら
れる。
In order to prevent the thickness deviation occurring at the front and rear ends in the longitudinal direction of the core material, it is necessary to make it difficult to close the gap generated between the core material and the spacer material and to increase the thickness of the core material. Applying force in the direction of suppression.

【0027】ここで、これらに影響を及ぼすパラメータ
として、接触弧長ldと平均板厚hmの比ld/hm(ロール間
隙形状比)および圧下率に注目した。なお、これらのパ
ラメータは次のように表される。 ld=(R×ΔH)0.5 R:ワークロール半径(mm) ΔH:圧下量(mm) hm=(h0+h1×2)/3 h0:入側板厚(mm) h1:出側板厚(mm)
Here, as parameters affecting these, attention was paid to the ratio ld / hm (roll gap shape ratio) of the contact arc length ld to the average plate thickness hm and the rolling reduction. Note that these parameters are expressed as follows. ld = (R × ΔH) 0.5 R: Work roll radius (mm) ΔH: Reduction amount (mm) hm = (h0 + h1 × 2) / 3 h0: Incoming plate thickness (mm) h1: Outgoing plate thickness (mm)

【0028】これらのパラメータの影響を詳細に調査す
るために行ったモデル実験の結果を、図4と図5に示
す。図中、圧下率比とは、「コア材板厚偏差部の圧下率
/コア材定常部の圧下率」を示し、この比が1に近いほ
ど板厚偏差部の板厚増加量が小さいことを意味する。
FIGS. 4 and 5 show the results of a model experiment conducted to investigate the effects of these parameters in detail. In the figure, the reduction ratio indicates “the reduction ratio of the core material thickness deviation portion / the reduction ratio of the core material steady portion”, and the closer the ratio is to 1, the smaller the increase in the thickness of the thickness deviation portion is. Means

【0029】まず、ロール間隙形状比ld/hmの影響につ
いては、図4に示すように、圧下率一定でld/hmが大き
いほど、圧下率比は小さくなり板厚増加が大きくなる。
これは、ld/hmが大きいほど隙間が閉鎖し易くなるため
であると考えられる。また、圧下率の影響については、
図5に示すように、ld/hm一定で圧下率が大きいほど、
圧下率比は大きくなり板厚増加が小さくなる。これは、
圧下率が大きいほど、隙間も閉鎖し易くはなるが、それ
以上にコア材長手方向の端部でコア材の板厚が増加する
のを抑制する方向の力の効果が大きいことによる。
First, as for the influence of the roll gap shape ratio ld / hm, as shown in FIG. 4, the larger the ld / hm and the constant the reduction ratio, the smaller the reduction ratio and the greater the thickness.
This is considered to be because the gap becomes easier to close as ld / hm is larger. Regarding the effect of the rolling reduction,
As shown in FIG. 5, as ld / hm is constant and the rolling reduction is larger,
The reduction ratio increases, and the increase in sheet thickness decreases. this is,
The larger the rolling reduction, the easier the gap is to be closed, but the greater the effect of the force in the direction of suppressing the increase in the thickness of the core material at the end in the core material longitudinal direction.

【0030】このように、コア材の先後端部の板厚偏差
をなくすためには、各パスのロール間隙形状比ld/hmが
小さいほど、また、圧下率が大きいほど、有利であるこ
とがわかる。しかし、実操業においては、ロール径が一
定であるため圧下率が大きいほどld/hmも大きくなり、
この2つのパラメータを独立に制御することはできな
い。さらに、実際には、カバー材とコア材の各パスにお
ける熱間変形抵抗の推移などに基づき、最適なld/hmと
圧下率の兼ね合いを考慮しなければならない。
As described above, in order to eliminate the thickness deviation of the front and rear ends of the core material, it is advantageous that the roll gap shape ratio ld / hm of each pass is smaller and the rolling reduction is larger. Understand. However, in actual operation, since the roll diameter is constant, the ld / hm increases as the rolling reduction increases,
These two parameters cannot be controlled independently. Furthermore, in practice, it is necessary to consider the optimal balance between ld / hm and rolling reduction based on the transition of hot deformation resistance in each pass of the cover material and the core material.

