JP2001261435A - Piezoelectric ceramics and production process of the same - Google Patents

Piezoelectric ceramics and production process of the same

Info

Publication number
JP2001261435A
JP2001261435A JP2000075670A JP2000075670A JP2001261435A JP 2001261435 A JP2001261435 A JP 2001261435A JP 2000075670 A JP2000075670 A JP 2000075670A JP 2000075670 A JP2000075670 A JP 2000075670A JP 2001261435 A JP2001261435 A JP 2001261435A
Authority
JP
Japan
Prior art keywords
bnt
oriented
excess
piezoelectric
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000075670A
Other languages
Japanese (ja)
Other versions
JP4529219B2 (en
Inventor
Toshihiko Tani
俊彦 谷
Tsuguto Takeuchi
嗣人 竹内
Toshio Kimura
敏夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2000075670A priority Critical patent/JP4529219B2/en
Publication of JP2001261435A publication Critical patent/JP2001261435A/en
Application granted granted Critical
Publication of JP4529219B2 publication Critical patent/JP4529219B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain piezoelectric ceramics which consist of BNT (Bi0.5Na0.5TiO3) or contains BNT as a terminal component and stably show high sintered body density and/or a high degree of orientation of 100} planes, and also to provide a production process of the piezoelectric ceramics. SOLUTION: This piezoelectric ceramics consist essentially of a perovskite- type compound represented by the formula x (Bi0.5Na0.5TiO3)-($1-x) ABO3 (wherein: 0.1<=x<=1) and further contain Bi in an excess sufficient to provide a Bi content ratio by at least 0.1% higher than the stoichiometric Bi content ratio, wherein desirably, the respective constituent crystal grains of the piezoelectric ceramics have oriented pseudo-cubic 100} planes. The production process comprises: adding a Bi-containing raw material having an excess Bi content by at least 0.5% to another raw material which consists of a stoichiometric blend containing platelike-powdery Bi4Ti3O12 to obtain a raw material mixture; forming the raw material mixture into a green body so that the platelike powder grains are oriented; and thereafter, subjecting the green body to heat treatment at a prescribed temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧電セラミックス
及びその製造方法に関し、更に詳しくは、加速度セン
サ、超音波センサ、圧電トランス、圧電アクチュエー
タ、超音波モータ、圧電フォン、レゾネータ等に使用さ
れる圧電材料として好適な圧電セラミックス及びその製
造方法に関する。
The present invention relates to a piezoelectric ceramic and a method for manufacturing the same, and more particularly, to a piezoelectric ceramic used for an acceleration sensor, an ultrasonic sensor, a piezoelectric transformer, a piezoelectric actuator, an ultrasonic motor, a piezoelectric phone, a resonator, and the like. The present invention relates to a piezoelectric ceramic suitable as a material and a method for manufacturing the same.

【0002】[0002]

【従来の技術】圧電材料は、圧電効果を有する材料であ
り、その形態は、単結晶、セラミックス、薄膜、高分子
及びコンポジット(複合材)に分類される。これらの圧
電材料の中で、特に、圧電セラミックスは、高性能で、
形状の自由度が大きく、材料設計が比較的容易なため、
広くエレクトロニクスやメカトロニクスの分野で応用さ
れているものである。
2. Description of the Related Art Piezoelectric materials are materials having a piezoelectric effect, and are classified into single crystals, ceramics, thin films, polymers, and composites. Among these piezoelectric materials, in particular, piezoelectric ceramics have high performance,
Because the degree of freedom of shape is large and material design is relatively easy,
It is widely applied in the fields of electronics and mechatronics.

【0003】圧電セラミックスは、強誘電体セラミック
スに直流を印加し、強誘電体の分域の方向を一定の方向
にそろえる、いわゆる分極処理を施したものである。分
極処理により自発分極を一定方向にそろえるためには、
自発分極が三次元的に取りうるペロブスカイト型結晶構
造が有利であることから、実用化されている圧電セラミ
ックスの大部分は、ペロブスカイト型強誘電体セラミッ
クスである。
[0003] Piezoelectric ceramics are obtained by applying a direct current to a ferroelectric ceramic and subjecting it to a so-called polarization process in which the direction of the domain of the ferroelectric is aligned in a fixed direction. In order to align spontaneous polarization in a certain direction by polarization processing,
Since a perovskite-type crystal structure in which spontaneous polarization can be three-dimensionally is advantageous, most of practically used piezoelectric ceramics are perovskite-type ferroelectric ceramics.

【0004】ペロブスカイト型強誘電体セラミックスと
しては、例えば、Pb(Zr・Ti)O(以下、これ
を「PZT」という。)、PZTに対して鉛系複合ペロ
ブスカイトを第三成分として添加したPZTにリラクサ
を加えた3成分系、BaTiO、Bi0.5Na
0.5TiO(以下、これを「BNT」という。)な
どが知られている。
[0004] Perovskite ferroelectric ceramics include, for example, Pb (Zr.Ti) O 3 (hereinafter referred to as “PZT”), and PZT obtained by adding a lead-based composite perovskite to PZT as a third component. Ternary system with relaxor added, BaTiO 3 , Bi 0.5 Na
0.5 TiO 3 (hereinafter referred to as “BNT”) and the like are known.

【0005】これらの中で、PZTに代表される鉛系の
圧電セラミックスは、他の圧電セラミックスに比較して
高い圧電特性を有しており、現在実用化されている圧電
セラミックスの大部分を占めている。しかしながら、鉛
系の圧電セラミックスは、蒸気圧が高く、人体に有害な
酸化鉛(PbO)を含んでいるために、環境に対する負
荷が大きいという問題がある。そのため、低鉛あるいは
無鉛でPZTと同等の圧電特性を有する圧電セラミック
スが求められている。
[0005] Among these, lead-based piezoelectric ceramics represented by PZT have higher piezoelectric properties than other piezoelectric ceramics, and account for most of the piezoelectric ceramics currently in practical use. ing. However, since lead-based piezoelectric ceramics have a high vapor pressure and contain lead oxide (PbO) that is harmful to the human body, there is a problem that the load on the environment is large. Therefore, a piezoelectric ceramic having low lead or lead-free and having the same piezoelectric characteristics as PZT is required.

【0006】一方、BNT又はこれを端成分とする固溶
体セラミックスは、鉛を含まない圧電材料の中では比較
的高い圧電特性を有しており、PZTに代わる無鉛圧電
セラミックスの有力な候補材料の1つと考えられてい
る。そのため、BNT系の圧電セラミックスの組成、製
造方法等に関し、従来から種々の提案がなされている。
On the other hand, BNT or solid solution ceramics containing BNT as an end component has relatively high piezoelectric characteristics among lead-free piezoelectric materials, and is one of the leading candidate materials for lead-free piezoelectric ceramics instead of PZT. Is considered one. Therefore, various proposals have conventionally been made regarding the composition, manufacturing method, and the like of BNT-based piezoelectric ceramics.

【0007】例えば、特公平4−60073号公報に
は、化学式x(Bi0.5Na0.5TiO)−(1
−x)MTiO(但し、Mは、Ba又はBi0.5
0.5、0.80≦x≦0.99)で示される組成の物
質を主成分とし、必要に応じてMnO、Fe
Cr、NiO等から選択される少なくとも1つを
添加物として加えた圧電体セラミックス及びその製造方
法が開示されている。同公報によれば、鉛を用いること
なく、広がりモード電気機械結合係数Kpに比して厚み
モード電気機械結合係数Ktが大きい圧電体セラミック
スが得られるとされている。
For example, Japanese Patent Publication No. Hei 4-60073 discloses a chemical formula x (Bi 0.5 Na 0.5 TiO 3 )-(1
-X) MTiO 3 (where M is Ba or Bi 0.5 K
0.5 , 0.80 ≦ x ≦ 0.99) as a main component, and if necessary, MnO 2 , Fe 2 O 3 ,
A piezoelectric ceramic to which at least one selected from Cr 2 O 3 , NiO and the like is added as an additive and a method for producing the same are disclosed. According to the publication, a piezoelectric ceramic having a thickness mode electromechanical coupling coefficient Kt larger than a spread mode electromechanical coupling coefficient Kp can be obtained without using lead.

【0008】また、例えば、特開平10−139552
号公報には、Bi、Sr、Caの内の少なくとも1種の
元素を含有する酸化物で、ロットゲーリング法による結
晶配向度が10%以上である結晶配向セラミックス及び
その製造方法が本件出願人により提案されている。ま
た、同公報には、成形体中に板状のBiTi12
粉末を配向させ、これをテンプレート材料としてin−
situ反応させることにより、ペロブスカイト型化合
物であるBNT又はBNTを端成分とする固溶体を生成
させる結晶配向セラミックスの製造プロセスが記載され
ている。
Further, for example, Japanese Patent Application Laid-Open No. 10-139552
Japanese Patent Application Laid-Open Publication No. H10-157, discloses an oxide containing at least one element of Bi, Sr, and Ca, which has a crystal orientation degree of 10% or more by a Lotgering method and a method for producing the same. Proposed. Further, the publication discloses that a plate-like Bi 4 Ti 3 O 12
Orient the powder and use this as a template material in-
A process for producing a crystallographically-oriented ceramic in which a perovskite-type compound, BNT, or a solid solution containing BNT as an end component is produced by a situ reaction is described.

【0009】[0009]

【発明が解決しようとする課題】特公平4−60073
号公報に開示されているように、BNT系の圧電セラミ
ックスは、有害物質である鉛を含まず、しかも、比較的
特性の高い圧電材料である。しかしながら、微粒状の単
純化合物からなる原料粉末を化学量論比となるように混
合し、仮焼、成形及び焼結を行う従来の製造プロセス
(以下、これを「従来法」という。)で得られるBNT
系の圧電セラミックスは、PZTなどの鉛を含む圧電材
料に比べると大きく性能が劣る。これは、従来法で得ら
れたBNT系の圧電セラミックスは、無配向の多結晶体
となり、分極処理後も分極軸に大きな乱れがあるためで
ある。
[Problems to be Solved by the Invention]
As disclosed in Japanese Patent Application Laid-Open Publication No. H10-209, BNT-based piezoelectric ceramics are piezoelectric materials that do not contain lead, which is a harmful substance, and have relatively high characteristics. However, a conventional manufacturing process (hereinafter, referred to as "conventional method") in which raw material powders composed of fine-grained simple compounds are mixed in a stoichiometric ratio and calcined, molded, and sintered is performed. BNT
The performance of piezoelectric ceramics is greatly inferior to that of lead-containing piezoelectric materials such as PZT. This is because the BNT-based piezoelectric ceramic obtained by the conventional method becomes a non-oriented polycrystalline body, and there is a large disturbance in the polarization axis even after the polarization treatment.

【0010】これに対し、特開平10−139552号
公報に開示されているように、成形体中に配向させた板
状粉末をテンプレート材料として、in−situ反応
により目的とするペロブスカイト型化合物を生成させる
方法(以下、これを「RTGG法」という。)を用いる
と、特定の結晶面が特定の方向に配向したBNT系の圧
電セラミックスが得られる。また、得られた圧電セラミ
ックスは、同一組成の無配向セラミックスに比べて、高
い圧電特性を示す。しかしながら、RTGG法を用いて
特定の結晶面が特定方向に配向したBNT系の圧電セラ
ミックスを製造する場合、その組成によっては、高い焼
結体密度及び/又は高い結晶配向度が安定して得られ
ず、特性に大きなばらつきが生じる場合があった。
On the other hand, as disclosed in JP-A-10-139552, a target perovskite compound is produced by an in-situ reaction using a plate-like powder oriented in a molded body as a template material. By using a method (hereinafter referred to as "RTGG method"), a BNT-based piezoelectric ceramic in which a specific crystal plane is oriented in a specific direction can be obtained. Further, the obtained piezoelectric ceramics exhibit higher piezoelectric characteristics than non-oriented ceramics having the same composition. However, when manufacturing a BNT-based piezoelectric ceramic in which a specific crystal plane is oriented in a specific direction by using the RTGG method, a high sintered body density and / or a high degree of crystal orientation can be stably obtained depending on the composition. In some cases, large variations occurred in the characteristics.

【0011】本発明が解決しようとする課題は、BNT
又はこれを端成分とする圧電セラミックスにおいて、高
い焼結体密度及び/又は高い結晶配向度が安定して得ら
れる圧電セラミックス及びその製造方法を提供すること
にある。
The problem to be solved by the present invention is that BNT
Another object of the present invention is to provide a piezoelectric ceramic having a high density of sintered body and / or a high degree of crystal orientation stably obtained in a piezoelectric ceramic having the end component, and a method of manufacturing the same.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に本発明に係る圧電セラミックスは、次の化1の式で表
されるペロブスカイト型化合物を主成分とし、さらに前
記ペロブスカイト型化合物に含まれる化学量論比のBi
より少なくとも0.1%過剰のBiが含まれていること
を要旨とするものである。
Means for Solving the Problems In order to solve the above problems, a piezoelectric ceramic according to the present invention contains a perovskite compound represented by the following formula 1 as a main component, and is further included in the perovskite compound. Stoichiometric Bi
The gist is that at least a 0.1% excess of Bi is contained.

