JP3844622B2 - Method for producing austenitic stainless steel bar wire - Google Patents

Method for producing austenitic stainless steel bar wire Download PDF

Info

Publication number
JP3844622B2
JP3844622B2 JP17089399A JP17089399A JP3844622B2 JP 3844622 B2 JP3844622 B2 JP 3844622B2 JP 17089399 A JP17089399 A JP 17089399A JP 17089399 A JP17089399 A JP 17089399A JP 3844622 B2 JP3844622 B2 JP 3844622B2
Authority
JP
Japan
Prior art keywords
rolling
surface layer
roll
processing rate
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17089399A
Other languages
Japanese (ja)
Other versions
JP2001001004A (en
Inventor
雄介 及川
和久 竹内
恭太郎 天藤
吉孝 中村
英和 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP17089399A priority Critical patent/JP3844622B2/en
Publication of JP2001001004A publication Critical patent/JP2001001004A/en
Application granted granted Critical
Publication of JP3844622B2 publication Critical patent/JP3844622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、オーステナイト系ステンレス鋼の鋳片を圧延し、棒線材を製造する方法に関するものである。
【0002】
【従来の技術】
ステンレス鋼棒線材の製造は通常、鋳片等の圧延素材を加熱後孔型圧延機を数機以上連ねた連続圧延ミルによって熱間圧延し、百ないし数百mmサイズの角または円形の素材を数ないし数十mmの径までに成形することによって行われる。この連続圧延ミルでオーステナイト系ステンレス鋼を圧延する際の課題の一つとして割れ疵がある。これは切削性が良好なため摩棒等に用いられる快削オーステナイト系ステンレス鋼(例えばSUS303)や、耐溶接割れ性が良好なため溶接棒等に用いられる高デルタフェライト鋼(例えばSUS309)のような難熱間加工性オーステナイトステンレス鋼において、圧延時に熱間加工割れを生じこれが疵となるものである。
【0003】
これに対する従来からの対策としては、分塊圧延等によって熱間で歪みを加えることにより鋳片の粗大結晶を再結晶させ微細粒とし、熱間加工性を向上させてから圧延に供することが多い。ただしこの方法は鋳造から圧延までに余分な工程を必要とする上、再加熱に余分なエネルギーがかかる。更にコーナー部等に生じる割れを除去するための研削を必要とし歩留ロスも大きい。
【0004】
そのため、分塊圧延を省略する方策が従来から考案されている。例えば特開平2−8320号公報には鋳造後鋼材が冷却しないうちに20%以上の圧下を加えることにより熱間加工性を向上させる方法が開示されている。これにより分塊圧延を省略できるならば(省略可能かどうかの記載は無い)、再結晶前処理工程及び再加熱のエネルギーを省略できる有効な方策であることは確かである。しかしながら、鋳造機が複数ある場合それら全てに圧下機を設けなければならず設備コスト高となるほか、当該明細書に記載されているロール圧下や鍛造では従来通りに熱間加工割れを生じ、それを除去するのに相当量の表面研削を必要とすることには変わりがない。
【0005】
一方、孔型圧延に対し、傾斜圧延という圧延法が考案され広く用いられている。これは円形鋼材の回りでロールを鋼材の移動方向でなく円周方向から若干傾斜した方向に回転させつつ圧延する方法で、特に継ぎ目無し管の製造等において2Hi圧延ミル数基を1パス化する高圧下ミルとして使用されてきた。その傾斜圧延機を用い棒線材を圧延する方法として特開平5−277503号公報では棒線材の圧延ラインにおいて孔型圧延の前段に傾斜圧延を置く設備列が開示されているが、これによって上記難熱間加工鋼種を疵なく製造できる方策は示されていない。また、特開平6−88128号公報には継ぎ目無し鋼管の製造法において傾斜圧延を特定温度特定圧延率で圧延することにより細粒組織を得る方策が開示されているが、この特許は普通鋼に関するものである上、熱間加工性を向上させる方法、更には難熱間加工材を疵なく製造する方策については示されていない。
【0006】
【発明が解決しようとする課題】
本発明は、上記のような従来の問題点を解決するために考案されたものである。即ち、孔型圧延の直前に傾斜圧延機による圧延を施しかつ断面減少率、ロール角度等の圧延条件および圧延温度を各鋼種に応じた特定のものとすることにより、オーステナイト系ステンレス鋼の中で多種にわたる難熱間加工鋼種の圧延を鋳造ままで再結晶前処理を行わない鋳片を素材として汎用的に行うことが出来、従来分塊圧延等の前処理に費やしていた時間及びエネルギーを省略することが出来るオーステナイト系ステンレス鋼棒線材の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するものであって、その要旨とするところは以下の通りである。
(1)円形断面のオーステナイト系ステンレス鋼鋳片を鋳片加熱工程で加熱後傾斜圧延にて軽度の圧延を行い、次いで孔型圧延を行うことにより棒線材を製造する方法であって、前記傾斜圧延を、鋼材表層のロール1回あたりの加工率が15%以上となるような表層加工率と平均ロール接触回数で行なうと共に、高温高速引張試験を行って引張温度と破断絞り値の関係を求め、その結果を基に鋼材表層のロール1回あたりの加工率より破断絞り値が上回る引張温度の範囲を導出し、その温度範囲で行なうことを特徴とするオーステナイト系ステンレス鋼棒線材の製造方法。
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明者らは傾斜圧延と孔型圧延における変形挙動を詳細に検討した。その結果、従来継ぎ目無し管製造に用いていた場合には「 大圧下ミル」 としてだけ見られていた傾斜圧延機を改めて詳細に検討してみると、下記に示す3つの意味で孔型圧延機より熱間加工割れを回避するのに向いており、難熱間加工性のオーステナイト系ステンレスを圧延するのに最適な圧延機である事を見出した。即ち条件を適正に制御することにより割れを生じずに再結晶に必要な加工歪みを加えることが出来るため、微細再結晶組織をインラインで作り出せ、その結果その後の孔型圧延でも割れを生じずに圧延可能となる。
【0009】
傾斜圧延機が孔型圧延機より優れているのは下記の3点である。まず第一に、鋼材への歪み分布が均一に近いことが挙げられる。孔型圧延ではロールの当たらない鋼材側面に周方向の歪みが集中するため、断面減少率からみた平均の圧下率は低くても側面で割れ限界歪みを超え割れ発生に到ることがある。一方、傾斜圧延では歪みの与え方が均一に近いため鋼材の持つ割れ限界歪みとほぼ同等まで圧下率を与えることが可能である。
【0010】
第二に表層が特に高圧下されることがある。孔型圧延は深さ方向の圧延歪み分布が一様であるが、傾斜圧延は表層に剪断歪みが付加されることにより表層ほど高加工となり、表面割れに関係のない中心部より発生領域である表層を優先して微細再結晶させることが出来る。逆に言えば微細再結晶組織を得るのに必要な圧下率が孔型圧延より小さくてもよい。
【0011】
第三に傾斜圧延1台でも各ロールが数度表面に当たるため、実際には多パス圧延となっていることが挙げられる。そのため、最初のロールと次のロールとの間で再結晶により歪みはほぼ消失しているので、各ロール1パス分の歪みに耐えることが出来れば割れを回避できることとなり、合計としてより高歪みを与えることが出来る。孔型圧延で同様の効果を得るためには軽圧下の(しかも第一の理由より傾斜圧延よりさらに軽圧下の)ミルを多数連ねる必要があり設備コストは膨大である。なおこのような短時間で再結晶するのはオーステナイト組織特有の現象であり、フェライト系ステンレス鋼で本方法を適用することはできない。
【0012】
これらの傾斜圧延の特徴を最大限に活用するため、本発明者らは以下に示すように圧延条件を導出した。従来の継ぎ目無し管を製造する場合に於いては、傾斜圧延機における圧下率は例えば断面減少率50%といったように大きいものであった。しかし本発明法では表層を再結晶するのに足るだけの最小限の圧下率を加えることにより難熱間加工材の圧延に活用する。具体的には以下のように加工率を設定する。まず第一に各ロールの1パスにおいて再結晶を完了していなければならない。そのためには動的再結晶あるいはロール間でのごく短時間での静的再結晶により再結晶を完了していなければならないが、割れは表層のみが問題となるので、表層だけが再結晶していればよい。発明者らは種々の実験により15%以上の表層加工率があればこの条件を十分満たすことを見出した。
【0013】
ここに示す表層加工率は通常の圧延率、即ち断面減少率とは異なる。前述のように傾斜圧延の場合表層は中心部より高加工となっている。従って、当発明の要件である表層加工率は全断面の平均加工率である断面減少率より大きい。また、傾斜圧延1ミルでも数回ロールに当たっているから、傾斜圧延1ミル全体の加工率ではなく各ロール1パスあたりの加工率を求めなくてはならない。
上記の、「各ロールの1パスにおける表層加工率」は以下のようにして求めることが出来る。まず表層加工率は傾斜圧延1ミルでの圧延直後の鋳片を取り出し組織のメタルフローを観察し図1に示す方法により導出することが出来る。次に表層加工率を圧延時に各位置に接触する平均ロール数を用い1ロールあたりの表層加工率に換算する。そのためには表層加工率をε、ロール数をNとすると1−(1−ε)1/N を計算すればよい。なお、傾斜圧延においてはロールがある表面では1回、ある表面では2回当たるというようなことがあるので、その場合はロール数の平均をとる。従って、ロール数は整数でないこともある。
【0014】
上記の傾斜圧延において、場合によっては割れを生じ、これが疵となることがある。その疵は孔型圧延によるものよりは遙かに微小ではあるが、それを避けるためには加工率を割れが生じない程度に抑制しなくてはならない。これについては、最も簡単に熱間加工性を測定しうる高温高速引張における破断絞り値と圧延において割れを生じる加工率とはほぼ一致するとみられ、これに基づき各ロールの1パスにおける表層加工率を破断絞り値より小さくすれば割れを回避することが出来る。なお、孔型圧延と異なり傾斜圧延では歪み分布が均一に近いためこのような計算が可能である。
【0015】
各鋼材の破断絞り値は温度により変化する。従って上記の試験により引張温度と破断絞り値の関係を求め、その結果を基に「各ロールの1パスにおける表層加工率」より破断絞り値が上回る引張温度の範囲で圧延するように傾斜圧延の加工温度を規定すればよい。一般にオーステナイト系ステンレス鋼材の熱間加工性は高温となるほど良好となることがほとんどであり、難熱間加工材ではある程度高温で圧延する必要がある。但し、高温にし過ぎると溶融脆化により再結晶を行っても抗しがたいほどに熱間加工性が劣化するので必ず上限温度が存在する。
【0016】
破断絞り値がどの温度でもロール1回あたりの表層加工率を下回る場合は圧延条件を変更し表層加工率を下げるか平均ロール接触回数を多くすることにより、15%を下回らず破断絞り値を超えない範囲でロール1回あたりの表層加工率を低減する必要がある。その方法としては平均圧下率即ち断面減少率を下げることでも良いし、ロールが鋼材周方向より多く回るように角度を変更し、鋼材がロールに当たる回数を増加させても同様の効果を得ることが出来る。
【0017】
【実施例】
図2に示す圧延設備を用い、オーステナイト系ステンレス鋼SUS304,SUS303について連続鋳造によって鋳造した丸鋳片(直径170mm)を、3ロール傾斜圧延の加工条件及び温度を変更して圧延し、圧延後の疵の状態を目視評価により判定した。加工条件として以下の4条件を試験した。
1)170mm径鋳片を140mm径に圧延。
2)1)と同様170mm径鋳片を140mm径に圧延するが、傾斜圧延ロールの鋳片に対 する角度を小さくし、より周方向に多くロールが回転するように調整したもの。
3)2)と同様のロール角度で170mm径を120mm径に圧延。
4)同様に160mm径に圧延。
これらの条件における深さ方向加工率を図3に示す。傾斜圧延後の鋳片を取り出し組織のメタルフローを観察することにより導出した。この結果から表層0.5mm部の加工率を各々の表層加工率とした。また、2)〜4)の条件ではロールが鋳片全面に2回以上3回未満接触しているが、1)の条件では2回接触しない面がある。平均ロール接触数を計算すると、
1);1.3回、2);2.0回、3);2.5回、4);1.8回であった。
次に、SUS304,SUS303鋳片の各温度別破断絞り値を次のように測定した。鋳片表層より10φ×120の試験片を採取し、各試験片について急速加熱後それぞれの温度で歪み速度3/秒で引っ張り破断させた。破断部の面積を求め、引張前の面積で割り破断絞り値を求めた。図4に各温度別破断絞り値の測定結果を示す。
【0018】
圧延条件及び圧延後の疵結果を表1に示す。SUS304と比べ、高SのSUS303は熱間加工性が極端に悪い。従って比較例に示すように、従来の孔型圧延では鋳造ままの鋳片を用いて圧延するとSUS303では割れ疵を生じる。一方、傾斜圧延を行ってから孔型圧延を行った場合、条件を上手く制御すればSUS303の鋳造まま鋳片でも割れ疵なく圧延可能である。
【0019】
【表1】

Figure 0003844622
【0020】
まず、条件1)〜4)について「各ロールの1パスにおける表層加工率」を導出する。条件1)〜4)の断面減少率はそれぞれ約33%,33%,50%,11%であるが、同表層加工率は全く異なる。図3に示すように条件1)〜4)の表層加工率はそれぞれ約67%,75%,90%,22%である。またロールの接触回数はそれぞれ1.3,2.0,2.5,1.8である。従って、1回あたりの表層加工率は、
条件1) 1−(1−0.67)1/1.3 ≒0.57……57%
条件2) 1−(1−0.75)1/2 =0.50……50%
条件3) 1−(1−0.90)1/2.5 ≒0.60……60%
条件4) 1−(1−0.22)1/1.8 ≒0.13……13% となる。
従って条件1)の場合、SUS303の破断絞り値が57%を超える1200℃付近で傾斜圧延をすればよい。1300℃以上では熱間加工性が却って悪化し割れが発生する。一方、2)の場合は50%より大の温度範囲でよいから、1100℃以上1300℃以下の広い範囲で割れの問題なく圧延可能である。
条件3)は圧下率が大きいことからSUS303の圧延可能温度域が1200℃付近と狭くなる。従って今回のような用途に使用する場合、傾斜圧延の加工率を従来の鋼管圧延に使用するような高圧下率で使用してもあまりメリットが無いことがわかる。
条件4)ではロール1回あたりの表層加工率が15%を割り込むため、未再結晶で孔型圧延機に達し割れを生じる。
【0021】
なお、SUS304は熱間加工性が良好のため、同様の圧延を行っても条件1)〜4)全てで問題無く圧延出来る。但し。1350℃と高温では溶融脆化により熱間加工性が急に悪化し割れ疵を生じる。なお、表層加工率、平均ロール接触回数を変更するにはロール取り替え、調整の手間を要するので、圧延条件は難熱間加工性鋼種に合わせた方が効率的である。
【0022】
【発明の効果】
本発明によると、オーステナイト系ステンレス鋼難熱間加工鋼種について、再結晶前処理を行わずに鋳造ままで直接圧延することが出来る。従って加熱は圧延のものだけで済み、更に分塊圧延等で発生する加工割れを研削する必要もなくなり、大幅なコスト,時間を省略し、飛躍的に圧延の効率を向上させることが出来る。
【図面の簡単な説明】
【図1】傾斜圧延直後の鋳片のメタルフローから表層加工率を求める方法を示した図である。
【図2】実施例に用いた圧延設備の工程図である。
【図3】実施例に用いた傾斜圧延機の4条件における表層からの深さと加工率の関係を示す図である。
【図4】実施例に用いたSUS304,SUS303鋳片の温度と熱間加工性(破断絞り値)の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of rolling a slab of austenitic stainless steel to produce a bar wire.
[0002]
[Prior art]
The production of stainless steel rods and rods is usually done by hot rolling a rolled material such as a slab and then hot rolling it with a continuous rolling mill with several or more continuous rolling mills. It is performed by molding to a diameter of several to several tens of mm. One of the problems when rolling austenitic stainless steel with this continuous rolling mill is cracking. This is like free-cutting austenitic stainless steel (for example, SUS303) used for a polishing bar because of good machinability and high delta ferritic steel (for example, SUS309) used for welding rod because of its good weld crack resistance. In such a hot-workable austenitic stainless steel, hot-working cracks occur during rolling, and this becomes a flaw.
[0003]
As a conventional measure against this, the coarse crystals of the slab are recrystallized into fine grains by applying hot strain by split rolling or the like, and is often used for rolling after improving hot workability. . However, this method requires an extra step from casting to rolling and takes extra energy for reheating. Furthermore, it requires grinding to remove cracks generated in the corners and the like, resulting in a large yield loss.
[0004]
For this reason, measures have been devised in the past to eliminate ingot rolling. For example, Japanese Patent Laid-Open No. 2-8320 discloses a method for improving hot workability by applying a reduction of 20% or more before the steel material after casting is not cooled. If it is possible to omit the batch rolling (there is no description as to whether it can be omitted), it is certain that this is an effective measure that can omit the recrystallization pretreatment step and the energy of reheating. However, when there are a plurality of casting machines, it is necessary to provide a reduction machine for all of them, resulting in high equipment costs, and in the roll reduction and forging described in the specification, hot working cracks are generated as usual. The fact that a considerable amount of surface grinding is required to remove the material remains unchanged.
[0005]
On the other hand, a rolling method called inclined rolling has been devised and widely used for hole rolling. This is a method of rolling around a circular steel material while rotating the roll in a direction slightly inclined from the circumferential direction rather than the moving direction of the steel material, and in particular, in the production of seamless pipes, the number of 2Hi rolling mills is made one pass. It has been used as a high pressure mill. As a method of rolling a bar wire using the inclined rolling mill, Japanese Patent Application Laid-Open No. 5-277503 discloses an equipment row in which inclined rolling is carried out before the hole-type rolling in the bar wire rolling line. There is no indication of a strategy that can produce hot-worked steel grades. Japanese Patent Application Laid-Open No. 6-88128 discloses a method for obtaining a fine grain structure by rolling gradient rolling at a specific temperature and a specific rolling rate in a method for producing a seamless steel pipe. This patent relates to ordinary steel. In addition, it does not show a method for improving hot workability, or a method for producing a hard work material without difficulty.
[0006]
[Problems to be solved by the invention]
The present invention has been devised to solve the conventional problems as described above. In other words, among the austenitic stainless steels, rolling is carried out by an inclined rolling mill immediately before the hole rolling, and the rolling conditions such as the cross-section reduction rate, the roll angle and the rolling temperature are specified according to each steel type. A wide variety of hard-working steel grades can be rolled as a raw material without casting and recrystallizing pretreatment, and the time and energy previously spent for pretreatment such as ingot rolling can be saved. An object of the present invention is to provide a method for producing an austenitic stainless steel bar wire that can be used.
[0007]
[Means for Solving the Problems]
The present invention solves the above-mentioned problems, and the gist thereof is as follows.
(1) performs a slight rolling austenitic stainless steel slabs having a circular cross section in a heating after inclined rolling at slab heating step, then a method of manufacturing a rod wire by performing caliber rolling, the inclined Rolling is performed at a surface layer processing rate and average number of times of contact with the roll so that the processing rate per roll of the steel surface layer is 15% or more, and a high-temperature high-speed tensile test is performed to determine the relationship between the tensile temperature and the fracture drawing value. A method for producing an austenitic stainless steel bar wire, characterized by deriving a tensile temperature range in which the fracture drawing value exceeds the processing rate per roll of the steel material surface layer based on the results, and performing in that temperature range .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The inventors of the present invention have studied in detail the deformation behavior in tilt rolling and hole rolling. As a result, a detailed examination of the inclined rolling mill, which was previously only used as a “large rolling mill” when used in the production of seamless pipes, has the following three meanings: It was found to be an optimum rolling mill for rolling austenitic stainless steel, which is more suitable for avoiding hot work cracking and is hard workable. That is, by properly controlling the conditions, it is possible to add the processing strain required for recrystallization without causing cracks, so that a fine recrystallized structure can be created in-line, and as a result, no cracks will occur even in subsequent hole rolling. It can be rolled.
[0009]
The inclined rolling mill is superior to the hole rolling mill in the following three points. First of all, the strain distribution on the steel material is almost uniform. In the perforated rolling, the circumferential strain concentrates on the side surface of the steel that is not hit by the roll. Therefore, even if the average rolling reduction as seen from the reduction rate of the cross section is low, the side surface may exceed the crack limit strain and lead to cracking. On the other hand, in tilt rolling, since the method of giving strain is almost uniform, it is possible to give the rolling reduction to almost the same as the crack limit strain of steel.
[0010]
Second, the surface layer may be subjected to particularly high pressure. In the case of perforated rolling, the distribution of rolling strain in the depth direction is uniform, but in the case of inclined rolling, the surface layer is subjected to higher shearing due to the addition of shear strain, and it is a generation region from the center that is not related to surface cracks. The surface layer can be preferentially finely recrystallized. In other words, the rolling reduction necessary for obtaining a fine recrystallized structure may be smaller than that of the hole rolling.
[0011]
Thirdly, since each roll hits the surface several times even with one inclined rolling, it is actually a multi-pass rolling. Therefore, since the strain is almost eliminated by recrystallization between the first roll and the next roll, cracking can be avoided if it can withstand the strain for one pass of each roll, and the higher strain as a total. Can be given. In order to obtain the same effect in the hole-type rolling, it is necessary to connect a number of mills that are lightly reduced (and lightly further reduced than the inclined rolling for the first reason), and the equipment cost is enormous. Recrystallization in such a short time is a phenomenon peculiar to an austenite structure, and this method cannot be applied to ferritic stainless steel.
[0012]
In order to make the most of the characteristics of these inclined rollings, the present inventors have derived rolling conditions as shown below. In the case of manufacturing a conventional seamless pipe, the rolling reduction in the inclined rolling mill is as large as, for example, a cross-section reduction rate of 50%. However, in the method of the present invention, a minimum reduction ratio sufficient to recrystallize the surface layer is added, and this is utilized for rolling of a hot work material. Specifically, the processing rate is set as follows. First of all, recrystallization must be completed in one pass of each roll. For this purpose, recrystallization must be completed by dynamic recrystallization or static recrystallization between rolls in a very short time, but cracking only affects the surface layer, so only the surface layer is recrystallized. Just do it. The inventors have found through various experiments that if the surface layer processing rate is 15% or more, this condition is sufficiently satisfied.
[0013]
The surface layer processing rate shown here is different from the normal rolling rate, that is, the cross-section reduction rate. As described above, in the case of inclined rolling, the surface layer is processed higher than the center portion. Therefore, the surface layer processing rate, which is a requirement of the present invention, is larger than the cross-section reduction rate that is the average processing rate of all cross sections. In addition, since even one mil of inclined rolling hits the roll several times, the processing rate per one pass of each roll must be obtained instead of the processing rate of the entire 1 mil of inclined rolling.
The above-mentioned “surface processing rate in one pass of each roll” can be obtained as follows. First, the surface layer processing rate can be derived by the method shown in FIG. 1 by taking out a slab immediately after rolling in a tilted rolling 1 mil and observing the metal flow of the structure. Next, the surface layer processing rate is converted into a surface layer processing rate per roll using the average number of rolls in contact with each position during rolling. For this purpose, if the surface layer processing rate is ε and the number of rolls is N, 1- (1-ε) 1 / N may be calculated. In inclined rolling, there is a case where a roll hits once on a certain surface and twice on a certain surface. In this case, the average number of rolls is taken. Therefore, the number of rolls may not be an integer.
[0014]
In the above-described inclined rolling, cracks may occur in some cases, which may become wrinkles. The wrinkles are much smaller than those obtained by hole rolling, but in order to avoid them, the processing rate must be suppressed to such an extent that cracks do not occur. In this regard, it is considered that the fracture drawing value in high-temperature high-speed tension at which hot workability can be measured most easily coincides with the processing rate at which cracking occurs in rolling, and based on this, the surface layer processing rate in one pass of each roll If it is made smaller than the fracture drawing value, cracking can be avoided. In contrast to the hole-type rolling, such a calculation is possible in the inclined rolling because the strain distribution is almost uniform.
[0015]
The fracture drawing value of each steel material changes with temperature. Therefore, the relationship between the tensile temperature and the fracture drawing value is obtained by the above test, and the gradient rolling is performed so that rolling is performed at a tensile temperature range in which the breaking drawing value exceeds the “surface layer processing rate in one pass of each roll” based on the result. What is necessary is just to prescribe | regulate processing temperature. In general, the hot workability of an austenitic stainless steel material is mostly improved as the temperature becomes higher, and it is necessary to perform rolling at a certain high temperature for a hard work material. However, if the temperature is too high, the hot workability deteriorates so as to resist even if recrystallization occurs due to melt embrittlement, so there is always an upper limit temperature.
[0016]
If the fracture drawing value is below the surface layer processing rate per roll at any temperature, change the rolling conditions to lower the surface layer processing rate or increase the average number of contact times of the roll, so that it does not fall below 15% and exceeds the drawing value. It is necessary to reduce the surface layer processing rate per roll within a range that does not exist. As the method, the average reduction rate, that is, the cross-section reduction rate may be lowered, or the same effect can be obtained even if the angle is changed so that the roll rotates more than the circumferential direction of the steel and the number of times the steel hits the roll is increased. I can do it.
[0017]
【Example】
Using the rolling equipment shown in FIG. 2, round slabs (diameter 170 mm) cast by continuous casting for austenitic stainless steels SUS304 and SUS303 are rolled while changing the processing conditions and temperature of the three-roll inclined rolling, and after rolling The state of the wrinkles was determined by visual evaluation. The following four conditions were tested as processing conditions.
1) Rolling a 170 mm diameter slab to 140 mm diameter.
2) As in 1), a 170 mm diameter slab is rolled to 140 mm diameter, but the angle with respect to the slab of the inclined rolling roll is reduced and adjusted so that the roll rotates more in the circumferential direction.
3) Rolling 170mm diameter to 120mm diameter at the same roll angle as 2).
4) Similarly rolled to 160 mm diameter.
The depth direction machining rate under these conditions is shown in FIG. The slab after tilt rolling was taken out and observed by observing the metal flow of the structure. From this result, the processing rate of 0.5 mm part of the surface layer was defined as each surface layer processing rate. Further, under the conditions 2) to 4), the roll is in contact with the entire surface of the slab 2 times or more and less than 3 times, but under the condition 1), there is a surface that does not contact twice. When calculating the average roll contact number,
1); 1.3 times, 2); 2.0 times, 3); 2.5 times, 4); 1.8 times.
Next, the fracture drawing value for each temperature of the SUS304 and SUS303 slabs was measured as follows. A test piece of 10φ × 120 was taken from the slab surface layer, and each test piece was rapidly heated and then pulled and broken at each temperature at a strain rate of 3 / sec. The area of the fracture portion was determined, and the fracture drawing value was determined by dividing the area before tension. FIG. 4 shows the measurement results of the fracture drawing value at each temperature.
[0018]
Table 1 shows the rolling conditions and the wrinkle results after rolling. Compared with SUS304, SUS303 with high S has extremely poor hot workability. Therefore, as shown in the comparative example, cracks are generated in SUS303 when rolling is performed using an as-cast slab in conventional hole rolling. On the other hand, when hole rolling is performed after tilt rolling, even if the SUS303 is cast as it is, it can be rolled without cracks if the conditions are well controlled.
[0019]
[Table 1]
Figure 0003844622
[0020]
First, the “surface layer processing rate in one pass of each roll” is derived for the conditions 1) to 4). The cross-section reduction rates of conditions 1) to 4) are about 33%, 33%, 50%, and 11%, respectively, but the surface layer processing rates are completely different. As shown in FIG. 3, the surface layer processing rates under conditions 1) to 4) are about 67%, 75%, 90%, and 22%, respectively. The number of contact times of the rolls is 1.3, 2.0, 2.5, and 1.8, respectively. Therefore, the surface layer processing rate per time is
Condition 1) 1- (1−0.67) 1 / 1.3 ≒ 0.57 …… 57%
Condition 2) 1- (1-0.75) 1/2 = 0.50 …… 50%
Condition 3) 1- (1-0.90) 1 / 2.5 ≒ 0.60 …… 60%
Condition 4) 1− (1−0.22) 1 / 1.8≈0.13 …… 13%
Therefore, in the case of condition 1), the rolling may be performed in the vicinity of 1200 ° C. where the fracture drawing value of SUS303 exceeds 57%. If it is 1300 ° C. or higher, the hot workability deteriorates and cracks occur. On the other hand, in the case of 2), since the temperature range may be greater than 50%, rolling is possible in the wide range from 1100 ° C. to 1300 ° C. without cracking problems.
In condition 3), the rolling reduction temperature range of SUS303 becomes narrow at around 1200 ° C. because the rolling reduction is large. Therefore, it can be seen that there is not much merit in using the processing rate of the inclined rolling at the high pressure reduction rate used in the conventional steel pipe rolling when it is used for such applications.
Under condition 4), the surface layer processing rate per roll falls below 15%, and therefore reaches the hole rolling mill without recrystallization and causes cracks.
[0021]
Since SUS304 has good hot workability, it can be rolled without any problems under all conditions 1) to 4) even if the same rolling is performed. However. At a high temperature of 1350 ° C., hot workability suddenly deteriorates due to melt embrittlement and cracks are generated. In order to change the surface layer processing rate and the average number of times of roll contact, it is necessary to replace and adjust the rolls. Therefore, it is more efficient to match the rolling conditions with the hard-working steel type.
[0022]
【The invention's effect】
According to the present invention, an austenitic stainless steel hard-working steel type can be directly rolled as cast without performing recrystallization pretreatment. Accordingly, heating is only required for rolling, and further, it is not necessary to grind the work cracks generated in the batch rolling, so that significant cost and time can be omitted and the rolling efficiency can be dramatically improved.
[Brief description of the drawings]
FIG. 1 is a view showing a method for determining a surface layer processing rate from a metal flow of a slab immediately after tilt rolling.
FIG. 2 is a process diagram of the rolling equipment used in the examples.
FIG. 3 is a diagram showing the relationship between the depth from the surface layer and the processing rate under four conditions of the inclined rolling mill used in the examples.
FIG. 4 is a diagram showing the relationship between the temperature of SUS304 and SUS303 slabs used in Examples and hot workability (breaking drawing value).

Claims (1)

円形断面のオーステナイト系ステンレス鋼鋳片を鋳片加熱工程で加熱後傾斜圧延にて軽度の圧延を行い、次いで孔型圧延を行うことにより棒線材を製造する方法であって、前記傾斜圧延を、鋼材表層のロール1回あたりの加工率が15%以上となるような表層加工率と平均ロール接触回数で行なうと共に、高温高速引張試験を行って引張温度と破断絞り値の関係を求め、その結果を基に鋼材表層のロール1回あたりの加工率より破断絞り値が上回る引張温度の範囲を導出し、その温度範囲で行なうことを特徴とするオーステナイト系ステンレス鋼棒線材の製造方法。Perform mild rolled austenitic stainless steel slabs having a circular cross section in a heating after inclined rolling at slab heating step, then a method of manufacturing a rod wire by performing caliber rolling, the tilting rolling, As a result of performing the high-temperature high-speed tensile test to obtain the relationship between the tensile temperature and the squeezed drawing value while performing the surface layer processing rate and the average number of times of roll contact so that the processing rate per roll of the steel surface layer is 15% or more. A method for producing an austenitic stainless steel bar wire, characterized by deriving a tensile temperature range in which the fracture drawing value exceeds the working rate per roll of the steel material surface layer based on the temperature range, and performing in that temperature range .
JP17089399A 1999-06-17 1999-06-17 Method for producing austenitic stainless steel bar wire Expired - Lifetime JP3844622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17089399A JP3844622B2 (en) 1999-06-17 1999-06-17 Method for producing austenitic stainless steel bar wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17089399A JP3844622B2 (en) 1999-06-17 1999-06-17 Method for producing austenitic stainless steel bar wire

Publications (2)

Publication Number Publication Date
JP2001001004A JP2001001004A (en) 2001-01-09
JP3844622B2 true JP3844622B2 (en) 2006-11-15

Family

ID=15913282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17089399A Expired - Lifetime JP3844622B2 (en) 1999-06-17 1999-06-17 Method for producing austenitic stainless steel bar wire

Country Status (1)

Country Link
JP (1) JP3844622B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254103A (en) * 2001-03-01 2002-09-10 Sanyo Special Steel Co Ltd Method for manufacturing ferrite system stainless teel sire rod, bar steel, and steel tube excellent in cold workability and wire rod, bar steel, and steel tube manufactured by its method
DE10315419B3 (en) * 2003-04-04 2004-05-19 Thyssenkrupp Automotive Ag Production of screw springs or stabilizers made from steel comprises comparing the heating temperature over the rod lengths and maintaining between the rollers

Also Published As

Publication number Publication date
JP2001001004A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
US20030196734A1 (en) Method for manufacturing seamless steel tube
US9719154B2 (en) Titanium slab for hot rolling, and method of producing and method of rolling the same
JP4296985B2 (en) Ultra-thick steel plate with excellent internal quality and its manufacturing method
JP3796949B2 (en) Manufacturing method of steel wire rod for bearing
JP3844622B2 (en) Method for producing austenitic stainless steel bar wire
JP3239808B2 (en) Steel continuous casting method
JP4561755B2 (en) Method for continuous casting of steel containing B and N
JP3578967B2 (en) High-strength PC steel rod excellent in uniform elongation and delayed fracture characteristics and method of manufacturing the same
JP2000119806A (en) Steel wire rod excellent in cold workability, and its manufacture
KR100415655B1 (en) Method for manufacturing austenitic stainless steel wire having less surface defects
JP4453278B2 (en) Method for producing seamless steel pipe made of duplex stainless steel
JP3215573B2 (en) Continuous casting method of nickel-containing steel
JPH07251265A (en) Method for scarfing cast steel slab
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
JP3487234B2 (en) Manufacturing method of high carbon steel slab for seamless steel pipe
JP4112785B2 (en) Method for preventing surface cracking of continuous cast slabs under large hot width reduction
JP3417275B2 (en) Martensitic stainless steel seamless steel pipe with excellent hot workability and sulfide stress cracking resistance
JPH0860244A (en) Production of thick austenitic stainless steel plate
JPS60200913A (en) Manufacture of high tensile invert superior in weldability
JP5387205B2 (en) Continuous casting method and continuous casting equipment for round slab
JPH11254115A (en) Method for on-line judging surface quality of cast slab and steel slab in continuous casting and blooming and judging instrument
JP2018034197A (en) Steel continuously cast piece and continuous casting method
KR19980050643A (en) Hot rolling method of high alloy austenitic heat resistant stainless steel
JP3730762B2 (en) Ferritic stainless steel wire manufacturing method
JPH02137602A (en) Method for directly rolling continuously cast billet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3844622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term