JP7406876B2 - Piezoelectric transformers and electronic equipment - Google Patents

Piezoelectric transformers and electronic equipment Download PDF

Info

Publication number
JP7406876B2
JP7406876B2 JP2018195965A JP2018195965A JP7406876B2 JP 7406876 B2 JP7406876 B2 JP 7406876B2 JP 2018195965 A JP2018195965 A JP 2018195965A JP 2018195965 A JP2018195965 A JP 2018195965A JP 7406876 B2 JP7406876 B2 JP 7406876B2
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric element
piezoelectric transformer
transformer
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018195965A
Other languages
Japanese (ja)
Other versions
JP2020064977A (en
Inventor
彰 上林
未紀 上田
堅義 松田
純 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018195965A priority Critical patent/JP7406876B2/en
Priority to US16/598,930 priority patent/US11495732B2/en
Publication of JP2020064977A publication Critical patent/JP2020064977A/en
Application granted granted Critical
Publication of JP7406876B2 publication Critical patent/JP7406876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/40Piezoelectric or electrostrictive devices with electrical input and electrical output, e.g. functioning as transformers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/886Additional mechanical prestressing means, e.g. springs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/802Circuitry or processes for operating piezoelectric or electrostrictive devices not otherwise provided for, e.g. drive circuits
    • H10N30/804Circuitry or processes for operating piezoelectric or electrostrictive devices not otherwise provided for, e.g. drive circuits for piezoelectric transformers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/503Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane orthogonal to the stacking direction, e.g. polygonal or circular in top view
    • H10N30/505Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane orthogonal to the stacking direction, e.g. polygonal or circular in top view the cross-section being annular

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は高い電力の変換効率を持つ圧電トランスに関する。また、本発明は前記圧電トランスを用いた電子機器に関する。 The present invention relates to a piezoelectric transformer with high power conversion efficiency. The present invention also relates to an electronic device using the piezoelectric transformer.

電子機器内で電圧変換を行い、昇圧や降圧をする電子部品として圧電トランスが知られている。高出力化を目的とした圧電トランスの例として、以下のものが知られている。すなわち分極された圧電セラミックスと複数の電極を積層した圧電素子を入/出力部とし、入力部および出力部を積層して金属円柱で挟み込んだ構成の圧電トランス(棒状複合圧電トランス)が提案されている(特許文献1)。入力部に電気エネルギーを交番電圧として与えると、入力部の圧電セラミックスの逆圧電効果によって電気エネルギーが弾性エネルギーに変換される。この弾性エネルギーは金属円柱を介して出力部の圧電セラミックスに伝達される。そして出力部の圧電セラミックスの正圧電効果によって再び電気エネルギーとなり、出力部から取り出される。すなわち入力部に電圧を印加し、機械振動を介して出力部に生じる電圧を取り出す構成となっている。またこのような圧電トランスの構成においては、前述の弾性エネルギーの伝達方向は圧電素子の33方向に該当する。圧電素子の33方向とは、互いに交差する空間軸を3つ(例えばxyz軸)とりそれぞれ1軸、2軸、3軸とした際に、その分極方向を3軸方向とした際に3軸方向の振動モードのことを意味する。 A piezoelectric transformer is known as an electronic component that converts voltage in electronic equipment to step up or step down the voltage. The following are known as examples of piezoelectric transformers aimed at increasing output. In other words, a piezoelectric transformer (rod-shaped composite piezoelectric transformer) has been proposed in which a piezoelectric element made of polarized piezoelectric ceramics and multiple electrodes is used as an input/output section, and the input section and output section are stacked and sandwiched between metal cylinders. (Patent Document 1). When electrical energy is applied to the input section as an alternating voltage, the electrical energy is converted into elastic energy by the inverse piezoelectric effect of the piezoelectric ceramics of the input section. This elastic energy is transmitted to the piezoelectric ceramic of the output section via the metal cylinder. Then, due to the positive piezoelectric effect of the piezoelectric ceramics in the output section, it becomes electrical energy again and is taken out from the output section. That is, the configuration is such that a voltage is applied to the input section and the voltage generated at the output section is extracted through mechanical vibration. In addition, in the configuration of such a piezoelectric transformer, the above-mentioned transmission direction of elastic energy corresponds to the 33 directions of the piezoelectric element. The 33 directions of a piezoelectric element are the 3-axis directions when three mutually intersecting spatial axes (for example, the x, y, and z axes) are set as 1, 2, and 3 axes, respectively, and the polarization direction is set as the 3-axis direction. It means the vibration mode of

しかしこのような高出力化を目的とした圧電トランス(棒状複合圧電トランス)において、例えば入力部においては弾性エネルギーに寄与する33方向の振動だけでなく31方向の振動も発生する。この31方向の振動により、圧電セラミックスと電極板や金属円柱など周辺部材との界面で発熱し、振動の伝達ロスが生じてしまい電力の変換効率の低下をひきおこす問題があった。また電子機器内の高集積化においては電子部品の小型化が望まれているが、このような圧電トランスの発熱により周辺部品および周辺部材が高温となり悪影響を起こす問題があった。 However, in such a piezoelectric transformer (rod-shaped composite piezoelectric transformer) intended for high output, for example, in the input section, not only vibrations in 33 directions that contribute to elastic energy but also vibrations in 31 directions are generated. This vibration in 31 directions generates heat at the interface between the piezoelectric ceramic and peripheral members such as electrode plates and metal cylinders, causing a vibration transmission loss and causing a problem of lowering power conversion efficiency. Further, in order to increase the degree of integration in electronic devices, it is desired to miniaturize electronic components, but there is a problem in that the heat generated by such a piezoelectric transformer raises the temperature of peripheral components and peripheral members, causing an adverse effect.

特開昭51-123592号公報Japanese Unexamined Patent Publication No. 51-123592

本発明は、上述の課題を解決するために成されたものであり、高出力化を目的とした圧電トランス(棒状複合圧電トランス)において、圧電セラミックスと電極板や金属円柱など周辺部材との界面における発熱を抑制するものである。そのことで、入力電力に対する出力電力の変換効率が高い圧電トランスを提供する。 The present invention has been made to solve the above-mentioned problems, and is intended to improve the interface between piezoelectric ceramics and peripheral members such as electrode plates and metal cylinders in piezoelectric transformers (rod-shaped composite piezoelectric transformers) aimed at increasing output. This is to suppress heat generation in. This provides a piezoelectric transformer with high conversion efficiency of output power to input power.

また、本発明は前記圧電トランスを用いた電子機器を提供するものである。 Further, the present invention provides an electronic device using the piezoelectric transformer.

上記課題を解決するための本発明のひとつの圧電トランスは、
第一の部材、電極と圧電セラミックスを備えた第一の圧電素子、電極と圧電セラミックスを備えた第二の圧電素子および第二の部材が順に積層された積層体と、該積層体の前記第一の部材と前記第二の部材を積層方向に互いに締め付ける与圧機構とを少なくとも有する圧電トランスであって、
前記圧電セラミックスは、BaとCaとTiとZrを含む、あるいはNaとNbを含む、ペロブスカイト型金属酸化物より構成され、
前記第一の圧電素子および前記第二の圧電素子の電気機械結合係数k3123%以上26以下かつk3353%以上58%以下であり、
前記第一の圧電素子および前記第二の圧電素子の電気機械結合係数k31に対する電気機械結合係数k33の比(k33/k31)が2.1以上2.3以下であり、
前記第一の圧電素子および前記第二の圧電素子の室温におけるヤング率Y 11 が116GPa以上123GPa以下であり、
前記第一の圧電素子および前記第二の圧電素子の周波数定数N 31 が2210Hz・m以上2610Hz・m以下であり、
前記第一の圧電素子および前記第二の圧電素子に含まれるPb成分が1000ppm未満であることを特徴とする。
One piezoelectric transformer of the present invention for solving the above problems is as follows:
A laminate in which a first member, a first piezoelectric element having an electrode and a piezoelectric ceramic , a second piezoelectric element having an electrode and a piezoelectric ceramic , and a second member are laminated in this order; A piezoelectric transformer comprising at least a pressurizing mechanism that tightens the first member and the second member together in the stacking direction,
The piezoelectric ceramic is composed of a perovskite metal oxide containing Ba, Ca, Ti, and Zr, or containing Na and Nb,
The electromechanical coupling coefficient k31 of the first piezoelectric element and the second piezoelectric element is 23% or more and 26 % or less , and k33 is 53 % or more and 58% or less ,
The ratio (k 33 /k 31 ) of the electromechanical coupling coefficient k 33 to the electromechanical coupling coefficient k 31 of the first piezoelectric element and the second piezoelectric element is 2.1 or more and 2.3 or less ,
Young's modulus Y 11 at room temperature of the first piezoelectric element and the second piezoelectric element is 116 GPa or more and 123 GPa or less,
The frequency constant N 31 of the first piezoelectric element and the second piezoelectric element is 2210 Hz·m or more and 2610 Hz·m or less,
A Pb component contained in the first piezoelectric element and the second piezoelectric element is less than 1000 ppm.

また、本発明に係る電子機器は、上記の圧電トランスを用いることを特徴とする。 Further, an electronic device according to the present invention is characterized by using the piezoelectric transformer described above.

本発明によれば、高出力時においても高い電力の変換効率を持つ圧電トランスを提供することができる。また、本発明によれば、前記圧電トランスを用いた高い電力の変換効率を持つ電子機器を提供することができる。 According to the present invention, it is possible to provide a piezoelectric transformer that has high power conversion efficiency even at high output. Further, according to the present invention, it is possible to provide an electronic device that uses the piezoelectric transformer and has high power conversion efficiency.

本発明の圧電トランスの一実施形態を示す概略図である。1 is a schematic diagram showing an embodiment of a piezoelectric transformer of the present invention. 本発明の圧電トランスにおける与圧機構の構成の実施の態様を示す模式図である。FIG. 2 is a schematic diagram showing an embodiment of the configuration of a pressurizing mechanism in a piezoelectric transformer of the present invention. 構造体における機械共振における伸縮振動(1、2、3、4次)の変位量分布と応力分布を表す概略図である。It is a schematic diagram showing the displacement amount distribution and stress distribution of stretching vibration (1st, 2nd, 3rd, 4th order) in mechanical resonance in a structure. 圧電素子の分極方向と振動方向の関係を示す模式図である。FIG. 3 is a schematic diagram showing the relationship between the polarization direction and vibration direction of a piezoelectric element. 本発明の圧電トランスの一実施形態を示す概略図である。1 is a schematic diagram showing an embodiment of a piezoelectric transformer of the present invention. 本発明の圧電トランスの構成の一実施形態における入出力部と伸縮振動の変位量分布と応力分布の関係を表す概略図である。FIG. 3 is a schematic diagram showing the relationship between the input/output section, the displacement distribution of stretching vibration, and the stress distribution in an embodiment of the configuration of the piezoelectric transformer of the present invention. 本発明の実施例における出力電力と入力電力に対する出力電力の変換効率との関係を示す図である。FIG. 3 is a diagram showing the relationship between output power and conversion efficiency of output power with respect to input power in an example of the present invention. 本発明の実施例におけるk31およびk33と出力電力と入力電力に対する出力電力の変換効率との関係を示す図である。FIG. 3 is a diagram showing the relationship between k 31 and k 33 , output power, and conversion efficiency of output power to input power in an example of the present invention. 本発明の圧電トランス装置の構成の一実施形態を示す概略図である。1 is a schematic diagram showing an embodiment of the configuration of a piezoelectric transformer device of the present invention.

以下、本発明を実施するための圧電トランスおよびそれを備えた電子機器の実施形態について説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a piezoelectric transformer and an electronic device including the same for carrying out the present invention will be described below.

(圧電トランスの構成)
図1は本発明の圧電トランスの一実施形態を示す概略図である。図1(a)に示すように、圧電トランス107は、第一の圧電素子である入力用圧電素子103と第二の圧電素子である出力用圧電素子106を第一の部材109および第二の部材110で挟み込んだ構成を有する。第一の圧電素子および第二の圧電素子は、分極された圧電セラミックスと複数の電極より構成され、圧電セラミックスと電極は部材と同じ方向に積層し、また圧電セラミックスの分極方向は部材の積層方向と同じとする。前記圧電セラミックスには分極処理用の簡易電極が接着されていても良い。また図1(b)のように、2つの第一の圧電素子103および2つの第二の圧電素子106を、それぞれ同極同士を向い合せに配備し、第一の部材109および第二の部材110で挟み込んだ構成を有する。第一の部材109および第二の部材110の一例として金属円柱が挙げられるが、第一の圧電素子103および第二の圧電素子106を挟み込むことができれば材質や形状は特に限定しない。入力部101の入力端子102に電気エネルギーを交番電圧として与えると、入力用圧電素子103の逆圧電効果によって電気エネルギーが弾性エネルギーに変換される。この弾性エネルギーは出力部104の出力用圧電素子106の正圧電効果によって再び電気エネルギーとなり、出力端子105から取り出される。すなわち入力部101に電圧を印加し、機械振動を介して出力部104に生じる電圧を取り出す構成となっている。
(Piezoelectric transformer configuration)
FIG. 1 is a schematic diagram showing an embodiment of a piezoelectric transformer of the present invention. As shown in FIG. 1(a), the piezoelectric transformer 107 connects an input piezoelectric element 103, which is a first piezoelectric element, and an output piezoelectric element 106, which is a second piezoelectric element, to a first member 109 and a second piezoelectric element. It has a configuration in which it is sandwiched between members 110. The first piezoelectric element and the second piezoelectric element are composed of polarized piezoelectric ceramics and a plurality of electrodes, and the piezoelectric ceramics and electrodes are laminated in the same direction as the members, and the polarization direction of the piezoelectric ceramics is the laminated direction of the members. Assume that it is the same as A simple electrode for polarization treatment may be bonded to the piezoelectric ceramic. Further, as shown in FIG. 1(b), two first piezoelectric elements 103 and two second piezoelectric elements 106 are arranged with the same polarity facing each other, and the first member 109 and the second member 110. An example of the first member 109 and the second member 110 is a metal cylinder, but the material and shape are not particularly limited as long as the first piezoelectric element 103 and the second piezoelectric element 106 can be sandwiched therebetween. When electrical energy is applied as an alternating voltage to the input terminal 102 of the input section 101, the electrical energy is converted into elastic energy by the inverse piezoelectric effect of the input piezoelectric element 103. This elastic energy becomes electric energy again due to the positive piezoelectric effect of the output piezoelectric element 106 of the output section 104 and is taken out from the output terminal 105. That is, the configuration is such that a voltage is applied to the input section 101 and a voltage generated at the output section 104 is extracted through mechanical vibration.

また、本発明に係る圧電素子は電極と圧電セラミックスから構成される。電極と圧電セラミックスは接着されていても良いし、重ね合わせた状態でも良い。 Furthermore, the piezoelectric element according to the present invention is composed of an electrode and piezoelectric ceramics. The electrode and the piezoelectric ceramic may be bonded together or may be stacked one on top of the other.

本発明における圧電トランス107の形状は、例えば外径Rの円柱状でも、外形Rの円柱の中心に内径rのボルトを通す孔を有する形状でもよい。構造体の両端からナットで締めつけて圧力を加える(与圧)ことで、圧電トランスの引っぱり応力に対する圧電素子の破壊耐性が向上し、入力電力を大きくすることでハイパワーでの使用が可能となる。図2に本発明の圧電トランスにおける与圧機構の構成を示す。図2(a)は第一の部材および第二の部材の両端からナットで締め付ける与圧機構の一例であり、図2(b)は図2(a)の断面図を示す。圧電トランス107の内部にシャフト118を通すために、第一の部材109、第一の圧電素子103、第二の圧電素子106、第二の部材110にはシャフト118の直径よりも大きな穴を設ける必要がある。 The shape of the piezoelectric transformer 107 in the present invention may be, for example, a cylindrical shape having an outer diameter R, or a shape having a hole in the center of a cylindrical column having an outer diameter R to pass a bolt having an inner diameter r. By tightening nuts from both ends of the structure and applying pressure (pressurization), the resistance to destruction of the piezoelectric element against the tensile stress of the piezoelectric transformer is improved, and by increasing the input power, it is possible to use it at high power. . FIG. 2 shows the configuration of the pressurizing mechanism in the piezoelectric transformer of the present invention. FIG. 2(a) is an example of a pressurizing mechanism in which nuts are tightened from both ends of the first member and the second member, and FIG. 2(b) is a sectional view of FIG. 2(a). In order to pass the shaft 118 inside the piezoelectric transformer 107, a hole larger than the diameter of the shaft 118 is provided in the first member 109, the first piezoelectric element 103, the second piezoelectric element 106, and the second member 110. There is a need.

またシャフト118と圧電セラミックス114と電極116を備えた第一の圧電素子103および、同様の構造の第二の圧電素子106が接触すると、第一の圧電素子103および第二の圧電素子106の振動を阻害する要因となる。そのため、シャフト118と第一の圧電素子103および第二の圧電素子106の間には必ず空間が必要となる。また金属製のシャフト118を用いた場合、第一の圧電素子103および第二の圧電素子106と接触すると短絡してしまう恐れがある。そしてシャフト118には圧電トランスの両端に位置する部分にねじ切り溝を設け、ナットで締めつけることで圧電トランスに圧力を加えることが可能となる。このように与圧手段としては、図2(c)に模式的に示すように圧電トランス107の中心に準備した貫通孔を利用してボルトやナットなどで締める与圧機構112(斜線部)を設ける方法が好ましい。このとき、素子駆動時に利用する伸縮振動において圧電素子にかかる応力の面内均一性をできるだけ高く保ち、高い出力効率を確保することおよび耐久性向上の観点が重要である。この観点より、締め付けに用いる与圧機構112はボルトの頭やナットの断面形状が圧電トランス107の断面形状と等しい(図2(d))ことがより好ましい。さらにボルトの頭やナットが与圧機構112に埋め込まれている(図2(e))、構造とすることで、圧電トランス107が小型化できるためより好ましい。 Further, when the shaft 118 and the first piezoelectric element 103 including the piezoelectric ceramic 114 and the electrode 116 and the second piezoelectric element 106 having a similar structure come into contact with each other, the vibrations of the first piezoelectric element 103 and the second piezoelectric element 106 occur. It becomes a factor that inhibits Therefore, a space is always required between the shaft 118 and the first piezoelectric element 103 and the second piezoelectric element 106. Further, when a metal shaft 118 is used, there is a risk that a short circuit may occur if it comes into contact with the first piezoelectric element 103 and the second piezoelectric element 106. The shaft 118 is provided with threaded grooves at both ends of the piezoelectric transformer, and by tightening with nuts, it becomes possible to apply pressure to the piezoelectric transformer. In this way, as the pressurizing means, as schematically shown in FIG. 2(c), a pressurizing mechanism 112 (shaded area) is used, which is tightened with bolts, nuts, etc. using a through hole prepared at the center of the piezoelectric transformer 107. A method of providing is preferred. At this time, it is important to maintain the in-plane uniformity of the stress applied to the piezoelectric element as high as possible during the stretching vibration used when driving the element, to ensure high output efficiency, and to improve durability. From this point of view, it is more preferable that the cross-sectional shape of the bolt head and nut of the pressurizing mechanism 112 used for tightening be equal to the cross-sectional shape of the piezoelectric transformer 107 (FIG. 2(d)). Furthermore, a structure in which the bolt head and nut are embedded in the pressurizing mechanism 112 (FIG. 2(e)) is more preferable because the piezoelectric transformer 107 can be made smaller.

圧電トランスの駆動には伸縮の共振を利用する。圧電トランスの両端を自由端とした構成における1次から4次の伸縮共振時の変位量および応力分布の模式図を図3に示す。素子の駆動時に利用する伸縮共振時に応力が最大になる位置に入力部および出力部を設置することで、入力電力に対する出力電力の変換効率が高い圧電トランスとすることができる。両端が自由端とした構成を例として述べたが、片側を固定端や両端を固定端となるような構造においても伸縮共振時に応力が最大になる位置に入力部および出力部を設置することで、入力電力に対する出力電力の変換効率が高い圧電トランスとすることができる。 The resonance of expansion and contraction is used to drive the piezoelectric transformer. FIG. 3 shows a schematic diagram of the displacement amount and stress distribution during first- to fourth-order stretch resonance in a configuration in which both ends of the piezoelectric transformer are free ends. By installing the input section and the output section at positions where the stress is maximum during stretch resonance used when driving the element, it is possible to obtain a piezoelectric transformer with high conversion efficiency of output power to input power. Although we have described a configuration in which both ends are free ends, even in a structure in which one end is a fixed end or both ends are fixed ends, it is possible to install the input part and the output part at the position where the stress is maximum at the time of expansion/contraction resonance. , it is possible to obtain a piezoelectric transformer with high conversion efficiency of output power to input power.

圧電トランスの前記伸縮共振時に応力が最大になる位置の見積りには、例えば、有限要素法算出することができる。有限要素法のパッケージソフトの例としては、“ANSYS”(ANSYS Inc.)がある。 For estimating the position where the stress is maximum at the time of the expansion/contraction resonance of the piezoelectric transformer, the finite element method calculation can be performed, for example. An example of a finite element method package software is "ANSYS" (ANSYS Inc.).

本発明に係る圧電トランスは一例として図2に示すようなものである。すなわち、第一の部材、第一の圧電素子、第二の圧電素子および第二の部材が順に積層された積層体と、該積層体の前記第一の部材と前記第二の部材を積層方向に互いに締め付ける与圧機構とを少なくとも有する圧電トランスである。さらには前記第一の圧電素子および前記第二の圧電素子の電気機械結合係数k31に対する電気機械結合係数k33の比(k33/k31)が2.0以上であることを特徴とする。(k33/k31)が2.0以上であることで、圧電セラミックスと電極板や金属円柱など周辺部材との界面における摩擦損失が小さくなり発熱を抑制することができる。すなわち振動エネルギーを効率よく変換し入力電力に対する出力電力の変換効率が高い圧電トランスとすることができる。電気機械結合係数kとは圧電効果の大きさを表す量の一つであり、電気エネルギーを機械的エネルギーに変換する効率を表す。kの値が大きいほどその効果が大きいことを意味し、一般社団法人電子情報技術産業協会(JEITA)規格EM-4501Aにより算出することができる。また、電気機械結合係数k31とは図4(a)に示すように、3軸方向の分極方向に対して1軸方向の振動モードである長辺方向伸び振動の効果を表し、本発明における圧電トランスにおいては、部材の積層方向に対して垂直方向への振動の効果を表す。一方、電気機械結合係数k33とは図4(b)に示すように、3軸方向の分極方向に対して3軸方向の振動モードである縦振動の効果を表し、本発明における圧電トランスにおいては、部材の積層方向への振動の効果を表す。 The piezoelectric transformer according to the present invention is shown in FIG. 2 as an example. That is, a laminate in which a first member, a first piezoelectric element, a second piezoelectric element, and a second member are laminated in this order, and the first member and second member of the laminate are stacked in the stacking direction. The piezoelectric transformer includes at least a pressurizing mechanism that tightens the piezoelectric transformer and the pressurizing mechanism. Furthermore, the ratio (k 33 /k 31 ) of the electromechanical coupling coefficient k 33 to the electromechanical coupling coefficient k 31 of the first piezoelectric element and the second piezoelectric element is 2.0 or more. . When (k 33 /k 31 ) is 2.0 or more, friction loss at the interface between the piezoelectric ceramic and peripheral members such as electrode plates and metal cylinders is reduced, and heat generation can be suppressed. In other words, it is possible to obtain a piezoelectric transformer that efficiently converts vibration energy and has high conversion efficiency of output power to input power. The electromechanical coupling coefficient k is one of the quantities representing the magnitude of the piezoelectric effect, and represents the efficiency of converting electrical energy into mechanical energy. The larger the value of k, the greater the effect, and can be calculated according to the Japan Electronics and Information Technology Industries Association (JEITA) standard EM-4501A. In addition, as shown in FIG. 4(a), the electromechanical coupling coefficient k31 represents the effect of long-side elongation vibration, which is a vibration mode in one axis direction with respect to the three-axis polarization direction, and is used in the present invention. In a piezoelectric transformer, it represents the effect of vibration in the direction perpendicular to the stacking direction of the members. On the other hand, as shown in FIG. 4(b), the electromechanical coupling coefficient k33 represents the effect of longitudinal vibration, which is a vibration mode in the three axial directions with respect to the polarization direction in the three axial directions, and in the piezoelectric transformer of the present invention. represents the effect of vibration in the stacking direction of the members.

また本発明に係る圧電トランスは一例として図2に示すものである。すなわち、第一の部材、第一の圧電素子、第二の圧電素子および第二の部材が順に積層された積層体と、該積層体の前記第一の部材と前記第二の部材を積層方向に互いに締め付ける与圧機構とを少なくとも有する圧電トランスである。そして、前記第一の圧電素子および前記第二の圧電素子の電気機械結合係数k31が30%未満かつk33が50%以上であることを特徴とする。電気機械結合係数k31が30%未満であることで、圧電セラミックスと電極板や金属円柱など周辺部材との界面における摩擦損失が小さくなり、発熱を抑制することができる。さらにk33が50%以上であることで入力部および出力部における駆動時に発生する振動エネルギーを大きくすることができ、出力電力を大きくすることが可能となる。このように電気機械結合係数k31が30%未満かつk33が50%以上であることで、振動エネルギーを効率よく変換し、高出力かつ入力電力に対する出力電力の変換効率が高い圧電トランスとすることができる。また本発明に係る圧電トランスは一例として図2に示すものである。すなわち、第一の部材、第一の圧電素子、第二の圧電素子および第二の部材が順に積層された積層体と、該積層体の前記第一の部材と前記第二の部材を積層方向に互いに締め付ける与圧機構とを少なくとも有する圧電トランスである。そして、さらには前記第一の圧電素子および前記第二の圧電素子の電気機械結合係数k31に対する電気機械結合係数k33の比(k33/k31)が2.0以上である。さらにはk33/k31が上述の比をみたし、かつ前記第一の圧電素子および前記第二の圧電素子の電気機械結合係数k31が30%未満かつk33が50%以上であることを特徴とする。つまり(k33/k31)が2.0以上であり、前記第一の圧電素子および前記第二の圧電素子の電気機械結合係数k31が30%未満かつk33が50%以上である。そのことで、圧電セラミックスと電極板や金属円柱など周辺部材との界面における摩擦損失が小さくなり発熱を抑制することができる。また入力部および出力部における駆動時に発生する振動エネルギーを大きくすることができる。したがって、出力電力を大きくすることが可能となる。そして振動エネルギーを効率よく変換し、入力電力に対する出力電力の変換効率が高い圧電トランスとすることができる。 Further, the piezoelectric transformer according to the present invention is shown in FIG. 2 as an example. That is, a laminate in which a first member, a first piezoelectric element, a second piezoelectric element, and a second member are laminated in this order, and the first member and second member of the laminate are stacked in the stacking direction. The piezoelectric transformer includes at least a pressurizing mechanism that tightens the piezoelectric transformer and the pressurizing mechanism. The electromechanical coupling coefficient k 31 of the first piezoelectric element and the second piezoelectric element is less than 30% and k 33 is 50% or more. When the electromechanical coupling coefficient k 31 is less than 30%, friction loss at the interface between the piezoelectric ceramic and peripheral members such as electrode plates and metal cylinders is reduced, and heat generation can be suppressed. Further, when k33 is 50% or more, it is possible to increase the vibration energy generated during driving in the input section and the output section, and it is possible to increase the output power. In this way, by having an electromechanical coupling coefficient k31 of less than 30% and k33 of 50% or more, a piezoelectric transformer that converts vibration energy efficiently and has high output and high conversion efficiency of output power with respect to input power can be obtained. be able to. Further, the piezoelectric transformer according to the present invention is shown in FIG. 2 as an example. That is, a laminate in which a first member, a first piezoelectric element, a second piezoelectric element, and a second member are laminated in this order, and the first member and second member of the laminate are stacked in the stacking direction. The piezoelectric transformer includes at least a pressurizing mechanism that tightens the piezoelectric transformer and the pressurizing mechanism. Further, the ratio (k 33 /k 31 ) of the electromechanical coupling coefficient k 33 to the electromechanical coupling coefficient k 31 of the first piezoelectric element and the second piezoelectric element is 2.0 or more. Further, k 33 /k 31 satisfies the above-mentioned ratio, and the electromechanical coupling coefficient k 31 of the first piezoelectric element and the second piezoelectric element is less than 30% and k 33 is 50% or more. It is characterized by That is, (k 33 /k 31 ) is 2.0 or more, the electromechanical coupling coefficient k 31 of the first piezoelectric element and the second piezoelectric element is less than 30%, and k 33 is 50% or more. This reduces friction loss at the interface between the piezoelectric ceramic and peripheral members such as electrode plates and metal cylinders, making it possible to suppress heat generation. Furthermore, the vibration energy generated during driving in the input section and the output section can be increased. Therefore, it becomes possible to increase the output power. The piezoelectric transformer can convert vibration energy efficiently and have high efficiency in converting output power to input power.

このように圧電素子の電気機械結合係数k31に対する電気機械結合係数k33の比(k33/k31)を考慮した圧電素子を用いた圧電トランスは知られていない。 In this way, there is no known piezoelectric transformer using a piezoelectric element that takes into account the ratio ( k 33 / k 31 ) of the electromechanical coupling coefficient k 33 to the electromechanical coupling coefficient k 31 of the piezoelectric element.

前記第一の圧電素子および前記第二の圧電素子の電気機械結合係数k31に対する電気機械結合係数k33の比(k33/k31)は2.2以上がより好ましく、さらに好ましくは2.3以上である。 The ratio (k 33 /k 31 ) of the electromechanical coupling coefficient k 33 to the electromechanical coupling coefficient k 31 of the first piezoelectric element and the second piezoelectric element is more preferably 2.2 or more, and even more preferably 2.2. It is 3 or more.

本発明に係る圧電トランスは、第一の圧電素子と第二の圧電素子の間に、第三の部材が積層されていることが好ましい。第一の圧電素子と第二の圧電素子の間に、第三の部材を積層することで、例えば図3(b)の伸縮モード2次を利用することが可能となる。伸縮モード2次では、入力側の圧電素子と出力側の各々の圧電素子を応力が最大となる位置に設置することができるため、電力の変換効率の良い圧電トランスとすることができる。 In the piezoelectric transformer according to the present invention, it is preferable that a third member is laminated between the first piezoelectric element and the second piezoelectric element. By laminating the third member between the first piezoelectric element and the second piezoelectric element, it becomes possible to utilize, for example, the secondary expansion/contraction mode shown in FIG. 3(b). In the secondary expansion/contraction mode, each piezoelectric element on the input side and the piezoelectric element on the output side can be installed at a position where the stress is maximum, so a piezoelectric transformer with high power conversion efficiency can be obtained.

(与圧機構)
本発明に係る圧電トランスは、与圧機構が積層体を貫通していることが好ましい。図2に示すように与圧機構が積層体を貫通し、構造体の両端から圧力を加える構造とすることができる。そのように構成することで、与圧機構を含め圧電トランスの構成部品が一体の共振体となることから、振動の損失を低減することができるため、電力の変換効率の良い圧電トランスとすることができる。
(Pressurization mechanism)
In the piezoelectric transformer according to the present invention, it is preferable that the pressurizing mechanism penetrates the laminate. As shown in FIG. 2, a structure may be adopted in which a pressurizing mechanism penetrates the laminate and applies pressure from both ends of the structure. With such a configuration, the components of the piezoelectric transformer, including the pressurization mechanism, become an integrated resonator, which reduces vibration loss, resulting in a piezoelectric transformer with high power conversion efficiency. Can be done.

本発明に係る圧電トランスは、与圧機構が積層体に埋め込まれていることが好ましい。図2(c)に示すように与圧機構が積層体に埋め込まれていることで、素子駆動時に利用する伸縮振動において圧電素子にかかる応力の面内均一性をできるだけ高く保つことができる。その結果耐久性を向上させ、さらに入力電力に対する出力電力の変換効率が高い圧電トランスとすることができるため好ましい。また、与圧機構積層体に埋め込まれていることで圧電トランスを小型化できるため好ましい。 In the piezoelectric transformer according to the present invention, it is preferable that the pressurizing mechanism is embedded in the laminate. By embedding the pressurizing mechanism in the laminate as shown in FIG. 2(c), it is possible to maintain the in-plane uniformity of the stress applied to the piezoelectric element as high as possible during the stretching vibration used when driving the element. As a result, the piezoelectric transformer can be improved in durability and has a high conversion efficiency of output power to input power, which is preferable. Further, it is preferable that the piezoelectric transformer is embedded in the pressurizing mechanism laminate because it allows the piezoelectric transformer to be miniaturized.

本発明に係る圧電トランスは、前記圧電素子は偶数枚の板状圧電セラミックスと、複数の電極を積層して成ることが好ましい。図1(a)は入力部および出力部各々の圧電素子が1枚の圧電セラミックスから成っているのに対して、図1(b)は入力部および出力部各々が2枚の圧電セラミックスから成っている。駆動回路から同じ電圧を給電した時、図1(a)では1枚の圧電セラミックスによる振動エネルギーの発生に対して、図1(b)では2枚の圧電セラミックスによる振動エネルギーが発生する。このため、圧電素子を偶数枚の板状圧電セラミックスと複数の電極を積層する構造とすることで、高出力な圧電トランスとすることができる。 In the piezoelectric transformer according to the present invention, it is preferable that the piezoelectric element is formed by laminating an even number of piezoelectric ceramic plates and a plurality of electrodes. In Fig. 1(a), the piezoelectric elements of the input section and the output section are each made of one piezoelectric ceramic, whereas in Fig. 1(b), the input section and the output section are each made of two piezoelectric ceramics. ing. When the same voltage is supplied from the drive circuit, vibration energy is generated by one piezoelectric ceramic in FIG. 1(a), whereas vibration energy is generated by two piezoelectric ceramics in FIG. 1(b). Therefore, by forming the piezoelectric element into a structure in which an even number of plate-shaped piezoelectric ceramics and a plurality of electrodes are laminated, a high-output piezoelectric transformer can be obtained.

本発明に係る圧電トランスは、前記第三の部材が絶縁体であることが好ましい。第三の部材が絶縁体であることで、入力側の回路と出力側の回路がそれぞれ絶縁した構造となる。このような絶縁構造では、入力側の電気が直接流れることを防ぎ、出力側につながれた回路を保護することができる。また予期せぬ出力側からの電気の逆流が入力側に伝わることを防ぐことができる。このため第三の部材が絶縁体であることがより好ましい。 In the piezoelectric transformer according to the present invention, it is preferable that the third member is an insulator. Since the third member is an insulator, the input side circuit and the output side circuit are insulated from each other. Such an insulating structure prevents electricity from flowing directly on the input side and protects the circuit connected to the output side. Further, it is possible to prevent an unexpected backflow of electricity from the output side from being transmitted to the input side. For this reason, it is more preferable that the third member is an insulator.

(圧電素子)
本発明に係る圧電素子の室温におけるヤング率は100GPa以上200GPa以下であることが好ましい。ヤング率と共振周波数には正の相関があるため、ヤング率が大きいと共振周波数は高くなる。一定の共振周波数を持つ素子を作製する場合、ヤング率の大きな圧電素子においては、ヤング率が小さい圧電素子よりも小型化することが可能となる。ヤング率は振動形態の音速と密度の値から算出することができ、密度は例えばアルキメデス法により測定できる。
(Piezoelectric element)
The Young's modulus of the piezoelectric element according to the present invention at room temperature is preferably 100 GPa or more and 200 GPa or less. Since there is a positive correlation between Young's modulus and resonant frequency, the larger the Young's modulus, the higher the resonant frequency. When producing an element with a constant resonant frequency, a piezoelectric element with a large Young's modulus can be made smaller than a piezoelectric element with a small Young's modulus. Young's modulus can be calculated from the sound velocity and density of the vibration form, and the density can be measured, for example, by the Archimedes method.

本発明に係る圧電素子に含まれるPb成分は1000ppm未満であることが好ましい。例えば圧電素子が廃却され酸性雨を浴びたり、過酷な環境に放置されたりした際、圧電素子に含まれる圧電セラミックス中の鉛成分が土壌に溶け出し生態系に害を成す可能性が指摘されている。鉛成分が環境に与える影響を考慮すると、本発明の圧電素子は非鉛型であることが好ましく、圧電素子に含まれる鉛成分が1000ppm未満であると、鉛成分の溶出による影響を低減できるので、非鉛型の圧電素子と言える。鉛の含有量は、例えば蛍光X線分析(XRF)、ICP発光分光分析により定量された圧電セラミックスの総重量に対する鉛の含有量によって評価することができる。 It is preferable that the Pb component contained in the piezoelectric element according to the present invention is less than 1000 ppm. For example, it has been pointed out that when a piezoelectric element is disposed of and exposed to acid rain or left in a harsh environment, the lead component in the piezoelectric ceramic contained in the piezoelectric element may leach into the soil and harm the ecosystem. ing. Considering the influence of the lead component on the environment, the piezoelectric element of the present invention is preferably of a non-lead type, and if the lead component contained in the piezoelectric element is less than 1000 ppm, the influence of lead component elution can be reduced. , it can be said to be a lead-free piezoelectric element. The lead content can be evaluated based on the lead content relative to the total weight of the piezoelectric ceramic determined by, for example, X-ray fluorescence analysis (XRF) or ICP emission spectrometry.

(圧電セラミックス)
本明細書において、「セラミックス」とは、基本成分が金属酸化物であり、熱処理によって焼き固められた結晶粒の凝集体(バルク体とも言う)を表す。焼結後に加工されたものも含まれる。ただし、粉末や粉末を分散させたスラリーは、この用語に含まれない。
(piezoelectric ceramics)
In this specification, "ceramics" refers to an aggregate (also referred to as a bulk body) of crystal grains whose basic component is a metal oxide and is baked and solidified by heat treatment. Also includes those processed after sintering. However, powder and slurry in which powder is dispersed are not included in this term.

本発明に係る圧電セラミックスは、ペロブスカイト型金属酸化物より構成されることが好ましい。ペロブスカイト型金属酸化物は圧電特性が優れているため、高出力な圧電トランスとすることができる。 The piezoelectric ceramic according to the present invention is preferably composed of a perovskite metal oxide. Perovskite metal oxides have excellent piezoelectric properties, so they can be used as high-output piezoelectric transformers.

ペロブスカイト型金属酸化物とは一般的にABOの化学式で表現される。ペロブスカイト型金属酸化物において、元素A、Bは各々イオンの形でAサイト、Bサイトと呼ばれる単位格子の特定の位置を占める。例えば、立方晶系の単位格子であれば、A元素は立方体の頂点、B元素は体心に位置する。O元素は酸素の陰イオンとして立方体の面心位置を占める。単位格子が、立方晶単位格子の[001]、[011]、または[111]方向に歪むことにより、それぞれ、正方晶、斜方晶、菱面体晶のペロブスカイト型構造の結晶格子となる。 Perovskite metal oxides are generally expressed by the chemical formula ABO3 . In the perovskite metal oxide, elements A and B occupy specific positions in the unit cell called A site and B site in the form of ions, respectively. For example, in a cubic unit cell, element A is located at the apex of the cube, and element B is located at the center of the body. The O element occupies the face-centered position of the cube as an anion of oxygen. By distorting the unit cell in the [001], [011], or [111] direction of the cubic unit cell, a crystal lattice of a tetragonal, orthorhombic, or rhombohedral perovskite structure is formed, respectively.

本発明においてABOの化学式で表現されるAサイトを示すA(mol)とBサイトを示すB(mol)モルの比(A/B)はaを用いてあらわす。aが1以外の値だとしても前記金属酸化物がペロブスカイト構造を主相としていれば、本発明の範囲に含まれる。 In the present invention, the molar ratio (A/B) of A (mol) representing the A site and B (mol) representing the B site expressed by the chemical formula of ABO 3 is expressed using a. Even if a is a value other than 1, it is within the scope of the present invention as long as the metal oxide has a perovskite structure as its main phase.

また、ABOの化学式においてBサイトの元素とO元素のモル比は1対3であるが、元素量の比が若干、例えば1%以内でずれた場合でも、前記金属酸化物がペロブスカイト構造を主相としていれば、本発明の範囲に含まれる。 In addition, in the chemical formula of ABO 3 , the molar ratio of the B site element to the O element is 1:3, but even if the ratio of the element amounts deviates slightly, for example within 1%, the metal oxide may form a perovskite structure. If it is the main phase, it falls within the scope of the present invention.

前記金属酸化物がペロブスカイト構造であることは、例えば、圧電セラミックスに対するX線回折や電子線回折から判断することができる。ペロブスカイト構造が主たる結晶相であれば、圧電セラミックスがその他の結晶相を副次的に含んでいても良い。 Whether the metal oxide has a perovskite structure can be determined from, for example, X-ray diffraction or electron diffraction of piezoelectric ceramics. As long as the perovskite structure is the main crystalline phase, the piezoelectric ceramic may contain other crystalline phases as a subsidiary.

本発明に係る圧電セラミックスを構成する化合物種は特に限定されず、例えば、チタン酸ジルコン酸鉛(PZT)やチタン酸バリウム、チタン酸バリウムカルシウム、チタン酸ビスマスナトリウム、チタン酸鉛、ニオブ酸リチウム、ニオブ酸カリウムナトリウム、鉄酸ビスマスや、これらを主成分とした金属酸化物を用いることが出来る。鉛成分が環境に与える影響を考慮すると、本発明の圧電セラミックスは非鉛型の金属酸化物であることがより望ましい。圧電セラミックスに含まれる鉛成分が1000ppm未満であると、鉛成分の溶出による影響を低減できるので、非鉛型の圧電セラミックスと言える。 The types of compounds constituting the piezoelectric ceramics according to the present invention are not particularly limited, and examples thereof include lead zirconate titanate (PZT), barium titanate, barium calcium titanate, sodium bismuth titanate, lead titanate, lithium niobate, Potassium sodium niobate, bismuth ferrate, and metal oxides containing these as main components can be used. Considering the influence of the lead component on the environment, it is more desirable that the piezoelectric ceramic of the present invention be a lead-free metal oxide. When the lead component contained in the piezoelectric ceramic is less than 1000 ppm, the influence of lead component elution can be reduced, so it can be said to be a lead-free piezoelectric ceramic.

(圧電セラミックスの組成)
本発明に係る圧電セラミックスはBaとTiを含むことが好ましい。例えばBaとTiを含むペロブスカイト型金属酸化物の一例としてチタン酸バリウムがある。チタン酸バリウムを主成分とする圧電セラミックスは圧電定数dの絶対値が大きい。従って、同じ歪量を得るために必要な電圧を小さくすることができるため、電力の変換効率の良い圧電トランスとすることができる。
(Composition of piezoelectric ceramics)
The piezoelectric ceramic according to the present invention preferably contains Ba and Ti. For example, barium titanate is an example of a perovskite metal oxide containing Ba and Ti. Piezoelectric ceramics containing barium titanate as a main component have a large absolute value of piezoelectric constant d. Therefore, since the voltage required to obtain the same amount of distortion can be reduced, a piezoelectric transformer with high power conversion efficiency can be obtained.

圧電セラミックスの圧電定数は、当該セラミックスの密度ならびに共振周波数および反共振周波数の測定結果から、一般社団法人電子情報技術産業協会(JEITA)規格EM-4501Aに基づいて、計算により求めることができる。共振周波数および反共振周波数は、例えば、該セラミックスに一対の電極を設けた後に、インピーダンスアナライザを用いて測定できる。 The piezoelectric constant of a piezoelectric ceramic can be determined by calculation based on the Japan Electronics and Information Technology Industries Association (JEITA) standard EM-4501A from the measurement results of the density, resonance frequency, and anti-resonance frequency of the ceramic. The resonant frequency and anti-resonant frequency can be measured using an impedance analyzer, for example, after providing a pair of electrodes on the ceramic.

本発明に係る圧電セラミックスはさらにCaとZrを含むことが好ましい。Caを含有することにより、温度下降時の正方晶から斜方晶への相転移温度(以後Tto)や、温度上昇時の斜方晶から正方晶への相転移温度(以後Tot)が低下する。またZrを含有することにより、TtoやTotの温度が上昇する。さらに正方晶から立方晶への相転移温度であるキュリー温度(以後Tc)が低下し誘電率が上昇することから圧電定数dの絶対値が大きくなる。このように、CaとZrを含むことにより動作温度範囲における相転移温度の影響を低減させることで圧電特性の温度安定性を向上させ、電力の変換効率の良い圧電トランスとすることができる。 It is preferable that the piezoelectric ceramic according to the present invention further contains Ca and Zr. By containing Ca, the phase transition temperature from tetragonal to orthorhombic (hereinafter referred to as Tto) when the temperature decreases and the phase transition temperature from orthorhombic to tetragonal when the temperature increases (hereinafter referred to as Tot) are lowered. . Moreover, by containing Zr, the temperature of Tto and Tot increases. Furthermore, the Curie temperature (hereinafter referred to as Tc), which is the phase transition temperature from tetragonal to cubic, decreases and the dielectric constant increases, so that the absolute value of the piezoelectric constant d increases. In this way, by including Ca and Zr, the influence of the phase transition temperature in the operating temperature range is reduced, thereby improving the temperature stability of piezoelectric characteristics, and making it possible to provide a piezoelectric transformer with high power conversion efficiency.

キュリー温度Tcとは、一般的にその温度以上で圧電材料の圧電性が消失する温度であり、本明細書においては、強誘電相(正方晶相)と常誘電相(立方晶相)の相転移温度近傍で誘電率が極大となる温度をTcとする。チタン酸バリウムを主成分とする金属酸化物からなる圧電材料のTcはだいたい100℃~130℃くらいである。 The Curie temperature Tc is generally the temperature above which the piezoelectricity of a piezoelectric material disappears, and in this specification, it refers to the ferroelectric phase (tetragonal phase) and the paraelectric phase (cubic phase). The temperature at which the dielectric constant becomes maximum near the transition temperature is defined as Tc. The Tc of a piezoelectric material made of a metal oxide whose main component is barium titanate is approximately 100°C to 130°C.

本発明に係る圧電セラミックスは、以下の組成比の圧電セラミクスであるとより好ましい。すなわち、BaおよびCaの和に対するCaのモル比であるxが0.02≦x≦0.30であり、TiおよびZrの和に対するZrのモル比であるyが0.020≦y≦0.095であり、かつy≦xである。xの値が0.02以上とすることで、圧電定数の温度依存性が小さくなることから、より好ましい。一方、xが0.30よりも小さいほうが、Caの固溶が促進され、焼成温度を下げることができる。さらにTi、およびZrの含有量の和に対するZrのモル比であるyの値が0.020≦y≦0.095であることがより好ましい。yの値を0.02以上とすることで、動作温度範囲(例えば-30℃~60℃)の圧電定数が大きくなる。一方、yを0.095以下とすることで、Tが例えば100℃以上と高くなり、高温下で使用する際の脱分極がより抑制されることから、圧電デバイスの動作保証温度範囲がより広くなるとともに、圧電定数の経時劣化が小さくなる。 The piezoelectric ceramic according to the present invention is more preferably a piezoelectric ceramic having the following composition ratio. That is, x, the molar ratio of Ca to the sum of Ba and Ca, satisfies 0.02≦x≦0.30, and y, the molar ratio of Zr to the sum of Ti and Zr, satisfies 0.020≦y≦0. 095, and y≦x. It is more preferable for the value of x to be 0.02 or more because the temperature dependence of the piezoelectric constant becomes smaller. On the other hand, when x is smaller than 0.30, solid solution of Ca is promoted and the firing temperature can be lowered. Furthermore, it is more preferable that the value of y, which is the molar ratio of Zr to the sum of the contents of Ti and Zr, is 0.020≦y≦0.095. By setting the value of y to 0.02 or more, the piezoelectric constant in the operating temperature range (for example, −30° C. to 60° C.) becomes large. On the other hand, by setting y to 0.095 or less, T C becomes high, for example, 100°C or more, and depolarization when used at high temperatures is further suppressed, so the guaranteed operation temperature range of the piezoelectric device becomes more As the width increases, the deterioration of the piezoelectric constant over time becomes smaller.

このように、0.02≦x≦0.30および0.020≦y≦0.095であり、かつy≦xとすることで圧電定数の温度依存性が小さく、かつ圧電定数が大きく電力の変換効率の良い圧電トランスとすることができる。 In this way, by setting 0.02≦x≦0.30 and 0.020≦y≦0.095, and y≦x, the temperature dependence of the piezoelectric constant is small, and the piezoelectric constant is large and the electric power is A piezoelectric transformer with high conversion efficiency can be used.

本発明に係る圧電セラミックスはさらにMnを含有する圧電材料であって、前記酸化物100重量部に対する前記Mnの含有量は、金属換算で0.02重量部以上0.40重量部以下であることが好ましい。 The piezoelectric ceramic according to the present invention is a piezoelectric material further containing Mn, and the content of the Mn based on 100 parts by weight of the oxide is 0.02 parts by weight or more and 0.40 parts by weight or less in terms of metal. is preferred.

Mnの含有量が、金属換算で0.02重量部以上0.40重量部以下の範囲にあることで、室温におけるQmの値を大きくすることができるためより好ましい。一般に、Qmは圧電材料を振動子として評価した際の振動による弾性損失を表す係数であり、Qmの大きさはインピーダンス測定における共振曲線の鋭さとして観察される。つまり、Qmは振動子の共振の鋭さを表す定数である。Qmが高いと振動で失われるエネルギーは少ない。Qmが向上することで、圧電材料を圧電素子として電圧を印加して駆動させた際に損失が少なく、効率の良い圧電素子とすることができる。Qmは一般社団法人電子情報技術産業協会(JEITA)規格EM-4501Aに従って測定可能である。 It is more preferable for the Mn content to be in the range of 0.02 parts by weight or more and 0.40 parts by weight or less in terms of metal because the value of Qm at room temperature can be increased. Generally, Qm is a coefficient representing elastic loss due to vibration when evaluating a piezoelectric material as a vibrator, and the magnitude of Qm is observed as the sharpness of a resonance curve in impedance measurement. In other words, Qm is a constant representing the sharpness of resonance of the vibrator. When Qm is high, less energy is lost due to vibration. By improving Qm, when a piezoelectric material is used as a piezoelectric element and a voltage is applied to drive the piezoelectric element, the loss is small and the piezoelectric element can be made efficient. Qm can be measured according to the Japan Electronics and Information Technology Industries Association (JEITA) standard EM-4501A.

Mnは2価から4価の間で、価数変動する性質があり、圧電セラミックス中の電荷バランスの欠陥を補償する役割を果たす。Mnの含有量を0.02重量部以上とすることで、圧電セラミックスの結晶格子中の酸素空孔濃度が増大し、非180度ドメインのドメインスイッチングによって結晶粒子間に発生する残留応力が小さくなるため、Qmの値がより増大すると考えられる。一方で、Mnの含有量値を0.40重量部以下することで、Mnの固溶を促進し、絶縁抵抗をより高くすることができる。絶縁性が向上すると、圧電材料を圧電素子として電圧を印加して駆動させた際の圧電素子の長期信頼性が確保できるため好ましい。 Mn has a property of varying valence between divalence and tetravalence, and plays a role in compensating for defects in charge balance in piezoelectric ceramics. By setting the Mn content to 0.02 parts by weight or more, the concentration of oxygen vacancies in the crystal lattice of the piezoelectric ceramic increases, and the residual stress generated between crystal grains due to domain switching of non-180 degree domains is reduced. Therefore, it is considered that the value of Qm increases further. On the other hand, by setting the Mn content to 0.40 parts by weight or less, solid solution of Mn can be promoted and insulation resistance can be further increased. It is preferable that the insulation property is improved because long-term reliability of the piezoelectric element can be ensured when the piezoelectric material is used as a piezoelectric element and a voltage is applied to drive the piezoelectric element.

Mnは金属Mnに限らず、Mn成分として圧電セラミックスに含まれていれば良く、その含有の形態は問わない。例えば、Bサイトに固溶していても良いし、粒界に含まれていてもかまわない。または、金属、イオン、酸化物、金属塩、錯体などの形態でMn成分が圧電セラミックスに含まれていても良い。より好ましくは、絶縁性や焼結容易性という観点からMnは存在することが好ましい。Mnの価数は一般に4+、2+、3+を取ることができるが、Mnの価数が4+よりも低い場合、Mnはアクセプタとなる。アクセプタとしてMnがペロブスカイト構造結晶中に存在すると、結晶中に酸素空孔が形成される。酸素空孔は欠陥双極子を形成すると、圧電セラミックスのQmを向上させることができる。Mnが4+よりも低い価数で存在するためには、Aサイトに3価の元素が存在することが好ましい。好ましい3価の元素はBiである。他方、Mnの価数は、磁化率の温度依存性の測定によって評価できる。 Mn is not limited to metal Mn, but may be included in the piezoelectric ceramic as a Mn component, and the form of its inclusion does not matter. For example, it may be in solid solution at the B site, or it may be included in the grain boundaries. Alternatively, the Mn component may be contained in the piezoelectric ceramic in the form of a metal, ion, oxide, metal salt, complex, or the like. More preferably, Mn is present from the viewpoint of insulation and ease of sintering. Generally, the valence of Mn can be 4+, 2+, or 3+, but when the valence of Mn is lower than 4+, Mn becomes an acceptor. When Mn is present as an acceptor in a perovskite structure crystal, oxygen vacancies are formed in the crystal. When oxygen vacancies form defect dipoles, the Qm of piezoelectric ceramics can be improved. In order for Mn to exist with a valence lower than 4+, it is preferable that a trivalent element exists at the A site. A preferred trivalent element is Bi. On the other hand, the valence of Mn can be evaluated by measuring the temperature dependence of magnetic susceptibility.

本発明に係る圧電セラミックスはNaとNbを含むことが好ましい。NaとNbを含む圧電セラミックスの一例としてニオブ酸ナトリウム(NaNbO3)とチタン酸バリウム(BaTiO3)の固溶体(以下「NN-BT」という)がある。NN-BTは、難焼結性や低耐湿性の原因となるカリウムを実質的に含まないため、圧電特性が経時的に変化することがほとんどないという利点がある。また、NN-BTを圧電トランスに使用した際、圧電トランスの使用温度範囲(例えば0℃から80℃まで)に結晶構造の相転移を引き起こす点(温度)が存在しないため、使用温度によって性能が著しく変動することがほとんどないという利点もある。 It is preferable that the piezoelectric ceramic according to the present invention contains Na and Nb. An example of piezoelectric ceramics containing Na and Nb is a solid solution of sodium niobate (NaNbO3) and barium titanate (BaTiO3) (hereinafter referred to as "NN-BT"). Since NN-BT does not substantially contain potassium, which causes difficulty in sintering and low moisture resistance, it has the advantage that its piezoelectric properties hardly change over time. Furthermore, when NN-BT is used in a piezoelectric transformer, there is no point (temperature) that causes a phase transition in the crystal structure within the operating temperature range of the piezoelectric transformer (for example, from 0°C to 80°C), so performance may vary depending on the operating temperature. Another advantage is that there is almost no significant fluctuation.

(電子機器)
本発明の圧電トランス装置は、図9(a)、(b)に示すように外装部113を設けて電子機器に組み込み、入力用駆動回路および出力用回路(外部負荷)と接続して用いることも好ましい。高出力で高い変換効率が可能なため、従来の圧電トランスよりも小型化することにより電子機器の小型化が可能となる。
(Electronics)
The piezoelectric transformer device of the present invention can be used by providing an exterior part 113 as shown in FIGS. 9(a) and 9(b), incorporating it into an electronic device, and connecting it to an input drive circuit and an output circuit (external load). is also preferable. Because it is capable of high output and high conversion efficiency, it can be made smaller than conventional piezoelectric transformers, making it possible to miniaturize electronic devices.

(実施例)
以下に実施例を挙げて本発明の圧電トランスを具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
(Example)
The piezoelectric transformer of the present invention will be specifically described below with reference to Examples, but the present invention is not limited to the following Examples.

(圧電セラミックス)
圧電セラミックスとして分極された2種類のPZT(チタン酸ジルコン酸鉛)、2種類のNN-BT(ニオブ酸ナトリウムと少量のチタン酸バリウムの固溶体)および1種類のBCTZ-Mn(Ca、ZrおよびMnを添加したチタン酸バリウム)を用意した。2種類のPZTは、PZT_1およびPZT_2とした、また2種類のNN-BTはNN-BT_1およびNN-BT_2とした。そしてアルキメデス法により密度の測定を行った。なお、GDMS(グロー放電質量分析)を用いた半定量分析により2種類のNN-BTおよびBCTZ-Mnの圧電セラミックスに含まれる不純物元素を測定したところ、圧電セラミックスに含まれるPbは50ppm未満であった。
(piezoelectric ceramics)
Two types of PZT (lead zirconate titanate), two types of NN-BT (solid solution of sodium niobate and a small amount of barium titanate) and one type of BCTZ-Mn (Ca, Zr and Mn) polarized as piezoelectric ceramics. (barium titanate) was prepared. The two types of PZT were designated as PZT_1 and PZT_2, and the two types of NN-BT were designated as NN-BT_1 and NN-BT_2. The density was then measured using the Archimedes method. In addition, when impurity elements contained in two types of piezoelectric ceramics, NN-BT and BCTZ-Mn, were measured by semi-quantitative analysis using GDMS (glow discharge mass spectrometry), it was found that Pb contained in the piezoelectric ceramics was less than 50 ppm. Ta.

圧電セラミックスの圧電基本特性として、電気機械結合係数k31、電気機械結合係数k33、および電気機械結合係数k33の比(k33/k31)、周波数定数N31およびヤング率Y11を評価した。圧電基本特性を評価するために圧電セラミックスの表裏両面にDCスパッタリング法で厚さ400nmの金(Au)電極を形成した。なお、電極と圧電セラミックスの間には、密着層として30nm厚のチタン(Ti)を成膜した。その後一般社団法人電子情報技術産業協会(JEITA)規格EM-4501Aに基づき、長さ0.9mm×幅0.9mm×厚さ4.9mmの角柱形状に加工して電気機械結合係数k33の測定を行った。また同規格に基づき、長さ10mm×幅2.5mm×厚さ0.5mmの矩形板状に加工して電気機械結合係数k31の測定およびインピーダンスアナライザによる共振周波数の測定を行った。密度の測定結果および共振周波数の測定結果より、周波数定数N31およびヤング率Y11を算出した。これらの圧電セラミックスの圧電基本特性を表1に示す。 The electromechanical coupling coefficient k 31 , the electromechanical coupling coefficient k 33 , the ratio of the electromechanical coupling coefficient k 33 (k 33 /k 31 ), the frequency constant N 31 and the Young's modulus Y 11 were evaluated as the basic piezoelectric properties of piezoelectric ceramics. did. In order to evaluate the piezoelectric basic characteristics, gold (Au) electrodes with a thickness of 400 nm were formed on both the front and back surfaces of the piezoelectric ceramic by DC sputtering. Note that a 30 nm thick titanium (Ti) film was formed as an adhesive layer between the electrode and the piezoelectric ceramic. After that, it was processed into a prismatic shape of length 0.9 mm x width 0.9 mm x thickness 4.9 mm based on the Japan Electronics and Information Technology Industries Association (JEITA) standard EM-4501A, and the electromechanical coupling coefficient k 33 was measured. I did it. Further, based on the same standard, it was processed into a rectangular plate shape of 10 mm in length x 2.5 mm in width x 0.5 mm in thickness, and the electromechanical coupling coefficient k31 and resonance frequency were measured using an impedance analyzer. A frequency constant N 31 and a Young's modulus Y 11 were calculated from the density measurement results and the resonance frequency measurement results. Table 1 shows the basic piezoelectric properties of these piezoelectric ceramics.

Figure 0007406876000001
Figure 0007406876000001

(圧電トランスの作製)
(構造1)
構造1として、図5(a)に示すように、入力部101と出力部104を積層した圧電トランス107とした。入力部101は第一の部材109、第一の圧電素子(入力用圧電素子)103および入力端子102からなり、入力端子102は第一の圧電素子103を構成する電極とつながっている。また出力部104は第二の部材110、第二の圧電素子(出力用圧電素子)106および出力端子105からなり、出力端子105は第二の圧電素子106を構成する電極とつながっている。第一の部材および第二の部材はSUSを用いた。第一の圧電素子103および第二の圧電素子は、分極処理用の簡易電極が接着された2枚の圧電セラミックスと3枚の電極として厚さ0.2mmの銅板(不図示)を積層した構成とした。また入力部と出力部の間の電極は共通とし、銅板を合計5枚使用した。圧電トランス107を構成する、第一の部材は直径13mm・長さ29.7mm、第一の圧電素子103および第二の圧電素子106を構成する圧電セラミックスは直径13mm・長さ2.5mm、第二の部材110は直径13mm・長さ24.3mmとし、全長65mmとした。また圧電トランス107の構造体に両端から圧力を加える与圧機構を設けるために、圧電トランス107を構成する各部品には内径6mmの貫通穴を設けた。そして貫通穴にSUS製のシャフトを通し、両端部をナットで固定し圧電トランスを10N・mのトルクで締めつけた。
(Fabrication of piezoelectric transformer)
(Structure 1)
As structure 1, as shown in FIG. 5(a), a piezoelectric transformer 107 was used in which an input section 101 and an output section 104 were stacked. The input section 101 includes a first member 109, a first piezoelectric element (input piezoelectric element) 103, and an input terminal 102, and the input terminal 102 is connected to an electrode constituting the first piezoelectric element 103. Further, the output section 104 includes a second member 110, a second piezoelectric element (output piezoelectric element) 106, and an output terminal 105, and the output terminal 105 is connected to an electrode constituting the second piezoelectric element 106. SUS was used for the first member and the second member. The first piezoelectric element 103 and the second piezoelectric element are constructed by laminating two piezoelectric ceramics to which simple electrodes for polarization processing are bonded, and three 0.2 mm thick copper plates (not shown) as electrodes. And so. In addition, the electrodes between the input section and the output section were common, and a total of five copper plates were used. The first member constituting the piezoelectric transformer 107 has a diameter of 13 mm and a length of 29.7 mm, and the piezoelectric ceramics constituting the first piezoelectric element 103 and the second piezoelectric element 106 have a diameter of 13 mm and a length of 2.5 mm. The second member 110 had a diameter of 13 mm, a length of 24.3 mm, and a total length of 65 mm. Further, in order to provide a pressurizing mechanism that applies pressure to the structure of the piezoelectric transformer 107 from both ends, a through hole with an inner diameter of 6 mm was provided in each component constituting the piezoelectric transformer 107. Then, a SUS shaft was passed through the through hole, both ends were fixed with nuts, and the piezoelectric transformer was tightened with a torque of 10 N·m.

本構成における1次の伸縮振動時の変位量と入力部101と出力部104の関係を模式的に図6(a)に示す。圧電トランスの両端を自由端とした構成として入力部101を構成する第一の圧電素子103の中心位置が1次の伸縮振動の変位量の絶対値が0になる、つまり応力が一番大きくなる位置とした。 FIG. 6A schematically shows the relationship between the displacement amount during the primary stretching vibration and the input section 101 and the output section 104 in this configuration. The piezoelectric transformer is configured with both ends as free ends, and the center position of the first piezoelectric element 103 constituting the input section 101 is such that the absolute value of the displacement amount of the first-order stretching vibration becomes 0, that is, the stress becomes the largest. position.

(構造2)
構造2として、図5(b)に示すように、入力部101と第三の部材111と出力部104を積層した圧電トランス107とした。入力部101は第一の部材109、第一の圧電素子(入力用圧電素子)103および入力端子102からなり、入力端子102は第一の圧電素子103を構成する電極とつながっている。第一の部材、第二の部材および第三の部材はSUSを用いた。また出力部104は第二の部材110、第二の圧電素子(出力用圧電素子)106および出力端子105からなり、出力端子105は第二の圧電素子106を構成する電極とつながっている。第一の圧電素子103および第二の圧電素子は、2枚の圧電セラミックスと3枚の電極として厚さ0.2mmの銅板(不図示)を積層した構成とし、銅板を合計6枚使用した。圧電トランス107を構成する、第一の部材は直径15mm・長さ3.5mm、第一の圧電素子103および第二の圧電素子106を構成する圧電セラミックスは直径15mm・長さ1.5mm、第二の部材110は直径15mm・長さ3.5mm、第三の部材は直径15mm・長さ7mmとし、全長21mmとした。また圧電トランス107の構造体に両端から圧力を加える与圧機構を設けるために、圧電トランス107を構成する各部品には内径6mmの貫通穴を設けた。
(Structure 2)
As structure 2, as shown in FIG. 5(b), a piezoelectric transformer 107 was used in which an input section 101, a third member 111, and an output section 104 were stacked. The input section 101 includes a first member 109, a first piezoelectric element (input piezoelectric element) 103, and an input terminal 102, and the input terminal 102 is connected to an electrode constituting the first piezoelectric element 103. SUS was used for the first member, the second member, and the third member. Further, the output section 104 includes a second member 110, a second piezoelectric element (output piezoelectric element) 106, and an output terminal 105, and the output terminal 105 is connected to an electrode constituting the second piezoelectric element 106. The first piezoelectric element 103 and the second piezoelectric element had a structure in which two piezoelectric ceramics and three copper plates (not shown) with a thickness of 0.2 mm were laminated as electrodes, and a total of six copper plates were used. The first member constituting the piezoelectric transformer 107 has a diameter of 15 mm and a length of 3.5 mm, and the piezoelectric ceramics constituting the first piezoelectric element 103 and the second piezoelectric element 106 have a diameter of 15 mm and a length of 1.5 mm. The second member 110 had a diameter of 15 mm and a length of 3.5 mm, and the third member had a diameter of 15 mm and a length of 7 mm, making the total length 21 mm. Further, in order to provide a pressurizing mechanism that applies pressure to the structure of the piezoelectric transformer 107 from both ends, a through hole with an inner diameter of 6 mm was provided in each component constituting the piezoelectric transformer 107.

本構成における2次の伸縮振動時の変位量と入力部101と出力部104の関係を模式的に図6(b)に示す。圧電トランスの両端を自由端とした構成として入力部101を構成する第一の圧電素子103の中心位置および出力部104を構成する第二の圧電素子106の中心位置が2次の伸縮振動の変位量の絶対値が0になる、つまり応力が一番大きくなる位置とした。 FIG. 6(b) schematically shows the relationship between the displacement amount during the second-order stretching vibration and the input section 101 and the output section 104 in this configuration. The piezoelectric transformer has a configuration in which both ends are free ends, and the center position of the first piezoelectric element 103 that constitutes the input section 101 and the center position of the second piezoelectric element 106 that constitutes the output section 104 correspond to the displacement of the second-order stretching vibration. The absolute value of the quantity was set to 0, that is, the position where the stress was the largest.

表1に示す圧電セラミックスを用いて、表2に示すように実施例1から実施例5および比較例1の圧電トランスを作製した。 Using the piezoelectric ceramics shown in Table 1, piezoelectric transformers of Examples 1 to 5 and Comparative Example 1 were manufactured as shown in Table 2.

Figure 0007406876000002
Figure 0007406876000002

(圧電トランスの特性評価)
圧電トランスの特性評価として、図5に示す入力端子102に交流電圧を印加し、出力端子105より出力される電力を測定した。入力端子における電圧値と電流値より入力電力を算出し、出力端子における電圧値と出力端子に接続した負荷抵抗(不図示)より出力電力を算出し、入力電力に対する出力電力の割合から圧電トランスの変換効率を算出した。
(Characteristics evaluation of piezoelectric transformer)
To evaluate the characteristics of the piezoelectric transformer, an AC voltage was applied to the input terminal 102 shown in FIG. 5, and the power output from the output terminal 105 was measured. The input power is calculated from the voltage value and current value at the input terminal, the output power is calculated from the voltage value at the output terminal and the load resistance (not shown) connected to the output terminal, and the output power of the piezoelectric transformer is calculated from the ratio of the output power to the input power. Conversion efficiency was calculated.

比較例1および実施例1~実施例4における圧電トランスの特性評価結果を図7および図8に示す。図7は圧電トランスの各出力電力における入力電力に対する出力電力の変換効率を表している。また図8(a)は圧電トランスの出力電力10Wの時の入力電力に対する出力電力の変換効率、図8(b)および図8(c)は圧電トランスの出力電力30Wの時の入力電力に対する出力電力の変換効率を表している。 The characteristics evaluation results of the piezoelectric transformers in Comparative Example 1 and Examples 1 to 4 are shown in FIGS. 7 and 8. FIG. 7 shows the conversion efficiency of output power to input power at each output power of the piezoelectric transformer. Also, Figure 8(a) shows the conversion efficiency of output power to input power when the output power of the piezoelectric transformer is 10W, and Figures 8(b) and 8(c) show the output power to input power when the output power of the piezoelectric transformer is 30W. It represents the power conversion efficiency.

図7および図8(a)の結果で示されるように、圧電セラミックスの電気機械結合係数k33の比(k33/k31)が1.8の比較例1に対して、実施例1から4の方が以下の点で有利である。すなわち、圧電セラミックスの電気機械結合係数k33の比(k33/k31)が2.0以上である実施例1から4の方が圧電トランスの入力電力に対する出力電力の変換効率が高い。 As shown in the results of FIGS. 7 and 8(a), the ratio of electromechanical coupling coefficient k 33 of piezoelectric ceramics (k 33 /k 31 ) was 1.8 in Comparative Example 1, whereas Example 1 4 is more advantageous in the following points. That is, Examples 1 to 4 in which the ratio of the electromechanical coupling coefficient k 33 (k 33 /k 31 ) of the piezoelectric ceramic is 2.0 or more have higher conversion efficiency of output power to input power of the piezoelectric transformer.

実施例1と実施例2から実施例4を比較すると、実施例2から実施例4では圧電セラミックスの電気機械結合係数k31が30%未満かつk33が50%以上を満たしている。そのため、図8(b)および図8(c)に示されるように、実施例1よりも30W以上の高出力電力においても入力電力に対する出力電力の変換効率が高い。 Comparing Example 1 with Example 2 to Example 4, in Examples 2 to 4, the electromechanical coupling coefficient k 31 of the piezoelectric ceramics satisfies less than 30% and k 33 satisfies 50% or more. Therefore, as shown in FIGS. 8(b) and 8(c), the conversion efficiency of output power to input power is higher than in Example 1 even at high output power of 30 W or more.

実施例2から実施例4を比較すると、図8(a)に示されるように圧電セラミックスの電気機械結合係数k33の比(k33/k31)が大きい順に入力電力に対する出力電力の変換効率が高く、実施例3よりも実施例4が、実施例4よりも実施例2が高い。 Comparing Examples 2 to 4, as shown in FIG. 8(a), the conversion efficiency of output power to input power increases in descending order of the ratio of electromechanical coupling coefficient k 33 (k 33 /k 31 ) of piezoelectric ceramics. is higher in Example 4 than in Example 3, and higher in Example 2 than in Example 4.

また構造2である実施例5の電力変換効率は、出力電力10Wの時89%、30Wの時85%、50Wの時82%であった。実施例2と実施例5を比較すると、実施例5では入力部と出力部の間に第三の部材がある。実施例2では第一の圧電素子(入力用圧電素子)の中心を応力が一番大きくなる位置とした。他方、実施例5では第一の圧電素子(入力用圧電素子)および第二の圧電素子(出力用圧電素子)の各々の中心を応力が一番大きくなる位置としたことで、高い変換効率を示した。 Further, the power conversion efficiency of Example 5, which is Structure 2, was 89% when the output power was 10W, 85% when the output power was 30W, and 82% when the output power was 50W. Comparing Example 2 and Example 5, Example 5 has a third member between the input section and the output section. In Example 2, the center of the first piezoelectric element (input piezoelectric element) was set as the position where the stress was greatest. On the other hand, in Example 5, the center of each of the first piezoelectric element (input piezoelectric element) and the second piezoelectric element (output piezoelectric element) is set at the position where the stress is greatest, thereby achieving high conversion efficiency. Indicated.

次に実施例5の圧電トランスの構成において、第一の部材および第二の部材であるSUSに図2(e)で示すように凹部を設けナットを埋め込んだ形状の圧電トランスを作製した。また伸縮共振時に応力が最大になる位置に入力部および出力部を設置した。そして実施例1~5のように圧電トランスの特性を評価したところ、実施例5と同等の入力電力に対する出力電力の変換効率を確認した。与圧機構が第一の部材および第二の部材に埋め込まれている構造とすることで、圧電トランスを小型化することができた。 Next, in the configuration of the piezoelectric transformer of Example 5, a piezoelectric transformer having a shape in which a concave portion was provided and a nut was embedded in the first member and the second member made of SUS, as shown in FIG. 2(e), was manufactured. In addition, the input and output sections were installed at positions where the stress would be maximum during stretch resonance. When the characteristics of the piezoelectric transformer were evaluated as in Examples 1 to 5, conversion efficiency of output power to input power equivalent to that in Example 5 was confirmed. By adopting a structure in which the pressurizing mechanism is embedded in the first member and the second member, the piezoelectric transformer can be downsized.

今回の構造2では、第三の部材としてSUSを用いたが、金属だけでなく絶縁体を用いることも可能である。第三の部材が絶縁体であることで、入力側の回路と出力側の回路がそれぞれ絶縁した構造となる。このような絶縁構造では、入力側の電気が直接流れることを防ぎ、出力側につながれた回路を保護することができる。また予期せぬ出力側からの電気の逆流が入力側に伝わることを防ぐことができる。 In this Structure 2, SUS was used as the third member, but it is also possible to use not only metal but also an insulator. Since the third member is an insulator, the input side circuit and the output side circuit are insulated from each other. Such an insulating structure prevents electricity from flowing directly on the input side and protects the circuit connected to the output side. Further, it is possible to prevent an unexpected reverse flow of electricity from the output side from being transmitted to the input side.

本発明の圧電トランスを用いることで、圧電セラミックスと電極板や金属円柱など周辺部材との界面における発熱を抑制し、高い電力の変換効率を示すことができる。本発明の圧電トランスは、圧電トランスを用いた電子機器においても利用することができる。 By using the piezoelectric transformer of the present invention, heat generation at the interface between the piezoelectric ceramic and peripheral members such as electrode plates and metal cylinders can be suppressed, and high power conversion efficiency can be exhibited. The piezoelectric transformer of the present invention can also be used in electronic equipment using piezoelectric transformers.

101 入力部
102 入力端子
103 入力用圧電素子
104 出力部
105 出力端子
106 出力用圧電素子
107 圧電トランス
109 第一の部材
110 第二の部材
111 第三の部材
112 与圧機構
113 外装部
114 圧電セラミックス(第一の圧電素子用)
115 圧電セラミックス(第二の圧電素子用)
116 電極
117 ナット
118 シャフト
101 Input part 102 Input terminal 103 Input piezoelectric element 104 Output part 105 Output terminal 106 Output piezoelectric element 107 Piezoelectric transformer 109 First member 110 Second member 111 Third member 112 Pressurizing mechanism 113 Exterior part 114 Piezoelectric ceramics (For the first piezoelectric element)
115 Piezoelectric ceramics (for second piezoelectric element)
116 Electrode 117 Nut 118 Shaft

Claims (9)

第一の部材、電極と圧電セラミックスを備えた第一の圧電素子、電極と圧電セラミックスを備えた第二の圧電素子および第二の部材が順に積層された積層体と、該積層体の前記第一の部材と前記第二の部材を積層方向に互いに締め付ける与圧機構とを少なくとも有する圧電トランスであって、
前記圧電セラミックスは、BaとCaとTiとZrを含む、あるいはNaとNbを含む、ペロブスカイト型金属酸化物より構成され、
前記第一の圧電素子および前記第二の圧電素子の電気機械結合係数k3123%以上26以下かつk3353%以上58%以下であり、
前記第一の圧電素子および前記第二の圧電素子の電気機械結合係数k31に対する電気機械結合係数k33の比(k33/k31)が2.1以上2.3以下であり、
前記第一の圧電素子および前記第二の圧電素子の室温におけるヤング率Y 11 が116GPa以上123GPa以下であり、
前記第一の圧電素子および前記第二の圧電素子の周波数定数N 31 が2210Hz・m以上2610Hz・m以下であり、
前記第一の圧電素子および前記第二の圧電素子に含まれるPb成分が1000ppm未満であることを特徴とする圧電トランス。
A laminate in which a first member, a first piezoelectric element having an electrode and a piezoelectric ceramic , a second piezoelectric element having an electrode and a piezoelectric ceramic , and a second member are laminated in this order; A piezoelectric transformer comprising at least a pressurizing mechanism that tightens the first member and the second member together in the stacking direction,
The piezoelectric ceramic is composed of a perovskite metal oxide containing Ba, Ca, Ti, and Zr, or containing Na and Nb,
The electromechanical coupling coefficient k31 of the first piezoelectric element and the second piezoelectric element is 23% or more and 26 % or less , and k33 is 53 % or more and 58% or less ,
The ratio (k 33 /k 31 ) of the electromechanical coupling coefficient k 33 to the electromechanical coupling coefficient k 31 of the first piezoelectric element and the second piezoelectric element is 2.1 or more and 2.3 or less ,
Young's modulus Y 11 at room temperature of the first piezoelectric element and the second piezoelectric element is 116 GPa or more and 123 GPa or less,
The frequency constant N 31 of the first piezoelectric element and the second piezoelectric element is 2210 Hz·m or more and 2610 Hz·m or less,
A piezoelectric transformer, wherein a Pb component contained in the first piezoelectric element and the second piezoelectric element is less than 1000 ppm.
前記圧電セラミックスは、BaとCaとTiとZrを含む圧電セラミックスであり、
前記Baおよび前記Caの和に対する前記Caのモル比であるxが0.02≦x≦0.30であり、 前記Tiおよび前記Zrの和に対する前記Zrのモル比であるyが0.020≦y≦0.095であり、
かつy≦xであることを特徴とする請求項に記載の圧電トランス。
The piezoelectric ceramic is a piezoelectric ceramic containing Ba, Ca, Ti, and Zr,
x, which is the molar ratio of Ca to the sum of Ba and Ca, is 0.02≦x≦0.30, and y, which is the molar ratio of Zr to the sum of Ti and Zr, is 0.020≦ y≦0.095,
The piezoelectric transformer according to claim 1 , wherein y≦x.
前記圧電セラミックスは、
さらにMnを含有する圧電材料であって、
前記酸化物100重量部に対する前記Mnの含有量は、金属換算で0.02重量部以上0.40重量部以下であることを特徴とする請求項に記載の圧電トランス。
The piezoelectric ceramics is
Furthermore, a piezoelectric material containing Mn,
2. The piezoelectric transformer according to claim 1 , wherein the content of the Mn based on 100 parts by weight of the oxide is 0.02 parts by weight or more and 0.40 parts by weight or less in terms of metal.
前記第一の圧電素子と前記第二の圧電素子の間に、第三の部材が積層されている請求項1または2に記載の圧電トランス。 The piezoelectric transformer according to claim 1 or 2, wherein a third member is laminated between the first piezoelectric element and the second piezoelectric element. 前記与圧機構が前記積層体を貫通していることを特徴とする、請求項1または2に記載の圧電トランス。 The piezoelectric transformer according to claim 1 or 2, wherein the pressurizing mechanism penetrates the laminate. 前記与圧機構が前記積層体に埋め込まれていることを特徴とする、請求項1または2に記載の圧電トランス。 The piezoelectric transformer according to claim 1 or 2, wherein the pressurizing mechanism is embedded in the laminate. 前記第一の圧電素子および前記第二の圧電素子は各々が偶数枚の板状圧電セラミックスと、複数の電極を積層して成ることを特徴とする、請求項1または2に記載の圧電トランス。 3. The piezoelectric transformer according to claim 1, wherein each of the first piezoelectric element and the second piezoelectric element is formed by laminating an even number of plate-shaped piezoelectric ceramics and a plurality of electrodes. 前記第三の部材は絶縁体であることを特徴とする、請求項に記載の圧電トランス。 The piezoelectric transformer according to claim 4 , wherein the third member is an insulator. 請求項1または2に記載の圧電トランスと、該圧電トランスに交番電圧を給電する駆動回路、を備えた電子機器。 An electronic device comprising the piezoelectric transformer according to claim 1 or 2, and a drive circuit that supplies an alternating voltage to the piezoelectric transformer.
JP2018195965A 2018-10-17 2018-10-17 Piezoelectric transformers and electronic equipment Active JP7406876B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018195965A JP7406876B2 (en) 2018-10-17 2018-10-17 Piezoelectric transformers and electronic equipment
US16/598,930 US11495732B2 (en) 2018-10-17 2019-10-10 Piezoelectric transformer and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018195965A JP7406876B2 (en) 2018-10-17 2018-10-17 Piezoelectric transformers and electronic equipment

Publications (2)

Publication Number Publication Date
JP2020064977A JP2020064977A (en) 2020-04-23
JP7406876B2 true JP7406876B2 (en) 2023-12-28

Family

ID=70279678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018195965A Active JP7406876B2 (en) 2018-10-17 2018-10-17 Piezoelectric transformers and electronic equipment

Country Status (2)

Country Link
US (1) US11495732B2 (en)
JP (1) JP7406876B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112271955B (en) * 2020-09-12 2021-09-03 西安交通大学 Actuating method of piezoelectric actuator with small displacement overshoot and capable of keeping displacement in power-off mode

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124517A (en) 1998-10-20 2000-04-28 Tokin Corp Piezoelectric transformer
JP2000174354A (en) 1998-12-03 2000-06-23 Tokin Corp Piezoelectric transformer
JP2000221546A (en) 1999-01-29 2000-08-11 Seiko Epson Corp Electrophoretic ink display device
JP2000223754A (en) 1999-01-29 2000-08-11 Seiko Epson Corp Thin film piezoelectric transformer
JP2000307164A (en) 1999-04-21 2000-11-02 Matsushita Electric Ind Co Ltd Thin-plate piezoelectric element, piezoelectric acoustic element formed using the same, piezoelectric vibrator, piezoelectric actuator, piezoelectric transformer, and cold-cathode fluorescent lamp provided therewith
JP2000332316A (en) 1999-03-18 2000-11-30 Nippon Soken Inc Piezoelectric ceramic transformer
JP2001261435A (en) 2000-03-17 2001-09-26 Toyota Central Res & Dev Lab Inc Piezoelectric ceramics and production process of the same
JP2001342062A (en) 2000-05-31 2001-12-11 Kyocera Corp Piezoelectric ceramic, multilayered piezoelectric element and injector
US20020011986A1 (en) 1999-01-29 2002-01-31 Kazumasa Hasegawa Piezoelectric transducer and electrophoretic ink display apparatus using piezoelectric transducer
JP2003128460A (en) 2001-10-23 2003-05-08 Murata Mfg Co Ltd Piezoelectric ceramics, piezoelectric element and laminated piezoelectric element
JP2003282986A (en) 2002-03-25 2003-10-03 Toshio Ogawa Domain control piezoelectric single crystal element and its manufacturing method
JP2004300019A (en) 2003-03-14 2004-10-28 Toyota Central Res & Dev Lab Inc Crystal-oriented ceramic and its manufacturing method
WO2005021461A1 (en) 2003-08-28 2005-03-10 National Institute Of Advanced Industrial Science And Technology Perovskite solid solution composition and piezoelectric ceramics produced therefrom
WO2005068394A1 (en) 2004-01-20 2005-07-28 Iai Corporation Piezoelectric porcelain composition
JP2006028001A (en) 2004-06-17 2006-02-02 Toyota Central Res & Dev Lab Inc Crystallographic orientation ceramic, and its manufacturing method
JP2006108639A (en) 2004-09-13 2006-04-20 Denso Corp Piezoelectric actuator
JP2006179739A (en) 2004-12-24 2006-07-06 Ngk Insulators Ltd Method of manufacturing dielectric layer and element, dielectric element, and piezoelectric transformer
JP2007238376A (en) 2006-03-08 2007-09-20 Taiheiyo Cement Corp Sintering aid for piezoelectric ceramics, bnt-bt-based piezoelectric ceramics, laminated piezoelectric device, and manufacturing method of bnt-bt-based piezoelectric ceramics
JP2008239482A (en) 2008-04-25 2008-10-09 Taiyo Yuden Co Ltd Piezoelectric ceramic composition, method for producing piezoelectric ceramic composition and piezoelectric ceramic component
JP2009082385A (en) 2007-09-28 2009-04-23 Fujifilm Corp Ultrasonic probe
JP2009227535A (en) 2008-03-25 2009-10-08 Panasonic Corp Piezoelectric ceramic composition
JP2010143789A (en) 2008-12-18 2010-07-01 Canon Inc Piezoelectric material
US20100188068A1 (en) 2009-01-23 2010-07-29 Qortek, Inc. Solid State High Power Piezokinetic Transformer and Method Thereof
WO2011004679A1 (en) 2009-07-10 2011-01-13 日本碍子株式会社 Piezoelectric body/electrostrictive body, piezoelectric/electrostrictive ceramic composition, piezoelectric element/electrostrictive element, and piezoelectric motor
JP2011068535A (en) 2009-09-28 2011-04-07 Taiheiyo Cement Corp Bnt-bt system piezoelectric ceramic and method for manufacturing the same
JP2011181866A (en) 2010-03-04 2011-09-15 Fujifilm Corp Laminated structure and piezoelectric device using the same
JP2013219316A (en) 2011-07-05 2013-10-24 Canon Inc Piezoelectric element, laminated piezoelectric element, liquid discharging head, liquid discharging device, ultrasonic motor, optical equipment and electronic equipment
JP2013237589A (en) 2012-05-15 2013-11-28 Taiyo Yuden Co Ltd Piezoelectric ceramic and method for producing the same
JP2013253002A (en) 2012-06-07 2013-12-19 Nec Tokin Corp Li-CONTAINING PIEZOELECTRIC CERAMIC POWDER MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2014055900A (en) 2012-09-13 2014-03-27 Plus Comfort Co Ltd Evaluation method for piezoelectric material
WO2014077000A1 (en) 2012-11-13 2014-05-22 株式会社村田製作所 Piezoelectric transformer
US20140167571A1 (en) 2011-08-09 2014-06-19 Noliac A/S Piezoelectric transformer with high effective electromechanical coupling factors
WO2014157050A1 (en) 2013-03-25 2014-10-02 株式会社 東芝 Piezoelectric vibrator, ultrasonic probe, method for manufacturing piezoelectric vibrator, and method for manufacturing ultrasonic probe
JP2015034118A (en) 2012-12-28 2015-02-19 キヤノン株式会社 Piezoelectric material, piezoelectric element, and electronic apparatus
JP2015034121A5 (en) 2014-05-27 2017-07-06
JP2018107437A (en) 2016-12-27 2018-07-05 キヤノン株式会社 Vibrator, vibration wave driver, vibration wave motor, and electronic equipment
JP2018133566A (en) 2017-02-14 2018-08-23 キヤノン株式会社 Piezoelectric material, manufacturing method for piezoelectric material, piezoelectric element, vibration wave motor, optical equipment, and electronic device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123592A (en) * 1975-04-21 1976-10-28 Ngk Spark Plug Co Ltd Bar type composite piezo transformer
JPS5948969A (en) * 1982-09-14 1984-03-21 Toshiba Corp Oxide piezoelectric material
JP2727969B2 (en) * 1994-07-26 1998-03-18 日本電気株式会社 Method of manufacturing piezoelectric ceramic transformer having comb-shaped electrode
JP2725603B2 (en) * 1994-07-26 1998-03-11 日本電気株式会社 Piezoelectric transformer and its driving method
EP0694978B1 (en) * 1994-07-26 1998-08-05 Nec Corporation Piezoelectric ceramic transformer
JP2755177B2 (en) * 1994-07-26 1998-05-20 日本電気株式会社 Piezoelectric transformer
JP2671871B2 (en) * 1995-05-31 1997-11-05 日本電気株式会社 Piezoelectric transformer and manufacturing method thereof
JPH09186373A (en) * 1995-12-28 1997-07-15 Taiyo Yuden Co Ltd Piezoelectric transformer
JPH09205029A (en) * 1996-01-24 1997-08-05 Tokin Corp Bolt clamped piezoelectric transformer
JPH1086365A (en) * 1996-09-17 1998-04-07 Citizen Watch Co Ltd Thin film element for ferroelectric substance
JP6381294B2 (en) * 2013-07-12 2018-08-29 キヤノン株式会社 Piezoelectric material, piezoelectric element, and electronic device

Patent Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124517A (en) 1998-10-20 2000-04-28 Tokin Corp Piezoelectric transformer
JP2000174354A (en) 1998-12-03 2000-06-23 Tokin Corp Piezoelectric transformer
JP2000221546A (en) 1999-01-29 2000-08-11 Seiko Epson Corp Electrophoretic ink display device
JP2000223754A (en) 1999-01-29 2000-08-11 Seiko Epson Corp Thin film piezoelectric transformer
US20020011986A1 (en) 1999-01-29 2002-01-31 Kazumasa Hasegawa Piezoelectric transducer and electrophoretic ink display apparatus using piezoelectric transducer
JP2000332316A (en) 1999-03-18 2000-11-30 Nippon Soken Inc Piezoelectric ceramic transformer
JP2000307164A (en) 1999-04-21 2000-11-02 Matsushita Electric Ind Co Ltd Thin-plate piezoelectric element, piezoelectric acoustic element formed using the same, piezoelectric vibrator, piezoelectric actuator, piezoelectric transformer, and cold-cathode fluorescent lamp provided therewith
JP2001261435A (en) 2000-03-17 2001-09-26 Toyota Central Res & Dev Lab Inc Piezoelectric ceramics and production process of the same
JP2001342062A (en) 2000-05-31 2001-12-11 Kyocera Corp Piezoelectric ceramic, multilayered piezoelectric element and injector
JP2003128460A (en) 2001-10-23 2003-05-08 Murata Mfg Co Ltd Piezoelectric ceramics, piezoelectric element and laminated piezoelectric element
JP2003282986A (en) 2002-03-25 2003-10-03 Toshio Ogawa Domain control piezoelectric single crystal element and its manufacturing method
JP2004300019A (en) 2003-03-14 2004-10-28 Toyota Central Res & Dev Lab Inc Crystal-oriented ceramic and its manufacturing method
WO2005021461A1 (en) 2003-08-28 2005-03-10 National Institute Of Advanced Industrial Science And Technology Perovskite solid solution composition and piezoelectric ceramics produced therefrom
WO2005068394A1 (en) 2004-01-20 2005-07-28 Iai Corporation Piezoelectric porcelain composition
JP2006028001A (en) 2004-06-17 2006-02-02 Toyota Central Res & Dev Lab Inc Crystallographic orientation ceramic, and its manufacturing method
JP2006108639A (en) 2004-09-13 2006-04-20 Denso Corp Piezoelectric actuator
JP2006179739A (en) 2004-12-24 2006-07-06 Ngk Insulators Ltd Method of manufacturing dielectric layer and element, dielectric element, and piezoelectric transformer
JP2007238376A (en) 2006-03-08 2007-09-20 Taiheiyo Cement Corp Sintering aid for piezoelectric ceramics, bnt-bt-based piezoelectric ceramics, laminated piezoelectric device, and manufacturing method of bnt-bt-based piezoelectric ceramics
JP2009082385A (en) 2007-09-28 2009-04-23 Fujifilm Corp Ultrasonic probe
JP2009227535A (en) 2008-03-25 2009-10-08 Panasonic Corp Piezoelectric ceramic composition
JP2008239482A (en) 2008-04-25 2008-10-09 Taiyo Yuden Co Ltd Piezoelectric ceramic composition, method for producing piezoelectric ceramic composition and piezoelectric ceramic component
JP2010143789A (en) 2008-12-18 2010-07-01 Canon Inc Piezoelectric material
US20100188068A1 (en) 2009-01-23 2010-07-29 Qortek, Inc. Solid State High Power Piezokinetic Transformer and Method Thereof
WO2011004679A1 (en) 2009-07-10 2011-01-13 日本碍子株式会社 Piezoelectric body/electrostrictive body, piezoelectric/electrostrictive ceramic composition, piezoelectric element/electrostrictive element, and piezoelectric motor
JP2011068535A (en) 2009-09-28 2011-04-07 Taiheiyo Cement Corp Bnt-bt system piezoelectric ceramic and method for manufacturing the same
JP2011181866A (en) 2010-03-04 2011-09-15 Fujifilm Corp Laminated structure and piezoelectric device using the same
JP2013219316A (en) 2011-07-05 2013-10-24 Canon Inc Piezoelectric element, laminated piezoelectric element, liquid discharging head, liquid discharging device, ultrasonic motor, optical equipment and electronic equipment
US20140167571A1 (en) 2011-08-09 2014-06-19 Noliac A/S Piezoelectric transformer with high effective electromechanical coupling factors
JP2013237589A (en) 2012-05-15 2013-11-28 Taiyo Yuden Co Ltd Piezoelectric ceramic and method for producing the same
JP2013253002A (en) 2012-06-07 2013-12-19 Nec Tokin Corp Li-CONTAINING PIEZOELECTRIC CERAMIC POWDER MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2014055900A (en) 2012-09-13 2014-03-27 Plus Comfort Co Ltd Evaluation method for piezoelectric material
WO2014077000A1 (en) 2012-11-13 2014-05-22 株式会社村田製作所 Piezoelectric transformer
JP2015034118A (en) 2012-12-28 2015-02-19 キヤノン株式会社 Piezoelectric material, piezoelectric element, and electronic apparatus
WO2014157050A1 (en) 2013-03-25 2014-10-02 株式会社 東芝 Piezoelectric vibrator, ultrasonic probe, method for manufacturing piezoelectric vibrator, and method for manufacturing ultrasonic probe
JP2014187285A (en) 2013-03-25 2014-10-02 Toshiba Corp Piezoelectric vibrator, ultrasound probe, method for manufacturing piezoelectric vibrator, and method for manufacturing ultrasound probe
JP2015034121A5 (en) 2014-05-27 2017-07-06
JP2018107437A (en) 2016-12-27 2018-07-05 キヤノン株式会社 Vibrator, vibration wave driver, vibration wave motor, and electronic equipment
JP2018133566A (en) 2017-02-14 2018-08-23 キヤノン株式会社 Piezoelectric material, manufacturing method for piezoelectric material, piezoelectric element, vibration wave motor, optical equipment, and electronic device

Also Published As

Publication number Publication date
US11495732B2 (en) 2022-11-08
JP2020064977A (en) 2020-04-23
US20200127188A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
US7352113B2 (en) Piezoelectric actuator
US7443085B2 (en) Piezoelectric actuator
US6207069B1 (en) Piezoelectric ceramics and piezoelectric device
JP7406876B2 (en) Piezoelectric transformers and electronic equipment
US20060250050A1 (en) Resonator
JP2003055045A (en) Piezoelectric ceramic composition for multilayer piezoelectric element, multilayer piezoelectric element, method for producing multilayer piezoelectric element and multilayer piezoelectric device
JP5597368B2 (en) Multilayer electronic component and manufacturing method thereof
US6413443B1 (en) Piezoelectric ceramic and piezoelectric device
JP2003023187A (en) Highly heat resistant piezoelectric element and piezoelectric device comprising it
JP3385999B2 (en) Piezoelectric ceramic composition, piezoelectric buzzer and piezoelectric actuator using the same
JP2957564B1 (en) Piezoelectric and piezoelectric devices
JP3803207B2 (en) Piezoelectric ceramic composition and piezoelectric transformer
JP2001328864A (en) Low-temperature bakeable piezoelectric porcelain composition and piezoelectric transformer
JP2001328865A (en) Piezoelectric porcelain composition and piezoelectric ceramic element using the same
JP2820000B2 (en) Piezoelectric material composition for actuator
US20130207512A1 (en) Piezoelectric drive element and piezoelectric drive unit
JP2008254961A (en) Piezoelectric composition
JP5894222B2 (en) Multilayer electronic component and manufacturing method thereof
WO2013088927A1 (en) Piezoelectric oriented ceramic and piezoelectric actuator
JP3912098B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JPH10279354A (en) Piezoelectric ceramic mateal and piezoelectric transformer
JP7415696B2 (en) Piezoelectric compositions and electronic components
JP6321562B2 (en) Piezoelectric ceramic composition, piezoelectric element, and piezoelectric vibration device
JP2001328866A (en) Piezoelectric porcelain composition and piezoelectric ceramic element using the same
JP5935187B2 (en) Piezoelectric ceramics and piezoelectric actuator using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20231213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231213

R151 Written notification of patent or utility model registration

Ref document number: 7406876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151