【0031】実機におけるロール間隙形状比ld/hmと圧
下率の関係は、例えば、図6に示すようになる。このよ
うに、ld/hmは圧下率と入側板厚Hinにより決まる。従っ
て、板厚偏差は圧下率により決まることになる。そこ
で、実操業における圧下率と板厚増加量の関係を調査す
ると、図7に示すようになる。この図より、入側板厚Hi
nが60mm以上と厚い場合は、圧下率が大きいほど板厚増
加量が小さくなり、50mm以下と薄い場合は、圧下率によ
る板厚増加量の変化が見られなくなる。
The relationship between the roll gap shape ratio ld / hm and the reduction ratio in the actual machine is as shown in FIG. 6, for example. As described above, ld / hm is determined by the rolling reduction and the entry side plate thickness Hin. Therefore, the sheet thickness deviation is determined by the draft. Then, when investigating the relationship between the draft and the sheet thickness increase in the actual operation, it becomes as shown in FIG. From this figure, the entry side plate thickness Hi
When n is as thick as 60 mm or more, the increase in sheet thickness decreases as the rolling reduction increases, and when it is as thin as 50 mm or less, no change in the amount of sheet thickness depending on the rolling reduction is observed.

【0032】これは、入側板厚Hinが薄くなると、ロー
ル間隙形状比ld/hmが大きくなり(図6)、隙間が閉鎖
しやすくなるためコア材の先後端部の板厚偏差が解消さ
れなくなるものと考えられる。これより、入側板厚Hin
が厚い場合(ここでは60mm以上)は、圧延方法として強
圧下が有効である。このように、ある範囲では強圧下と
することが有効であるが、実際の圧延においては、圧延
機の荷重制約やトルク制約から、採りうる強圧下量は限
られ、必ずしも十分な効果が得られるとは限らない。
This is because when the inlet side thickness Hin becomes thinner, the roll gap shape ratio ld / hm becomes larger (FIG. 6), and the gap becomes easier to close, so that the thickness deviation at the front and rear ends of the core material cannot be eliminated. It is considered something. From this, the entry side plate thickness Hin
When the thickness is large (here, 60 mm or more), strong rolling is effective as a rolling method. As described above, it is effective to set a strong reduction in a certain range. However, in actual rolling, the amount of the strong reduction that can be taken is limited due to the load constraint and the torque constraint of the rolling mill, and a sufficient effect is always obtained. Not necessarily.

【0033】強圧下と同様の効果を得るためには、コア
材の板厚が増加するのを抑制する方向に力を作用させる
ことが効果的である。そこでこの発明では、上記強圧下
スケジュールと同様の効果が得られる方法として、パッ
ク圧延材の合せ板厚比、即ち全体の厚さに対するコア材
の厚さの比を制御する。
In order to obtain the same effect as under strong pressure, it is effective to apply a force in a direction to suppress an increase in the thickness of the core material. Therefore, in the present invention, as a method for obtaining the same effect as the above-mentioned high-pressure rolling schedule, the ratio of the thickness of the cored material to the total thickness, that is, the ratio of the thickness of the core material to the overall thickness, is controlled.

【0034】図8は、合せ板厚比と前述のコア材の圧下
率比の関係を示す図である。この図は、コア材の厚さを
10mmとして、種々の板厚のカバー材を用いたパック圧延
材を組み立てて、1パス圧延の実験を行った結果をまと
めたものである。図より、コア材の圧下率比(板厚偏差
部の圧下率/定常部の圧下率)は、合せ板厚比が0.1前
後では低い値であり、板厚偏差部の圧下率が低く、板厚
偏差が大きい。合せ板厚比が0.25以上になると、コア
材の圧下率比は大きくなり、板厚偏差が小さくなること
がわかる。したがって、合せ板厚比を少なくとも0.2
5以上とし、できる限り大きくすれば板厚偏差防止効果
が大きくなる。 このように、板厚偏差を低減するに
は、合せ板厚比を大きくしてコア材の圧下率比を1に近
づける必要がある。これは、カバー材の初期板厚を薄く
することになり、その結果、コア材の板厚偏差部に働く
板厚方向の応力を大きくすることができるので、コア材
の端部に生じる板厚偏差が低減するのである。
FIG. 8 is a diagram showing the relationship between the thickness ratio of the laminated plates and the reduction ratio of the core material described above. This figure shows the core material thickness
It is a summary of the results of one-pass rolling experiments performed by assembling pack rolled materials using cover materials of various thicknesses with a thickness of 10 mm. From the figure, the reduction ratio of the core material (the reduction ratio of the sheet thickness deviation portion / the reduction ratio of the steady portion) is low when the combined thickness ratio is around 0.1, and the reduction ratio of the sheet thickness deviation portion is low. Large thickness deviation. It can be seen that when the combined plate thickness ratio becomes 0.25 or more, the reduction ratio of the core material increases, and the plate thickness deviation decreases. Therefore, the laminated plate thickness ratio should be at least 0.2
If it is set to 5 or more, and as large as possible, the effect of preventing the thickness deviation becomes large. As described above, in order to reduce the sheet thickness deviation, it is necessary to increase the combined sheet thickness ratio so that the reduction ratio of the core material approaches 1. This means that the initial thickness of the cover material is reduced, and as a result, the stress in the thickness direction acting on the thickness deviation portion of the core material can be increased. The deviation is reduced.

【0035】カバー材の初期板厚を決定する際、考慮す
べき点としては、コア材の座屈などの形状不良を防止す
るため、圧延完了までコア材の熱間変形抵抗がカバー材
のそれより大きいこと、また場合によっては、コア材の
仕上温度が規定されている場合は、その温度を確保する
ことが挙げられる。熱間変形抵抗については、コア材が
難加工材の場合、それより加工し易い材料をカバー材に
選択することは比較的容易である。コア材の仕上温度に
ついては、特に高い場合は、それに応じてカバー材を厚
くしてコア材の温度低下を防止することになる。
When determining the initial thickness of the cover material, a point to be considered is that the hot deformation resistance of the core material is equal to that of the cover material until rolling is completed in order to prevent shape defects such as buckling of the core material. In some cases, when the finishing temperature of the core material is specified, it is necessary to ensure that temperature. Regarding the hot deformation resistance, when the core material is a difficult-to-process material, it is relatively easy to select a material that is easier to process as the cover material. When the finishing temperature of the core material is particularly high, the cover material is thickened accordingly to prevent the temperature of the core material from decreasing.

【0036】[0036]

【実施例】本発明の製造方法によりTi-6Al-4V合金の薄
板を製造した。カバー材およびスペーサ材にはSS330を
用いて、パック圧延材を組み立てた。コア材は、板厚1
7.5mmのTi-6Al-4V合金の2枚重ね、カバー材は板厚を変
えて、35mm(パターン1:発明例)と70mm(パターン
2:比較例)とした。
EXAMPLE A thin plate of a Ti-6Al-4V alloy was manufactured by the manufacturing method of the present invention. A rolled pack was assembled using SS330 as the cover material and the spacer material. Core material, thickness 1
Two 7.5 mm Ti-6Al-4V alloys were stacked, and the cover material was changed in thickness to 35 mm (pattern 1: invention example) and 70 mm (pattern 2: comparative example).

【0037】仕上温度のシミュレーション結果は図9に
示すようになり、カバー材の初期板厚(Cover厚)を薄
くすると急激に低下する。発明例の場合は、図中の破線
で示す仕上温度の下限値720℃を確保できるようカバー
材の板厚を決定してある。また、圧延中の熱間変形抵抗
は第図10に示すようになり、カバー材に対してコア材
は常に2倍以上の熱間変形抵抗を保持している。
The simulation result of the finishing temperature is as shown in FIG. 9, and when the initial plate thickness (Cover thickness) of the cover material is reduced, it decreases rapidly. In the case of the invention example, the thickness of the cover material is determined so that the lower limit of the finishing temperature of 720 ° C. shown by the broken line in the figure can be secured. Further, the hot deformation resistance during rolling is as shown in FIG. 10, and the core material always keeps at least twice the hot deformation resistance with respect to the cover material.

【0038】これらの、パック圧延材についてパック圧
延完了後、パック圧延材を解体し、板厚1.6mmの薄板を2
枚ずつ製造した。それぞれのコア材について、先後端部
の板厚偏差(最終板厚増加量)を図11に示す。なお板
厚偏差は先後端部ほぼ同程度であり、図には大きい方の
値を示した。これより、発明例(パターン1)では最終
板厚増加量が0.90mmであるのに対して、比較例(パター
ン2)では1.40mmであり、発明例の方が先後端部におけ
る強圧下が有効に作用したことが分かる。
After the pack rolling of the rolled material is completed, the rolled material is disassembled, and a thin plate having a thickness of 1.6 mm is removed.
Manufactured one by one. FIG. 11 shows the thickness deviation (final thickness increase) of the front and rear ends of each core material. The sheet thickness deviation is almost the same at the front and rear ends, and the larger value is shown in the figure. As a result, in the invention example (pattern 1), the final sheet thickness increase amount was 0.90 mm, whereas in the comparative example (pattern 2), it was 1.40 mm. It can be seen that it has acted on.

【0039】[0039]

【発明の効果】この発明は、パック圧延材の組立比、即
ち全体の厚さに対するコア材の厚さの比率を所定の比率
以上に設定することにより、コア材の先後端部の実質的
な圧下率を全体の圧下率に近づけることができ、板厚偏
差を生じにくくすることが可能となる。さらに、カバー
材の熱間変形抵抗がコア材の熱間変形抵抗より小さくな
る条件で、パック圧延材の圧延を行うことにより、コア
材の座屈などの形状不良を防止することができる。その
結果、歩留が向上するとともに、圧延後に板厚を合わせ
るための端部の機械加工が不要となり、生産効率および
経済性が向上する。
According to the present invention, the assembling ratio of the rolled material, that is, the ratio of the thickness of the core material to the total thickness is set to a predetermined ratio or more, so that the front and rear ends of the core material can be substantially reduced. The rolling reduction can be made close to the overall rolling reduction, and the thickness deviation can be made hard to occur. Further, by rolling the rolled material under the condition that the hot deformation resistance of the cover material is smaller than the hot deformation resistance of the core material, shape defects such as buckling of the core material can be prevented. As a result, the yield is improved, and machining of the end portion for adjusting the thickness after rolling is not required, thereby improving the production efficiency and the economic efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 コア材後端部での板厚偏差発生のメカニズム
を示す図。
FIG. 1 is a view showing a mechanism of occurrence of a sheet thickness deviation at a rear end portion of a core material.

【図2】 コア材先端部での板厚偏差発生のメカニズム
を示す図。
FIG. 2 is a view showing a mechanism of occurrence of a thickness deviation at a core material tip.

【図3】 一方向圧延を行った場合のコア材の長手方向
板厚偏差を示す図。
FIG. 3 is a view showing a thickness deviation in a longitudinal direction of a core material when unidirectional rolling is performed.

【図4】 圧下率比に及ぼすld/hmの影響を示す図。FIG. 4 is a graph showing the influence of ld / hm on the reduction ratio.

【図5】 圧下率比に及ぼす圧下率の影響を示す図。FIG. 5 is a diagram showing the effect of the reduction ratio on the reduction ratio.

【図6】 圧下率とld/hmの関係を示す図。FIG. 6 is a diagram showing a relationship between a reduction ratio and ld / hm.

【図7】 圧下率と板厚増加量の関係を示す図。FIG. 7 is a diagram showing a relationship between a draft and a thickness increase;

【図8】 合せ板厚比とコア材の圧下率比の関係を示す
図。
FIG. 8 is a view showing the relationship between the thickness ratio of the mating plates and the reduction ratio of the core material.

【図9】 カバー材の初期板厚と仕上温度のシミュレー
ション結果を示す図。
FIG. 9 is a view showing a simulation result of an initial plate thickness and a finishing temperature of a cover material.

【図10】 圧延中の熱間変形抵抗を示す図。FIG. 10 is a diagram showing hot deformation resistance during rolling.

【図11】 カバー材の初期板厚によるコア材端部の板
厚偏差量の違いを示す図。
FIG. 11 is a diagram showing a difference in a thickness deviation amount at an end of a core material depending on an initial thickness of a cover material.

【図12】 パック圧延材の一例を示す断面図。FIG. 12 is a sectional view showing an example of a rolled material.

【符号の説明】[Explanation of symbols]

1 コア材 1T コア材先端部 1B コア材後端部 2 カバー材 3 スペーサ材 5 隙間 6 剥離材 DESCRIPTION OF SYMBOLS 1 Core material 1T Core material front end 1B Core material rear end 2 Cover material 3 Spacer material 5 Gap 6 Release material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一枚又は複数枚の板状のコア材をスペー
サ材とカバー材で覆ってパック圧延材を形成し、このパ
ック圧延材を圧延してコア材から薄板を製造する薄板の
製造方法において、カバー材の初期板厚を、パック圧延
材の板厚に対するコア材の板厚の比率が少なくとも0.
25以上となる板厚に、設定することを特徴とするパッ
ク圧延による薄板の製造方法。
1. A method for manufacturing a thin plate in which one or a plurality of plate-like core materials are covered with a spacer material and a cover material to form a rolled pack material, and the rolled pack material is rolled to manufacture a thin plate from the core material. In the method, the initial thickness of the cover material is adjusted so that the ratio of the thickness of the core material to the thickness of the rolled pack material is at least 0.
A method for producing a thin plate by pack rolling, wherein the thickness is set to 25 or more.
【請求項2】 カバー材の熱間変形抵抗がコア材の熱間
変形抵抗より小さくなる条件で、パック圧延材の圧延を
行うことを特徴とする請求項1記載のパック圧延による
薄板の製造方法。
2. The method for producing a thin plate by pack rolling according to claim 1, wherein the rolled material is rolled under conditions where the hot deformation resistance of the cover material is smaller than the hot deformation resistance of the core material. .
JP2000114602A 2000-04-17 2000-04-17 Method of manufacturing sheet by pack rolling Pending JP2001300603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000114602A JP2001300603A (en) 2000-04-17 2000-04-17 Method of manufacturing sheet by pack rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000114602A JP2001300603A (en) 2000-04-17 2000-04-17 Method of manufacturing sheet by pack rolling

Publications (1)

Publication Number Publication Date
JP2001300603A true JP2001300603A (en) 2001-10-30

Family

ID=18626386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000114602A Pending JP2001300603A (en) 2000-04-17 2000-04-17 Method of manufacturing sheet by pack rolling

Country Status (1)

Country Link
JP (1) JP2001300603A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111482457A (en) * 2020-04-08 2020-08-04 鞍钢股份有限公司 Thin material rolling method for high-carbon steel tandem rolling blank
KR20210030640A (en) * 2019-09-10 2021-03-18 재단법인 포항산업과학연구원 Rolling method of titanium sheet
WO2022162814A1 (en) 2021-01-28 2022-08-04 日本製鉄株式会社 Titanium alloy thin plate, and method for producing titanium alloy thin plate
WO2022162816A1 (en) 2021-01-28 2022-08-04 日本製鉄株式会社 Titanium alloy plate, titanium alloy coil, method for producing titanium alloy plate and method for producing titanium alloy coil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210030640A (en) * 2019-09-10 2021-03-18 재단법인 포항산업과학연구원 Rolling method of titanium sheet
KR102518087B1 (en) * 2019-09-10 2023-04-04 재단법인 포항산업과학연구원 Rolling method of titanium sheet
CN111482457A (en) * 2020-04-08 2020-08-04 鞍钢股份有限公司 Thin material rolling method for high-carbon steel tandem rolling blank
CN111482457B (en) * 2020-04-08 2022-02-15 鞍钢股份有限公司 Thin material rolling method for high-carbon steel tandem rolling blank
WO2022162814A1 (en) 2021-01-28 2022-08-04 日本製鉄株式会社 Titanium alloy thin plate, and method for producing titanium alloy thin plate
WO2022162816A1 (en) 2021-01-28 2022-08-04 日本製鉄株式会社 Titanium alloy plate, titanium alloy coil, method for producing titanium alloy plate and method for producing titanium alloy coil
KR20230110601A (en) 2021-01-28 2023-07-24 닛폰세이테츠 가부시키가이샤 Titanium alloy plate and titanium alloy coil, method for manufacturing titanium alloy plate and method for manufacturing titanium alloy coil
KR20230118978A (en) 2021-01-28 2023-08-14 닛폰세이테츠 가부시키가이샤 Titanium alloy thin plate and manufacturing method of titanium alloy thin plate

Similar Documents

Publication Publication Date Title
EP2394752B1 (en) Titanium material for hot rolling and manufacturing method thereof
JP6709695B2 (en) Method of manufacturing titanium material for hot rolling
JP4701762B2 (en) Hot rolled steel sheet rolling method
US8096160B2 (en) Method for reducing shearing and crop losses at rolling of assembled slabs
JP2001300603A (en) Method of manufacturing sheet by pack rolling
JP2001300604A (en) Method of manufacturing sheet by pack rolling
JP4801782B1 (en) Method for controlling operation of tandem rolling mill and method for producing hot-rolled steel sheet using the same
EP3888810B1 (en) Method of controlling flatness of strip of rolled material, control system and production line
JP2010149156A (en) Method for predictive calculation of roll crown of work roll
JP2007203303A (en) Shape control method in cold rolling
JP2001038413A (en) Pack rolling method
JP3591194B2 (en) Operating method of double cold rolling mill for manufacturing ultra-thin steel sheet
JP4276571B2 (en) Sheet crown and shape control method in sheet rolling
JP2009006336A (en) Hot-rolling method using cemented carbide work roll
JPH0810804A (en) Method for rolling plate
JP2005125351A (en) Steel plate producing line and steel plate producing method
JP3212256B2 (en) Continuous hot rolling of billets
JP2001137909A (en) Manufacture of ba-finished stainless steel having high gloss using tandem mill
JP3844622B2 (en) Method for producing austenitic stainless steel bar wire
JP2004098068A (en) Hot rolling method of steel plate
JPH07251202A (en) Manufacture of hot rolled plate of pure titanium
JP2001121206A (en) Pack rolling method
JPH02268905A (en) Cold rolling mill for original plate for surface treatment steel sheet
JPH10216807A (en) Method of pack rolling
JPH09253711A (en) Manufacture of aluminum clad material having uniform clad ratio

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921