JPH0525924B2 - - Google Patents

Info

Publication number
JPH0525924B2
JPH0525924B2 JP5630284A JP5630284A JPH0525924B2 JP H0525924 B2 JPH0525924 B2 JP H0525924B2 JP 5630284 A JP5630284 A JP 5630284A JP 5630284 A JP5630284 A JP 5630284A JP H0525924 B2 JPH0525924 B2 JP H0525924B2
Authority
JP
Japan
Prior art keywords
rolling
temperature
web
flange
universal mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5630284A
Other languages
Japanese (ja)
Other versions
JPS60200913A (en
Inventor
Mutsuo Mizusawa
Kazuhiko Kadowaki
Takashi Kikuchi
Taizo Hiraishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5630284A priority Critical patent/JPS60200913A/en
Publication of JPS60200913A publication Critical patent/JPS60200913A/en
Publication of JPH0525924B2 publication Critical patent/JPH0525924B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、溶接性の優れたハイテン・インバー
ト(高抗張力不等辺不等厚山形鋼)を製造する方
法に関するものである。本出願人は、特公昭44−
28577号公報をもつて、インバートの効率的な製
造方法を提供しているが、本発明は上記発明に好
適なものである。 (発明の背景) インバートは、主に造船用材として多用されて
いる構造用形鋼であるが、近年省エネルギー、省
コストをめざして、船体等重量の軽量化が図られ
るにしたがい、インバートのハイテン化が要望さ
れている。 一般に溶接構造用高張力鋼は、第1表に示す
JIS G3106,SM 50Bに代表される。その最大元
素含有時における炭素当量Ceq(=C+Mn/6+Si/24 +Ni/40+Cr/5+Mo/4+V/14)は、0.453と非常
に高 い値を示すが、現状はCeq=0.37〜0.42程度に下
げて実生産されている。しかし、溶接性の面から
見れば、上記炭素当量は高過ぎる。
(Industrial Application Field) The present invention relates to a method for manufacturing a high-tensile invert (high tensile strength scalene angle shape steel) having excellent weldability. The applicant is
No. 28577 provides an efficient method for manufacturing an invert, and the present invention is suitable for the above-mentioned invention. (Background of the Invention) Invert is a structural steel section that is mainly used as a material for shipbuilding.In recent years, as efforts have been made to reduce the weight of ship hulls in order to save energy and cost, inverts have become more and more high-strength steel. is requested. Generally, high-strength steel for welded structures is shown in Table 1.
Representative examples are JIS G3106 and SM 50B. The carbon equivalent Ceq (=C+Mn/6+Si/24 +Ni/40+Cr/5+Mo/4+V/14) at the maximum element content shows a very high value of 0.453, but currently it is necessary to lower Ceq to around 0.37 to 0.42. being produced. However, from the viewpoint of weldability, the above carbon equivalent is too high.

