JP2001121206A - Pack rolling method - Google Patents

Pack rolling method

Info

Publication number
JP2001121206A
JP2001121206A JP29925899A JP29925899A JP2001121206A JP 2001121206 A JP2001121206 A JP 2001121206A JP 29925899 A JP29925899 A JP 29925899A JP 29925899 A JP29925899 A JP 29925899A JP 2001121206 A JP2001121206 A JP 2001121206A
Authority
JP
Japan
Prior art keywords
rolling
pack
thickness
core
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29925899A
Other languages
Japanese (ja)
Inventor
Masayuki Horie
正之 堀江
Kenji Hirata
健二 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP29925899A priority Critical patent/JP2001121206A/en
Publication of JP2001121206A publication Critical patent/JP2001121206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pack rolling method for manufacturing a product small in thickness difference at end parts of a core by solving a problem that the thickness at the ends of the core is increased in the pack rolling, in particular, a problem that the thickness at the ends in the longitudinal direction is increased. SOLUTION: In the pack rolling method in which one or a plurality of plate- like cores are covered by a cover material and a spacer to form a pack slab, and the pack slab is rolled to manufacture a sheet for the core, an AGC is operated after the rolling of the core is started. The elongation of the spacer is estimated for each pass, the rolling start timing of the core is calculated from the number of revolutions of a roll, and the operation timing of the AGC is set to the rolling start timing of the core.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱合金やチタン
合金等の熱間での加工が難しい合金の、広幅、薄物材を
熱間圧延にて製造するためのパック圧延(積層圧延)方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pack rolling (lamination rolling) method for producing wide and thin materials by hot rolling of alloys which are difficult to hot work, such as heat-resistant alloys and titanium alloys. .

【0002】[0002]

【従来の技術】一般に、耐熱合金やチタン合金は変形抵
抗の温度依存性が大きく、加工中の温度低下により加工
荷重が大きくなるため加工が難しい。また、ボロン添加
オーステナイト系ステンレス鋼のように熱間加工性に乏
しい材料等もある。これらは通常、難加工材と呼ばれて
いる。
2. Description of the Related Art In general, heat-resistant alloys and titanium alloys have a large temperature dependency of deformation resistance, and a processing load is increased due to a decrease in temperature during processing, so that processing is difficult. Further, there are materials having poor hot workability such as boron-added austenitic stainless steel. These are usually called difficult-to-machine materials.

【0003】これら難加工材の薄板圧延技術としては、
従来よりパック圧延(積層圧延)方法が実施されてい
る。パック圧延方法とは、図1に示すようなパックスラ
ブを用いた圧延方法である。1つまたは複数の被圧延材
料であるコア材1は、四周部がスペーサ材2で覆われて
いる。このコア材1およびスペーサ材2は上下をカバー
材3によって挟まれている。図1は2枚のコア材1がス
ペーサ材2で覆われ、かつカバー材3によって挟まれた
パックスラブの断面を示す例である。
[0003] As a thin plate rolling technique for these difficult-to-process materials,
Conventionally, a pack rolling (lamination rolling) method has been implemented. The pack rolling method is a rolling method using a pack slab as shown in FIG. The core material 1 which is one or a plurality of materials to be rolled is covered with a spacer material 2 on four sides. The core member 1 and the spacer member 2 are sandwiched between upper and lower cover members 3. FIG. 1 is an example showing a cross section of a pack slab in which two core materials 1 are covered with a spacer material 2 and sandwiched by a cover material 3.

【0004】このように、被圧延材料であるコア材をス
ペーサ材・カバー材で覆って圧延すると、コア材表面は
外気やロールといった、材料よりも冷たい媒体に直接触
れることがないので、温度の低下が防止でき、薄板材の
製造が可能となる。
As described above, when the core material, which is the material to be rolled, is covered with the spacer material and the cover material and rolled, the surface of the core material does not come into direct contact with a medium, such as outside air or a roll, which is colder than the material. The reduction can be prevented, and the production of a thin plate material becomes possible.

【0005】例えばα+β型チタン合金としてよく知ら
れているTi−6Al−4V合金は、冷間加工性や超塑
性特性を確保するためにα+β域で熱間加工を加える必
要があるが、その変形抵抗の温度依存性が非常に大き
く、800℃以下になると変形抵抗が大きく上昇し、圧
延機の許容荷重を超えて、それ以上の圧延ができなくな
り、β変態点以下で変形抵抗がそれほど高くならない8
00℃〜950℃の温度域で圧延することが理想的とさ
れ、温度の低下が小さいパック圧延が適用されている。
For example, a Ti-6Al-4V alloy, which is well known as an α + β type titanium alloy, needs to be subjected to hot working in the α + β region in order to ensure cold workability and superplasticity. Temperature dependence of resistance is very large, deformation resistance rises significantly below 800 ° C, exceeds the allowable load of the rolling mill, further rolling cannot be performed, and deformation resistance does not increase so much below β transformation point 8
It is ideal to perform rolling in a temperature range of 00 ° C. to 950 ° C., and pack rolling in which a decrease in temperature is small is applied.

【0006】さらに、コア材同士の間、コア材とカバー
材との間には、圧延によるコア材同士やコア材とカバー
材の圧着を防止し、また伝熱抵抗となることによってコ
ア材の温度低下を防止する目的で、剥離剤が塗布され
る。図1の4が剥離剤を示す。またコア材とスペーサ材
の間には通常適度な空間5が設けられる。コア材をスペ
ーサ材とカバー材で囲んだ後に、スペーサ材とカバー材
の間を接合してパックスラブの組み立てを完成する。こ
のように組立てられたパックスラブを熱間にて圧延しパ
ック圧延材とする。その後、パック圧延材を解体し薄板
圧延されたコア材を取出す。
[0006] Further, between the core materials, and between the core material and the cover material, press-fitting of the core materials and the core material and the cover material by rolling is prevented. A release agent is applied for the purpose of preventing a temperature drop. Reference numeral 4 in FIG. 1 indicates a release agent. A moderate space 5 is usually provided between the core material and the spacer material. After surrounding the core material with the spacer material and the cover material, the spacer material and the cover material are joined to complete the assembly of the pack slab. The pack slab thus assembled is hot rolled to obtain a rolled pack. Thereafter, the rolled material is disassembled, and the core material obtained by rolling the thin plate is taken out.

【0007】このようなパック圧延方法においては、製
品となるコア材と圧延ロールが直接触れていないため圧
延時の板厚の制御が難しく、その製品の板厚精度を上
げ、形状をよくするために、コア材とカバー材の変形抵
抗比や温度を制御する等の工夫が特開平5−42302
号公報等に開示されている。
In such a pack rolling method, it is difficult to control the thickness of the product at the time of rolling because the core material as the product and the rolling roll are not in direct contact with each other. Japanese Patent Laid-Open No. 5-42302 discloses a technique for controlling the deformation resistance ratio and the temperature of the core material and the cover material.
No. 6,009,036.

【0008】この問題と関連して、パック圧延方法では
コア材の端部の板厚が大きくなってしまうという問題が
ある。図2はコア材にTi−6Al−4V合金を、カバ
ー材にSS330を用いた場合の板厚分布の一例であ
る。コア材の端部にて板厚が厚くなっており、歩留の低
下につながっている。特開平10−216807号公報
では、これを防止する技術として、組立時のコア材とス
ペーサ材の空間を管理することによりこの板厚偏差を防
止する方法が提案されている。
In connection with this problem, the pack rolling method has a problem that the thickness of the end portion of the core material becomes large. FIG. 2 is an example of a plate thickness distribution when a Ti-6Al-4V alloy is used for the core material and SS330 is used for the cover material. At the end of the core material, the plate thickness is increased, which leads to a decrease in yield. Japanese Patent Application Laid-Open No. Hei 10-216807 proposes a technique for preventing this deviation in thickness by managing the space between a core material and a spacer material during assembly.

【0009】[0009]

【発明が解決しようとする課題】特開平10−2168
07号公報の方法は幅方向端部の板厚偏差解消には効果
的であるが、特に長手方向への圧下比が大きい場合の長
手方向端部の板厚偏差に関してはあまり有効ではない。
圧延の進行に伴って、先端部のクロップが大きくなるた
め、そのクロップの生成量を見越して空間を設定してお
く必要がある。しかし、このような大きな空間を設けて
おいても、圧延中に上下のカバー材の板厚減少が小さく
なり空間が閉塞してしまうことが確かめられている。空
間が閉塞してしまえば当然効果もなくなるのは明らかで
ある。
Problems to be Solved by the Invention
The method disclosed in Japanese Patent Application Publication No. 07-07207 is effective for eliminating the thickness deviation at the end in the width direction, but is not very effective especially for the deviation in thickness at the end in the longitudinal direction when the reduction ratio in the longitudinal direction is large.
As the rolling progresses, the crop at the tip becomes larger, so it is necessary to set a space in anticipation of the amount of crop generation. However, even if such a large space is provided, it has been confirmed that the reduction in the thickness of the upper and lower cover members during rolling is small and the space is closed. Obviously, once the space is closed, the effect will obviously be lost.

【0010】本発明は、上記のようなパック圧延におけ
るコア材の端部の板厚が厚くなってしまうという問題、
特に長手方向端部の板厚偏差の問題を解決し、コア材の
端部における板厚偏差の少ない製品を製造できるパック
圧延方法を提供することを目的とする。
The present invention has a problem that the thickness of the end portion of the core material in the above-described pack rolling is increased.
In particular, an object of the present invention is to provide a pack rolling method capable of solving the problem of thickness deviation at the longitudinal end and producing a product having a small thickness deviation at the end of the core material.

【0011】[0011]

【課題を解決するための手段】上記の課題は以下の発明
により解決される。 本件第1発明は、一枚または複数
枚の板状のコア材を、カバー材とスペーサ材で覆ってパ
ックスラブを形成し、前記パックスラブを圧延して前記
コア材の薄板を製造するパック圧延方法において、コア
材の圧延が始まってからAGCを作動させることを特徴
とするパック圧延方法である。
The above object is achieved by the following invention. The first invention of the present application is a pack rolling in which one or a plurality of plate-shaped core materials are covered with a cover material and a spacer material to form a pack slab, and the pack slab is rolled to produce a thin plate of the core material. A pack rolling method, characterized in that AGC is activated after the core material starts rolling.

【0012】本件第2発明は、パス毎にスペーサ材の伸
び量を予測し、ロール回転数からコア材の圧延開始タイ
ミングを算出し、AGCの作動タイミングをコア材の圧
延開始タイミングに合せることを特徴とする本件第1発
明に記載のパック圧延方法である。
The second aspect of the present invention is to predict the amount of elongation of the spacer material for each pass, calculate the roll start timing of the core material from the number of roll rotations, and adjust the AGC operation timing to the roll start timing of the core material. A pack rolling method according to the first aspect of the invention.

【0013】本発明者らは、パック圧延材で板厚偏差が
生じる原因は、AGC(自動板厚制御)によるものであ
るとの知見を得た。 簡単にAGCの原理を説明する。
圧延時の、板厚と圧延荷重およびロールギャップの関係
は図3のようになる。右上がりの直線は圧延機の弾性変
形量をあらわし、左上がりの曲線は板厚と圧下荷重の関
係で塑性曲線と呼ばれている。入側板厚H1であった被
圧延材を荷重P1、ロールギャップS1で圧延すると、
出側板厚はh1となる。ばらつき等で入側板厚がH2に
なると圧延荷重がP2へと上昇するため圧延機の弾性変
形量が変化し、出側板厚はh2となる。この場合、板内
で仕上り板厚がばらつくことになる。そこで、このよう
な荷重変動や板厚変動を検出し、変動に応じてロールギ
ャップを自動的に調整するのがAGCである。図3の場
合であると、ロールギャップをS2にすると、入側板厚
H2に対しても出側板厚がh1となり、全長で均一な板
厚の製品を得ることができる。
The present inventors have found that the cause of the thickness deviation in the rolled pack is due to AGC (automatic thickness control). The principle of AGC will be briefly described.
FIG. 3 shows the relationship between the sheet thickness, the rolling load, and the roll gap during rolling. The straight line rising to the right represents the amount of elastic deformation of the rolling mill, and the curve rising to the left is called the plastic curve because of the relationship between the sheet thickness and the rolling load. When the material to be rolled having the entry side plate thickness H1 is rolled with a load P1 and a roll gap S1,
The exit side plate thickness is h1. When the incoming side plate thickness becomes H2 due to variation or the like, the rolling load increases to P2, so that the amount of elastic deformation of the rolling mill changes, and the outgoing side plate thickness becomes h2. In this case, the finished plate thickness varies within the plate. Therefore, AGC detects such load fluctuations and plate thickness fluctuations and automatically adjusts the roll gap according to the fluctuations. In the case of FIG. 3, when the roll gap is set to S2, the output side plate thickness becomes h1 with respect to the input side plate thickness H2, and a product having a uniform thickness over the entire length can be obtained.

【0014】しかし、AGCをそのままパック圧延に適
用すると、全長で均一な板厚の製品を得ることができな
い。パック圧延にAGCを適用した場合の、出側板厚
(全厚)、ロールギャップ、コア材厚の変動を測定した
結果を図4(a)に示す。コア材の圧延開始にあたる、
コア材かみ込み位置で急激に板厚が厚くなっている。ま
た、図4(b)は、パック圧延材に対する板厚と圧延荷
重およびロールギャップの関係である。スペーサ材は最
終的には製品とならないため、安価な軟鋼が用いられる
のが普通であり、スペーサ材はコア材に比べて変形抵抗
が低くなっている。図4(a)、図4(b)は、コア材
がTi−6Al−4V合金でカバー材がSS330の、
一般的なパック圧延の場合の例であるが、特に仕上り厚
近傍の板厚の薄くなった温度が下がっている領域では、
スペーサ材の変形抵抗はコア材の半分程度になる場合も
ある。そのため、スペーサー材部では塑性曲線がコア材
部に比べて寝た形となる。
However, if AGC is applied to pack rolling as it is, it is not possible to obtain a product having a uniform thickness over the entire length. FIG. 4 (a) shows the results of measuring variations in the exit side plate thickness (total thickness), roll gap, and core material thickness when AGC is applied to pack rolling. At the start of core material rolling,
The plate thickness suddenly increases at the position where the core material bites. FIG. 4B shows the relationship between the thickness of the rolled material, the rolling load, and the roll gap. Since the spacer material does not eventually become a product, inexpensive mild steel is generally used, and the spacer material has a lower deformation resistance than the core material. 4 (a) and 4 (b) show that the core material is Ti-6Al-4V alloy and the cover material is SS330.
It is an example of the case of general pack rolling, especially in the region where the temperature at which the thickness of the sheet near the finished thickness has decreased is reduced.
The deformation resistance of the spacer material may be about half that of the core material. For this reason, the plastic curve in the spacer material portion has a shape lying down as compared with the core material portion.

【0015】パック圧延にAGC を用いた場合を図4
(b)で考えると、圧延前に設定するロールギャップは
コア材部が目標板厚になるようにコア材の塑性曲線をも
とに圧延荷重P0で出側板厚がh0になるようにS0に
設定されている。ところが噛み込み時は変形抵抗の低い
コア部に相当するため、圧延荷重がP1と低く出側板厚
はh1と目標板厚より薄くなる。AGCが作動すると、
ロールギャップを開きS1とし、出側板厚がh0になる
ようにロールギャップをS1へと変更する。
FIG. 4 shows a case where AGC is used for pack rolling.
Considering in (b), the roll gap set before rolling is set to S0 so that the exit side thickness becomes h0 at the rolling load P0 based on the plasticity curve of the core material so that the core portion has the target thickness. Is set. However, at the time of biting, it corresponds to a core portion having low deformation resistance, so that the rolling load is as low as P1 and the exit side plate thickness is h1, which is smaller than the target plate thickness. When AGC is activated,
The roll gap is opened to S1, and the roll gap is changed to S1 so that the exit side plate thickness becomes h0.

【0016】ロールギャップがS1となった状態で、コ
ア材部が噛み込むと塑性曲線がコア材部のものへ移行し
圧延荷重がP2に増加するため、出側板厚はh2となり
目標板厚よりも厚くなる。この荷重変動に対して、ロー
ルギャップをS0へと変更し出側板厚を目標板厚h0に
合せている。このときのコア材の板厚分布(コア材厚)
は図4(a)に示したようになっており、ロールギャッ
プが開いていた部分で板厚が大きくなっている。
When the core gap is engaged with the roll gap being S1, the plastic curve shifts to that of the core zone and the rolling load increases to P2. Also get thicker. In response to this load variation, the roll gap is changed to S0, and the exit side plate thickness is adjusted to the target plate thickness h0. Sheet thickness distribution of core material at this time (core material thickness)
Is as shown in FIG. 4 (a), and the plate thickness is large in the portion where the roll gap is open.

【0017】つまり、通常材(一体材)を圧延する場合
と同様にパック圧延にAGCを使うと、変形抵抗が低い
スペーサー部でAGCが作動し、端部の板厚増加を招い
ていることがわかる。そこで、コア材部の圧延が開始さ
れてからAGCが作動するようにすると、コア材の圧延
が始まる前にロールギャップが開くことがなくなり、端
部の板厚増加を減少させることができるのである。
That is, when AGC is used for pack rolling as in the case of rolling a normal material (integral material), the AGC operates at the spacer portion having low deformation resistance, which causes an increase in the end plate thickness. Understand. Therefore, if the AGC is operated after the rolling of the core material is started, the roll gap does not open before the rolling of the core material starts, and the increase in the thickness of the end can be reduced. .

【0018】コア材の圧延を開始するタイミングの決定
は、パス毎にスペーサ材の伸び量を予測し、ロール回転
数から算出したり、圧延中の荷重推移をモニターして、
荷重が高くなった時をコア材の圧延の開始と判断したり
して行うことができる。
The timing for starting the rolling of the core material is determined by estimating the amount of elongation of the spacer material for each pass, calculating from the number of roll rotations, or monitoring the load transition during rolling.
The time when the load is increased can be determined as the start of the rolling of the core material.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。通常のパック圧延方法を用いる場合と同様に、被
圧延材をスペーサ材とカバー材で覆って接合し、パック
スラブを作製する。このパックスラブを加熱炉等で所定
の温度に加熱して、圧延機により熱間にて圧延を行う。
圧延開始時のロールギャップはコア材部分の圧延を行う
時に最適なロールギャップに合わせておき、AGCは作
動させない。コア材部分の圧延が開始されると同時、も
しくは開始されてからAGCを作動させ、ロールギャッ
プのコントロールを行う。コア材部分の圧延開始位置
は、以下のように算出される。組立時のスペーサ長に圧
下比を掛け算すると、そのパスでのスペーサ長が予測で
きる。長さとロール回転数からスペーサの圧延に要する
時間が算出できるので、圧延開始からスペーサの圧延に
要する時間が過ぎた後にAGCを作動させるようにす
る。その後はAGCを作動させたまま、そのパスの圧延
を行う。このようにして圧延パスを繰り返して、パック
圧延材とする。その後、パック圧延材を解体し薄板圧延
されたコア材を取出し、所定のサイズに切断して製品と
する。
Embodiments of the present invention will be described below. As in the case of using the normal pack rolling method, the material to be rolled is covered with a spacer material and a cover material and joined to produce a pack slab. The pack slab is heated to a predetermined temperature in a heating furnace or the like, and hot rolled by a rolling mill.
The roll gap at the start of rolling is adjusted to the optimum roll gap when rolling the core material portion, and the AGC is not operated. The AGC is operated simultaneously with or after the start of the rolling of the core material portion to control the roll gap. The rolling start position of the core material portion is calculated as follows. By multiplying the spacer length at the time of assembly by the rolling reduction ratio, the spacer length in that pass can be predicted. Since the time required for rolling the spacer can be calculated from the length and the number of roll rotations, the AGC is operated after the time required for rolling the spacer has passed since the start of rolling. Thereafter, the pass is rolled while the AGC is operated. The rolling pass is repeated in this manner to obtain a rolled pack. Then, the rolled material is disassembled, the core material obtained by rolling the thin plate is taken out, and cut into a predetermined size to obtain a product.

【0020】[0020]

【実施例】本発明を実施例を用いて説明する。Ti−6
Al−4V合金の薄板をパック圧延方法により製造し
た。カバー材、スペーサ材はSS330を用い、Ti−
6Al−4V合金のコア材を2枚重ねて、図1と同様の
構造のパックスラブを作製した。Ti−6Al−4V合
金のコア材は板厚20mm、板長2050mm、板幅250
0mmとし、コア材の上下に1枚づつ積層したカバー材の
板厚は50mm、スペーサ材の板厚は40mm、幅は50mm
である。この140mm厚のパックスラブを表1に示すパ
ススケジュールで11パスの圧延を行ない、最終板厚が
21mmのパック圧延材を製造した。なお、各パス毎にス
ペーサの伸び量を推定し、AGCの起動タイミングを設
定した。比較例として、従来と同じ様に、圧延機にかみ
込んだ時点からAGCが起動する様にして圧延を行った
パック圧延材も製造した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to embodiments. Ti-6
A thin plate of an Al-4V alloy was manufactured by a pack rolling method. SS-330 is used for the cover material and the spacer material.
A pack slab having a structure similar to that of FIG. 1 was produced by stacking two 6Al-4V alloy core materials. The core material of Ti-6Al-4V alloy is 20 mm thick, 2050 mm long, and 250 mm wide.
0 mm, the thickness of the cover material laminated one by one above and below the core material is 50 mm, the thickness of the spacer material is 40 mm, and the width is 50 mm
It is. The pack slab having a thickness of 140 mm was rolled for 11 passes according to the pass schedule shown in Table 1 to produce a rolled pack having a final thickness of 21 mm. In addition, the elongation amount of the spacer was estimated for each pass, and the start timing of AGC was set. As a comparative example, similarly to the conventional case, a rolled rolled material that was rolled in such a manner that AGC was started from the time when the rolled material was bitten into a rolling mill was also manufactured.

【0021】[0021]

【表1】 [Table 1]

【0022】上記のようにして製造したパック圧延材を
切断して解体し、板厚3.0mm、板長12200mm、板
幅2440mmの製品とした。 図5はAGCの起動タイ
ミングを調整した場合の最終パスでのロールギャップ変
動、および製品の全厚・コア材厚の測定結果である。比
較例の場合に対応する図4(a)と比べて、スペーサ材
部圧延時にロールギャップが大きく開くことがなくな
り、コア材部圧延時のロールギャップ変動もなくなって
いる。板厚の偏差を測定したところ、比較例の製品では
1.80mm程度の板厚偏差があったものが、本発明例の
製品では0.02mmと格段に減少しており、通常の表面
仕上げ加工のみで板厚精度も確保され、歩留も上昇し
た。
The rolled pack produced as described above was cut and disassembled to obtain a product having a thickness of 3.0 mm, a length of 12200 mm and a width of 2440 mm. FIG. 5 shows the measurement results of the roll gap fluctuation in the final pass and the total thickness of the product and the core material thickness when the start timing of the AGC is adjusted. Compared to FIG. 4A corresponding to the case of the comparative example, the roll gap does not greatly open at the time of rolling the spacer material portion, and the roll gap fluctuation at the time of rolling the core material portion also disappears. When the thickness deviation was measured, the product of the comparative example had a thickness deviation of about 1.80 mm, but the product of the example of the present invention was remarkably reduced to 0.02 mm. The thickness accuracy was ensured only by this method, and the yield increased.

【0023】[0023]

【発明の効果】以上のように、パック圧延をする際にコ
ア材部分の圧延が始まってから、AGCを起動して圧延
することで、長手方向端部に生じる板厚偏差が低減す
る。これにより端部の板厚が厚くなってしまうという問
題がなくなり、歩留が向上するとともに、圧延後に端部
の板厚を合わせるための機械加工が不要になり、生産効
率、経済性が向上する。
As described above, by starting AGC after starting rolling of the core material portion during pack rolling and rolling, the thickness deviation occurring at the end in the longitudinal direction is reduced. This eliminates the problem that the thickness of the end portion is increased, improves the yield, and eliminates the need for machining for adjusting the thickness of the end portion after rolling, thereby improving production efficiency and economy. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】パック圧延に用いるパックスラブの断面図。FIG. 1 is a sectional view of a pack slab used for pack rolling.

【図2】従来のパック圧延での板厚分布の一例を示す
図。
FIG. 2 is a diagram showing an example of a thickness distribution in conventional pack rolling.

【図3】一般的な圧延時のロールギャップ、板厚の関係
の説明図。
FIG. 3 is an explanatory diagram of a relationship between a roll gap and a sheet thickness during general rolling.

【図4】(a):従来のパック圧延時の板厚・ロールギ
ャップの測定結果。 (b):パック圧延時のロールギャップ・板厚の関係の
説明図。
FIG. 4 (a): Measurement results of thickness and roll gap during conventional pack rolling. (B): Explanatory drawing of the relationship between roll gap and sheet thickness during pack rolling.

【図5】本発明を用いた場合の板厚・ロールギャップの
測定結果。
FIG. 5 shows the measurement results of the thickness and roll gap when the present invention is used.

【符号の説明】[Explanation of symbols]

1 コア材 2 スペーサ材 3 カバー材 4 剥離剤 5 空間 1 core material 2 spacer material 3 cover material 4 release agent 5 space

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一枚または複数枚の板状のコア材を、カ
バー材とスペーサ材で覆ってパックスラブを形成し、前
記パックスラブを圧延して前記コア材の薄板を製造する
パック圧延方法において、コア材の圧延が始まってから
AGCを作動させることを特徴とするパック圧延方法。
1. A pack rolling method for forming a pack slab by covering one or more plate-shaped core materials with a cover material and a spacer material, and rolling the pack slab to produce a thin sheet of the core material. 3. The pack rolling method according to claim 1, wherein the AGC is operated after the core material starts rolling.
【請求項2】 パス毎にスペーサ材の伸び量を予測し、
ロール回転数からコア材の圧延開始タイミングを算出
し、AGCの作動タイミングをコア材の圧延開始タイミ
ングに合せることを特徴とする請求項1に記載のパック
圧延方法。
2. Predicting the amount of elongation of the spacer material for each pass,
2. The pack rolling method according to claim 1, wherein the core material rolling start timing is calculated from the number of roll rotations, and the AGC operation timing is matched with the core material rolling start timing.
JP29925899A 1999-10-21 1999-10-21 Pack rolling method Pending JP2001121206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29925899A JP2001121206A (en) 1999-10-21 1999-10-21 Pack rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29925899A JP2001121206A (en) 1999-10-21 1999-10-21 Pack rolling method

Publications (1)

Publication Number Publication Date
JP2001121206A true JP2001121206A (en) 2001-05-08

Family

ID=17870216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29925899A Pending JP2001121206A (en) 1999-10-21 1999-10-21 Pack rolling method

Country Status (1)

Country Link
JP (1) JP2001121206A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019489A1 (en) * 2003-08-25 2005-03-03 The Boeing Company Method for manufacturing thin sheets of high-strength titanium alloys

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019489A1 (en) * 2003-08-25 2005-03-03 The Boeing Company Method for manufacturing thin sheets of high-strength titanium alloys
US7708845B2 (en) 2003-08-25 2010-05-04 The Boeing Company Method for manufacturing thin sheets of high strength titanium alloys description

Similar Documents

Publication Publication Date Title
UA82498C2 (en) Method for process control or process regulation on a unit for moulding, cooling and/or thermal treatment of metal material
WO2008004906A1 (en) Method for producing sheet semifinished product from a titanium alloy
EP1792668B1 (en) Method for reducing shearing and crop losses at rolling of assembled slabs
JP2001121206A (en) Pack rolling method
JP2006255727A (en) Method for rolling hot-rolled steel sheet
JP3446016B2 (en) Pack rolling method
JP2001300603A (en) Method of manufacturing sheet by pack rolling
JP2001300604A (en) Method of manufacturing sheet by pack rolling
JP4213434B2 (en) Edge drop control device for rolling mill
JP4349504B2 (en) Manufacturing method of high gloss BA finish stainless steel using tandem mill
JPH0860317A (en) Production of titanium material
JP2783170B2 (en) Method for producing clad plate of aluminum and stainless steel
JPS59107705A (en) Production of unevenly walled steel plate
JPH05295502A (en) Production of alpha plus beta titanium alloy sheet for superplastic working
JPH0839269A (en) Manufacture of stainless steel and aluminum clad material
JPH0215801A (en) Manufacture of titanium alloy channel steel
JP2003105440A (en) Hot-rolling method for suppressing generation of edge crack in ferritic stainless steel
JP3274382B2 (en) Rolling method of billet with tapered tip
JPH0665746B2 (en) Method for manufacturing titanium hot-rolled sheet
SU1509143A1 (en) Method of producing foil from magnesium alloys
JPH10263618A (en) Shape control method of pack rolled material
JP3036323B2 (en) Rolling mill control method and device
JPH10216807A (en) Method of pack rolling
JP3684942B2 (en) Cold rolled steel strip manufacturing method
JPH09253711A (en) Manufacture of aluminum clad material having uniform clad ratio

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060920