【0013】[0013]

【化1】x(Bi0.5Na0.5TiO)−(1−
x)ABO (但し、0.1≦x≦1)
Embedded image x (Bi 0.5 Na 0.5 TiO 3 )-(1-
x) ABO 3 (provided that 0.1 ≦ x ≦ 1)

【0014】この場合、前記圧電セラミックスを構成す
る各結晶粒の擬立方{100}面が配向していることが
望ましい。
In this case, it is desirable that the pseudo-cubic {100} plane of each crystal grain constituting the piezoelectric ceramic is oriented.

【0015】本発明に係る圧電セラミックスは、化1の
式で表されるペロブスカイト型化合物を主成分とし、さ
らに少量のBiが過剰に含まれているので、焼結中に液
相が生成し、元素の拡散が促される。そのため、その組
成によらず容易に緻密化し、高い焼結体密度が安定して
得られる。また、少量のBiを過剰に添加することによ
って、擬立方{100}面が高い配向度で配向したBN
T系の圧電セラミックスが再現性良く得られ、同一組成
の無配向焼結体よりも大きな圧電定数及び電気機械結合
係数を発現する。
The piezoelectric ceramic according to the present invention contains a perovskite compound represented by the following chemical formula 1 as a main component and a small amount of Bi in excess, so that a liquid phase is generated during sintering. Element diffusion is promoted. Therefore, it is easily densified regardless of its composition, and a high sintered body density can be stably obtained. Also, by adding a small amount of Bi in excess, BN in which the pseudo cubic {100} plane is oriented with a high degree of orientation is obtained.
T-based piezoelectric ceramics are obtained with good reproducibility, and exhibit a larger piezoelectric constant and electromechanical coupling coefficient than non-oriented sintered bodies having the same composition.

【0016】また、本発明に係る圧電セラミックスの製
造方法は、板状のBiTi 粉末と、該板状粉
末と反応して、化1の式で表されるペロブスカイト型化
合物を生成するペロブスカイト生成原料と、前記ペロブ
スカイト型化合物に含まれる化学量論比のBiより少な
くとも0.5%過剰のBiを含むBi含有原料とを混合
する工程と、該混合工程で得られた混合物を前記板状粉
末が配向するように成形する成形工程と、該成形工程で
得られた成形体を加熱する熱処理工程とを備えているこ
とを要旨とするものである。
[0016] The manufacturing method of the piezoelectric ceramic according to the present invention, a plate-shaped Bi 4 Ti 3 O 1 2 powder, by reacting with the plate-like powder, a perovskite type compound represented by the chemical formula 1 Mixing a perovskite-forming raw material to be produced with a Bi-containing raw material containing at least 0.5% of Bi in excess of Bi in the stoichiometric ratio contained in the perovskite-type compound, and mixing the mixture obtained in the mixing step. The gist of the present invention is to include a forming step of forming the plate-like powder so as to be oriented, and a heat treatment step of heating the formed body obtained in the forming step.

【0017】板状のBiTi12粉末は、その発
達面が化1の式で表されるペロブスカイト型化合物の擬
立方{100}面と格子整合性を有している。そのた
め、板状粉末とペロブスカイト生成原料とを含む混合物
を板状粉末の発達面が配向するように成形し、これを所
定温度で熱処理すると、板状粉末の発達面にペロブスカ
イト型化合物の配向結晶核が生じ、この配向結晶核が粒
成長することによってバルク試料全体が配向焼結体とな
る。また、この時、原料中に少量のBiが過剰に含まれ
ていると、元素の拡散が促されるので、高い焼結体密度
及び高い{100}面配向度を有する圧電セラミックス
が安定して得られる。
The plate-like Bi 4 Ti 3 O 12 powder has a lattice matching with a pseudocubic {100} plane of a perovskite-type compound represented by the following formula (1). Therefore, a mixture containing the plate-like powder and the perovskite-forming raw material is formed so that the developed surface of the plate-like powder is oriented, and then heat-treated at a predetermined temperature, the oriented crystal nuclei of the perovskite-type compound are formed on the developed surface of the plate-like powder. Are generated, and the whole bulk sample becomes an oriented sintered body by grain growth of the oriented crystal nuclei. At this time, if a small amount of Bi is excessively contained in the raw material, the diffusion of elements is promoted, so that a piezoelectric ceramic having a high sintered body density and a high degree of {100} plane orientation can be stably obtained. Can be

【0018】[0018]

【発明の実施の形態】以下、本発明の一実施の形態につ
いて詳細に説明する。本発明に係る圧電セラミックス
は、BNT又はBNTを端成分とするペロブスカイト型
化合物を主成分とする。その組成は、次の化2の式で表
される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail. The piezoelectric ceramic according to the present invention contains BNT or a perovskite compound having BNT as an end component. Its composition is represented by the following formula.

【0019】[0019]

【化2】x(Bi0.5Na0.5TiO)−(1−
x)ABO (但し、0.1≦x≦1)
## STR2 ## x (Bi 0.5 Na 0.5 TiO 3 )-(1-
x) ABO 3 (provided that 0.1 ≦ x ≦ 1)

【0020】化2の式中、ABOは、BNTと固溶体
を形成して化2の式で表されるペロブスカイト型化合物
となるものであればどんなものであってもかまわない。
ABOとしては、具体的には、Bi0.50.5
iO、BaTiO、PbTiO、SrTiO
CaTiO、NaNbO、KNbO、YMn
、CaMnO、LiNbO、LiTaO等の
ペロブスカイト型物質や、LiNbO型物質、YMn
型物質等が好適な一例として挙げられる。また、A
BOは、これらの化合物の中から選ばれる2以上の化
合物の組み合わせであっても良いし、固溶体でも良い。
In the formula, ABO3Is BNT and solid solution
To form a perovskite compound represented by the formula:
Anything can be used as long as
ABO3Specifically, Bi0.5K0.5T
iO3, BaTiO3, PbTiO3, SrTiO3,
CaTiO3, NaNbO3, KNbO3, YMn
O 3, CaMnO3, LiNbO3, LiTaO3Etc.
Perovskite-type substances and LiNbO3Type material, YMn
O3A preferable example is a mold material. Also, A
BO3Is a compound of two or more selected from these compounds
It may be a combination of compounds or a solid solution.

【0021】また、化2の式中、BNTのモル分率を表
すxの値は、0.1≦x≦1の範囲内にあれば良い。こ
こで、xの値を0.1以上としたのは、後述する板状の
Bi Ti12粉末をテンプレートとして用いる場
合において、xの値が0.1未満になると、必然的にテ
ンプレートとして添加する板状粉末の量が少なくなり、
高い配向度を有する圧電セラミックスが得られないため
である。
In the formula, the molar fraction of BNT is expressed as
The value of x may be in the range of 0.1 ≦ x ≦ 1. This
Here, the value of x was set to 0.1 or more because of a plate-like shape described later.
Bi 4Ti3O12A place to use powder as a template
If the value of x is less than 0.1,
The amount of plate-like powder added as a plate is reduced,
Because a piezoelectric ceramic with a high degree of orientation cannot be obtained
It is.

【0022】また、本発明に係る圧電セラミックスは、
化2の式で表されるBNT系のペロブスカイト型化合物
(以下、これを「BNT系化合物」という。)に含まれ
る化学量論比のBiより、少なくとも0.1%過剰のB
iが含まれていることを特徴とする。圧電セラミックス
中に過剰に含まれるBiの量(以下、これを「過剰Bi
含有量」という。)が、0.1%未満になると、高い焼
結体密度及び高い配向度を有する圧電セラミックスが安
定して得られないので好ましくない。
Further, the piezoelectric ceramic according to the present invention comprises:
At least 0.1% excess of B in the stoichiometric ratio of Bi contained in the BNT-based perovskite compound represented by the formula (2) (hereinafter referred to as “BNT-based compound”).
i is included. The amount of Bi excessively contained in the piezoelectric ceramic (hereinafter referred to as “excess Bi”
Content ". Is less than 0.1%, it is not preferable because a piezoelectric ceramic having a high sintered body density and a high degree of orientation cannot be stably obtained.

【0023】過剰Bi含有量を増加させても、焼結性が
低下することはなく、高密度の圧電セラミックスを安定
して得ることができる。しかしながら、RTGG法を用
いて特定の結晶面を配向させる場合において、過剰Bi
含有量が過大になると、配向度が低下し、その結果とし
て、圧電定数、電気機械結合係数等の圧電特性を低下さ
せる。従って、高密度、かつ、高配向度の圧電セラミッ
クスを安定して得るためには、過剰Bi含有量は、3%
以下が望ましい。
Even if the excess Bi content is increased, the sinterability does not decrease, and a high-density piezoelectric ceramic can be stably obtained. However, when a specific crystal plane is oriented using the RTGG method, excess Bi
When the content is excessive, the degree of orientation is reduced, and as a result, piezoelectric characteristics such as a piezoelectric constant and an electromechanical coupling coefficient are reduced. Therefore, in order to stably obtain a piezoelectric ceramic having a high density and a high degree of orientation, the excess Bi content must be 3%.
The following is desirable.

【0024】なお、圧電セラミックス中に含まれる過剰
のBiは、酸化物の形で粒界に存在していると考えられ
るが、その詳細は不明である。要は、圧電セラミックス
の中に、化2の式から求められる化学量論比のBiより
も、少なくとも0.1%過剰のBiが含まれていればよ
い。また、「過剰Bi含有量」とは、次の数1の式で表
される数値をいう。
The excess Bi contained in the piezoelectric ceramic is considered to be present at the grain boundary in the form of an oxide, but the details are unknown. In short, it is only necessary that the piezoelectric ceramic contains at least 0.1% of Bi in excess of the stoichiometric ratio Bi obtained from the formula (2). Further, “excess Bi content” refers to a numerical value represented by the following equation (1).

【0025】[0025]

【数1】過剰Bi含有量=(B−B)x100/B
(%)
## EQU1 ## Excess Bi content = (B x −B 0 ) × 100 / B
0 (%)

【0026】但し、Bは、化学量論比のBNT系化合
物中に含まれるTiを基準として求めたBNT系化合物
中に含まれる全Biのモル数であり、Bは、圧電セラ
ミックス中に含まれるTiを基準として求めた圧電セラ
ミックス中に含まれる全Biのモル数である。なお、上
記の値は、反応によって生成するx(Bi0.5Na
0.5TiO)−(1−x)ABOから、あらかじ
めABOの分を除いた組成に対して求められる。
However, B0Is a stoichiometric BNT compound
BNT-based compounds determined based on Ti contained in materials
The number of moles of all Bi contained therein,xIs a piezoelectric ceramic
Piezoelectric ceramic based on the Ti in the mix
This is the number of moles of all Bi contained in the mix. In addition, above
This value is the value of x (Bi0.5Na
0.5TiO3)-(1-x) ABO3From
ABO3Is determined for the composition excluding the amount of

【0027】また、本発明に係る圧電セラミックスにお
いて、高い圧電特性を得るためには、多結晶体を構成す
る各結晶粒の擬立方{100}面が配向していることが
望ましい。ここで、「擬立方{HKL}」とは、一般
に、ペロブスカイト型化合物は、正方晶、斜方晶、三方
晶など、立方晶から歪んだ構造をとるが、その歪は僅か
であるので、立方晶とみなしてミラー指数表示すること
を意味する。また、各結晶粒の配向の程度は、具体的に
は、次の数2の式で表されるロットゲーリング(Lot
gering)法による結晶配向度Q(HKL)により
表される。
In the piezoelectric ceramic according to the present invention, in order to obtain high piezoelectric properties, it is desirable that the pseudo-cubic {100} plane of each crystal grain constituting the polycrystal is oriented. Here, “pseudo cubic {HKL}” generally means that a perovskite-type compound has a structure distorted from a cubic system such as tetragonal system, orthorhombic system, and trigonal system. It means that it is regarded as a crystal and the Miller index is indicated. The degree of orientation of each crystal grain is specifically determined by Lotgering (Lot) expressed by the following equation (2).
The degree of crystal orientation Q (HKL) by the gering method.

【0028】[0028]

【数2】 (Equation 2)

【0029】但し、数2の式において、ΣI(hkl)
及びΣ’I(HKL)は、それぞれ、結晶配向セラミッ
クスについて測定されたすべての結晶面(hkl)から
のX線回折強度の総和、及び結晶学的に等価な特定の結
晶面(HKL)からのX線回折強度の総和である。一
方、ΣI(hkl)及びΣ’I(HKL)は、それ
ぞれ、結晶配向セラミックスと同一組成を有し、かつ無
配向の多結晶セラミックスについて測定されたすべての
結晶面(hkl)からのX線回折強度の総和、及び結晶
学的に等価な特定の結晶面(HKL)からのX線回折強
度の総和である。
However, in the equation (2), ΔI (hkl)
And Σ′I (HKL) are the sum of the X-ray diffraction intensities from all crystal planes (hkl) measured for the crystallographically-oriented ceramic and the crystallographically equivalent specific crystal plane (HKL), respectively. It is the sum of X-ray diffraction intensities. On the other hand, ΣI 0 (hkl) and Σ′I 0 (HKL) have the same composition as the crystallographically-oriented ceramic, respectively, and have X from all the crystal planes (hkl) measured for the non-oriented polycrystalline ceramic. The sum of the X-ray diffraction intensities and the sum of the X-ray diffraction intensities from a crystallographically equivalent specific crystal plane (HKL).

【0030】従って、数2の式において、各結晶粒が無
配向である場合には結晶配向度Q(HKL)が0%とな
り、すべての結晶粒の{HKL}面が一方向に配向して
いる場合には100%となる。
Therefore, in the equation (2), when each crystal grain is non-oriented, the degree of crystal orientation Q (HKL) is 0%, and the {HKL} planes of all the crystal grains are oriented in one direction. If there is, it becomes 100%.

【0031】本発明に係る圧電セラミックスにおいて、
高い圧電特性を得るためには、少なくとも、数2の式で
表される擬立方{100}面の結晶配向度Q(100)
が0でないことが望ましい。電界−歪挙動のヒステリシ
スが小さい圧電セラミックス、あるいは、高い圧電定数
を示す圧電セラミックスを得るためには、多くの場合、
擬立方{100}面の結晶配向度Q(100)は、大き
い程良い。
In the piezoelectric ceramic according to the present invention,
In order to obtain high piezoelectric characteristics, at least the pseudo-cubic {100} plane crystal orientation degree Q (100)
Is preferably not zero. In order to obtain a piezoelectric ceramic having a small hysteresis of electric field-strain behavior or a piezoelectric ceramic exhibiting a high piezoelectric constant, in many cases,
The larger the degree of crystal orientation Q (100) of the pseudo cubic {100} plane, the better.

【0032】次に、本発明に係る圧電セラミックスの作
用について説明する。圧電セラミックスの焼結体密度
は、一般に、誘電率、圧電定数等の電気的特性に影響を
及ぼし、焼結体密度が高くなるほど良好な圧電特性を示
すことが知られている。また、圧電セラミックスは、そ
の圧電特性に結晶異方性があり、多結晶体を構成する各
結晶粒の特定の結晶面を配向させると、無配向焼結体に
比して高い圧電特性を示すことが知られている。
Next, the operation of the piezoelectric ceramic according to the present invention will be described. It is known that the density of a sintered body of a piezoelectric ceramic generally affects electrical characteristics such as a dielectric constant and a piezoelectric constant, and the higher the density of a sintered body, the better the piezoelectric properties. Piezoelectric ceramics have crystal anisotropy in their piezoelectric properties, and exhibit high piezoelectric properties as compared to non-oriented sintered bodies when a specific crystal plane of each crystal grain constituting the polycrystal is oriented. It is known.

【0033】しかしながら、BNT系化合物の中には、
従来法では高密度を有する焼結体が得られるが、RTG
G法を用いて特定の結晶面が配向した焼結体を作製しよ
うとすると、高密度の焼結体が安定して得られない組成
があった。また、このような組成においては、配向度に
ばらつきがあり、高い配向度が安定して得られない場合
があった。このような焼結体密度や配向度が不安定な材
料を調べると、焼結途中で液相が生じない、又は、生じ
にくい組成であることがわかった。
However, some BNT compounds include
Although a sintered body having a high density can be obtained by the conventional method, RTG
When attempting to produce a sintered body in which a specific crystal plane is oriented using the G method, there is a composition in which a high-density sintered body cannot be stably obtained. In such a composition, the degree of orientation varies, and in some cases, a high degree of orientation cannot be stably obtained. Examination of a material having such an unstable sintered body density or degree of orientation revealed that the composition did not produce a liquid phase during sintering, or that the composition was unlikely to be produced.

【0034】これに対し、本発明に係る圧電セラミック
スは、BNT系化合物に対し、さらに化学量論比よりも
過剰のBiが添加されているので、その組成によらず、
高い焼結体密度が安定して得られる。これは、焼結体密
度が不安定な材料系に対して過剰のBiを添加すると、
焼結途中で液相が発生しやすくなり、これによって元素
の拡散が促され、緻密化が容易化するためと考えられ
る。
On the other hand, in the piezoelectric ceramics according to the present invention, Bi is added to the BNT compound in excess of the stoichiometric ratio.
High sintered body density can be obtained stably. This is because if an excessive amount of Bi is added to a material system having an unstable sintered body density,
It is considered that a liquid phase is likely to be generated during sintering, which promotes the diffusion of elements and facilitates densification.

【0035】また、RTGG法を用いて各結晶粒を配向
させる場合において、化学量論比よりも過剰のBiを添
加すると、配向度が不安定となりやすい材料系であって
も高い配向度が安定して得られる。また、その結果とし
て、同一組成の無配向焼結体に比して、高い電気機械結
合係数、圧電定数、焦電定数を示す。そのため、本発明
に係る圧電セラミックス、感度の高いセンサ、特性の高
いソナー等に使用される圧電材料として好適である。
In the case where each crystal grain is oriented by the RTGG method, if an excessive amount of Bi is added more than the stoichiometric ratio, the high degree of orientation is stable even in a material system in which the degree of orientation tends to be unstable. Is obtained. Further, as a result, the electromechanical coupling coefficient, the piezoelectric constant, and the pyroelectric constant are higher than those of a non-oriented sintered body having the same composition. Therefore, it is suitable as a piezoelectric material used for the piezoelectric ceramics according to the present invention, a sensor having high sensitivity, a sonar having high characteristics, and the like.

【0036】また、BNT又はBNTに少量のABO
を固溶させた固溶体は、菱面体晶であり、<111>方
向に自発分極軸を持つ。このような結晶構造を有するB
NT系化合物を{100}面配向させ、<100>方向
に分極すると、その理由は明確ではないが、電気機械結
合係数が高くなり、誘電損失も低い値を示す。そのた
め、本発明に係る圧電セラミックスの中で、このような
配向組織を呈するものは、特に、エネルギー効率が高く
損失の少ない圧電アクチュエータ、あるいは、ノイズの
少ないセンサ等に使用される圧電材料として好適であ
る。
Further, a small amount of ABO 3 is added to BNT or BNT.
Is a rhombohedral crystal and has a spontaneous polarization axis in the <111> direction. B having such a crystal structure
When the NT-based compound is oriented in the {100} plane and polarized in the <100> direction, although the reason is not clear, the electromechanical coupling coefficient increases and the dielectric loss shows a low value. Therefore, among the piezoelectric ceramics according to the present invention, those exhibiting such an oriented structure are particularly suitable as a piezoelectric material used for a piezoelectric actuator having a high energy efficiency and a small loss, or a sensor having a small noise. is there.

【0037】次に、本発明に係る圧電セラミックスの製
造方法について説明する。本発明に係る圧電セラミック
スの製造方法は、混合工程と、成形工程と、熱処理工程
とを備えている。
Next, a method for manufacturing a piezoelectric ceramic according to the present invention will be described. The method for manufacturing a piezoelectric ceramic according to the present invention includes a mixing step, a forming step, and a heat treatment step.

【0038】混合工程は、板状のBiTi
12(以下、これを「BIT」という。)粉末と、板状
BIT粉末と反応してBNT系化合物を生成するペロブ
スカイト生成原料と、BNT系化合物に含まれる化学量
論比のBiより少なくとも0.5%過剰のBiを含むB
i含有原料とを混合する工程である。
In the mixing step, plate-like Bi 4 Ti 3 O
12 (hereinafter, referred to as “BIT”) powder, a perovskite-forming raw material that reacts with the plate-like BIT powder to generate a BNT-based compound, and at least 0.1% from Bi of the stoichiometric ratio contained in the BNT-based compound. B containing 5% excess Bi
This is a step of mixing with the i-containing raw material.

【0039】ここで、板状BIT粉末は、BNT系化合
物を合成する際のテンプレートとなるものである。テン
プレート材料としてBITを用いたのは、BITは、ビ
スマス層状ペロブスカイト型化合物の一種であり、板状
粉末の合成が容易であること、及び、板状のBIT粉末
の発達面(最も面積の広い面)であるc面とBNT化合
物の{100}面との間に良好な格子整合性を有してい
ることによる。Na .5Bi4.5Ti15の板
状粉末もテンプレートとして使用できるが、より単純な
構造のBIT粉末の方が望ましい。
Here, the plate-like BIT powder serves as a template when synthesizing a BNT compound. The reason for using BIT as the template material is that BIT is a kind of bismuth layered perovskite-type compound, which facilitates the synthesis of plate-like powder, and that the plate-like BIT powder develops (the surface with the largest area). )) And good lattice matching between the {100} plane of the BNT compound. Na 0 . A plate-like powder of 5 Bi 4.5 Ti 4 O 15 can also be used as a template, but a BIT powder with a simpler structure is preferred.

【0040】また、高い配向度を有する圧電セラミック
スを得るためには、板状BIT粉末は、成形時に一方向
に配向させることが容易な形状を有している必要があ
る。そのためには、板状BIT粉末の平均アスペクト比
は、3以上であることが望ましい。平均アスペクト比が
3未満であると、成形時に板状BIT粉末を一方向に配
向させるのが困難となるので好ましくない。板状BIT
粉末の平均アスペクト比は、さらに好ましくは5以上で
ある。
Further, in order to obtain a piezoelectric ceramic having a high degree of orientation, the plate-like BIT powder needs to have a shape that can be easily oriented in one direction during molding. For that purpose, the average aspect ratio of the plate-like BIT powder is desirably 3 or more. If the average aspect ratio is less than 3, it is difficult to orient the plate-like BIT powder in one direction during molding, which is not preferable. Plate BIT
The average aspect ratio of the powder is more preferably 5 or more.

【0041】なお、このような形状を有する板状BIT
粉末は、液相の存在下で容易に合成できる。具体的に
は、BIT組成を有する原料をフラックスと共に加熱す
る方法(フラックス法)、微粒状のBIT粉末をアルカ
リ水溶液と共にオートクレーブ中で加熱する方法(水熱
合成法)、溶液から析出させる方法(析出法)等により
合成できるが、いずれの方法により合成された板状BI
T粉末であっても使用できる。
The plate BIT having such a shape is used.
Powders can be easily synthesized in the presence of a liquid phase. Specifically, a method of heating a raw material having a BIT composition together with flux (flux method), a method of heating fine BIT powder together with an aqueous alkali solution in an autoclave (hydrothermal synthesis method), and a method of precipitating from a solution (precipitation) Method) etc., but the plate-like BI synthesized by any method
Even T powder can be used.

【0042】ペロブスカイト生成原料は、後述する熱処
理工程において板状BIT粉末と反応してBNT系化合
物となるものであれば良い。従って、使用するペロブス
カイト生成原料の組成は、板状BIT粉末の配合量及び
作製しようとするBNT系化合物の組成に応じて定ま
る。
The perovskite forming raw material may be any as long as it reacts with the plate-like BIT powder in the heat treatment step described below to become a BNT-based compound. Therefore, the composition of the perovskite forming raw material to be used is determined according to the blending amount of the plate-like BIT powder and the composition of the BNT compound to be produced.

【0043】ペロブスカイト生成原料としては、具体的
には、BNT、Bi0.50.5TiO、BaTi
、PbTiO、SrTiO、CaTiO、N
aNbO、KNbOなどのセラミックス粉末、Bi
、PbO、TiO、Nbなどの酸化物原
料、NaCO、KCO、BaCO、CaCO
、SrCOなどの炭酸塩原料等が好適な一例として
挙げられる。また、水酸化物や有機酸塩、アルコキシド
等の酸化物の前駆体を用いることもできる。
Specific examples of the perovskite producing raw material include BNT, Bi 0.5 K 0.5 TiO 3 , and BaTi
O 3 , PbTiO 3 , SrTiO 3 , CaTiO 3 , N
Ceramic powders such as aNbO 3 and KNbO 3 , Bi
Oxide materials such as 2 O 3 , PbO, TiO 2 , Nb 2 O 5 , Na 2 CO 3 , K 2 CO 3 , BaCO 3 , CaCO
3 , a carbonate raw material such as SrCO 3 is mentioned as a preferred example. In addition, a precursor of an oxide such as a hydroxide, an organic acid salt, or an alkoxide can also be used.

【0044】なお、板状BIT粉末とペロブスカイト生
成原料の配合比率は、作製しようとする圧電セラミック
スの要求特性に応じて任意に定めることができる。ま
た、高い配向度を有する圧電セラミックスを得るために
は、板状BIT粉末の配合量は、ペロブスカイト型構造
を有するBNT系化合物のBサイト原子に換算して5%
以上が望ましい。板状BIT粉末の配合量がペロブスカ
イト型構造のBサイト原子に換算して5%未満であって
も、高い焼結体密度を有する圧電セラミックスは得られ
るが、配向度が低下し、圧電特性が低下するので好まし
くない。
The mixing ratio between the plate-like BIT powder and the perovskite forming raw material can be arbitrarily determined according to the required characteristics of the piezoelectric ceramic to be produced. In order to obtain a piezoelectric ceramic having a high degree of orientation, the amount of the plate-like BIT powder is 5% in terms of B site atoms of a BNT compound having a perovskite structure.
The above is desirable. Even if the compounding amount of the plate-like BIT powder is less than 5% in terms of the B site atoms of the perovskite structure, a piezoelectric ceramic having a high sintered body density can be obtained, but the degree of orientation is reduced and the piezoelectric characteristics are reduced. It is not preferable because it lowers.

【0045】Bi含有原料は、化学量論比のBNT系化
合物を生成可能な原料に対し、化学量論比よりも過剰の
Biを供給することが可能なものであればよい。Bi含
有原料としては、具体的には、Biを含む酸化物、炭酸
塩、水酸化物、有機酸塩、アルコキシド等が好適な一例
として挙げられる。
The Bi-containing raw material may be any as long as it can supply Bi in excess of the stoichiometric ratio with respect to the raw material capable of producing a stoichiometric BNT compound. Specific examples of suitable Bi-containing raw materials include Bi-containing oxides, carbonates, hydroxides, organic acid salts, and alkoxides.

【0046】また、原料中に過剰に配合するBiの量
(以下、これを「過剰Bi配合量」という。)は、0.
5%以上であることが望ましい。過剰Bi配合量が0.
5%未満であると、BNT系化合物の組成によっては、
高い焼結体密度及び/又は高い配向度が安定して得られ
ない場合があるので好ましくない。
The amount of Bi excessively mixed in the raw material (hereinafter referred to as “excess Bi compounding amount”) is 0.1%.
It is desirable that it be 5% or more. Excess Bi content is 0.
If it is less than 5%, depending on the composition of the BNT compound,
It is not preferable because a high sintered body density and / or a high degree of orientation may not be stably obtained.

【0047】過剰Bi配合量を増加させても、焼結性が
低下することはなく、高密度の圧電セラミックスを安定
して作製することができる。しかしながら、RTGG法
を用いて特定の結晶面を配向させる場合において、過剰
Bi配合量が過大になると、配向度が低下し、その結果
として、圧電定数、電気機械結合係数等の圧電特性を低
下させる。従って、高密度、かつ、高配向度の圧電セラ
ミックスを安定して作製するためには、過剰Bi配合量
は、10%以下が望ましい。
Even if the amount of excess Bi is increased, the sinterability does not decrease, and a high-density piezoelectric ceramic can be manufactured stably. However, in the case where a specific crystal plane is oriented using the RTGG method, if the amount of excess Bi is excessive, the degree of orientation is reduced, and as a result, piezoelectric characteristics such as a piezoelectric constant and an electromechanical coupling coefficient are reduced. . Therefore, in order to stably produce a piezoelectric ceramic having a high density and a high degree of orientation, the amount of excess Bi is desirably 10% or less.

【0048】なお、原料中に過剰に加えたBiの一部
は、熱処理過程で試料外に飛散する。従って、過剰Bi
配合量と過剰Bi含有量との差は、熱処理過程で蒸散し
たBiの量を表す。また、「過剰Bi配合量」とは、次
の数3の式で表される数値をいう。
A part of Bi added excessively in the raw material scatters outside the sample during the heat treatment. Therefore, excess Bi
The difference between the blending amount and the excess Bi content represents the amount of Bi evaporated in the heat treatment process. The “excess Bi content” refers to a numerical value represented by the following equation (3).

【0049】[0049]

【数3】過剰Bi配合量=(B’−B)x100/
(%)
## EQU3 ## Excess Bi compounding amount = (B ′ x −B 0 ) × 100 /
B 0 (%)

【0050】但し、Bは、化学量論比のBNT系化合
物中に含まれるTiを基準として求めたBNT系化合物
中に含まれる全Biのモル数であり、B’は、原料中
に含まれるTiを基準として求めた原料中に含まれる全
Biのモル数である。なお、上記の値は、x(Bi
0.5Na0.5TiO)−(1−x)ABO
ら、あらかじめABOの分を除いた組成に対して求め
られる。
Here, B 0 is the total number of moles of Bi contained in the BNT compound determined based on Ti contained in the stoichiometric BNT compound, and B ′ x is It is the total number of moles of Bi contained in the raw material determined based on the contained Ti. Note that the above value is x (Bi
0.5 Na 0.5 TiO 3) - from (1-x) ABO 3, it is determined for the composition excluding the amount of the advance ABO 3.

【0051】なお、板状BIT粉末、ペロブスカイト生
成原料及びBi含有原料の混合は、乾式で行っても良
く、あるいは、水、アルコール等の適当な溶媒を加えて
湿式で行っても良い。また、この時、必要に応じて結合
材及び/又は可塑剤を加えても良い。
The mixing of the plate-like BIT powder, the perovskite forming raw material and the Bi-containing raw material may be performed in a dry manner, or may be performed in a wet manner by adding an appropriate solvent such as water or alcohol. At this time, a binder and / or a plasticizer may be added as necessary.

【0052】成形工程は、混合工程で得られた混合物を
板状BIT粉末が配向するように成形する工程である。
成形方法については、板状BIT粉末の発達面である擬
正方晶表示{001}面を特定の方向に配向させること
が可能な方法であれば良く、特に限定されるものではな
い。具体的には、一軸加圧成形法、テープ成形法、押出
成形法、圧延法等が好適な一例として挙げられる。
The molding step is a step of molding the mixture obtained in the mixing step so that the plate-like BIT powder is oriented.
The molding method is not particularly limited as long as it is a method capable of orienting the pseudo-tetragonal crystal display {001} plane, which is the development surface of the plate-like BIT powder, in a specific direction. Specifically, a uniaxial pressure molding method, a tape molding method, an extrusion molding method, a rolling method and the like are mentioned as preferable examples.

【0053】また、これらの方法により得られた板状B
IT粉末が配向した成形体(以下、これを「配向成形
体」という。)の厚みを増したり、配向度を上げるため
に、配向成形体に対し、さらに積層圧着、プレス、圧延
などの処理(以下、これを「配向処理」という。)を行
っても良い。この場合、配向成形体に対して、いずれか
1種類の配向処理を行っても良く、あるいは2種以上の
配向処理を行っても良い。また、配向成形体に対して、
1種類の配向処理を複数回繰り返し行っても良く、ある
いは2種以上の配向処理をそれぞれ複数回繰り返し行っ
ても良い。
Further, the plate-like B obtained by these methods
In order to increase the thickness of the molded body in which the IT powder is oriented (hereinafter, referred to as “oriented molded body”) or to increase the degree of orientation, the oriented molded body is further subjected to processing such as lamination pressing, pressing, and rolling ( Hereinafter, this is referred to as “alignment treatment”). In this case, any one type of orientation treatment may be performed on the oriented molded body, or two or more types of orientation treatment may be performed. Also, for the oriented molded body,
One type of alignment treatment may be repeated a plurality of times, or two or more types of alignment treatments may be repeated a plurality of times.

【0054】熱処理工程は、成形工程で得られた配向成
形体を加熱することにより、BNT系化合物を合成する
と同時に、生成したBNT系化合物を焼結させる工程で
ある。熱処理温度は、作製しようとする圧電セラミック
スの組成に応じて最適な温度を選択すればよい。
The heat treatment step is a step of synthesizing a BNT-based compound and simultaneously sintering the generated BNT-based compound by heating the oriented formed body obtained in the forming step. As the heat treatment temperature, an optimum temperature may be selected according to the composition of the piezoelectric ceramic to be produced.

【0055】また、熱処理工程は、配向成形体を直接、
焼結温度まで加熱する1段階の熱処理でも良いが、高密
度かつ高配向度の圧電セラミックスを作製するために
は、熱処理を2段階に分けて行うことが望ましい。
In the heat treatment step, the oriented molded product is directly
A one-step heat treatment of heating to the sintering temperature may be used, but in order to produce a piezoelectric ceramic having a high density and a high degree of orientation, it is desirable to perform the heat treatment in two steps.

【0056】2段階の熱処理を行う場合、1段目の熱処
理は、板状BIT粉末の表面上及び板状BIT粉末内の
少なくとも表面近傍に、BNT系化合物を配向生成させ
るために行われる。従って、この1段目の熱処理温度
は、BNT系化合物の合成反応が開始する温度より高
く、かつ、緻密化が大きく進行する温度より低いことが
望ましい。1段目の熱処理温度は、具体的には、100
0℃以下が好適である。さらに好ましくは、800℃以
下である。また、この時、原料中に可塑剤や結合材が含
まれている場合には、同時にこれらを燃焼除去する脱脂
が行われることになる。
In the case of performing the two-stage heat treatment, the first-stage heat treatment is performed to form the BNT-based compound on the surface of the plate-shaped BIT powder and at least near the surface of the plate-shaped BIT powder. Therefore, it is desirable that the first heat treatment temperature is higher than the temperature at which the synthesis reaction of the BNT-based compound starts and lower than the temperature at which the densification greatly proceeds. Specifically, the temperature of the first heat treatment is 100
0 ° C. or lower is preferred. More preferably, the temperature is 800 ° C. or lower. At this time, if the raw material contains a plasticizer or a binder, the degreasing is performed at the same time by burning and removing these.

【0057】なお、脱脂が行われると、配向成形体中の
板状BIT粉末の配向度が低下する場合がある。また、
板状BIT粉末とペロブスカイト生成原料がらBNT系
化合物が合成される際に、配向成形体の膨れが発生する
場合がある。このような配向度の低下、あるいは配向成
形体の膨れに起因する密度の低下を抑制するためには、
1段目の熱処理を行った後、2段目の熱処理を行う前
に、配向成形体に対して、さらに静水圧(CIP)処理
を行うことが望ましい。
When the degreasing is performed, the degree of orientation of the plate-like BIT powder in the oriented green body may decrease. Also,
When the BNT-based compound is synthesized from the plate-like BIT powder and the perovskite-forming raw material, the oriented molded body may swell. In order to suppress such a decrease in the degree of orientation, or a decrease in density due to swelling of the oriented molded article,
After performing the first-stage heat treatment and before performing the second-stage heat treatment, it is preferable to further perform hydrostatic pressure (CIP) treatment on the oriented formed body.

【0058】2段目の熱処理は、焼結によって緻密化を
進行させ、同時に配向させたBNT系化合物を粒成長さ
せるために行われる。これにより、擬立方{100}面
の配向度の大きい圧電セラミックスを作製できる。2段
目の熱処理温度は、BNT系化合物の組成によって若干
異なるが、通常、1050℃〜1200℃前後が好適で
ある。
The second-stage heat treatment is performed to advance the densification by sintering and simultaneously grow grains of the oriented BNT-based compound. Thereby, a piezoelectric ceramic having a large degree of orientation of the pseudo cubic {100} plane can be manufactured. The temperature of the second heat treatment is slightly different depending on the composition of the BNT-based compound, but is usually preferably about 1050 ° C to 1200 ° C.

【0059】また、2段目の熱処理は、大気中で行って
も良いが、高密度の焼結体を得るには、酸素雰囲気中で
焼結することが望ましい。これは、一般に焼結が進行
し、焼結体内部に孤立した気孔が形成されると、気孔内
部に残留した雰囲気ガスによって焼結が阻害されるが、
酸素雰囲気中で焼結した場合には、気孔内に残留した酸
素が粒界を通って容易に外部に排出され、焼結を阻害し
ないためである。
The second heat treatment may be performed in the air, but it is preferable to perform sintering in an oxygen atmosphere in order to obtain a high-density sintered body. This is because when sintering generally proceeds and isolated pores are formed inside the sintered body, sintering is hindered by the atmospheric gas remaining inside the pores,
This is because, when sintering is performed in an oxygen atmosphere, oxygen remaining in the pores is easily discharged to the outside through the grain boundaries, and does not hinder sintering.

【0060】なお、熱処理工程の後、得られた焼結体を
必要に応じて所定の形状に切断し、配向方向と平行な面
を研磨し、研磨面に電極を形成すれば、各種デバイスに
用いられる圧電素子を作製することができる。また、ド
クターブレードなどのテープ成形を行った試料を円柱の
周りに巻き付けて焼結させた場合には、放射方向と垂直
に擬立方{100}面が配向したパイプ状の圧電セラミ
ックスを作製することができる。また、パイプ状焼結体
を軸に対して垂直に切断すれば、放射方向と垂直に擬立
方{100}面が配向した円環状の圧電セラミックスが
得られ、放射方向に分極する圧電素子として使用でき
る。このような圧電セラミックスは、押出成形によって
も作製できる。
After the heat treatment step, if necessary, the obtained sintered body is cut into a predetermined shape, the surface parallel to the orientation direction is polished, and electrodes are formed on the polished surface, so that various devices can be manufactured. The piezoelectric element used can be manufactured. When a tape-formed sample such as a doctor blade is wound around a cylinder and sintered, a pipe-shaped piezoelectric ceramic with a pseudo-cubic {100} plane oriented perpendicular to the radial direction must be produced. Can be. If the pipe-shaped sintered body is cut perpendicularly to the axis, an annular piezoelectric ceramic with a pseudo-cubic {100} plane oriented perpendicular to the radial direction is obtained, and is used as a piezoelectric element that is polarized in the radial direction. it can. Such a piezoelectric ceramic can also be manufactured by extrusion molding.

【0061】次に、本発明に係る圧電セラミックスの製
造方法の作用について説明する。ペロブスカイト型化合
物は、一般に、結晶格子の異方性が極めて小さいので、
通常の焼結プロセスによって、特定の結晶面が特定方向
に配向した多結晶体を作製するのは極めて困難である。
Next, the operation of the method for manufacturing a piezoelectric ceramic according to the present invention will be described. Perovskite-type compounds generally have an extremely small anisotropy in the crystal lattice.
It is extremely difficult to produce a polycrystal in which specific crystal planes are oriented in a specific direction by a normal sintering process.

【0062】これに対し、本発明においては、板状BI
T粉末を出発原料として用いているので、板状BIT粉
末に対して一方向から力が作用するような成形方法を用
いて成形すれば、板状BIT粉末の発達面が配向した配
向成形体を容易に得ることができる。また、得られた配
向成形体に対して、さらに配向処理を施せば、配向成形
体中の板状BIT粉末の配向度をさらに向上させること
ができる。
On the other hand, in the present invention, the plate-like BI
Since the T powder is used as a starting material, if the molding is performed using a molding method in which a force acts on the plate BIT powder from one direction, an oriented molded body in which the developed surface of the plate BIT powder is oriented can be obtained. Can be easily obtained. Further, when the obtained oriented molded article is further subjected to an orientation treatment, the degree of orientation of the plate-like BIT powder in the oriented molded article can be further improved.

【0063】また、このようにして得られた配向成形体
を加熱すると、板状BIT粉末の配向した面であるc面
がBNT系化合物の擬立方{100}面となるようにB
NT化合物の配向結晶核が生じ、この配向結晶核が粒成
長することによってバルク試料全体が配向焼結体とな
る。このような方法で、再現性よく、厚さミリメートル
オーダーの配向バルクセラミックスを得ることができ
る。
When the thus obtained oriented green body is heated, the oriented c-plane of the plate-shaped BIT powder becomes a pseudo-cubic {100} plane of the BNT-based compound.
An oriented crystal nucleus of the NT compound is generated, and the oriented crystal nucleus grows to make the whole bulk sample an oriented sintered body. By such a method, it is possible to obtain an oriented bulk ceramic having a thickness of millimeter order with good reproducibility.

【0064】また、原料中に化学量論比よりも過剰のB
iを配合すると、焼結途中で液相が生成し、元素の拡散
が促される。そのため、本来、緻密化しにくい系であっ
ても緻密化が比較的容易に進行し、高い焼結体密度を有
する圧電セラミックスが安定して得られる。また、高い
配向度が安定して得られ、その結果として、高い圧電特
性を示す圧電セラミックスが再現性良く得られる。
In the raw material, an excess of B
When i is blended, a liquid phase is generated during sintering, and the diffusion of elements is promoted. Therefore, even in a system that is originally difficult to be densified, densification proceeds relatively easily, and a piezoelectric ceramic having a high sintered body density can be stably obtained. In addition, a high degree of orientation can be obtained stably, and as a result, a piezoelectric ceramic exhibiting high piezoelectric characteristics can be obtained with good reproducibility.

【0065】[0065]

【実施例】(実施例1)テンプレートとしてフラックス
法で合成された板状BIT粉末(平均粒径約5μm、厚
さ0.5μm以下)を用い、RTGG法により圧電セラ
ミックスを作製した。すなわち、化3の式に示すよう
に、板状BIT粉末の配合量がBサイト原子(Ti)換
算量で20%であり、かつ、最終組成がBNTとなるよ
うに、板状BIT粉末、Bi、NaCO及びT
iOを配合し、これを母原料とした。
Example 1 A plate-like BIT powder (average particle size: about 5 μm, thickness: 0.5 μm or less) synthesized by a flux method was used as a template to produce a piezoelectric ceramic by an RTGG method. That is, as shown in the chemical formula 3, the amount of the plate-like BIT powder is 20% in terms of the amount of B-site atoms (Ti), and the plate-like BIT powder and Bi are mixed so that the final composition is BNT. 2 O 3 , NaCO 3 and T
iO 2 was blended and used as a base material.

【0066】[0066]

【化3】(1/15)BiTi12+(7/60)Bi
+(1/4)NaCO+(4/5)TiO→Bi0.5Na
0.5TiO+(1/4)CO
Embedded image (1/15) Bi 4 Ti 3 O 12 + (7/60) Bi 2 O 3
+ (1/4) Na 2 CO 3 + (4/5) TiO 2 → Bi 0.5 Na
0.5 TiO 3 + (1/4) CO 2

【0067】次に、母原料に対してさらに過剰のBiを
Biとして添加し、過剰Bi配合量の異なる4種
類の原料ロットを準備した。なお、過剰Bi配合量は、
それぞれ、0.5%、2.0%、8.2%及び14.0
%とした。
Next, excess Bi was added as Bi 2 O 3 with respect to the base material to prepare four kinds of raw material lots having different amounts of excess Bi. In addition, the excess Bi compounding amount is
0.5%, 2.0%, 8.2% and 14.0, respectively.
%.

【0068】次に、過剰のBiを含む各原料ロットを、
それぞれ、エタノールとトルエンの混合溶媒中で約20
時間混合し、バインダ(ポリビニルブチラール)と可塑
剤(ジブチルフタレート)を添加してさらに1時間混合
した後、ドクターブレード装置にて厚さ約100μmの
テープに成形した。次に、得られたテープを20枚重
ね、80℃で圧着した後、さらに圧延処理を施し、厚さ
約2mmの板状の配向成形体を作製した。得られた配向
成形体を700℃で1段目の熱処理(仮焼)を行った
後、300MPaのCIP処理を施した。さらに、これ
を酸素雰囲気中において1150℃x10時間又は12
00℃x10時間の条件で、2段目の熱処理(焼結)を
行った。
Next, each raw material lot containing excess Bi is
Each is about 20 in a mixed solvent of ethanol and toluene.
After mixing for 1 hour, a binder (polyvinyl butyral) and a plasticizer (dibutyl phthalate) were added, and the mixture was further mixed for 1 hour, and then formed into a tape having a thickness of about 100 μm by a doctor blade device. Next, after stacking 20 of the obtained tapes and pressing them at 80 ° C., they were further subjected to a rolling treatment to produce a plate-shaped oriented molded body having a thickness of about 2 mm. The obtained oriented molded body was subjected to a first-stage heat treatment (calcination) at 700 ° C., and then subjected to a 300 MPa CIP treatment. Further, this is placed in an oxygen atmosphere at 1150 ° C. for 10 hours or 12 hours.
The second stage heat treatment (sintering) was performed under the conditions of 00 ° C. × 10 hours.

【0069】(比較例1)実施例1で準備した母原料、
すなわち、過剰にBiを添加していない化学量論配合の
原料ロットを用いた以外は、実施例1と同一の手順に従
い、最終組成がBNTである圧電セラミックスを作製し
た。
Comparative Example 1 The base material prepared in Example 1
That is, a piezoelectric ceramic having a final composition of BNT was produced according to the same procedure as in Example 1 except that a raw material lot having a stoichiometric composition without excessive addition of Bi was used.

【0070】(比較例2)テンプレートを使用しないB
NT焼結体を以下のようにして作製した。すなわち、B
、NaCO、及びTiOの粉末を、B
i:Na:Ti=1:1:2となる比に秤量し、これら
を混合した後、850℃x2時間の熱処理を行い、化学
量論組成のBNT粉末を合成した。次に、合成されたB
NT粉末をボールミルで粉砕した後、乾燥させ、1軸加
圧成形及び静水圧成形によって成形体を作製した。この
成形体を酸素中、1100℃x10時間の条件で焼結
し、従来法による無配向焼結体とした。
(Comparative Example 2) B without using template
An NT sintered body was produced as follows. That is, B
Powder of i 2 O 3 , Na 2 CO 3 and TiO 2
After weighing to a ratio of i: Na: Ti = 1: 1: 2 and mixing them, a heat treatment at 850 ° C. × 2 hours was performed to synthesize a stoichiometric BNT powder. Next, the synthesized B
After the NT powder was pulverized with a ball mill, it was dried, and a compact was produced by uniaxial pressure molding and hydrostatic molding. This compact was sintered in oxygen at 1100 ° C. for 10 hours to obtain a non-oriented sintered body according to a conventional method.

【0071】(焼結性と配向度)実施例1及び比較例
1、2で得られた各BNT焼結体について、焼結体密度
を測定した。また、実施例1及び比較例1で得られた各
BNT焼結体について、試料表面(テープ面と平行な
面)を研削除去した後、ロットゲーリングの{100}
配向度を測定した。なお、比較例1については、焼結体
密度及び配向度に大きなばらつきが生じたため、作成し
た試料について測定された焼結体密度と配向度の中から
最も中間的な値を3点取り、その平均値を特性値とし
た。
(Sintering Property and Degree of Orientation) For each of the BNT sintered bodies obtained in Example 1 and Comparative Examples 1 and 2, the density of the sintered bodies was measured. For each of the BNT sintered bodies obtained in Example 1 and Comparative Example 1, the surface of the sample (the surface parallel to the tape surface) was ground and removed, and then the Lotgering {100}.
The degree of orientation was measured. In Comparative Example 1, since a large variation occurred in the sintered body density and the degree of orientation, three most intermediate values were taken from among the sintered body densities and the degree of orientation measured for the prepared sample, and the average was taken. The values were taken as characteristic values.

【0072】図1に、RTGG法で作製したBNT焼結
体(焼結温度:1200℃)の焼結体密度及び{10
0}配向度を示す。従来法を用いて1100℃x10時
間の条件で作製したBNT焼結体(比較例2)は、無配
向焼結体ではあるが、その密度は5.99g/cm
(相対密度99%)に達した。
FIG. 1 shows the density of the sintered body of the BNT sintered body (sintering temperature: 1200 ° C.) and the
Indicates 0 ° orientation. The BNT sintered body (Comparative Example 2) manufactured under the conditions of 1100 ° C. × 10 hours using the conventional method is a non-oriented sintered body, but has a density of 5.99 g / cm.
3 (relative density 99%).

【0073】一方、過剰のBiを含まないBNT焼結体
をRTGG法を用いて作製した場合(比較例1)、相対
密度は約90%まで低下した。また、作製した試料の中
には、{100}面配向度が0.8と高い値で、かつ、
緻密な試料も含まれていたが、安定しては得られず、配
向度の低い試料が多く含まれていた。
On the other hand, when a BNT sintered body containing no excess Bi was produced by the RTGG method (Comparative Example 1), the relative density was reduced to about 90%. Some of the prepared samples have a high degree of {100} plane orientation of 0.8, and
Although a dense sample was included, it was not obtained stably, and many samples with a low degree of orientation were included.

【0074】これに対し、RTGG法を用いてBNT焼
結体を作製する場合において、過剰Bi配合量を0.5
%とし、焼結温度を1200℃とすると、相対密度は9
8%、平均配向度は0.65に向上した。また、過剰B
i配合量を2%とすると、相対密度は理論密度に達し、
平均配向度は、0.78に達した。しかも、これらの値
は安定して得ることができた。
On the other hand, when producing a BNT sintered body by the RTGG method, the excess Bi
% And a sintering temperature of 1200 ° C., the relative density is 9%.
8%, the average degree of orientation improved to 0.65. Excess B
Assuming that the i content is 2%, the relative density reaches the theoretical density,
The average degree of orientation reached 0.78. Moreover, these values could be obtained stably.

【0075】過剰Bi配合量をさらに増加させても、焼
結性が低下することはなく、焼結体密度は、BNTの理
論密度を超えた。一方、過剰Bi配合量を8.2%及び
14%とすると、平均配向度は、それぞれ、0.51及
び0.43まで低下したが、過剰のBiを含まない比較
例1に比べて、高い平均配向度が安定して得られた。
Even when the excess Bi content was further increased, the sinterability did not decrease, and the sintered body density exceeded the theoretical density of BNT. On the other hand, when the amount of excess Bi was 8.2% and 14%, the average degree of orientation was reduced to 0.51 and 0.43, respectively, but higher than Comparative Example 1 containing no excess Bi. The average degree of orientation was obtained stably.

【0076】実施例1で得られた各焼結体の生成相につ
いて、X線回折法を用いて同定を行った。その結果、過
剰Bi配合量が0.5〜8.2%であるBNT焼結体は
ペロブスカイト単相であったが、過剰Bi配合量が14
%であるBNT焼結体は、ペロブスカイト相の他にBI
T相が含まれていることがわかった。
The generated phase of each sintered body obtained in Example 1 was identified using an X-ray diffraction method. As a result, the sintered body of BNT having an excess Bi content of 0.5 to 8.2% was a perovskite single phase, but the excess Bi content was 14%.
% Of the BNT sintered body is BI
It was found that the T phase was contained.

【0077】図2(a)に、過剰Bi配合量が2%であ
るBNT焼結体(焼結温度:1200℃)のテープ面に
平行な研削面について測定されたX線回折パターンを示
す。また、図2(b)に、比較例1で得られたBNT焼
結体(焼結温度:1200℃)の内、配向度の低い試料
について測定されたX線回折パターンを示す。図2よ
り、過剰Bi配合量が2%であるBNT焼結体は、低配
向度の比較例1に比べて、擬立方表示で(100)面と
(200)面からの回折ピーク強度が相対的に高く、強
い{100}面配向を示していることがわかる。
FIG. 2A shows an X-ray diffraction pattern measured on a ground surface parallel to the tape surface of a BNT sintered body (sintering temperature: 1200 ° C.) having an excess Bi content of 2%. FIG. 2B shows an X-ray diffraction pattern measured for a sample having a low degree of orientation among the BNT sintered bodies (sintering temperature: 1200 ° C.) obtained in Comparative Example 1. As shown in FIG. 2, the BNT sintered body having an excess Bi content of 2% has a relative diffraction peak intensity from the (100) plane and the (200) plane in pseudo cubic display as compared with Comparative Example 1 having a low degree of orientation. It can be seen that it shows a high and strong {100} plane orientation.

【0078】(電気的特性)次に、実施例1及び比較例
2で得られたBNT焼結体について、以下の手順に従
い、電気的特性の評価を行った。すなわち、得られたB
NT焼結体から、φ11mmxt0.5mmの円盤状ペ
レットを作製し、両面に銀ペースト(昭栄化学H451
0、700℃x10mim)にて電極を設け、100℃
で4kV/mmx30minの条件で分極処理を行っ
た。次いで、圧電特性(Kp、d31、g 31、Qm)
を共振反共振法にて測定し、誘電特性(比誘電率εr、
誘電損失tanδ)を、1kHz、1Vの条件下で測定
した。
(Electrical Characteristics) Next, Example 1 and Comparative Example
The following procedure was followed for the BNT sintered body obtained in Step 2.
And electrical characteristics were evaluated. That is, the obtained B
From an NT sintered compact, a disk-shaped
And a silver paste (Shoei Chemical H451)
0, 700 ° C x 10 mim)
Polarization treatment at 4kV / mmx30min
Was. Next, the piezoelectric characteristics (Kp, d31, G 31, Qm)
Is measured by the resonance anti-resonance method, and the dielectric properties (relative permittivity εr,
Dielectric loss tan δ) is measured under the conditions of 1 kHz and 1 V
did.

【0079】なお、RTGG法により作製した過剰のB
iを含まないBNT焼結体(比較例1)については、中
間的な値を取ったサンプル品が低密度かつ低配向度であ
り、リークのために分極処理を行うことができなかった
ので、電気的特性の評価は行わなかった。
The excess B produced by the RTGG method
Regarding the BNT sintered body not containing i (Comparative Example 1), the sample product having an intermediate value had a low density and a low degree of orientation, and the polarization treatment could not be performed due to leakage. The evaluation of the electrical characteristics was not performed.

【0080】図3に、電気機械結合係数Kpに及ぼす過
剰Bi配合量の影響を示す。また、図4に、圧電g31
定数に及ぼす過剰Bi配合量の影響を示す。なお、図3
及び図4において、化学量論配合のBNT焼結体(過剰
Bi配合量が0%)の値は、従来法で得たBNT焼結体
(比較例2)について測定された値である。
FIG. 3 shows the effect of the excess Bi content on the electromechanical coupling coefficient Kp. FIG. 4 shows the piezoelectric g 31.
The effect of excess Bi content on the constant is shown. Note that FIG.
In FIG. 4 and FIG. 4, the value of the stoichiometric BNT sintered body (the excess Bi compounding amount is 0%) is a value measured for the BNT sintered body obtained by the conventional method (Comparative Example 2).

【0081】Biを過剰に配合し、RTGG法で作製し
た{100}面配向のBNT焼結体の圧電特性は、いず
れも従来法で作製した無配向のBNT焼結体(比較例
2)よりも高い値が得られた。特に、過剰Bi配合量を
2%とすると、電気機械結合係数Kp及び圧電g31
数は極大となり、比較例2に比べて、電気機械結合係数
Kpで72%、圧電g31定数で83%高い値となっ
た。また、圧電d定数についても、図示はしないが、図
4とほぼ同様の傾向を示した。
The piezoelectric properties of the {100} plane oriented BNT sintered body produced by RTGG method, which contains Bi in an excessive amount, are all the same as the non-oriented BNT sintered body produced by the conventional method (Comparative Example 2). High values were also obtained. In particular, when 2% excess Bi amount, the electromechanical coupling factor Kp and piezoelectric g 31 constant becomes maximum, as compared with Comparative Example 2, 72% in the electromechanical coupling factor Kp, 83% higher in the piezoelectric g 31 constant Value. Although not shown, the piezoelectric d constant showed almost the same tendency as that of FIG.

【0082】また、RTGG法で作製した{100}面
配向のBNT焼結体(実施例1)及び従来法で作製した
無配向のBNT焼結体(比較例2)について、比誘電率
εrと誘電損失tanδを比較したところ、比誘電率ε
rは、過剰Bi配合量の増加と共に増加した。また、誘
電損失tanδは、従来法による無配向のBNT焼結体
(比較例2)より20〜30%低い値となった。
The relative dielectric constant εr of the {100} -oriented BNT sintered body produced by the RTGG method (Example 1) and the non-oriented BNT sintered body produced by the conventional method (Comparative Example 2) were Comparing the dielectric loss tan δ, the relative dielectric constant ε
r increased with increasing excess Bi loading. The dielectric loss tan δ was 20 to 30% lower than that of the non-oriented BNT sintered body according to the conventional method (Comparative Example 2).

【0083】(組成分析)次に、実施例1及び比較例1
で得られた焼結体中に残存しているBi量を確認するた
め、焼結体を粉砕し、ICP法によって元素分析(B
i、Na、Ti)を行った。次いで、得られた元素分析
結果に基づき、過剰Bi含有量を求めた。結果を表1に
示す。
(Composition Analysis) Next, Example 1 and Comparative Example 1
In order to confirm the amount of Bi remaining in the sintered body obtained in the above, the sintered body was pulverized and subjected to elemental analysis (B
i, Na, Ti). Next, the excess Bi content was determined based on the obtained elemental analysis results. Table 1 shows the results.

【0084】[0084]

【表1】 [Table 1]

【0085】なお、表1中、「BNT+B0」は、比較
例1で用いた過剰Bi配合量が0.0%である原料ロッ
ト(母原料)に相当し、「BNT+B0.5」、「BN
T+B2」、「BNT+B8.2」及び「BNT+B1
4」は、それぞれ、実施例1で用いた過剰Bi配合量が
0.5%、2.0%、8.2%及び14.0%である原
料ロットに相当する。
In Table 1, “BNT + B0” corresponds to the raw material lot (base material) having an excess Bi content of 0.0% used in Comparative Example 1, and “BNT + B0.5”, “BN
T + B2 "," BNT + B8.2 "and" BNT + B1 "
"4" corresponds to the raw material lots in which the excess Bi content used in Example 1 is 0.5%, 2.0%, 8.2% and 14.0%, respectively.

【0086】過剰にBiを配合した試料では、焼結体中
にもBiが過剰に残存していた。しかしながら、過剰B
i含有量は、過剰Bi配合量よりも少なく、熱処理過程
において、Biの一部が系外に失われることがわかっ
た。また、過剰Bi配合量が同一であっても、高温で熱
処理すると、焼結体中の過剰Bi含有量が減少すること
がわかった。
In the sample containing excessive Bi, Bi remained excessively in the sintered body. However, excess B
The i content was smaller than the excess Bi content, and it was found that part of Bi was lost outside the system during the heat treatment process. In addition, it was found that, even when the amount of excess Bi was the same, the heat treatment at a high temperature reduced the excess Bi content in the sintered body.

【0087】(実施例2)実施例1と同様に、フラック
ス法で合成した板状BIT粉末(平均粒径約5μm、厚
さ0.5μm以下)の配合量がBサイト原子(Ti)換
算量で20%であり、かつ、最終組成が以下の実験式で
表される原料ロットを準備した。 (1) 0.95BNT+0.05BaTiO (2) 0.90BNT+0.05Bi0.50.5TiO
+0.05BaTiO (3) 0.70BNT+0.30BaTiO3 (4) 0.85BNT+0.15KNbO
Example 2 In the same manner as in Example 1, the compounding amount of the plate-like BIT powder synthesized by the flux method (average particle size: about 5 μm, thickness: 0.5 μm or less) was converted to B-site atom (Ti) equivalent. And a raw material lot having a final composition represented by the following empirical formula was prepared. (1) 0.95 BNT + 0.05 BaTiO 3 (2) 0.90 BNT + 0.05 Bi 0.5 K 0.5 TiO 3
+ 0.05BaTiO 3 (3) 0.70BNT + 0.30BaTiO 3 (4) 0.85BNT + 0.15KNbO 3

【0088】次に、これらの原料ロット、及び、これら
の原料ロットに対してさらに化学量論比で必要な全Bi
量の2%をBiとして過剰に配合した原料ロット
を準備し、実施例1と同一の条件下で、焼結体を作製し
た。また、得られた焼結体について、実施例1と同一の
条件下で、焼結体密度、配向度及び電気的特性の評価を
行った。
Next, these raw material lots and the total Bi required for these raw material lots in further stoichiometric ratios
A raw material lot in which 2% of the amount was excessively mixed as Bi 2 O 3 was prepared, and a sintered body was produced under the same conditions as in Example 1. Further, the obtained sintered body was evaluated under the same conditions as in Example 1 for the density, orientation degree, and electrical characteristics of the sintered body.

【0089】圧電セラミックスの最終組成によらず、B
iを過剰に配合した原料ロットから得られた焼結体は、
化学量論配合の原料ロットから得られた焼結体よりも高
い擬立方{100}配向度を安定して示した。また、そ
の結果として、高い電気機械結合係数Kp、及び高い圧
電定数を示した。
Regardless of the final composition of the piezoelectric ceramic, B
The sintered body obtained from the raw material lot containing i in excess is
The pseudo cubic {100} orientation degree was higher than that of the sintered body obtained from the raw material lot having the stoichiometric composition. As a result, a high electromechanical coupling coefficient Kp and a high piezoelectric constant were exhibited.

【0090】以上、本発明の実施の形態について詳細に
説明したが、本発明は上記実施の形態に何ら限定される
ものではなく、本発明の要旨を逸脱しないで種々の改変
が可能である。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention.

【0091】例えば、上記実施例では、焼結法として常
圧焼結法が用いられているが、常圧焼結後にHIP処理
を施し、焼結体をさらに緻密化させるようにしても良
い。また、常圧焼結法に代えて、ホットプレス法あるい
はホットフォージング法を用いて焼結しても良い。
For example, in the above-described embodiment, the normal pressure sintering method is used as the sintering method. However, after the normal pressure sintering, HIP processing may be performed to further densify the sintered body. Further, sintering may be performed by using a hot press method or a hot forging method instead of the normal pressure sintering method.

【0092】また、上記実施例では、ドクターブレード
法を用いて作製した同一組成のテープを積層して配向成
形体を作製しているが、異なる組成のテープを積層して
配向成形体とし、これを焼結しても良い。また、成形方
法として押出成形法を用いると、{100}面同士が平
行に配向してはいないが、{100}面が押出軸に対し
て平行に配向した配向成形体を低コストで得ることもで
きる。
In the above embodiment, tapes of the same composition produced by the doctor blade method are laminated to produce an oriented molded article. Tapes of different compositions are laminated to form an oriented molded article. May be sintered. In addition, when the extrusion method is used as the molding method, it is possible to obtain an oriented molded body in which the {100} planes are not parallel to each other, but the {100} planes are parallel to the extrusion axis. You can also.

【0093】さらに、本発明は、化学量論比よりも過剰
にBiを配合することにより、焼結途中で液相を発生さ
せ、これによりBNT系化合物の焼結性を向上させた点
を特徴とするものであるが、この手法は、テンプレート
として板状BIT粉末を用いて、RTGG法により配向
焼結体を作製する系に限らず、他の系に対しても適用可
能である。
Further, the present invention is characterized in that a liquid phase is generated during sintering by adding Bi in excess of the stoichiometric ratio, thereby improving the sinterability of the BNT compound. However, this method is applicable not only to a system in which a plate-shaped BIT powder is used as a template to produce an oriented sintered body by the RTGG method, but also to other systems.

【0094】例えば、板状粉末を容易に合成でき、か
つ、その発達面がBNT系化合物の擬立方{100}面
と格子整合性を有するBIT以外の材料(例えば、ビス
マス層状ペロブスカイト型化合物の1種であるBaBi
Ti15など)をテンプレートとして用いて、R
TGG法によりBNT系圧電セラミックスを作製する場
合、あるいは、無配向のBNT系圧電セラミックスを従
来法により作製する場合であっても、本発明に係る手法
を同様に適用できる。
For example, a material other than BIT (for example, one of bismuth layered perovskite type compounds) which can easily synthesize a plate-like powder and whose developed surface has lattice matching with the pseudocubic {100} plane of the BNT-based compound The seed BaBi
4 Ti 4 O 15 ) as a template and R
The method according to the present invention can be similarly applied to a case where a BNT-based piezoelectric ceramic is manufactured by the TGG method or a case where a non-oriented BNT-based piezoelectric ceramic is manufactured by a conventional method.

【0095】[0095]

【発明の効果】本発明に係る圧電セラミックスは、x
(Bi0.5Na0.5TiO)−(1−x)ABO
(但し、0.1≦x≦1)で表されるペロブスカイト
型化合物を主成分とし、さらに前記ペロブスカイト型化
合物に含まれる化学量論比のBiより少なくとも0.1
%過剰のBiが含まれているので、その組成あるいは製
造方法によらず、高い焼結体密度を有する圧電セラミッ
クスが安定して得られるという効果がある。また、少量
のBiを過剰に添加することによって、擬立方{10
0}面が高い配向度で配向したBNT系の圧電セラミッ
クスが安定して得られるという効果がある。
The piezoelectric ceramic according to the present invention has x
(Bi 0.5 Na 0.5 TiO 3 )-(1-x) ABO
3 (provided that a perovskite compound represented by 0.1 ≦ x ≦ 1) is a main component, and the stoichiometric ratio Bi contained in the perovskite compound is at least 0.1%.
Since Bi is contained in excess of%, there is an effect that a piezoelectric ceramic having a high sintered body density can be stably obtained regardless of its composition or manufacturing method. Also, by adding a small amount of Bi in excess, pseudo-cubic
There is an effect that a BNT-based piezoelectric ceramic in which the 0 ° plane is oriented at a high degree of orientation can be stably obtained.

【0096】また、本発明に係る圧電セラミックスの製
造方法は、板状のBiTi 粉末と、該板状粉
末と反応して、x(Bi0.5Na0.5TiO)−
(1−x)ABO(但し、0.1≦x≦1)で表され
るペロブスカイト型化合物を生成するペロブスカイト生
成原料と、前記ペロブスカイト型化合物に含まれる化学
量論比のBiより少なくとも0.5%過剰のBiを含む
Bi含有原料とを混合する工程と、該混合工程で得られ
た混合物を前記板状粉末が配向するように成形する成形
工程と、該成形工程で得られた成形体を加熱する熱処理
工程とを備えているので、その組成によらず、高い焼結
体密度及び高い{100}面配向度を有する圧電セラミ
ックスが安定して得られるという効果がある。
[0096] The manufacturing method of the piezoelectric ceramic according to the present invention, a plate-shaped Bi 4 Ti 3 O 1 2 powder, by reacting with the plate-like powder, x (Bi 0.5 Na 0.5 TiO 3 )-
(1-x) A perovskite-forming material for producing a perovskite-type compound represented by ABO 3 (where 0.1 ≦ x ≦ 1), and a stoichiometric ratio Bi contained in the perovskite-type compound of at least 0. A step of mixing a Bi-containing raw material containing a 5% excess of Bi, a molding step of molding the mixture obtained in the mixing step so that the plate-like powder is oriented, and a molded article obtained in the molding step Is provided with a heat treatment step of heating the piezoelectric ceramics, so that piezoelectric ceramics having a high sintered body density and a high degree of {100} plane orientation can be stably obtained regardless of the composition.

【0097】[0097]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 RTGG法で作製されたBNT焼結体の焼結
体密度及び{100}配向度に及ぼす過剰Bi配合量の
影響を示す図である。
FIG. 1 is a view showing the effect of excess Bi content on the sintered body density and the degree of {100} orientation of a BNT sintered body produced by an RTGG method.

【図2】 図2(a)は、過剰Bi配合量が2%である
原料ロットを用いて、RTGG法により作製されたBN
T焼結体のX線回折パターンであり、図2(b)は、化
学量論配合の原料ロットを用いてRTGG法により作製
されたBNT焼結体の内、低配向度のBNT焼結体のX
線回折パターンである。
FIG. 2 (a) shows a BN produced by a RTGG method using a raw material lot having an excess Bi content of 2%.
FIG. 2B is an X-ray diffraction pattern of the T sintered body. FIG. 2B shows a low orientation BNT sintered body among the BNT sintered bodies produced by the RTGG method using the raw material lots having the stoichiometric composition. X
It is a line diffraction pattern.

【図3】 RTGG法で作製されたBNT焼結体の電気
機械結合係数Kpに及ぼす過剰Bi配合量の影響を示す
図である。
FIG. 3 is a view showing the effect of the excess Bi content on the electromechanical coupling coefficient Kp of a BNT sintered body manufactured by the RTGG method.

【図4】 RTGG法で作製されたBNT焼結体の圧電
g定数に及ぼす過剰Bi配合量の影響を示す図である。
FIG. 4 is a graph showing the effect of excess Bi content on the piezoelectric g constant of a BNT sintered body manufactured by the RTGG method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 敏夫 神奈川県横浜市港北区下田町2−1−20 Fターム(参考) 4G031 AA01 AA04 AA05 AA06 AA08 AA11 AA14 AA15 AA19 AA32 AA35 BA10 CA02 GA02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toshio Kimura 2-1-20 Shimoda-cho, Kohoku-ku, Yokohama-shi, Kanagawa F-term (reference) 4G031 AA01 AA04 AA05 AA06 AA08 AA11 AA14 AA15 AA19 AA32 AA35 BA10 CA02 GA02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 x(Bi0.5Na0.5TiO)−
(1−x)ABO(但し、0.1≦x≦1)で表され
るペロブスカイト型化合物を主成分とし、さらに前記ペ
ロブスカイト型化合物に含まれる化学量論比のBiより
少なくとも0.1%過剰のBiが含まれている圧電セラ
ミックス。
1. x (Bi 0.5 Na 0.5 TiO 3 ) —
(1-x) A perovskite compound represented by ABO 3 (where 0.1 ≦ x ≦ 1) as a main component, and at least 0.1% of Bi of a stoichiometric ratio contained in the perovskite compound. Piezoelectric ceramics containing excess Bi.
【請求項2】 前記圧電セラミックスを構成する各結晶
粒の擬立方{100}面が配向している請求項1に記載
の圧電セラミックス。
2. The piezoelectric ceramic according to claim 1, wherein the pseudo cubic {100} plane of each crystal grain constituting the piezoelectric ceramic is oriented.
【請求項3】 板状のBiTi12粉末と、該板
状粉末と反応して、x(Bi0.5Na0.5Ti
)−(1−x)ABO(但し、0.1≦x≦1)
で表されるペロブスカイト型化合物を生成するペロブス
カイト生成原料と、前記ペロブスカイト型化合物に含ま
れる化学量論比のBiより少なくとも0.5%過剰のB
iを含むBi含有原料とを混合する工程と、 該混合工程で得られた混合物を前記板状粉末が配向する
ように成形する成形工程と、 該成形工程で得られた成形体を加熱する熱処理工程とを
備えていることを特徴とする圧電セラミックスの製造方
法。
3. A plate-like Bi 4 Ti 3 O 12 powder reacts with the plate-like powder to form x (Bi 0.5 Na 0.5 Ti
O 3 )-(1-x) ABO 3 (provided that 0.1 ≦ x ≦ 1)
A perovskite-forming raw material for producing a perovskite-type compound represented by the formula: and a B in excess of at least 0.5% of the stoichiometric ratio Bi contained in the perovskite-type compound.
a step of mixing the Bi-containing raw material containing i, a forming step of forming the mixture obtained in the mixing step so that the plate-like powder is oriented, and a heat treatment of heating the formed body obtained in the forming step And a process for producing a piezoelectric ceramic.
JP2000075670A 2000-03-17 2000-03-17 Piezoelectric ceramics and manufacturing method thereof Expired - Fee Related JP4529219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000075670A JP4529219B2 (en) 2000-03-17 2000-03-17 Piezoelectric ceramics and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000075670A JP4529219B2 (en) 2000-03-17 2000-03-17 Piezoelectric ceramics and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001261435A true JP2001261435A (en) 2001-09-26
JP4529219B2 JP4529219B2 (en) 2010-08-25

Family

ID=18593530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000075670A Expired - Fee Related JP4529219B2 (en) 2000-03-17 2000-03-17 Piezoelectric ceramics and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4529219B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002042239A1 (en) * 2000-11-21 2002-05-30 Tdk Corporation Piezoelectric ceramic
JP2002321976A (en) * 2001-02-22 2002-11-08 Tdk Corp Piezoelectric ceramic
JP2003095737A (en) * 2001-09-17 2003-04-03 National Institute Of Advanced Industrial & Technology Piezoelectric ceramic composition
JP2006335579A (en) * 2005-05-31 2006-12-14 Univ Nihon Piezoelectric substance material and synthetic method of the same
JP2007134566A (en) * 2005-11-11 2007-05-31 Seiko Epson Corp Piezoelectric material, element, and actuator, liquid jetting head, and surface acoustic wave element and device
JP2008120665A (en) * 2006-11-15 2008-05-29 Ngk Insulators Ltd Piezoelectric/electrostrictive material, piezoelectric/electrostrictive article and piezoelectric/electrostrictive element
JP2008239482A (en) * 2008-04-25 2008-10-09 Taiyo Yuden Co Ltd Piezoelectric ceramic composition, method for producing piezoelectric ceramic composition and piezoelectric ceramic component
JP2009029668A (en) * 2007-07-27 2009-02-12 Kyocera Corp Piezoelectric ceramic material and piezoelectric element
US7714480B2 (en) * 2006-07-04 2010-05-11 Ngk Insulators, Ltd. Piezoelectric/electrostrictive membrane sensor
CN102192614A (en) * 2010-03-12 2011-09-21 香港理工大学 Sheet-type micro refrigerator applying lead-free ferroelectric material
EP2374772A1 (en) 2010-03-30 2011-10-12 NGK Insulators, Ltd. Ceramic, and piezoelectri/electrostriction element
WO2011129072A1 (en) * 2010-04-15 2011-10-20 パナソニック株式会社 Piezoelectric thin film, ink-jet head, method for forming image using ink-jet head, angular-velocity sensor, method for determining angular velocity using angular-velocity sensor, piezoelectric power-generating element, and method for generating power using piezoelectric power-generating element
JP2011230962A (en) * 2010-04-28 2011-11-17 Nec Tokin Corp Piezoelectric ceramic composition
WO2011158492A1 (en) * 2010-06-16 2011-12-22 パナソニック株式会社 Piezoelectric film, inkjet head, method for forming image using inkjet head, angular velocity sensor, method for determining angular velocity using angular velocity sensor, piezoelectric power generating element, and power generation method using piezoelectric power generating element
WO2011158491A1 (en) * 2010-06-16 2011-12-22 パナソニック株式会社 Piezoelectric membrane, inkjet head, method using an inkjet head to form images, angular-velocity sensor, method using an angular-velocity sensor to measure angular velocity, piezoelectric generation element, and electricity-generation method using piezoelectric generation elements
WO2011158490A1 (en) * 2010-06-16 2011-12-22 パナソニック株式会社 Piezoelectric film, inkjet head, method for forming image using inkjet head, angular velocity sensor, method for determining angular velocity using angular velocity sensor, piezoelectric power generating element, and power generation method using piezoelectric power generating element
WO2012001942A1 (en) * 2010-06-30 2012-01-05 パナソニック株式会社 Inkjet head, method for forming image using inkjet head, angular velocity sensor, method for determining angular velocity using angular velocity sensor, piezoelectric power generating element, and power generation method using piezoelectric power generating element
WO2012026107A1 (en) * 2010-08-27 2012-03-01 パナソニック株式会社 Ink-jet head, method of forming image using ink-jet head, angular velocity sensor, method of measuring angular velocity using angular velocity sensor, piezoelectric power generation element, and method of generating power using piezoelectric power generation element
WO2012104945A1 (en) * 2011-02-03 2012-08-09 パナソニック株式会社 Piezoelectric thin film, method for manufacturing same, inkjet head, method for forming image using inkjet head, angular velocity sensor, method for measuring angular velocity using angular velocity sensor, piezoelectric power generation element, and method for generating power using piezoelectric power generation element
WO2012140811A1 (en) * 2011-04-14 2012-10-18 パナソニック株式会社 Piezoelectric film, ink-jet head, angular-velocity sensor, and piezoelectric power-generating element
JP2013010642A (en) * 2011-06-28 2013-01-17 Konoshima Chemical Co Ltd Plate-like titanic acid compound and its producing method
KR101258768B1 (en) 2011-01-03 2013-04-29 울산대학교 산학협력단 Method for manufacturing of piezoelectric thin film without lead
KR101306419B1 (en) 2011-10-07 2013-09-09 울산대학교 산학협력단 Electrostrictive Lead-free Ceramic Composition and Preparation Method Thereof
JP2013179260A (en) * 2012-01-31 2013-09-09 Tdk Corp Piezoelectric composition and piezoelectric element
US8636945B2 (en) 2009-07-16 2014-01-28 Ngk Insulators, Ltd. Method for producing crystalline particles and method for producing crystallographically oriented ceramic
CN104947193A (en) * 2014-10-29 2015-09-30 中南大学 Sheet template seed crystal for textured leadless piezoelectric ceramics, and preparation method thereof
JP2016044350A (en) * 2014-08-26 2016-04-04 国立研究開発法人物質・材料研究機構 Dielectric thin film
KR20170017285A (en) * 2015-08-06 2017-02-15 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR20170046341A (en) * 2015-10-21 2017-05-02 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR20170078123A (en) * 2015-12-29 2017-07-07 삼성전기주식회사 Dielectric composition and multilayer electronic component comprising the same
CN110963797A (en) * 2019-11-22 2020-04-07 清华大学 High-temperature giant electrostrictive ceramic material and preparation method thereof
JP2020064977A (en) * 2018-10-17 2020-04-23 キヤノン株式会社 Piezoelectric transformer and electronic apparatus
CN113488336A (en) * 2021-06-08 2021-10-08 西安理工大学 High-temperature high-dielectric capacitance material with ultra-wide stable temperature area and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321234A (en) * 1996-03-25 1997-12-12 Sharp Corp Ferroelectric thin film device, manufacture thereof and ferroelectric memory device
JPH10139552A (en) * 1996-08-30 1998-05-26 Toyota Central Res & Dev Lab Inc Crystal oriented ceramics and its production
JPH1160333A (en) * 1997-08-21 1999-03-02 Toyota Central Res & Dev Lab Inc Piezoelectric ceramics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321234A (en) * 1996-03-25 1997-12-12 Sharp Corp Ferroelectric thin film device, manufacture thereof and ferroelectric memory device
JPH10139552A (en) * 1996-08-30 1998-05-26 Toyota Central Res & Dev Lab Inc Crystal oriented ceramics and its production
JPH1160333A (en) * 1997-08-21 1999-03-02 Toyota Central Res & Dev Lab Inc Piezoelectric ceramics

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793843B2 (en) 2000-11-21 2004-09-21 Tdk Corporation Piezoelectric ceramic
WO2002042239A1 (en) * 2000-11-21 2002-05-30 Tdk Corporation Piezoelectric ceramic
JP2002321976A (en) * 2001-02-22 2002-11-08 Tdk Corp Piezoelectric ceramic
JP2003095737A (en) * 2001-09-17 2003-04-03 National Institute Of Advanced Industrial & Technology Piezoelectric ceramic composition
JP2006335579A (en) * 2005-05-31 2006-12-14 Univ Nihon Piezoelectric substance material and synthetic method of the same
JP2007134566A (en) * 2005-11-11 2007-05-31 Seiko Epson Corp Piezoelectric material, element, and actuator, liquid jetting head, and surface acoustic wave element and device
US7714480B2 (en) * 2006-07-04 2010-05-11 Ngk Insulators, Ltd. Piezoelectric/electrostrictive membrane sensor
JP2008120665A (en) * 2006-11-15 2008-05-29 Ngk Insulators Ltd Piezoelectric/electrostrictive material, piezoelectric/electrostrictive article and piezoelectric/electrostrictive element
JP2009029668A (en) * 2007-07-27 2009-02-12 Kyocera Corp Piezoelectric ceramic material and piezoelectric element
JP2008239482A (en) * 2008-04-25 2008-10-09 Taiyo Yuden Co Ltd Piezoelectric ceramic composition, method for producing piezoelectric ceramic composition and piezoelectric ceramic component
US8636945B2 (en) 2009-07-16 2014-01-28 Ngk Insulators, Ltd. Method for producing crystalline particles and method for producing crystallographically oriented ceramic
CN102192614A (en) * 2010-03-12 2011-09-21 香港理工大学 Sheet-type micro refrigerator applying lead-free ferroelectric material
US9115031B2 (en) 2010-03-30 2015-08-25 Ngk Insulators, Ltd. Ceramic, and piezoelectric/electrostriction element
EP2374772A1 (en) 2010-03-30 2011-10-12 NGK Insulators, Ltd. Ceramic, and piezoelectri/electrostriction element
WO2011129072A1 (en) * 2010-04-15 2011-10-20 パナソニック株式会社 Piezoelectric thin film, ink-jet head, method for forming image using ink-jet head, angular-velocity sensor, method for determining angular velocity using angular-velocity sensor, piezoelectric power-generating element, and method for generating power using piezoelectric power-generating element
JP4835813B1 (en) * 2010-04-15 2011-12-14 パナソニック株式会社 Piezoelectric thin film, inkjet head, method of forming image using inkjet head, angular velocity sensor, method of measuring angular velocity using angular velocity sensor, piezoelectric power generation element, and power generation method using piezoelectric power generation element
US8562113B2 (en) 2010-04-15 2013-10-22 Panasonic Corporation Piezoelectric thin film, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element
CN102473838A (en) * 2010-04-15 2012-05-23 松下电器产业株式会社 Piezoelectric thin film, ink-jet head, method for forming image using ink-jet head, angular-velocity sensor, method for determining angular velocity using angular-velocity sensor, piezoelectric power-generating element, and method for generating powe
JP2011230962A (en) * 2010-04-28 2011-11-17 Nec Tokin Corp Piezoelectric ceramic composition
WO2011158491A1 (en) * 2010-06-16 2011-12-22 パナソニック株式会社 Piezoelectric membrane, inkjet head, method using an inkjet head to form images, angular-velocity sensor, method using an angular-velocity sensor to measure angular velocity, piezoelectric generation element, and electricity-generation method using piezoelectric generation elements
WO2011158492A1 (en) * 2010-06-16 2011-12-22 パナソニック株式会社 Piezoelectric film, inkjet head, method for forming image using inkjet head, angular velocity sensor, method for determining angular velocity using angular velocity sensor, piezoelectric power generating element, and power generation method using piezoelectric power generating element
US8511799B2 (en) 2010-06-16 2013-08-20 Panasonic Corporation Piezoelectric film and method of manufacturing the same, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element
US8944570B2 (en) 2010-06-16 2015-02-03 Panasonic Corporation Piezoelectric film and ink jet head and angular velocity sensor using the same
JP4894983B2 (en) * 2010-06-16 2012-03-14 パナソニック株式会社 Piezoelectric film, inkjet head, method of forming image using inkjet head, angular velocity sensor, method of measuring angular velocity using angular velocity sensor, piezoelectric power generation element, and power generation method using piezoelectric power generation element
US8393719B2 (en) 2010-06-16 2013-03-12 Panasonic Corporation Piezoelectric film, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element
JP5077504B2 (en) * 2010-06-16 2012-11-21 パナソニック株式会社 Piezoelectric film, inkjet head, method of forming image using inkjet head, angular velocity sensor, method of measuring angular velocity using angular velocity sensor, piezoelectric power generation element, and power generation method using piezoelectric power generation element
JP5077505B2 (en) * 2010-06-16 2012-11-21 パナソニック株式会社 Piezoelectric film, inkjet head, method of forming image using inkjet head, angular velocity sensor, method of measuring angular velocity using angular velocity sensor, piezoelectric power generation element, and power generation method using piezoelectric power generation element
CN102844901A (en) * 2010-06-16 2012-12-26 松下电器产业株式会社 Piezoelectric membrane, inkjet head, method using an inkjet head to form images, angular-velocity sensor, method using an angular-velocity sensor to measure angular velocity, piezoelectric generation element, and electricity-generation method using piezoelectric generation element
WO2011158490A1 (en) * 2010-06-16 2011-12-22 パナソニック株式会社 Piezoelectric film, inkjet head, method for forming image using inkjet head, angular velocity sensor, method for determining angular velocity using angular velocity sensor, piezoelectric power generating element, and power generation method using piezoelectric power generating element
US8390179B2 (en) 2010-06-16 2013-03-05 Panasonic Corporation Piezoelectric film and method of manufacturing the same, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element
US8931342B2 (en) 2010-06-30 2015-01-13 Panasonic Corporation Piezoelectric film and method of manufacturing the same, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element
US8511162B2 (en) 2010-06-30 2013-08-20 Panasonic Corporation Piezoelectric film and method of manufacturing the same, ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the piezoelectric generating element
JP5077506B2 (en) * 2010-06-30 2012-11-21 パナソニック株式会社 Inkjet head, method of forming image using inkjet head, angular velocity sensor, method of measuring angular velocity using angular velocity sensor, piezoelectric power generation element, and power generation method using piezoelectric power generation element
WO2012001942A1 (en) * 2010-06-30 2012-01-05 パナソニック株式会社 Inkjet head, method for forming image using inkjet head, angular velocity sensor, method for determining angular velocity using angular velocity sensor, piezoelectric power generating element, and power generation method using piezoelectric power generating element
JP5146625B2 (en) * 2010-08-27 2013-02-20 パナソニック株式会社 Inkjet head, method of forming image using inkjet head, angular velocity sensor, method of measuring angular velocity using angular velocity sensor, piezoelectric power generation element, and power generation method using piezoelectric power generation element
CN103222080A (en) * 2010-08-27 2013-07-24 松下电器产业株式会社 Ink-jet head, method of forming image using ink-et head, angular velocity sensor, method of measuring angular velocity using angular velocity sensor, piezoelectric power generation element, and method of generating power using piezoelectric power generating element
WO2012026107A1 (en) * 2010-08-27 2012-03-01 パナソニック株式会社 Ink-jet head, method of forming image using ink-jet head, angular velocity sensor, method of measuring angular velocity using angular velocity sensor, piezoelectric power generation element, and method of generating power using piezoelectric power generation element
US8727506B2 (en) 2010-08-27 2014-05-20 Panasonic Corporation Ink jet head, method of forming image by the ink jet head, angular velocity sensor, method of measuring angular velocity by the angular velocity sensor, piezoelectric generating element, and method of generating electric power using the peizoelectric generating element
CN103222080B (en) * 2010-08-27 2015-01-21 松下电器产业株式会社 Ink-jet head, method of forming image using ink-et head, angular velocity sensor, method of measuring angular velocity using angular velocity sensor, piezoelectric power generation element, and method of generating power using piezoelectric power generating element
KR101258768B1 (en) 2011-01-03 2013-04-29 울산대학교 산학협력단 Method for manufacturing of piezoelectric thin film without lead
WO2012104945A1 (en) * 2011-02-03 2012-08-09 パナソニック株式会社 Piezoelectric thin film, method for manufacturing same, inkjet head, method for forming image using inkjet head, angular velocity sensor, method for measuring angular velocity using angular velocity sensor, piezoelectric power generation element, and method for generating power using piezoelectric power generation element
JP5196087B2 (en) * 2011-02-03 2013-05-15 パナソニック株式会社 Piezoelectric thin film and manufacturing method thereof, inkjet head, method of forming image using inkjet head, angular velocity sensor, method of measuring angular velocity using angular velocity sensor, piezoelectric power generation element, and power generation method using piezoelectric power generation element
US9184371B2 (en) 2011-02-03 2015-11-10 Panasonic Intellectual Property Management Co., Ltd. Piezoelectric thin film, method for manufacturing same, inkjet head, method for forming image using inkjet head, angular velocity sensor, method for measuring angular velocity using angular velocity sensor, piezoelectric power generation element, and method for generating power using piezoelectric power generation element
CN103329297A (en) * 2011-02-03 2013-09-25 松下电器产业株式会社 Piezoelectric thin film, method for manufacturing same, inkjet head, method for forming image using inkjet head, angular velocity sensor, method for measuring angular velocity using angular velocity sensor, piezoelectric power generation element, and
JP5126457B1 (en) * 2011-04-14 2013-01-23 パナソニック株式会社 Piezoelectric film, inkjet head, angular velocity sensor, piezoelectric power generation element
US8591009B2 (en) 2011-04-14 2013-11-26 Panasonic Corporation Piezoelectric film, ink jet head, angular velocity sensor and piezoelectric generating element
WO2012140811A1 (en) * 2011-04-14 2012-10-18 パナソニック株式会社 Piezoelectric film, ink-jet head, angular-velocity sensor, and piezoelectric power-generating element
JP2013010642A (en) * 2011-06-28 2013-01-17 Konoshima Chemical Co Ltd Plate-like titanic acid compound and its producing method
KR101306419B1 (en) 2011-10-07 2013-09-09 울산대학교 산학협력단 Electrostrictive Lead-free Ceramic Composition and Preparation Method Thereof
JP2013179260A (en) * 2012-01-31 2013-09-09 Tdk Corp Piezoelectric composition and piezoelectric element
JP2016044350A (en) * 2014-08-26 2016-04-04 国立研究開発法人物質・材料研究機構 Dielectric thin film
CN104947193A (en) * 2014-10-29 2015-09-30 中南大学 Sheet template seed crystal for textured leadless piezoelectric ceramics, and preparation method thereof
KR20170017285A (en) * 2015-08-06 2017-02-15 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR102184565B1 (en) 2015-08-06 2020-12-01 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR20170046341A (en) * 2015-10-21 2017-05-02 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR102089701B1 (en) 2015-10-21 2020-03-16 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR20170078123A (en) * 2015-12-29 2017-07-07 삼성전기주식회사 Dielectric composition and multilayer electronic component comprising the same
KR102163055B1 (en) * 2015-12-29 2020-10-08 삼성전기주식회사 Dielectric composition and multilayer electronic component comprising the same
JP2020064977A (en) * 2018-10-17 2020-04-23 キヤノン株式会社 Piezoelectric transformer and electronic apparatus
JP7406876B2 (en) 2018-10-17 2023-12-28 キヤノン株式会社 Piezoelectric transformers and electronic equipment
CN110963797A (en) * 2019-11-22 2020-04-07 清华大学 High-temperature giant electrostrictive ceramic material and preparation method thereof
CN110963797B (en) * 2019-11-22 2020-12-01 清华大学 High-temperature giant electrostrictive ceramic material and preparation method thereof
CN113488336A (en) * 2021-06-08 2021-10-08 西安理工大学 High-temperature high-dielectric capacitance material with ultra-wide stable temperature area and preparation method thereof

Also Published As

Publication number Publication date
JP4529219B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
JP4529219B2 (en) Piezoelectric ceramics and manufacturing method thereof
JP3975518B2 (en) Piezoelectric ceramics
EP1860079B1 (en) Anisotropically-shaped powder
US6620752B2 (en) Method for fabrication of lead-based perovskite materials
Kim et al. Dielectric and piezoelectric properties of lanthanum-modified lead magnesium niobium-lead titanate ceramics
JP3379387B2 (en) Crystal oriented ceramics and method for producing the same
JP2002173369A (en) Piezoelectric ceramic
JP4326374B2 (en) Crystal-oriented ceramics and method for producing the same
JP3666182B2 (en) Method for producing crystal-oriented ceramics
EP0826643B1 (en) Crystal-oriented ceramics and methods for producing the same
JP2002193663A (en) Sintered body of crystal-oriented perovskite compound, its manufacturing method, compact of ceramic powder used for the compound and plate-like crystal-oriented perovskite compound
JP2007084408A (en) Piezoelectric ceramic
US8524109B2 (en) High curie temperature ternary piezoelectric ceramics
JP3650872B2 (en) Crystalline oriented bismuth layered perovskite compound and method for producing the same
JP3557854B2 (en) Manufacturing method of crystal orientation material
JP3020493B1 (en) Piezoelectric ceramics
JP2001002468A (en) Piezoelectric ceramic
JP2001097774A (en) Piezoelectric porcelain composition
JP2000143340A (en) Piezoelectric ceramic
JP4419232B2 (en) Crystalline oriented bismuth layered perovskite type porcelain composition and method for producing the same
Takenaka Bismuth-based piezoelectric ceramics
JP3666179B2 (en) Crystalline oriented ceramics and method for producing the same
JPH0797260A (en) Manufacture of piezoelectric ceramics
JPH10265271A (en) Production of crystal oriented ceramics
Bongkarn et al. Perovskite Phase Formation, Phase Transition and Ferroelectric Properties of PZN-based Ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees