JP3417275B2 - Martensitic stainless steel seamless steel pipe with excellent hot workability and sulfide stress cracking resistance - Google Patents

Martensitic stainless steel seamless steel pipe with excellent hot workability and sulfide stress cracking resistance

Info

Publication number
JP3417275B2
JP3417275B2 JP30444097A JP30444097A JP3417275B2 JP 3417275 B2 JP3417275 B2 JP 3417275B2 JP 30444097 A JP30444097 A JP 30444097A JP 30444097 A JP30444097 A JP 30444097A JP 3417275 B2 JP3417275 B2 JP 3417275B2
Authority
JP
Japan
Prior art keywords
less
sulfide stress
stress cracking
cracking resistance
hot workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30444097A
Other languages
Japanese (ja)
Other versions
JPH11140594A (en
Inventor
正春 岡
俊治 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30444097A priority Critical patent/JP3417275B2/en
Publication of JPH11140594A publication Critical patent/JPH11140594A/en
Application granted granted Critical
Publication of JP3417275B2 publication Critical patent/JP3417275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱間加工性及び耐硫化
物応力割れ性に優れたマルテンサイト系ステンレス鋼に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance.

【0002】[0002]

【従来の技術】マルテンサイト系ステンレス鋼は、AI
SI420鋼に代表されるように、強度、耐CO2 腐食
性に優れ比較的安価であることから1980年頃より油
井管として適用されてきたが、近年では、高温かつ多量
のCO2 やそれに加えてH2 Sを含む油井環境にも適応
しうるために、420鋼より優れた耐食性を有する、特
開平3−120337号公報などに見られるような、低
C−Ni−Mo添加鋼、あるいは、特開平2−2473
60号公報などに見られるような、低C−Cu−Ni−
Mo添加鋼といった鋼種(いわゆるModified 13Cr 鋼と
称される鋼種)が開発されてきている。一般に、合金量
が多くなると、耐食性は向上する反面、加工性が悪化す
る。従って、これらの鋼の開発においては、加工性を大
幅に低下させない範囲で、耐食性を究極まで高めようと
する努力がなされてきた。
2. Description of the Related Art Martensitic stainless steel is AI
As represented by SI420 steel, it has been used as an oil country tubular good since around 1980 due to its excellent strength, CO 2 corrosion resistance, and relatively low price, but in recent years, it has been used at high temperatures and in large quantities in addition to CO 2 and In order to be adaptable to an oil well environment containing H 2 S, a low C-Ni-Mo-added steel, which has corrosion resistance superior to that of 420 steel, as seen in JP-A-3-120337, or the like, or Kaihei 2-2473
Low C-Cu-Ni- as seen in Japanese Patent Publication No. 60, etc.
Steel types such as Mo-added steels (so-called Modified 13Cr steels) have been developed. Generally, as the amount of alloy increases, the corrosion resistance improves, but the workability deteriorates. Therefore, in the development of these steels, efforts have been made to maximize corrosion resistance to the extent that workability is not significantly reduced.

【0003】上記鋼の油井管はマンネスマン方式の圧延
法によって継目無管に製管されるのが通例である。従来
マンネスマン圧延は、熱間加工方法の中でも最も苛酷な
加工方法として知られており、これらの鋼は、Cr,N
i,Mo,Cuといった合金元素を多量に含むため、マ
ンネスマン方式の圧延法によって製管する際、圧延疵が
発生することがあった。このような圧延中の割れ問題に
対して、特開平5−263138号公報などに見られる
ように熱間加工温度域での組織をオーステナイト単相に
制御するためにCr,Ni,Mo,Cu,C,N等の主
要合金元素添加量バランスを調整する方法や、特公平3
−60904号公報などに見られるようにSに代表され
る熱間加工性に有害な不純物の含有量を特に低く制限す
る技術が提示されてきている。しかしながら、これらの
策をとってもなお、熱間加工に伴う疵の問題は解決でき
ていないのが現状である。
The above-mentioned steel oil country tubular goods are usually manufactured as seamless tubes by a rolling method of the Mannesmann system. Conventionally, Mannesmann rolling is known as the most severe working method among the hot working methods.
Since a large amount of alloying elements such as i, Mo, and Cu are contained, rolling defects may occur when pipes are manufactured by the Mannesmann rolling method. For such a cracking problem during rolling, as seen in JP-A-5-263138, Cr, Ni, Mo, Cu, in order to control the structure in the hot working temperature region to be an austenite single phase, A method for adjusting the balance of addition of major alloying elements such as C, N, etc.
As disclosed in Japanese Patent Laid-Open No. 60904 and the like, a technique for limiting the content of impurities typified by S that are harmful to hot workability to a particularly low level has been proposed. However, even with these measures, the problem of defects associated with hot working has not been solved yet.

【0004】上記鋼をマンネスマン方式の圧延法によっ
て継目無管に製管する場合、製管の前工程として、大断
面のスラブまたはブルーム形状の鋳片を小断面の製管用
素材(矩形断面ブルームまたは丸断面ビレット、以下、
管材と称す)に分塊圧延するのが通例であった。
When the above steel is produced into a seamless pipe by the Mannesmann rolling method, a slab having a large cross section or a bloom-shaped slab is used as a pipe forming material having a small cross section (rectangular cross section bloom or Round section billet, below,
It was customary to slab-roll into pipes).