【表】【table】

【表】 その結果、これらの高炭素当量の鋼材を用い
て、溶接構造物を構築する場合には、溶接部の低
温割れ防止の見地から、溶接前後工程で鋼材を加
熱するか、あるいは特殊な溶接材料を使用しなけ
ればならず、これ等が溶接施工能率を阻害する大
きな原因のひとつとなつている。 またインバートは、その断面が曲り尺状でウエ
ブが薄くて長く、フランジが厚く短い形状であ
る。このため圧延中の冷え方が、ウエブが冷えや
すく、フランジが冷えにくい。第2図にその冷え
方を例示する。図中Lは、ユニバーサルミル組圧
延工程を示す。 この例は、仕上圧延前のユニバーサルミル組6
(ユニバーサルミル4+エツジヤー5)のもので
ある。通常圧延開始から終了までの温度は、1050
〜800℃であるが、図からわかるように、ウエブ
の方がかなり冷速が早い。フランジとウエブの温
度差が、100〜150℃となることも稀ではない。 その結果、インバートの代表的な機械的性質の
断面における分布は、第3図に例示するように、
ウエブにおいては、引張強さTSと降伏点YPが高
く、伸びELが低めとなり、フランジにおいては、
ウエブと逆の傾向を示す。 このために、規格を満足するフランジの引張強
さと、降伏点を得るべく、化学成分を調整するの
が一般的であるが、それによると、フランジはよ
いが、ウエブの引張り強さは規格上限となり、伸
びが規格下限に近づき易く、更に炭素当量が高目
になり、断面内の機械的性質が異なる。 (従来方法と問題点) フランジが厚くウエブが薄いインバートに対
し、仕上げ圧延機前のローラテーブル上で、フラ
ンジの両側に散水冷却する技術が、特公昭51−
31227号公報に提案されている。 この方法は、二段孔型圧延機で製造されたイン
バート(ロールインバート)の冷却過程における
熱歪を防止して、形状の良い形鋼となし、矯正作
業、テーブル移送等の精整作業に好都合にしたも
のである。ところが、この方法は単に圧延後の形
鋼の形状を改善したにとどまり、この方法のみに
よつて溶接性の優れたハイテン・インバートを製
造することはできない。殊に溝形状形鋼は、フラ
ンジを散水冷却しようとすると、ウエブにも水が
乗つてしまいウエブが冷えやすい。このために従
来好適な方法、装置がなかつた。 (発明の目的) 本発明は、如上の点に鑑み、溶接性の優れたハ
イテン・インバートを効率的にかつ経済的に製造
する方法を提供するものである。 (発明の構成・作用) 本発明者等は、インバート断面内の機械的性質
を均一化するとともに、炭素当量を低下させるべ
く、各種試験を行なつて本発明に到達したもので
あり、その要旨は、C;0.07〜0.15,Si;0.15〜
0.35,Mn;0.90〜1.30,P0.025,S0.025,
SolAl;0.010〜0.035の各重量%を含有し、残部
Feおよび不可避的不純物よりなり、かつ炭素当
量(Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/
4+ V/14)<0.36%の連続鋳造スラブから得た熱粗形鋼 片を、その全断面温度が、900℃以下のときユニ
バーサルミル組により圧延を開始するとともに、
750±40℃の範囲内で該ユニバーサルミル組によ
る圧延を終えて溝状形鋼となし、該溝状形鋼を仕
上圧延した後、冷却および矯正を行ない、次いで
該溝状形鋼を縦切断して、2本のインバートとな
すことを特徴とする。 以下図面とともに本発明を詳細に説明する。 まず、合金元素含有量について述べると、Cは
母材強度を維持するための不可欠の元素である
が、多すぎると溶接性と靱性を害し、少なすぎる
と母材強度が不足するので、その範囲を0.07〜
0.15%とする。 Siは強度向上に有効な元素であるが、多すぎる
と溶接部靱性を低下させるし、少なすぎると母材
強度が不足するので、その範囲を0.15〜0.35%と
する。 Mnは強度ならびに靱性の向上に有効な元素で
あるが、過多または過少で、母材及び溶接部の靱
性を劣化させるので、その範囲を0.90〜1.30%と
した。 P,Sは不純物として鋼中に不可避的に含有さ
れ、強度、靱性を劣化させるので、可及的少量で
あることが望ましいが、工業的に比較的容易に調
整できる上限として、0.025%としたが、0.010以
下が好ましく、炭素当量Ceqも0.34以下が望まし
い。 SolAlは細粒化のため0.010〜0.060%とした。
その他不可避的に含有されるNi,Cr,Mo,V
は、Ceq<0.36の範囲をこえないように、低減す
ることが必要である。 上記化学成分の連鋳スラブ8を、第1図に示す
ように例えば加熱装置1により適当な温度に加熱
後、第1粗圧延機2および第2粗圧延機3で、粗
形鋼片9に加工し、次工程に設けたユニバーサル
ミル組6の手前(上流側)あるいは前後に後記す
る冷却手段を設けて温度調整を行う。7は最終仕
上ミルである。 通常連鋳スラブの加熱温度と、粗形鋼片の仕上
り温度は、それぞれ1280℃、1050℃程度である
が、第1,第2粗圧延機の能力が大きい場合に
は、更に低温度でよい。被圧延材の断面変化は、
略第1図b,c,dの順であり、断面寸法の小さ
いものは、第1粗圧延機を省略してもよい。 さて、造形の主要部を占めるユニバーサルミル
組6における加工要領を第4図に示し、第4図a
は周知のユニバーサルミルUM4とエツジヤーミ
ルEM5を対とするユニバーサルミル組6、およ
び第4図cはこのユニバーサルミル組6によるリ
バース圧延状況を示している。第4図bは本発明
において使用する冷却手段の例であり、樋を伏せ
た状態の溝形状形鋼9,10のフランジ24を所
定温度に冷却する装置22を設置している。従来
の方法においては、既述の如く、ウエブとフラン
ジの肉厚差に起因する冷却速度の差により、第2
図に例示したように、薄肉ウエブは厚肉フランジ
部より温度降下が早くなる他に、ウエブはロール
冷却水によつても冷却され、その傾向が拡大され
るので、第3図に例示したように、両者の機械的
性質の差が拡大される。たとえば、フランジ部の
機械的性質を満足させようとすると、鋼材の炭素
当量を高くせざるを得ない。図中ウエブ厚9−13
mm、フランジ厚14−18mmを示す。 本発明者等は、製造条件を詳細に観察すること
により、上記現象を見出だしたのであり、その解
決方法として、第1に、断面内の機械的性質の均
一化をはかるべく、被圧延材の圧延温度を、狭幅
管理して、低炭素当量化を実現することに着目し
た。即ちウエブとフランジの加工条件を、略一致
させることにしたのである。 第4図bに概要を示すように、エアー吹付け等
のウエブ水切り装置21により、圧延中にウエブ
上面に乗つたロール冷却水を排除し、ロール接触
による冷却と、輻射放熱以外の冷却原因を除去
し、従来法で圧延した場合に比べて、ウエブ23
の温度を高めに推移させる。図中25はエア吹付
けノズルである。エア供給源は図示しない。 またフランジ24を、フランジ水冷装置22に
より加速冷却して、従来圧延温度に比べて低目に
推移させ、更に被圧延材の全断面内温度を正確に
管理する。図中26は、水噴射ノズルであり、冷
却水供給ヘツダー等の水供給部は図示を省略し
た。 第5図は本発明の実施例のウエブとフランジの
冷却推移のグラフであり、前記第4図bの冷却装
置により、ユニバーサルミル組6のリバース圧延
の途中で冷却を行つた時の各圧延パス(計8パ
ス)毎のウエブとフランジの温度経過を示してい
るが、断面内温度およびその分布は、所期の値に
管理され、全断面温度が均一化されている。第6
図に当該工程の圧延開始温度と、仕上温度の関係
を示す。圧延開始温度が、900℃より高い場合に
は、圧延加工温度が高くなりすぎて、機械的性質
の劣化を伴なうほか、加工温度を、所定値に納め
るための過大な冷却設備を要し、実用的でない。 また、第7図に、ユニバーサルミル組での圧延
終了温度(グラフでは「加工温度」)と機械的性
質の関係を示すように、ユニバーサルミル組の圧
延終了温度が、750+40℃超では圧延後の結晶粒
が粗大で、機械的性質が劣化する。ユニバーサル
ミル組の圧延終了温度が、750−40℃未満では、
降伏点が異常に高くなるほかに、伸びの劣化がは
なはだしく不都合である。図中Ceq=0.30〜0.34、
ウエブ厚9−13mm、フランジ厚14−18mmを示す。
なお、本工程における加工量が少なすぎる場合に
は、当然その効果(細粒化)が減少するので、総
加工量(圧下量)は50%以上が望ましい。なお、
本発明では主な構成要件を圧延材の成分・炭素当
量および中間圧延工程での圧延開始・終了温度を
特定した点にあり、特に最終仕上ミル7の圧延条
件は特に定めていない。即ち、一般にインバート
圧延の最終仕上ミル段階では整形のための軽圧下
を行うに止まり、機械的性質の造り込みは中間圧
延工程までに行われるからである。 (実施例) 第2表に示すA〜Cは、本発明の実施例であ
り、D,Eは本発明によらない従来例である。同
様な引張強度を得るために、D,Eにおいては、
Mnを多く使用し、更にVを加えるなどしている
ので、炭素当量Ceqが高い。 これに対する本発明は、炭素当量が低値となつ
ている。更にユニバーサルミル組における圧延開
始(咬込)温度および圧延終了(最終)温度と
も、ウエブとフランジの温度差が小さい。このた
めウエブ、フランジ間に、機械的性質に差がない
ものが得られている。
[Table] As a result, when constructing welded structures using these high carbon equivalent steel materials, it is necessary to heat the steel materials before and after welding, or to use special Welding materials must be used, and this is one of the major causes of impeding welding efficiency. Further, the invert has a curved cross section, a thin and long web, and a thick and short flange. For this reason, the web cools easily during rolling, and the flange does not cool easily. Figure 2 shows an example of how it cools. In the figure, L indicates the universal mill assembly rolling process. This example shows universal mill assembly 6 before finish rolling.
(Universal Mill 4 + Edger 5). Normally, the temperature from the start to the end of rolling is 1050
~800℃, but as you can see from the figure, the web cools down much faster. It is not uncommon for the temperature difference between the flange and the web to be 100 to 150°C. As a result, the cross-sectional distribution of typical mechanical properties of the invert is as shown in Figure 3.
In the web, the tensile strength TS and yield point YP are high, and the elongation EL is low, and in the flange,
The trend is opposite to that of the web. For this reason, it is common practice to adjust the chemical composition in order to obtain the tensile strength and yield point of the flange that satisfies the standards. Therefore, the elongation tends to approach the lower limit of the specification, the carbon equivalent becomes higher, and the mechanical properties within the cross section are different. (Conventional method and problems) For inverts with thick flanges and thin webs, a technology was developed in 1973 to cool the flanges by spraying water on both sides of the flanges on a roller table in front of the finishing mill.
This is proposed in Publication No. 31227. This method prevents thermal distortion during the cooling process of inverts (roll inverts) manufactured in a two-hole rolling mill, creates well-shaped sections, and is convenient for refining work such as straightening work and table transfer. This is what I did. However, this method merely improves the shape of the shaped steel after rolling, and high tensile strength inverts with excellent weldability cannot be manufactured by this method alone. In particular, when trying to cool the flanges of channel-shaped steel by spraying water, water also gets on the web, which tends to cool the web. For this purpose, there has been no suitable method or apparatus. (Object of the Invention) In view of the above points, the present invention provides a method for efficiently and economically manufacturing a high tensile strength invert having excellent weldability. (Structure and operation of the invention) The present inventors conducted various tests to achieve the present invention in order to equalize the mechanical properties within the inverted cross section and lower the carbon equivalent, and the summary thereof is as follows. is C; 0.07~0.15, Si; 0.15~
0.35, Mn; 0.90-1.30, P0.025, S0.025,
SolAl; Contains each weight% of 0.010 to 0.035, the balance
Consisting of Fe and unavoidable impurities, and carbon equivalent (Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/
4+ V/14)<0.36% of the heat-roughened steel slab obtained from the continuous casting slab, when its total cross-sectional temperature is 900°C or less, start rolling with a universal mill set,
After rolling with the universal mill set within the range of 750±40°C to form a channel section, after finish rolling the channel section, cooling and straightening are performed, and then the channel section is longitudinally cut. It is characterized by having two inverts. The present invention will be described in detail below with reference to the drawings. First, regarding the alloying element content, C is an essential element to maintain the strength of the base metal, but too much will impair weldability and toughness, and too little will result in insufficient base metal strength, so the range from 0.07
The rate shall be 0.15%. Si is an effective element for improving strength, but if it is too large, it will reduce the toughness of the weld zone, and if it is too small, the strength of the base material will be insufficient, so the range is set to 0.15 to 0.35%. Mn is an effective element for improving strength and toughness, but if it is too much or too little, it deteriorates the toughness of the base metal and welded part, so the range was set to 0.90 to 1.30%. P and S are unavoidably contained in steel as impurities and deteriorate strength and toughness, so it is desirable to keep them in as small a quantity as possible, but the upper limit, which can be adjusted industrially relatively easily, is set at 0.025%. However, the carbon equivalent Ceq is preferably 0.010 or less, and the carbon equivalent Ceq is also preferably 0.34 or less. SolAl was set at 0.010 to 0.060% for grain refinement.
Other unavoidably contained Ni, Cr, Mo, V
must be reduced so that it does not exceed the range of Ceq<0.36. As shown in FIG. 1, the continuously cast slab 8 having the above-mentioned chemical composition is heated to an appropriate temperature by, for example, a heating device 1, and then converted into a rough shaped steel slab 9 by a first rough rolling mill 2 and a second rough rolling mill 3. Temperature adjustment is performed by providing a cooling means, which will be described later, before (on the upstream side) or before and after the universal mill assembly 6, which will be processed and provided in the next step. 7 is a final finishing mill. Normally, the heating temperature for continuously cast slabs and the finishing temperature for rough shaped steel slabs are approximately 1280℃ and 1050℃, respectively, but if the capacity of the first and second rough rolling mills is large, lower temperatures may be used. . The cross-sectional change of the rolled material is
Approximately in the order shown in FIG. 1 b, c, and d, the first rough rolling mill may be omitted if the cross-sectional dimension is small. Now, Fig. 4 shows the processing procedure for the universal mill assembly 6, which occupies the main part of the modeling, and Fig. 4a
4 shows a universal mill set 6 which is a pair of the well-known universal mill UM4 and edger mill EM5, and FIG. 4c shows a reverse rolling situation by this universal mill set 6. FIG. 4b shows an example of the cooling means used in the present invention, in which a device 22 is installed to cool the flanges 24 of the groove-shaped steel sections 9, 10 with the gutter down to a predetermined temperature. In the conventional method, as mentioned above, due to the difference in cooling rate due to the difference in wall thickness between the web and the flange,
As illustrated in the figure, the temperature of the thin-walled web decreases faster than that of the thick-walled flange, but the web is also cooled by the roll cooling water, and this tendency is magnified. , the difference in mechanical properties between the two is expanded. For example, in order to satisfy the mechanical properties of the flange portion, the carbon equivalent of the steel material must be increased. Web thickness in the diagram: 9-13
mm, indicating flange thickness 14-18 mm. The present inventors discovered the above-mentioned phenomenon by observing the manufacturing conditions in detail, and as a solution to the problem, firstly, in order to equalize the mechanical properties within the cross section, the rolled material We focused on achieving a low carbon equivalent by controlling the rolling temperature within a narrow range. In other words, it was decided to make the processing conditions for the web and flange substantially the same. As shown in the outline in Fig. 4b, a web draining device 21 such as an air blower removes the roll cooling water that has gotten onto the upper surface of the web during rolling, thereby eliminating cooling causes other than those caused by roll contact and radiant heat dissipation. The web 23
keep the temperature high. In the figure, 25 is an air blowing nozzle. Air supply source not shown. Further, the flange 24 is acceleratedly cooled by the flange water cooling device 22 to keep the rolling temperature lower than the conventional rolling temperature, and furthermore, the temperature within the entire cross section of the material to be rolled is accurately controlled. 26 in the figure is a water injection nozzle, and illustration of a water supply unit such as a cooling water supply header is omitted. FIG. 5 is a graph of the cooling progress of the web and flange in the embodiment of the present invention, showing each rolling pass when cooling was performed in the middle of reverse rolling of the universal mill assembly 6 using the cooling device shown in FIG. 4b. Although the temperature progress of the web and flange is shown every (total of 8 passes), the cross-sectional temperature and its distribution are controlled to desired values, and the entire cross-sectional temperature is made uniform. 6th
The figure shows the relationship between the rolling start temperature and finishing temperature in the process. If the rolling start temperature is higher than 900°C, the rolling temperature will become too high, resulting in deterioration of mechanical properties and requiring excessive cooling equipment to keep the processing temperature within a specified value. , impractical. In addition, as shown in Figure 7, which shows the relationship between the rolling end temperature (“processing temperature” in the graph) and mechanical properties in the universal mill set, if the rolling end temperature of the universal mill set exceeds 750 + 40°C, the rolling end temperature after rolling The crystal grains are coarse and the mechanical properties deteriorate. If the rolling end temperature of the universal mill set is less than 750-40℃,
In addition to the abnormally high yield point, there is also a significant deterioration in elongation, which is disadvantageous. In the figure Ceq=0.30~0.34,
Web thickness 9-13 mm and flange thickness 14-18 mm are shown.
Note that if the amount of processing in this step is too small, the effect (grain refinement) will naturally decrease, so the total amount of processing (reduction amount) is preferably 50% or more. In addition,
The main structural requirements of the present invention are that the components and carbon equivalent of the rolled material and the rolling start and end temperatures in the intermediate rolling process are specified, and the rolling conditions of the final finishing mill 7 are not particularly defined. That is, the final finishing mill stage of invert rolling generally involves only light reduction for shaping, and the mechanical properties are built up to the intermediate rolling step. (Example) A to C shown in Table 2 are examples of the present invention, and D and E are conventional examples not based on the present invention. In order to obtain similar tensile strength, in D and E,
Since a large amount of Mn is used and V is added, the carbon equivalent Ceq is high. In contrast, the carbon equivalent of the present invention is low. Furthermore, the temperature difference between the web and the flange is small in both the rolling start (biting) temperature and the rolling end (final) temperature in the universal mill set. For this reason, a product with no difference in mechanical properties between the web and the flange can be obtained.

【表】 なお、本発明は、造船業において需要の多いハ
イテン・インバートに関して成されたものである
が、縦切り前の溝状形鋼は、同様な強度を有して
おり、ハイテン溝形鋼としての用途に供しうるこ
とは自明である。 (発明の効果) 以上説明したように、本発明によれば溶接性の
優れた構造用ハイテン・インバート(通常50キロ
級インバートと呼称されている)が効率的に製造
でき、その経済的効果も大きく、産業の発展に多
大の貢献をなすものである。
[Table] The present invention was made regarding high-tensile inverts, which are in high demand in the shipbuilding industry. It is obvious that it can be used as a. (Effects of the Invention) As explained above, according to the present invention, a structural high-tensile invert (usually referred to as a 50 kg class invert) with excellent weldability can be manufactured efficiently, and its economic effects can also be achieved. This is a major contribution to the development of industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ユニバーサルミル列を有する形鋼圧
延工程の一般例を示すレイアウトと被圧延材の断
面変化の説明図、第2図は、従来法による溝状形
鋼圧延におけるウエブとフランジの冷え方を例示
したグラフ、第3図は、第2図に対応する炭素当
量と機械的諸性質の相関図、第4図は、本発明の
実施態様を説明するための概略図であつて、aは
ユニバーサルミル列とフランジ水冷装置の平面
図、bはaのX−X′,Y−Y′に設置するフラン
ジ水冷装置の縦断面図、cはユニバーサルミル列
におけるユニバーサルミルとエツジヤーの圧延状
態(孔型例)を示す模式図、第5図は、本発明に
おけるウエブとフランジの冷却推移を例示するグ
ラフ、第6図は、圧延開始温度と加工温度の関係
の説明図、第7図は、本発明により製造したイン
バートのウエブとフランジの機械的諸性質と加工
温度との関係の説明図である。
Figure 1 is a layout showing a general example of a section rolling process with universal mill rows and an explanatory diagram of cross-sectional changes of the rolled material. Figure 2 is a diagram showing the cooling of webs and flanges in conventional method rolling of grooved sections. FIG. 3 is a graph showing the relationship between the carbon equivalent and various mechanical properties corresponding to FIG. 2, and FIG. 4 is a schematic diagram for explaining the embodiment of the present invention. is a plan view of the universal mill row and the flange water cooling device, b is a longitudinal cross-sectional view of the flange water cooling device installed at X-X′, Y-Y′ in a, and c is the rolling state of the universal mill and edger in the universal mill row ( FIG. 5 is a graph illustrating the cooling transition of the web and flange in the present invention, FIG. 6 is an explanatory diagram of the relationship between rolling start temperature and processing temperature, and FIG. FIG. 2 is an explanatory diagram of the relationship between various mechanical properties and processing temperature of the invert web and flange manufactured according to the present invention.

Claims (1)

【特許請求の範囲】 1 重量%で、 C;0.07〜0.15、 Si;0.15〜0.35、 Mn;0.90〜1.30、 P≦0.025、 S≦0.025、 SolAl;0.010〜0.035 残部Feおよび不可避的不純物よりなり、かつ
炭素当量(Ceq=C+Mn/6+Si/24+Ni/40
+Cr/5+Mo/4+V/14)<0.36%の連続鋳造
スラブから得た熱粗形鋼片を、その全断面温度
が、900℃以下のときユニバーサルミル組により
圧延を開始するとともに、750±40℃の範囲内で
該ユニバーサルミル組による圧延を終えて溝状形
鋼となし、該溝状形鋼を仕上圧延した後、冷却お
よび矯正を行い、次いで該溝状形鋼を縦切断し
て、2本のインバートとなすことを特徴とする溶
接性の優れたハイテン・インバートの製造法。
[Claims] 1% by weight, C; 0.07 to 0.15, Si; 0.15 to 0.35, Mn; 0.90 to 1.30, P≦0.025, S≦0.025, SolAl; 0.010 to 0.035, the remainder consisting of Fe and inevitable impurities. , and carbon equivalent (Ceq=C+Mn/6+Si/24+Ni/40
+Cr/5+Mo/4+V/14)<0.36% of the hot rough shaped steel slab obtained from the continuous casting slab is started rolling with a universal mill set when the total cross-sectional temperature is 900℃ or less, and at the same time it is heated to 750±40℃. After finishing rolling with the universal mill assembly to form a channel section within the range of 2. After finishing rolling the channel section, cooling and straightening the channel section, then longitudinally cutting the channel section. A method for manufacturing high-strength inverts with excellent weldability, which is characterized by the fact that they are made with book inverts.
JP5630284A 1984-03-26 1984-03-26 Manufacture of high tensile invert superior in weldability Granted JPS60200913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5630284A JPS60200913A (en) 1984-03-26 1984-03-26 Manufacture of high tensile invert superior in weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5630284A JPS60200913A (en) 1984-03-26 1984-03-26 Manufacture of high tensile invert superior in weldability

Publications (2)

Publication Number Publication Date
JPS60200913A JPS60200913A (en) 1985-10-11
JPH0525924B2 true JPH0525924B2 (en) 1993-04-14

Family

ID=13023329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5630284A Granted JPS60200913A (en) 1984-03-26 1984-03-26 Manufacture of high tensile invert superior in weldability

Country Status (1)

Country Link
JP (1) JPS60200913A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2672236B2 (en) * 1992-10-12 1997-11-05 新日本製鐵株式会社 Method for producing H-beam with excellent toughness
US6706125B2 (en) 2000-04-24 2004-03-16 Jfe Steel Corporation Linear shape steel excellent in joint fatigue characteristics and production method therefor
JP4900003B2 (en) * 2007-04-09 2012-03-21 住友金属工業株式会社 Hot rolled T-section steel
CN101214494B (en) * 2007-12-29 2010-12-01 莱芜钢铁集团有限公司 Technique for rolling figured steel for magnetic suspension train rail
CN113789475B (en) * 2021-09-14 2022-09-16 鞍钢股份有限公司 Method for producing low-alloy hot-rolled steel strip with yield strength of 355MPa at low cost

Also Published As

Publication number Publication date
JPS60200913A (en) 1985-10-11

Similar Documents

Publication Publication Date Title
JP4407081B2 (en) Ultra-thin steel sheet for cans
CN110499448B (en) high-N austenitic stainless steel medium plate with excellent performance and manufacturing method thereof
WO2020209060A1 (en) Square steel tube, method for manufacturing same, and building structure
TWI754213B (en) Square steel pipe, method for manufacturing the same, and building structure
JPH0525924B2 (en)
JPH0681036A (en) Production of ferritic stainless steel sheet excellent in ridging characteristic and workability
JPS63100126A (en) Manufacture of hot rolled high tension steel for resistance welded steel pipe having superior workability
JP3806173B2 (en) Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process
JP4415914B2 (en) Method for producing hot-rolled steel sheet having fine ferrite structure
JP3432428B2 (en) Deformed bar for reinforcing steel and method for producing the same
JPH08325644A (en) Production of high strength hot rolled steel sheet
JP3009750B2 (en) Method for producing structural steel sheet with excellent low-temperature toughness
Barlow et al. Examination of surface defects induced during hot rolling of high-alloy steel bar and rod
JP3806172B2 (en) Manufacturing method of hot-rolled steel sheet with good surface properties and pickling properties by continuous hot-rolling process
JP4158034B2 (en) Hot rolling method for thin steel sheet
JP3806176B2 (en) Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process
JP3806174B2 (en) Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process
JP3872538B2 (en) Method for producing hot-rolled steel sheet with good surface properties and pickling properties
JP3806175B2 (en) Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process
JPH04304315A (en) Method for preventing generation of edge flaw in hot-rolled steel sheet for grain-oriented silicon steel sheet
JP3872537B2 (en) Method for producing hot-rolled steel sheet with good surface properties and pickling properties
JPH0369967B2 (en)
CN115502203A (en) Thin steel plate with 460 MPa-grade yield strength and plate shape control method thereof
JPH11256234A (en) Production of high delta ferritic stainless wire rod
CN115351073A (en) Shape control method of 355 MPa-grade thick steel plate with thickness greater than 60mm