【0005】しかし、生産性向上の観点からは、分塊圧
延を省略して小断面の鋳片を直接マンネスマン方式の圧
延法によって継目無管に製管することが好ましい。近
年、このような分塊圧延を省略した継目無管の製造プロ
セスが指向されてきているが、上述のような難加工材に
鋳片から直接マンネスマン方式の圧延法を適用するとパ
イプの表面に圧延疵が発生するという問題があった。
However, from the viewpoint of improving the productivity, it is preferable to omit the slabbing and produce a small-section slab directly into a seamless pipe by the rolling method of the Mannesmann system. In recent years, there has been a trend toward a seamless pipe manufacturing process that omits such slabbing, but if the Mannesmann rolling method is applied directly from a slab to a difficult-to-process material as described above, the pipe surface is rolled. There was a problem that defects occurred.

【0006】分塊圧延を経た管材は製管時に圧延疵が問
題とならないのに、鋳片を直接製管する場合に圧延疵が
問題となるのは、両者の組織の違いによるものである。
すなわち、分塊圧延工程を経た管材は圧延再結晶組織を
呈しており、加えて加熱時に不純物の拡散が起きている
ため、熱間加工性が高い。一方、鋳片はミクロ偏析を伴
なう上、粒度も粗く、熱間加工性が低い。このために、
鋳片を製管する場合には、分塊圧延工程を経た管材を製
管する場合に比べて遥かに圧延疵が発生しやすい。これ
によって、上記鋼の継目無管製造自体の高能率生産を阻
害しているのが実状である。
[0006] While the pipe material that has undergone slabbing does not have a problem of rolling flaws during pipe manufacturing, the problem of rolling flaws when directly casting a slab is due to the difference between the structures of the two.
That is, the pipe material that has undergone the slabbing process has a rolling recrystallized structure, and since impurities are diffused during heating, hot workability is high. On the other hand, the slab is accompanied by microsegregation, has a coarse grain size, and has low hot workability. For this,
When producing a slab, rolling flaws are much more likely to occur than when producing a pipe material that has undergone the slabbing process. As a result, the fact is that the high efficiency production of the seamless steel pipe itself is hindered.

【0007】このように、従来提示されてきた技術で
は、上記鋼の鋳片を直接マンネスマン方式の圧延法によ
って継目無管に製管する時に発生する圧延疵の問題を解
決することは困難であった。
As described above, it is difficult to solve the problem of rolling flaws that occur when the above-mentioned steel slab is directly pipe-formed into a seamless pipe by the rolling method of the Mannesmann system. It was

【0008】また、上記従来鋼では、前記したように熱
間加工温度域での組織をオーステナイト単相に制御する
ためにCr,Ni,Mo,Cu,C,N等の主要合金元
素添加量バランスを調整する方法が採られてきたが、こ
の制約によって、耐食性に有効なCr,Mo等の合金添
加量が制限されたが故に、油井管としての機能が頭打ち
となっており、市場ニーズに応えるには新たなシーズ展
開が必要となってきた。
Further, in the above conventional steel, as described above, in order to control the structure in the hot working temperature region to be an austenite single phase, the balance of addition amounts of major alloying elements such as Cr, Ni, Mo, Cu, C, N, etc. Has been adopted, but due to this limitation, the amount of alloys such as Cr and Mo that are effective for corrosion resistance was limited, so that the function as an oil country tubular good reached its ceiling and it responded to market needs. New seeds need to be developed for.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記したよ
うな問題点を解決しようとするものであって、小断面の
鋳片を分塊圧延工程を省略して直接マンネスマン方式の
熱間圧延法によって圧延疵が発生することなく製造可能
であり、しかも従来のModified 13Cr 鋼継目無鋼管より
優れた耐硫化物応力割れ性を有するマルテンサイト系ス
テンレス鋼継目無鋼管を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and a direct Mannesmann system hot rolling is performed on a slab having a small cross section by omitting the slabbing process. The purpose of the present invention is to provide a martensitic stainless steel seamless steel pipe that can be manufactured by the method without rolling defects and that has superior sulfide stress cracking resistance to conventional Modified 13Cr steel seamless steel pipe. .

【0010】[0010]

【課題を解決するための手段】本発明者らは、成分の異
なる種々の素材に対して熱間加工性と耐硫化物応力腐食
割れ性について研究を重ねた結果、本鋼種においてはS
を0.001%以下にすれば圧延疵の問題を生じること
なく鋳片を直接マンネスマン方式の熱間圧延法によって
継目無鋼管に製管することが可能であること、Alを
0.06%を超えて0.3%以下添加することにより耐
硫化物応力割れ性が向上すること、を知見した。
Means for Solving the Problems The inventors of the present invention have conducted extensive research on hot workability and sulfide stress corrosion cracking resistance with respect to various materials having different components, and as a result, S
Is 0.001% or less, it is possible to directly produce a cast slab into a seamless steel pipe by the hot rolling method of the Mannesmann method without causing a problem of rolling flaw, and Al is added to 0.06%. It was found that the sulfide stress cracking resistance is improved by adding more than 0.3%.

【0011】本発明はこのような知見に基づいて構成し
たものであって、本発明の要旨は、以下の通りである。
重量%で、 C :0.05%以下、 Si:0.5%以下、 Mn:1.5%以下、 P :0.03%以下、 S :0.001%以下、 Cr:10〜14%、 Ni:4.0〜7.0%、 Al:0.06%を超えて0.3%以下、 N :0.08%以下、 Mo:1.0〜3.0%、 Cu:1.0〜2.0% を含有し、さらに必要に応じて、Ca:0.001〜
0.01%、Ti:0.5S〜0.05%の1種または
2種を含有し、残部がFe及び不可避的不純物からなる
鋳片を、直接マンネスマン方式の熱間圧延に供して製造
されることを特徴とする熱間加工性及び耐硫化物応力割
れ性に優れたマルテンサイト系ステンレス鋼継目無鋼管
である。
The present invention is constructed on the basis of such findings, and the gist of the present invention is as follows.
% By weight, C: 0.05% or less, Si: 0.5% or less, Mn: 1.5% or less, P: 0.03% or less, S: 0.001% or less, Cr: 10-14% , Ni: 4.0 to 7.0%, Al: 0.06% to 0.3% or less, N: 0.08% or less, Mo: 1.0 to 3.0%, Cu: 1. 0 to 2.0%, and if necessary, Ca: 0.001 to
A cast slab containing 0.01%, Ti: 0.5S to 0.05%, one or two, and the balance consisting of Fe and unavoidable impurities is directly subjected to a Mannesmann hot rolling process. A seamless martensitic stainless steel pipe excellent in hot workability and sulfide stress cracking resistance.

【0012】[0012]

【発明の実施の形態】以下、本発明について詳細に説明
する。Modified 13Cr 鋼(0.02C-0.02N-1.5Cu-12.2Cr-
5.8Ni-2.0Mo)の鋳造まま材及び圧延材の熱間加工性に
及ぼす変形温度の影響を図1に示す。鋳造まま材と圧延
材は全く同じ成分であり、Sを0.0029%含有し、
組織のみが異なっている。ここで、鋳造まま材は250
mm×650mm断面の連続鋳造スラブであり、分塊圧延材
は前記スラブを217mm×217mm断面のブルームに分
塊圧延したものである。これらの素材を用いて、図2に
示した条件で熱間引張試験を行った。すなわち、125
0℃に加熱し1分保定後、変形温度(T1℃)まで10
℃/sec で冷却し、その温度で1分間保定後、1.4/
sec の歪み速度で引張試験を行った。試験後の破断部の
断面積を試験前の断面積で割った値を絞り値と定義す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. Modified 13Cr steel (0.02C-0.02N-1.5Cu-12.2Cr-
Figure 1 shows the effect of deformation temperature on the hot workability of as-cast and rolled 5.8Ni-2.0Mo). As-cast material and rolled material have exactly the same composition, containing 0.0029% S,
Only the organization is different. Here, the as-cast material is 250
The slab is a continuously cast slab having a section of mm × 650 mm, and the slab is slab rolled into a bloom having a section of 217 mm × 217 mm. A hot tensile test was performed using these materials under the conditions shown in FIG. That is, 125
After heating to 0 ° C and holding for 1 minute, up to the deformation temperature (T1 ° C) 10
After cooling at ℃ / sec and holding at that temperature for 1 minute, 1.4 /
A tensile test was conducted at a strain rate of sec. The value obtained by dividing the cross-sectional area of the fractured part after the test by the cross-sectional area before the test is defined as the aperture value.

【0013】図1の縦軸と横軸はそれぞれ、絞り値と変
形温度T1を示している。絞り値が高いほど熱間加工性
は良好である。図1中にはマンネスマン方式の熱間圧延
法による継目無管製管時の最大圧下ミルであるピアサ
ー、エロンゲータミルの加工温度域もあわせて示す。こ
れまでの知見から、絞り値が75%以上あればその温度
で良好な熱間加工性を示すことが分かっている。図1よ
り、鋳造まま材の熱間加工性は圧延材よりも大幅に悪
く、Sが0.0029%という低い値でもピアサー、エ
ロンゲータミルの加工温度域で良好な熱間加工性を示さ
ないことがわかる。
The ordinate and the abscissa of FIG. 1 represent the aperture value and the deformation temperature T1, respectively. The higher the drawing value, the better the hot workability. FIG. 1 also shows the processing temperature range of the piercer and elongator mill, which are the maximum reduction mills in the seamless pipe making by the Mannesmann hot rolling method. From the knowledge obtained so far, it is known that if the drawing value is 75% or more, good hot workability is exhibited at that temperature. From FIG. 1, the hot workability of the as-cast material is significantly worse than that of the rolled material, and even if the S value is as low as 0.0029%, it does not show good hot workability in the processing temperature range of the piercer and elongator mill. I understand.

【0014】本発明鋼は、主にマンネスマン方式の熱間
圧延によって継目無管に造管される。ここでいうマンネ
スマン方式の圧延法とは、通常の継目無鋼管製造のため
の熱間圧延法で、矩形断面もしくは丸断面の管材を用
い、プレスロール穿孔法あるいはマンネスマン穿孔法に
よって穿孔した後、必要に応じて傾斜圧延機(エロンゲ
ーター)により延伸し、さらにプラグミルあるいはマン
ドレルミルで肉厚調整、摩管を行い、最終仕上圧延機
(サイザーミル)で真円度を調整することにより造管し
ていく一連のプロセスである。
The steel of the present invention is formed into a seamless pipe mainly by the Mannesmann hot rolling. The mannesmann method rolling method here is a normal hot rolling method for producing seamless steel pipes, using a tubular material with a rectangular cross section or a round cross section, and after punching by the press roll perforation method or the Mannesmann perforation method, it is necessary. Depending on the situation, it is drawn by a slant rolling machine (elongator), the wall thickness is adjusted by a plug mill or mandrel mill, the tube is ground, and the roundness is adjusted by a final finishing rolling machine (sizer mill) to make a pipe. It is a series of processes.

【0015】次に、鋳片をマンネスマン方式の熱間圧延
法によって継目無管に造管したときのパイプの表面疵発
生状況に及ぼすS含有量の影響を図3に示す。図3中の
各データに付された数字は後述する実施例中の鋼の符号
を意味する。図3のデータはベース成分がほぼ同じでS
含有量のみ異なる組成の217mm×217mm断面の連続
鋳造鋳片を、マンネスマン方式の熱間圧延法によって継
目無管に造管し、圧延終了後、パイプの表面疵の発生状
況を調査した結果である。図3より、Sを0.001%
以下に制限しなければ圧延疵は防止できないことがわか
る。
Next, FIG. 3 shows the effect of the S content on the surface flaw generation state of the pipe when the cast slab is formed into a seamless pipe by the Mannesmann hot rolling method. The number attached to each data in FIG. 3 means the code of steel in the examples described later. In the data of FIG. 3, the base component is almost the same and S
It is the result of investigating the state of occurrence of surface flaws on the pipe after the completion of rolling, by continuously casting cast slabs with a 217 mm x 217 mm cross section having different compositions only by the Mannesmann hot rolling method. . From Figure 3, S is 0.001%
It can be seen that rolling defects cannot be prevented unless the following restrictions are applied.

【0016】さらに、発明者らは極低硫鋼に於いて残存
する固溶Sを固定すれば熱間加工性がさらに良くなるこ
とを知見し、研究を重ねた結果、CaとTiを単独又は
複合添加すれば熱間加工性が飛躍的に改善されることを
知見した。ただし、Tiの添加量については重量%でS
の添加量の0.5倍未満ではその効果が発現されず、
0.05%を超えて添加してもその効果は飽和し、逆に
粗大な窒化物を析出して靱性を低下させるため0.05
%以下とした。また、Caの添加量については、0.0
01%未満ではその効果が発現されず、0.01%を超
えて添加するとCa系介在物が増加して耐硫化物応力割
れ性が劣化するので、最適添加量を0.001%〜0.
01%とした。
Furthermore, the inventors have found that if the remaining solid solution S is fixed in the ultra low sulfur steel, the hot workability is further improved, and as a result of repeated research, Ca and Ti alone or It has been found that the hot workability is dramatically improved by the combined addition. However, the addition amount of Ti is S by weight%.
If less than 0.5 times the addition amount of
Even if added in excess of 0.05%, the effect will be saturated, and on the contrary, coarse nitrides will precipitate and the toughness will decrease, so 0.05
% Or less. The amount of Ca added is 0.0
If less than 01%, the effect is not exhibited, and if added over 0.01%, Ca-based inclusions increase and the sulfide stress cracking resistance deteriorates. Therefore, the optimum addition amount is 0.001% to 0.
It was set to 01%.

【0017】次に、耐硫化物応力割れ性について説明す
る。ベース成分がほぼ同じでAl含有量のみ異なる組成
のを217mm×217mm断面の連続鋳造鋳片を鋳造まま
でマンネスマン方式の熱間圧延によって継目無管に製管
し、同一の強度レベルになるように調質した後、硫化物
応力割れが発生し得る代表的な腐食環境(0.01MP
a H2 S,pH=3.0,5%NaCl,付加応力σ
ap=降伏強度YSの90%,720hr,24℃)で定
荷重SSC(Sulfide Stress Cracking )試験を行った
ときの破断時間に及ぼすAl含有量の影響を図4に示
す。○印は720時間たっても破断しなかったものを示
し、●印は720時間以内に破断したことを示す。図4
中の各データに付された数字は後述する実施例中の鋼の
符号を意味する。
Next, the sulfide stress cracking resistance will be described. Continuously cast slabs of 217 mm x 217 mm cross-section with almost the same base composition but different Al contents were made into seamless pipes by hot rolling in the Mannesmann system so that they would have the same strength level. A typical corrosive environment (0.01MP
a H 2 S, pH = 3.0, 5% NaCl, additional stress σ
ap = 90% of yield strength YS, 720 hr, 24 ° C.) FIG. 4 shows the effect of Al content on the fracture time when a constant load SSC (Sulfide Stress Cracking) test is performed. The ∘ mark indicates that the sample did not break even after 720 hours, and the ● mark indicates that the sample did not break within 720 hours. Figure 4
The numbers attached to the respective data mean the symbols of steel in the examples described later.

【0018】図4から、Al添加量を0.06%を超え
て0.3%以下とすることで耐硫化物応力割れ性が向上
することは明らかである。Alを0.06%を超えて添
加すると耐硫化物応力割れ性が向上する理由は不動態皮
膜が強化され、耐孔食性が向上するためである。また、
Alを0.3%を超えて添加すると耐硫化物応力割れ性
が劣化するのは粗大なAl系介在物が生じてそれが孔食
の起点あるいは割れ伝播経路となるため耐SSC性が劣
化するためである。
From FIG. 4, it is clear that the sulfide stress cracking resistance is improved by setting the Al addition amount to more than 0.06% and 0.3% or less. The addition of Al in excess of 0.06% improves the sulfide stress cracking resistance because the passive film is strengthened and the pitting corrosion resistance is improved. Also,
When Al is added in excess of 0.3%, the sulfide stress cracking resistance deteriorates because coarse Al-based inclusions are generated and serve as a starting point of pitting corrosion or a crack propagation path, which deteriorates SSC resistance. This is because.

【0019】また、高Al化は製鋼段階における脱硫効
率向上にも有効であり、良好な熱間加工性を維持するた
めの極低硫鋼を安定的かつ経済的に工業生産可能とする
副次効果をも奏する。以上のように、Alの添加量を
0.06%を超えて0.3%以下とすることで、耐硫化
物応力割れ性を向上させることができるうえに、高効
率、低コストで極低硫化することが可能である。
Further, the high Al content is also effective for improving the desulfurization efficiency in the steelmaking stage, and is a secondary factor which enables stable and economical industrial production of extremely low-sulfur steel for maintaining good hot workability. It also has an effect. As described above, by setting the addition amount of Al to more than 0.06% and 0.3% or less, the sulfide stress cracking resistance can be improved, and the efficiency is low and the cost is extremely low. It is possible to sulphide.

【0020】本発明におけるマルテンサイト系ステンレ
ス鋼の成分限定理由は以下の通りである。C:CはCr
炭化物などを形成し耐食性を劣化させる元素である。ま
た、強度を増大させ、油井管として使用されるときに必
要とされる耐硫化物割れ性の劣化をまねくため、0.0
5%以下とした。
The reasons for limiting the components of the martensitic stainless steel in the present invention are as follows. C: C is Cr
It is an element that forms carbides and deteriorates corrosion resistance. In addition, the strength is increased and the sulfide cracking resistance required when used as an oil country tubular good is deteriorated.
It was set to 5% or less.

【0021】Si:Siは製鋼工程において脱炭剤とし
て添加されるものである。0.5%を超えて含有される
と靱性が劣化することから、0.5%以下とした。
Si: Si is added as a decarburizing agent in the steel making process. If the content exceeds 0.5%, the toughness deteriorates, so the content was made 0.5% or less.

【0022】Mn:Mnはオーステナイト安定化元素で
あり、熱間加工時にδ相の析出を抑制することにより圧
延疵防止に有効であるが、1.5%を超えて添加すると
粒界強度を低下させ靭性が劣化するので1.5%以下と
した。
Mn: Mn is an austenite stabilizing element and is effective in preventing rolling flaws by suppressing the precipitation of the δ phase during hot working, but if added in excess of 1.5%, the grain boundary strength decreases. As a result, the toughness deteriorates, so the content was made 1.5% or less.

【0023】P:Pは粒界に偏析して粒界強度を低下さ
せ、靭性を劣化させる不純物元素であり、可及的低レベ
ルが望ましいが、現状精錬技術の到達可能レベルとコス
トを考慮して、0.03%以下とした。
P: P is an impurity element that segregates at the grain boundaries to lower the grain boundary strength and deteriorates the toughness. It is desirable that the level is as low as possible, but in consideration of the attainable level and cost of the present refining technology. Was set to 0.03% or less.

【0024】S:Sは熱間加工性を劣化させる不純物元
素であり、0.001%を超えると熱間圧延時に割れが
発生するため、0.001%以下とした。
S: S is an impurity element that deteriorates hot workability. If it exceeds 0.001%, cracking occurs during hot rolling, so S was made 0.001% or less.

【0025】Cr:Crは耐食性向上の基本元素であ
り、十分な耐食性を得るには10%以上の添加が必要で
あるが、フェライト安定化元素でもあり、多すぎると熱
間加工時にδ相が析出して熱間加工性及び耐硫化物応力
割れ性を劣化するため、14%以下とした。
Cr: Cr is a basic element for improving corrosion resistance, and it is necessary to add 10% or more in order to obtain sufficient corrosion resistance, but it is also a ferrite stabilizing element, and if too much, the δ phase is formed during hot working. Since it precipitates and deteriorates hot workability and sulfide stress cracking resistance, it was set to 14% or less.

【0026】Ni:Niは耐腐食性向上及び靱性向上に
有効である。また、オーステナイト安定化元素であり、
圧延疵につながるδ相の生成を抑止する。これらの効果
は添加量4%未満では小さいため、4%以上とした。ま
た、7%を超えて添加しても効果が飽和するとともにA
c1 変態点を低下させ強度調質を困難にすることから、
7%以下とした。
Ni: Ni is effective for improving corrosion resistance and toughness. It is also an austenite stabilizing element,
Inhibits the formation of the δ phase, which leads to rolling defects. Since these effects are small when the added amount is less than 4%, it is set to 4% or more. In addition, the effect is saturated even if added in excess of 7% and A
c1 It lowers the transformation point and makes strength refining difficult.
It was set to 7% or less.

【0027】Al:耐硫化物応力割れ性を向上させると
ともに脱酸及び脱硫を促進させるために添加される。耐
硫化物応力割れ性の向上効果は0.06%以下では発現
されず、0.3%を超えて添加すると、逆に粗大なAl
系介在物が生じてそれが孔食の起点あるいは割れ伝播経
路となるため耐硫化物応力割れ性が劣化することから、
最適添加範囲を0.06%を超えて0.3%以下とし
た。また、この添加範囲であれば、十分な脱酸及び脱硫
が可能である。
Al: Added to improve sulfide stress cracking resistance and accelerate deoxidation and desulfurization. The effect of improving the resistance to sulfide stress cracking is not exhibited at 0.06% or less, but if it is added in excess of 0.3%, coarse Al will be adversely affected.
Since system inclusions are generated and become the starting point of pitting corrosion or the crack propagation path, the sulfide stress cracking resistance deteriorates.
The optimum addition range was set to more than 0.06% and 0.3% or less. Further, within this addition range, sufficient deoxidation and desulfurization are possible.

【0028】N:NはMn、Niと同様に強力なオース
テナイト安定化元素であり、圧延疵防止に有効である
が、Cと同様に強度を増大させ、油井管として使用され
るときに必要とされる耐応力腐食割れ性の劣化をまねく
ため、0.08%以下とした。下限は低いほど良い。
N: N is a strong austenite stabilizing element similar to Mn and Ni and is effective in preventing rolling flaws, but it increases strength like C and is required when used as an oil country tubular good. In order to prevent deterioration of the stress corrosion cracking resistance, the content is made 0.08% or less. The lower the lower limit, the better.

【0029】Mo:Moは耐孔食性、耐硫化物応力腐食
割れ性を向上させるのに必須の元素である。これらの効
果は1.0%未満の添加では改善効果が小さいため1.
0%以上とした。また、強力なフェライト安定化元素で
あり、3%を超える添加によりδ相を生成しやすくなる
ことから3.0%以下とした。
Mo: Mo is an essential element for improving pitting corrosion resistance and sulfide stress corrosion cracking resistance. These effects are small when added in an amount of less than 1.0%, so 1.
It was set to 0% or more. Further, it is a strong ferrite stabilizing element, and the addition of more than 3% facilitates the formation of the δ phase, so the content was made 3.0% or less.

【0030】Cu:CuはNiと同様に耐腐食性向上に
有効な元素であるとともに、オーステナイト安定化元素
でありδ相の生成を抑止し圧延疵防止に有効であるため
必要に応じて添加するが、1.0%未満ではこれらの効
果が十分に得られないため、1.0%以上とした。ま
た、2.0%を超えて添加すると粒界に過剰に偏析して
粒界強度を低下させるため熱間加工性が著しく劣化する
ため、2.0%以下とした。
Cu: Cu, like Ni, is an element effective in improving the corrosion resistance, is an austenite stabilizing element, suppresses the formation of the δ phase, and is effective in preventing rolling flaws, so Cu is added if necessary. However, if less than 1.0%, these effects cannot be sufficiently obtained, so the content was made 1.0% or more. Further, if added in excess of 2.0%, it is excessively segregated at the grain boundaries to lower the grain boundary strength, resulting in a marked deterioration in hot workability, so the content was made 2.0% or less.

【0031】Ti:TiはSによる熱間加工性劣化を抑
制するものであり、必要に応じて添加するが、重量%で
Sの添加量の0.5倍未満ではその効果が発現されず、
0.05%を超えて添加してもその効果は飽和し、逆に
粗大な窒化物を析出して靱性を低下させるため、最適添
加範囲をSの添加量の0.5倍以上、0.05%以下と
した。
Ti: Ti suppresses the deterioration of hot workability due to S, and is added as necessary. However, if it is less than 0.5 times the addition amount of S in weight%, the effect is not exhibited.
Even if added in excess of 0.05%, the effect is saturated and, conversely, coarse nitrides are precipitated and the toughness is reduced. Therefore, the optimum addition range is 0.5 times the addition amount of S or more than 0. It was set to 05% or less.

【0032】Ca:CaはSによる熱間加工性劣化を抑
制するものであり、必要に応じて添加するが、0.00
1%未満ではその効果が発現されず、0.01%を超え
て添加するとCa系介在物が増加して耐硫化物応力割れ
性が劣化するので、最適添加量を0.001%以上、
0.01%以下とした。
Ca: Ca suppresses the deterioration of hot workability due to S, and is added as necessary.
If less than 1%, the effect is not exhibited, and if added over 0.01%, Ca-based inclusions increase and the sulfide stress cracking resistance deteriorates. Therefore, the optimum addition amount is 0.001% or more,
It was set to 0.01% or less.

【0033】[0033]

【実施例】表1に示す組成の217mm×217mm断面の
連続鋳造鋳片を鋳造ままでマンネスマン方式の熱間圧延
法によって継目無管に造管した。圧延終了後、パイプの
表面疵発生状況を調査した。結果を表1に併せて示す。
Example Continuously cast slabs having a composition of 217 mm × 217 mm in cross section as shown in Table 1 were formed into a seamless pipe by the hot rolling method of the Mannesmann system as cast. After completion of rolling, the state of occurrence of surface defects on the pipe was investigated. The results are also shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】ベース成分がほぼ同じでS含有量のみ異な
る鋼(No. 1,2,3,12,13,14)に着目し
て、製管時の表面疵発生状況に及ぼすS含有量の影響を
示した図が前出の図3である。本発明例(No. 1,2,
3)では製管時の表面疵は発生していない。一方、S含
有量が本発明の成分限定範囲を超えている比較例(No.
12,13,14)では製管時に表面疵が発生してお
り、S含有量の増加に伴い表面疵は激しくなっている。
Focusing on steels (Nos. 1, 2, 3, 12, 13, and 14) having almost the same base composition but different S contents, the influence of the S content on the occurrence of surface defects during pipe manufacturing FIG. 3 shows the above. Examples of the present invention (No. 1, 2,
In 3), surface flaws did not occur during pipe manufacturing. On the other hand, a comparative example in which the S content exceeds the component limitation range of the present invention (No.
12, 13, 14), surface flaws occurred during pipe manufacturing, and the surface flaws became more severe as the S content increased.

【0036】また、上記パイプを同一の強度レベルにな
るように調質した後、硫化物応力割れ(SSC)が発生
し得る代表的な腐食環境で定荷重SSC試験を行った。
試験条件については、表1に示した鋼をベース成分の違
いにより2つのグループに分け、グループ1(No. 1〜
6,12〜19)の鋼は条件A(0.01MPa H2
S,pH=3.0,5%NaCl,付加応力σap=降伏
応力YSの90%,720hr,24℃)とし、グルー
プB(No. 7〜11,20〜22)の鋼は条件B(0.
003MPa H2 S,pH=3.2,5%NaCl,
付加応力σap=降伏応力YSの90%,720hr,2
4℃)で定荷重SSC試験を行った。結果を表1に併せ
て示す。
After conditioning the pipes to the same strength level, a constant load SSC test was conducted in a typical corrosive environment where sulfide stress cracking (SSC) could occur.
Regarding the test conditions, the steels shown in Table 1 were divided into two groups according to the difference in the base composition, and group 1 (No.
The steels of Nos. 6, 12 to 19) are condition A (0.01 MPa H 2
S, pH = 3.0, 5% NaCl, additional stress σap = 90% of yield stress YS, 720 hr, 24 ° C.), and the steel of group B (No. 7 to 11,20 to 22) is condition B (0. .
003 MPa H 2 S, pH = 3.2, 5% NaCl,
Additional stress σap = 90% of yield stress YS, 720 hr, 2
A constant load SSC test was performed at 4 ° C. The results are also shown in Table 1.

【0037】ベース成分がほぼ同じでAl含有量のみ異
なる鋼(No. 1,4,5,6,15,16,17)に着
目して、定荷重SSC試験における破断時間に及ぼすA
l含有量の影響を示したのが前出の図4である。本発明
例(No. 1,4,5,6)では上記試験条件では720
時間経過後も硫化物応力割れは発生していない。一方、
Al含有量が本発明の成分限定範囲を超えている比較例
(No. 15,16,17)では硫化物応力割れが発生し
ている。
Focusing on steels (Nos. 1, 4, 5, 6, 15, 16, 17) having almost the same base composition but different Al contents, the effect of A on the breaking time in the constant load SSC test was examined.
FIG. 4 described above shows the influence of the 1 content. In the present invention example (No. 1, 4, 5, 6), 720 under the above test conditions.
No sulfide stress cracking occurred even after the lapse of time. on the other hand,
In the comparative examples (Nos. 15, 16, 17) in which the Al content exceeds the component limiting range of the present invention, sulfide stress cracking occurs.

【0038】表1、図3、図4より、S含有量とAl含
有量が本発明の限定範囲内であれば、鋳片から直接マン
ネスマン方式の熱間圧延法によって造管しても圧延疵は
発生せず、しかも良好な耐硫化物応力割れ性が得られる
ことが明らかである。
From Table 1, FIG. 3 and FIG. 4, if the S content and the Al content are within the limits of the present invention, even if the slab is directly piped by the Mannesmann hot rolling method, a rolling defect will occur. It is clear that no sulfide stress cracking occurs and that good sulfide stress cracking resistance is obtained.

【0039】[0039]

【発明の効果】以上のように本発明によれば、分塊圧延
時に割れが発生しない、熱間加工性及び耐硫化物応力割
れ性に優れたマルテンサイト系ステンレス鋼をが得られ
る。
As described above, according to the present invention, it is possible to obtain a martensitic stainless steel which is free from cracks during slab rolling and is excellent in hot workability and sulfide stress cracking resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】Modified 13Cr 鋼(低C-低N-1.5Cu-12.2Cr-5.8
Ni-2.0Mo)の鋳造まま材及び圧延材の熱間加工性に及ぼ
す変形温度の影響を示す図表である。
[Figure 1] Modified 13Cr steel (low C-low N-1.5Cu-12.2Cr-5.8
2 is a table showing the effect of deformation temperature on the hot workability of as-cast material and rolled material of Ni-2.0Mo).

【図2】熱間引張試験の条件を示す図表である。FIG. 2 is a chart showing conditions of a hot tensile test.

【図3】分塊圧延時の最大割れ深さに及ぼすS含有量の
影響を示す図表である。
FIG. 3 is a chart showing the effect of S content on the maximum crack depth during slabbing.

【図4】硫化物応力割れが発生する代表的な腐食環境で
定荷重SSC試験を行ったときの破断時間とAl含有量
の関係を示す図表である。
FIG. 4 is a table showing the relationship between the rupture time and the Al content when a constant load SSC test is performed in a typical corrosive environment where sulfide stress cracking occurs.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.05%以下、 Si:0.5%以下、 Mn:1.5%以下、 P :0.03%以下、 S :0.001%以下、 Cr:10〜14%、 Ni:4.0〜7.0%、 Al:0.06%を超えて0.3%以下、 N :0.08%以下、 Mo:1.0〜3.0%、 Cu:1.0〜2.0% を含有し、残部がFe及び不可避的不純物からなる鋳片
を、直接マンネスマン方式の熱間圧延に供して製造され
ることを特徴とする熱間加工性及び耐硫化物応力割れ性
に優れたマルテンサイト系ステンレス鋼継目無鋼管。
1. By weight%, C: 0.05% or less, Si: 0.5% or less, Mn: 1.5% or less, P: 0.03% or less, S: 0.001% or less, Cr : 10 to 14%, Ni: 4.0 to 7.0%, Al: more than 0.06% and 0.3% or less, N: 0.08% or less, Mo: 1.0 to 3.0% , Cu: 1.0 to 2.0%, and a slab containing the balance Fe and unavoidable impurities, is directly subjected to hot rolling in a Mannesmann system, and is manufactured. And martensitic stainless steel seamless steel pipe with excellent sulfide stress cracking resistance.
【請求項2】 重量%で、 C :0.05%以下、 Si:0.5%以下、 Mn:1.5%以下、 P :0.03%以下、 S :0.001%以下、 Cr:10〜14%、 Ni:4.0〜7.0%、 Al:0.06%を超えて0.3%以下、 N :0.08%以下、 Mo:1.0〜3.0%、 Cu:1.0〜2.0%、 を含有し、さらに、 Ca:0.001〜0.01%、 Ti:0.5S〜0.05% の1種または2種を含有し、残部がFe及び不可避的不
純物からなる鋳片を、直接マンネスマン方式の熱間圧延
に供して製造されることを特徴とする熱間加工性及び耐
硫化物応力割れ性に優れたマルテンサイト系ステンレス
鋼継目無鋼管。
2. In% by weight, C: 0.05% or less, Si: 0.5% or less, Mn: 1.5% or less, P: 0.03% or less, S: 0.001% or less, Cr : 10 to 14%, Ni: 4.0 to 7.0%, Al: more than 0.06% and 0.3% or less, N: 0.08% or less, Mo: 1.0 to 3.0% , Cu: 1.0 to 2.0%, further, Ca: 0.001 to 0.01%, Ti: 0.5S to 0.05%, one or two kinds, and the balance. A martensitic stainless steel seam excellent in hot workability and sulfide stress cracking resistance, characterized in that it is produced by directly subjecting a slab composed of Fe and unavoidable impurities to hot rolling in a Mannesmann system. No steel pipe.
JP30444097A 1997-11-06 1997-11-06 Martensitic stainless steel seamless steel pipe with excellent hot workability and sulfide stress cracking resistance Expired - Fee Related JP3417275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30444097A JP3417275B2 (en) 1997-11-06 1997-11-06 Martensitic stainless steel seamless steel pipe with excellent hot workability and sulfide stress cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30444097A JP3417275B2 (en) 1997-11-06 1997-11-06 Martensitic stainless steel seamless steel pipe with excellent hot workability and sulfide stress cracking resistance

Publications (2)

Publication Number Publication Date
JPH11140594A JPH11140594A (en) 1999-05-25
JP3417275B2 true JP3417275B2 (en) 2003-06-16

Family

ID=17933043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30444097A Expired - Fee Related JP3417275B2 (en) 1997-11-06 1997-11-06 Martensitic stainless steel seamless steel pipe with excellent hot workability and sulfide stress cracking resistance

Country Status (1)

Country Link
JP (1) JP3417275B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3633434B2 (en) * 1999-07-26 2005-03-30 住友金属工業株式会社 Martensitic stainless steel seamless pipe manufacturing method
JP3797118B2 (en) * 2001-02-23 2006-07-12 Jfeスチール株式会社 Low Mo type corrosion resistant martensitic stainless steel
CN102534418A (en) * 2012-02-29 2012-07-04 宝山钢铁股份有限公司 Martensitic stainless steel for oil casing and manufacturing method thereof
CN104108003A (en) * 2013-04-19 2014-10-22 宝山钢铁股份有限公司 Manufacturing method for super 13Cr tool joint

Also Published As

Publication number Publication date
JPH11140594A (en) 1999-05-25

Similar Documents

Publication Publication Date Title
US8784581B2 (en) Fe-Ni alloy pipe stock and method for manufacturing the same
JP4632000B2 (en) Seamless steel pipe manufacturing method
EP2177634B1 (en) Process for production of duplex stainless steel tubes
EP2388341B1 (en) Process for production of duplex stainless steel pipe
EP3395991B1 (en) High strength seamless stainless steel pipe for oil wells and manufacturing method therefor
US20070181225A1 (en) Ni base alloy pipe stock and method for manufacturing the same
JP5097017B2 (en) Manufacturing method of high Cr ferritic heat resistant steel
US8312751B2 (en) Method for producing high alloy pipe
JP2005002441A (en) High strength steel and its production method
KR101471730B1 (en) High-strength seamless steel pipe for mechanical structure which has excellent toughness, and process for production of same
US6692592B2 (en) Method for manufacturing high chromium system seamless steel pipe
EP1521856A1 (en) Martensitic stainless steel seamless pipe and a manufacturing method thereof
JP2952929B2 (en) Duplex stainless steel and method for producing the same
JP3379355B2 (en) High-strength steel used in an environment requiring sulfide stress cracking resistance and method of manufacturing the same
JP2004124158A (en) Seamless steel pipe and manufacturing method therefor
JP3417275B2 (en) Martensitic stainless steel seamless steel pipe with excellent hot workability and sulfide stress cracking resistance
JP6140856B1 (en) Ferritic / austenitic stainless steel sheet with excellent formability and method for producing the same
JP3598771B2 (en) Martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance, method of bulk rolling thereof, seamless steel pipe using these, and method of manufacturing the same
JPH06172858A (en) Production of seamless steel tube excellent in scc resistance and having high strength and high toughness
JPH0551633A (en) Production of high si-containing austenitic stainless steel
JP3417219B2 (en) Martensitic stainless steel with excellent hot workability
JPH09111345A (en) Production of martensitic stainless steel oil well pipe
JP2900783B2 (en) Rolling intermediate roll with excellent fatigue strength
JP2000313941A (en) Seamless tube of martensitic stainless steel excellent in surface quality
JP3456468B2 (en) Martensitic stainless steel seamless steel pipe with excellent machinability and hot workability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees