JP2003023187A - Highly heat resistant piezoelectric element and piezoelectric device comprising it - Google Patents

Highly heat resistant piezoelectric element and piezoelectric device comprising it

Info

Publication number
JP2003023187A
JP2003023187A JP2001209274A JP2001209274A JP2003023187A JP 2003023187 A JP2003023187 A JP 2003023187A JP 2001209274 A JP2001209274 A JP 2001209274A JP 2001209274 A JP2001209274 A JP 2001209274A JP 2003023187 A JP2003023187 A JP 2003023187A
Authority
JP
Japan
Prior art keywords
piezoelectric element
piezoelectric
heat treatment
temperature
high heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001209274A
Other languages
Japanese (ja)
Inventor
Tomoyuki Ogawa
智之 小川
Katsuhiro Horikawa
勝弘 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001209274A priority Critical patent/JP2003023187A/en
Publication of JP2003023187A publication Critical patent/JP2003023187A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a highly heat resistant piezoelectric element which can exhibit high heat resistance while sustaining a high piezoelectric constant (d), and a piezoelectric device comprising it. SOLUTION: In a titanate zirconate lead based piezoelectric material, crystal system of the piezoelectric material under room temperature is set closer to the rhombohedral phase side than the boundary of morphotropic phase so that transition is made from rhombohedral phase to tetragonal phase by heat treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、圧電発音体、圧電
センサ、圧電アクチュエータ等の圧電装置に適する高耐
熱圧電素子に係わり、特に、例えば実装時のはんだリフ
ローのときの加熱温度に対応可能な高耐熱圧電素子に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high heat resistant piezoelectric element suitable for a piezoelectric device such as a piezoelectric sounding body, a piezoelectric sensor, a piezoelectric actuator, etc., and in particular, it can cope with a heating temperature at the time of solder reflow during mounting. The present invention relates to a high heat resistant piezoelectric element.

【0002】[0002]

【従来の技術】従来より、圧電磁器組成物を利用した圧
電素子、圧電装置は多種多様であり、例えば、圧電発音
体、圧電センサ、圧電アクチュエータなどがある。この
ような圧電装置に用いられる圧電素子には、音圧、感
度、変位の向上のために高い圧電d定数が求められてい
る。圧電d定数は一般的に下記式(1)で示される。
2. Description of the Related Art Conventionally, there are various types of piezoelectric elements and devices using a piezoelectric ceramic composition, such as a piezoelectric sounding body, a piezoelectric sensor, and a piezoelectric actuator. A piezoelectric element used in such a piezoelectric device is required to have a high piezoelectric d constant in order to improve sound pressure, sensitivity, and displacement. The piezoelectric d constant is generally expressed by the following equation (1).

【0003】d=k・ε1/2・s1/2…(1) (k:電気機械結合係数、ε:誘電率、s:弾性コンプ
ライアンス) 圧電素子を構成する圧電材料にはチタン酸ジルコン酸鉛
(以下、PZTと記す)が多く使われている。特に、菱
面体晶相と正方晶相との相境界であるモルフォトロピッ
ク相境界(以下、MPBと記す)付近においては、k、
ε、sが極大を示し、圧電d定数も極大を示すため、材
料組成はPZTのMPB近傍に設定されることが多い。
PZT系材料におけるMPB組成への設定は、主として
TiとZrのモル比の調整により行われる。
[0003] d = k · ε 1/2 · s 1/2 ... (1) (k: an electromechanical coupling factor, epsilon: permittivity, s: the elastic compliance) zirconate titanate piezoelectric material constituting the piezoelectric element Lead acid (hereinafter referred to as PZT) is often used. In particular, in the vicinity of the morphotropic phase boundary (hereinafter referred to as MPB) which is a phase boundary between the rhombohedral phase and the tetragonal phase, k,
Since ε and s show the maximum and the piezoelectric d constant also shows the maximum, the material composition is often set near the MPB of PZT.
The setting of the MPB composition in the PZT-based material is mainly performed by adjusting the molar ratio of Ti and Zr.

【0004】最近は、圧電応用製品の表面実装対応化に
伴い、圧電素子には、実装時のはんだリフロー等の加熱
時に対応できる高耐熱性が求められている。すなわち、
分極された圧電素子が加熱処理により減極して(ディポ
ールが生じて)、圧電d定数が劣化し、所望の性能が得
られないことが問題となっていた。
In recent years, along with surface mounting of piezoelectric applied products, piezoelectric elements are required to have high heat resistance capable of supporting heating such as solder reflow during mounting. That is,
There has been a problem that the polarized piezoelectric element is depolarized (depolarized) by the heat treatment, the piezoelectric d constant is deteriorated, and desired performance cannot be obtained.

【0005】このリフロー等の加熱処理による特性劣化
を少しでも抑制するために、従来より様々な方法が行わ
れている。まず、圧電素子のキュリー温度を加熱処理温
度より十分高くする方法が知られている。
Various methods have heretofore been used in order to suppress deterioration of characteristics due to heat treatment such as reflow. First, a method is known in which the Curie temperature of the piezoelectric element is sufficiently higher than the heat treatment temperature.

【0006】次に、特開平10−95666号公報に
は、加熱処理によって生じた焦電電荷による減極作用を
抑制するため、圧電素子を形成する圧電材料の電気抵抗
率を組成変性等により低下させる方法が開示されてい
る。
Next, in Japanese Unexamined Patent Publication No. 10-95666, in order to suppress the depolarization effect due to pyroelectric charge generated by heat treatment, the electrical resistivity of the piezoelectric material forming the piezoelectric element is lowered by composition modification or the like. A method of causing is disclosed.

【0007】また、特開平11−330578号公報に
おいては、加熱処理によって生じた焦電電荷による減極
作用を抑制する別の手段として、圧電素子の両端電極間
を抵抗を用いて短絡させる方法が開示されている。
Further, in Japanese Patent Laid-Open No. 11-330578, as another means for suppressing the depolarizing action due to pyroelectric charge generated by the heat treatment, a method of short-circuiting both electrodes of the piezoelectric element by using a resistor is disclosed. It is disclosed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記従
来では、以下の各問題を有している。まず、圧電素子の
キュリー温度を加熱処理温度より十分高くする方法で
は、加熱処理前後を問わず圧電材料の加熱処理前の比誘
電率εrが低下する傾向にあるため、この方法のみで
は、加熱処理後の大きな圧電d定数が得られにくいとい
う問題がある。
However, the above-mentioned prior art has the following problems. First, in the method in which the Curie temperature of the piezoelectric element is sufficiently higher than the heat treatment temperature, the relative permittivity εr of the piezoelectric material before the heat treatment tends to decrease regardless of before and after the heat treatment. There is a problem that it is difficult to obtain a large piezoelectric d constant later.

【0009】また、特開平10−95666号公報で
は、この方法により耐熱性はある程度向上するものの、
この方法のみでは加熱処理後の圧電d定数がまだ十分で
ないという問題が生じていた。
Further, in JP-A-10-95666, although heat resistance is improved to some extent by this method,
This method alone has a problem that the piezoelectric d constant after the heat treatment is still insufficient.

【0010】続いて、特開平11−330578号公報
においては、駆動電界の高い装置の場合はリーク電流が
生じて実効電界が低下するという問題があり、また圧電
素子の製造工程が増加するため好ましくなかった。
Next, in Japanese Patent Laid-Open No. 11-330578, there is a problem that a device having a high driving electric field has a problem that a leak current is generated and the effective electric field is lowered, and the number of manufacturing steps of the piezoelectric element is increased, which is preferable. There wasn't.

【0011】本発明の目的は、実装時のはんだリフロー
等の加熱処理による圧電d定数の劣化が小さく、また加
熱処理後の圧電d定数が十分高い高耐熱圧電素子、それ
を用いた圧電装置を提供することである。また、当目的
を達成できる本発明は、圧電素子を構成する圧電材料の
組成変性の必要性を極力小さくできるものであり、か
つ、従来必要であった、圧電素子の短絡等の余分な工程
を不必要とするものである。
An object of the present invention is to provide a highly heat-resistant piezoelectric element in which deterioration of the piezoelectric d constant due to heat treatment such as solder reflow at the time of mounting is small and the piezoelectric d constant after heat treatment is sufficiently high, and a piezoelectric device using the same. Is to provide. Further, the present invention that can achieve the present object is to minimize the need for composition modification of the piezoelectric material forming the piezoelectric element, and to eliminate the extra steps such as the short-circuiting of the piezoelectric element that has been conventionally required. It is unnecessary.

【0012】[0012]

【課題を解決するための手段】本発明の高耐熱圧電素子
は、上記課題を解決するために、チタン酸ジルコン酸鉛
系の圧電材料を用いた、加熱処理に対応可能な高耐熱圧
電素子であって、該圧電材料の室温における結晶系が、
上記加熱処理によって菱面体晶相から正方晶相へ相転移
するよう、MPBより菱面体晶相側に設定されているこ
とを特徴としている。
In order to solve the above-mentioned problems, a high heat-resistant piezoelectric element of the present invention is a high heat-resistant piezoelectric element that uses a lead zirconate titanate-based piezoelectric material and is compatible with heat treatment. Therefore, the crystal system of the piezoelectric material at room temperature is
It is characterized in that it is set on the rhombohedral phase side of MPB so that the rhombohedral phase is transformed to the tetragonal phase by the heat treatment.

【0013】本発明の他の高耐熱圧電素子は、上記課題
を解決するために、加熱処理に対応可能な高耐熱圧電素
子であって、加熱処理を行う前の該圧電素子の圧電共振
の共振周波数が極小を示す温度が、60℃以上200℃
以下の範囲に存在していることを特徴としている。
In order to solve the above-mentioned problems, another high heat-resistant piezoelectric element of the present invention is a high heat-resistant piezoelectric element that can be subjected to heat treatment, and the resonance of piezoelectric resonance of the piezoelectric element before the heat treatment. The temperature at which the frequency is minimum is 60 ℃ or more and 200 ℃
It is characterized by existing in the following range.

【0014】本発明のさらに他の高耐熱圧電素子は、上
記課題を解決するために、加熱処理に対応可能な高耐熱
圧電素子であって、加熱処理を行った後の該圧電素子の
圧電共振の共振周波数が極小を示す温度が、0℃以上1
40℃以下の範囲に存在していることを特徴としてい
る。
In order to solve the above-mentioned problems, still another high heat-resistant piezoelectric element of the present invention is a high heat-resistant piezoelectric element that can be subjected to heat treatment, and the piezoelectric resonance of the piezoelectric element after the heat treatment. The temperature at which the resonance frequency is minimum is 0 ° C or higher 1
It is characterized in that it exists in the range of 40 ° C. or lower.

【0015】本発明のさらに他の高耐熱圧電素子は、上
記課題を解決するために、加熱処理に対応可能な高耐熱
圧電素子であって、加熱処理を行う前の該圧電素子の圧
電共振の共振周波数が極小を示す温度が、60℃以上2
00℃以下の範囲に存在し、かつ、加熱処理を行うこと
により圧電共振の共振周波数が極小を示す温度が低下
し、かつ、加熱処理を行った後の該圧電素子の圧電共振
の共振周波数が極小を示す温度が、0℃以上140℃以
下の範囲に存在していることを特徴としている。
In order to solve the above-mentioned problems, still another high heat-resistant piezoelectric element of the present invention is a high heat-resistant piezoelectric element that can be subjected to a heat treatment, and the piezoelectric resonance of the piezoelectric element before the heat treatment is performed. The temperature at which the resonance frequency is minimum is 60 ° C or higher 2
It exists in the range of 00 ° C. or less, and the temperature at which the resonance frequency of the piezoelectric resonance exhibits a minimum decreases by performing the heat treatment, and the resonance frequency of the piezoelectric resonance of the piezoelectric element after the heat treatment is reduced. It is characterized in that the temperature exhibiting the minimum exists in the range of 0 ° C. or higher and 140 ° C. or lower.

【0016】上記構成によれば、圧電材料の室温におけ
る結晶系を、加熱処理によって菱面体晶相から正方晶相
へ相転移するよう、MPBより菱面体晶相側に設定し
て、加熱処理の前または/および後の該圧電素子の圧電
共振の共振周波数が極小を示す温度を上述したように制
御することにより、高い耐熱性により圧電素子を実装す
る際の、例えば、はんだリフロー時においても優れた圧
電性を維持できる。
According to the above structure, the crystal system at room temperature of the piezoelectric material is set to the rhombohedral phase side from MPB so that the phase transition from the rhombohedral phase to the tetragonal phase occurs by the heat treatment, and the heat treatment is performed. By controlling the temperature at which the resonance frequency of the piezoelectric resonance of the piezoelectric element before and / or after the piezoelectric element has a minimum value as described above, it is excellent when mounting the piezoelectric element with high heat resistance, for example, during solder reflow. The piezoelectricity can be maintained.

【0017】また、上記構成では、圧電材料の室温にお
ける結晶系を、加熱処理によって菱面体晶相から正方晶
相へ相転移するよう、MPBより菱面体晶相側に設定し
ているので、上記加熱処理が、例えば圧電素子実装時の
はんだリフローのように加熱処理の温度条件が過酷な場
合でも、従来の圧電素子と比較してさらに優れた高耐熱
性、および加熱処理後の高い圧電d定数を得ることがで
きる。
Further, in the above structure, the crystal system of the piezoelectric material at room temperature is set to be closer to the rhombohedral crystal phase side than MPB so that the phase transition from the rhombohedral crystal phase to the tetragonal crystal phase is caused by the heat treatment. Even when the heat treatment is performed under severe temperature conditions such as solder reflow when mounting the piezoelectric element, the heat resistance is further excellent as compared with the conventional piezoelectric element, and the high piezoelectric d constant after the heat treatment. Can be obtained.

【0018】上記高耐熱圧電素子では、キュリー温度が
260℃以上であり、かつ室温における電気絶縁抵抗率
が1.0×1012Ω・cm未満であることが好ましい。
上記構成によれば、共振周波数が極小となる温度を調整
することとの複合効果により、非常に高い耐熱性が得ら
れる。
In the above high heat resistant piezoelectric element, it is preferable that the Curie temperature is 260 ° C. or higher and the electric insulation resistivity at room temperature is less than 1.0 × 10 12 Ω · cm.
According to the above configuration, a very high heat resistance can be obtained by the combined effect of adjusting the temperature at which the resonance frequency becomes minimum.

【0019】上記高耐熱圧電素子においては、該高耐熱
圧電素子を形成するためのチタン酸ジルコン酸鉛系ペロ
ブスカイト化合物からなる圧電磁器は、Cr、Mn、F
e、Ni、Mg、Sn、Cu、Agのうち少なくとも1
種以上を含有し、かつ、Nb、Sb、Wのうち少なくと
も1種以上を含有することが望ましい。
In the above high heat resistant piezoelectric element, the piezoelectric ceramic made of the lead zirconate titanate perovskite compound for forming the high heat resistant piezoelectric element is made of Cr, Mn, F.
At least one of e, Ni, Mg, Sn, Cu, Ag
It is desirable to contain at least one kind and at least one kind out of Nb, Sb, and W.

【0020】上記構成によれば、上記組成を含有するこ
とにより、優れた耐熱性を有する圧電素子を、より確実
に得ることが可能となる。
According to the above constitution, by containing the above composition, a piezoelectric element having excellent heat resistance can be more surely obtained.

【0021】上記高耐熱圧電素子では、上記加熱処理
が、圧電素子実装のときのはんだリフローの加熱であ
り、上記加熱処理における最高温度が200℃以上であ
ることが好ましい。上記構成によれば、圧電素子の実装
のときに、例えば、ピーク温度が260℃といった鉛フ
リーはんだを使用することができて、鉛に起因する環境
問題にも容易に対応できる。
In the high heat resistant piezoelectric element, the heat treatment is heating of solder reflow when mounting the piezoelectric element, and the maximum temperature in the heat treatment is preferably 200 ° C. or higher. According to the above configuration, for example, lead-free solder having a peak temperature of 260 ° C. can be used when mounting the piezoelectric element, and an environmental problem caused by lead can be easily dealt with.

【0022】本発明の圧電装置は、前記の課題を解決す
るために、上記の何れかに記載の高耐熱圧電素子を用い
たことを特徴としている。上記構成によれば、加熱処理
後においても、優れた圧電特性を維持できるので、圧電
特性の向上と共に実装の自由度も改善できる。
In order to solve the above-mentioned problems, the piezoelectric device of the present invention is characterized by using the high heat-resistant piezoelectric element according to any one of the above. According to the above configuration, since excellent piezoelectric characteristics can be maintained even after the heat treatment, it is possible to improve the piezoelectric characteristics and the degree of freedom in mounting.

【0023】[0023]

【発明の実施の形態】本発明の高耐熱圧電素子は、チタ
ン酸ジルコン酸鉛系の圧電材料を用いた、加熱処理に対
応可能な高耐熱圧電素子であって、該圧電材料の室温に
おける結晶系が、上記加熱処理によって菱面体晶相から
正方晶相へ相転移するよう、MPBより、若干、菱面体
晶相側にずらして設計(設定)することによって得られ
る。菱面体晶相から正方晶相への相転移温度(MPBと
なる温度)は、該圧電素子の圧電共振の共振周波数が極
小を示す温度を計測することによって把握できる。
BEST MODE FOR CARRYING OUT THE INVENTION The high heat-resistant piezoelectric element of the present invention is a high heat-resistant piezoelectric element that uses a lead zirconate titanate-based piezoelectric material and can be subjected to heat treatment. It is obtained by designing (setting) the system so that it undergoes a phase transition from the rhombohedral phase to the tetragonal phase by the above heat treatment, with a slight shift from the MPB to the rhombohedral phase side. The phase transition temperature from the rhombohedral phase to the tetragonal phase (the temperature at which MPB occurs) can be grasped by measuring the temperature at which the resonance frequency of the piezoelectric resonance of the piezoelectric element exhibits a minimum.

【0024】以下に、圧電素子の圧電共振の共振周波数
が極小を示す温度、圧電素子の相転移温度、高耐熱性お
よび高い圧電d定数の関係について、PZTを例として
説明する。
The relationship between the temperature at which the resonance frequency of the piezoelectric resonance of the piezoelectric element exhibits a minimum, the phase transition temperature of the piezoelectric element, the high heat resistance, and the high piezoelectric d constant will be described below by taking PZT as an example.

【0025】圧電素子では、圧電素子を、例えば室温か
らキュリー温度に向かって温度上昇させた場合、材料組
成により圧電振動の共振周波数は様々に変化するが、室
温からキュリー温度までの途中のキュリー温度以外のあ
る温度にて極小値を示す場合がある。この現象は図1に
示すように、MPBが主にTiとZrの比により決定さ
れ、実際は温度上昇に対してZr比の大きい方向(Zr
リッチ)、つまり菱面体晶相側に若干傾いている(「圧
電セラミック材料」監修:電子材料工業会、に開示され
ている)ことに起因する。
In the piezoelectric element, when the temperature of the piezoelectric element is raised from the room temperature to the Curie temperature, the resonance frequency of the piezoelectric vibration changes variously depending on the material composition, but the Curie temperature in the middle from the room temperature to the Curie temperature. It may show a minimum value at some temperature other than. As shown in FIG. 1, this phenomenon is determined mainly by the ratio of MPB to Ti and Zr.
Rich), that is, slightly tilted to the rhombohedral phase side (disclosed in the "Piezoelectric Ceramic Material" supervised by: Electronic Material Industry Association).

【0026】具体的には、室温における圧電素子の結晶
相がMPBより若干菱面体晶相側であった場合(図1の
組成A)、温度上昇と共にMPBを通過し、正方晶相側
に相転移する。一般に、このMPBにおける圧電素子
は、菱面体晶相や正方晶相のときよりも弾性的に柔らか
いため、弾性コンプライアンスsが極大を示す。圧電素
子の共振周波数は、このsの平方根に反比例する関係に
あるため、温度変化によりMPB通過温度にて極小を示
すわけである(図2参照)。
Specifically, when the crystal phase of the piezoelectric element at room temperature is slightly on the rhombohedral crystal phase side of MPB (composition A in FIG. 1), it passes through the MPB as the temperature rises, and the phase shifts to the tetragonal phase side. Transfer. Generally, the piezoelectric element in this MPB is elastically softer than that in the rhombohedral phase or the tetragonal phase, so that the elastic compliance s shows a maximum. Since the resonance frequency of the piezoelectric element is inversely proportional to the square root of s, the resonance frequency of the piezoelectric element shows a minimum at the MPB passage temperature due to temperature change (see FIG. 2).

【0027】例として、圧電素子の長辺方向振動の共振
周波数frと弾性コンプライアンスs11 Eの関係を式
(2)に示す。
As an example, the relationship between the resonance frequency fr of the long side vibration of the piezoelectric element and the elastic compliance s 11 E is shown in equation (2).

【0028】 fr=1/{2L・(D・s11 E1/2}…(2) (D:密度、L:圧電素子の長辺の長さ) すなわち、圧電素子を形成する圧電材料の結晶系が、M
PBより若干菱面体晶相側であった場合、圧電振動の共
振周波数は、室温以上キュリー温度以下の温度にて極小
を示すことになる。
Fr = 1 / {2L · (D · s 11 E ) 1/2 } (2) (D: Density, L: Length of long side of piezoelectric element) That is, the piezoelectric material forming the piezoelectric element The crystal system of is M
When it is slightly on the side of the rhombohedral phase from PB, the resonance frequency of the piezoelectric vibration shows a minimum at a temperature of room temperature or higher and Curie temperature or lower.

【0029】次に、前段落に示した圧電素子を、一度加
熱処理を行うことによって菱面体晶相→MPB→正方晶
相に相転移させた後、室温に戻し、その後再度、共振周
波数の温度変化を評価すると、共振周波数が極小を示す
温度が加熱処理前と比較して低下し、室温により近づく
ことを見出した(図2参照)。
Next, the piezoelectric element shown in the preceding paragraph is subjected to a heat treatment once to undergo a phase transition from the rhombohedral phase to the MPB to the tetragonal phase, then to room temperature, and then to the temperature of the resonance frequency again. When the change was evaluated, it was found that the temperature at which the resonance frequency showed the minimum value was lower than that before the heat treatment and was closer to room temperature (see FIG. 2).

【0030】この原因は定かではないが、圧電素子を一
度加熱処理により、菱面体晶相→MPB→正方晶相に相
転移させると、室温に戻しても、加熱処理前の本来の結
晶系である、MPBより若干菱面体晶相側の結晶系に完
全には戻りきらないものと考えられる。すなわち、当初
分極処理直後はMPBより若干菱面体晶相側の結晶系で
あったものが、加熱処理により、よりMPB直下に近い
結晶系に変化するものと考えられる。
Although the cause of this is not clear, once the piezoelectric element undergoes a phase transition from the rhombohedral phase to the MPB to the tetragonal phase by heat treatment, even if the temperature is returned to room temperature, the original crystal system before the heat treatment still remains. It is considered that the crystal system cannot be completely returned to the crystal system on the side of the rhombohedral phase rather than MPB. That is, it is considered that the crystal system slightly on the side of the rhombohedral crystal phase from MPB immediately after the polarization treatment is changed to a crystal system closer to immediately below MPB by the heat treatment.

【0031】MPB直下は最も良好な圧電特性を示す結
晶系である。従って前段落に記載したように、加熱処理
によりMPBの若干菱面体晶相側からMPB直下近傍へ
の結晶系の変化が生じた場合、加熱処理により、εr、
sが向上し、かつkの劣化が抑制される。(加熱処理に
よりεr、sが低下する場合もあるが、それでも本発明
の範囲外にある素子と比較すると、加熱処理による低下
は小さくなる)。このことにより、式(1)の圧電d定
数の加熱処理による劣化は小さくなる。特に最適設計を
行うと、圧電d定数を加熱処理により向上させることも
可能である。
Directly below the MPB is a crystal system showing the best piezoelectric characteristics. Therefore, as described in the preceding paragraph, when the heat treatment causes a slight change in the crystal system from the side of the rhombohedral phase of MPB to the vicinity of just below MPB, εr,
s is improved and deterioration of k is suppressed. (Although εr and s may decrease due to the heat treatment, the decrease due to the heat treatment is smaller than that of the element outside the scope of the present invention). This reduces the deterioration of the piezoelectric d constant of the equation (1) due to the heat treatment. Especially, if the optimum design is performed, it is possible to improve the piezoelectric d constant by heat treatment.

【0032】上記高耐熱圧電素子においては、加熱処理
前の共振周波数が極小を示す温度が、60℃以上200
℃以下が好ましい。60℃未満では加熱処理による結晶
系の変化が十分でないため耐熱性が悪化し、また、20
0℃を超えると、加熱処理前の結晶系がMPBより離れ
過ぎるため、加熱処理前後の|d31|(d31の絶対値を
表す)が小さくなるからである。加熱処理後の共振周波
数が極小を示す温度は、同様の理由により0℃〜140
℃とするのが望ましい。
In the above high heat-resistant piezoelectric element, the temperature at which the resonance frequency has a minimum value before the heat treatment is 60 ° C. or higher and 200
C. or less is preferable. If the temperature is lower than 60 ° C, the heat resistance is deteriorated because the change of the crystal system due to the heat treatment is not sufficient.
If the temperature exceeds 0 ° C., the crystal system before the heat treatment is too far from MPB, so that | d 31 | (representing the absolute value of d 31 ) before and after the heat treatment becomes small. For the same reason, the temperature at which the resonance frequency after the heat treatment has a minimum value is 0 ° C to 140 ° C.
It is desirable to set the temperature to ° C.

【0033】以上より、従来は高い圧電d定数の必要な
圧電素子にはMPB直下の結晶系の圧電材料を用いてい
たが、例えば実装時のはんだリフロー等の加熱処理に対
する対応も併せて必要な場合においては、MPBより若
干菱面体晶相側にずらした結晶系を室温(約20℃)に
て示す圧電材料の方が、加熱処理による圧電d定数の劣
化が小さく、高耐熱圧電素子として有望である。
As described above, the crystal-based piezoelectric material directly below the MPB has been used for the piezoelectric element requiring a high piezoelectric d constant in the related art, but it is also necessary to deal with heat treatment such as solder reflow at the time of mounting. In this case, a piezoelectric material showing a crystal system at room temperature (about 20 ° C.), which is slightly displaced from the MPB on the side of the rhombohedral phase, shows less deterioration of the piezoelectric d constant due to heat treatment, and is therefore more likely to be a highly heat-resistant piezoelectric element. Is.

【0034】このような結晶系をMPBより菱面体晶相
側にずらす組成比としては、加熱処理時の最高温度で
は、結晶系が、菱面体晶相側からMPBを通って正方晶
相側に移行し、加熱処理後の室温に戻るときには、MP
B側に若干でも戻る程度のもの、より好ましくはMPB
の前後の近傍まで戻る、さらに好ましくはMPBの直下
まで戻るものが挙げられる。
The composition ratio of shifting such a crystal system from the MPB to the rhombohedral phase side is such that at the highest temperature during the heat treatment, the crystal system goes from the rhombohedral phase side to the tetragonal phase side through the MPB. When the temperature shifts to room temperature after heat treatment,
Those that return slightly to the B side, more preferably MPB
One that returns to the vicinity of before and after, and more preferably returns to immediately below the MPB.

【0035】加熱処理による圧電d定数の劣化をさらに
小さくする、または加熱処理後の圧電d定数をさらに高
くするには、圧電素子のキュリー温度が260℃以上、
望ましくは280℃以上と十分に高く、かつ電気絶縁抵
抗率が1.0×1012Ω・cm未満であることが望まし
い。
In order to further reduce the deterioration of the piezoelectric d constant due to the heat treatment or to further increase the piezoelectric d constant after the heat treatment, the Curie temperature of the piezoelectric element is 260 ° C. or higher,
Desirably, it is sufficiently high at 280 ° C. or higher, and the electrical insulation resistivity is less than 1.0 × 10 12 Ω · cm.

【0036】この2点の方法のそれぞれ単独、または複
合だけでは、加熱処理後の圧電d定数を高くする効果は
まだ不十分である。しかし、この2点の方法と、前述の
共振周波数が極小を示す温度を最適値に調整する方法の
3点を複合させれば、加熱処理後の圧電d定数をさらに
高くすることが可能である。
The effect of increasing the piezoelectric d constant after the heat treatment is still insufficient if these two methods are used alone or in combination. However, by combining these two methods and the above-mentioned three methods of adjusting the temperature at which the resonance frequency has a minimum value to an optimum value, it is possible to further increase the piezoelectric d constant after the heat treatment. .

【0037】また、本発明の圧電素子は、素子を形成す
る圧電材料の結晶系の調整により耐熱性を向上させるも
のであるため、MPBが存在し、それが温度に対して傾
き(温度依存性)を有する組成系であれば、組成系を限
定することなく高耐熱化が可能である。
Further, since the piezoelectric element of the present invention improves the heat resistance by adjusting the crystal system of the piezoelectric material forming the element, MPB exists and it has a slope with respect to temperature (temperature dependence). With the composition system having), high heat resistance can be achieved without limiting the composition system.

【0038】つまり、組成系の変更および添加物等の組
成変性の必要性が小さくなるため、圧電素子の特性劣化
に対する懸念が少なく、また圧電素子の開発、実用化期
間の短縮も可能である。例えばPZT系圧電材料では、
MPB近傍の結晶系の調整には、材料組成のTiとZr
の含有比の調整で十分であるため、新たな添加物または
組成系変更を行うことなく高耐熱化が可能である。
That is, since the necessity of changing the composition system and modifying the composition of additives and the like is reduced, there is little concern about the characteristic deterioration of the piezoelectric element, and the development and practical application period of the piezoelectric element can be shortened. For example, in PZT-based piezoelectric material,
To adjust the crystal system near the MPB, Ti and Zr of the material composition
Since the adjustment of the content ratio of is sufficient, high heat resistance can be achieved without adding new additives or changing the composition system.

【0039】[0039]

【実施例】以下、本発明を次の各実施例でさらに詳しく
説明する。原料粉末として、Pb 3 4 、TiO2 、Z
rO2 、Cr2 3 、Sb2 3 、La2 3 を用意し
た。次に、これらの原料粉末を、下記の式(3)に示す
組成になるように秤量し、これに水を加えて、ボールミ
ルを用いて湿式混合した。組成と試料番号の関係は表1
に示す。
The present invention will be described in more detail with reference to the following examples.
explain. As raw material powder, Pb 3OFour, TiO2, Z
rO2, Cr2O3, Sb2O3, La2O3Prepared
It was Next, these raw material powders are shown in the following formula (3).
Weigh it to the composition and add water to it.
Wet mixing using Table 1 shows the relationship between composition and sample number.
Shown in.

【0040】 (Pb0.995 La0.005){(CrASb1-AX(TiYZr1-Y)}O3 …(3)(Pb 0.995 La 0.005 ) {(Cr A Sb 1-A ) X (Ti Y Zr 1-Y )} O 3 (3)

【0041】[0041]

【表1】 [Table 1]

【0042】表1において、*印の試料は本発明の範囲
外を示す。
In Table 1, the samples marked with * are outside the scope of the present invention.

【0043】得られた混合物を乾燥し,800℃〜10
00℃の温度で仮焼した。この仮焼粉に水と有機バイン
ダーを加え湿式混合し、得られた混合物を乾燥、造粒
し、所望のサイズにプレス成形を行った。この成形体を
1000℃〜1200℃の温度で焼成し、セラミック焼
結体を得た。
The mixture obtained is dried and dried at 800 ° C. to 10 ° C.
It was calcined at a temperature of 00 ° C. Water and an organic binder were added to this calcined powder and wet-mixed, and the resulting mixture was dried, granulated, and press-molded to a desired size. This compact was fired at a temperature of 1000 ° C to 1200 ° C to obtain a ceramic sintered body.

【0044】このセラミック焼結体の表面を厚み約0.
5mmに研磨し、焼結体密度を測定し、Cu/Ag蒸着
により両主面(厚さ方向の両端面)に電極を形成した
後、80℃の絶縁オイル中にて1.5kV/mm〜3.
5kV/mmの電界(厚さ方向)で分極処理を行った。
この分極済みのセラミック焼結体を3mm×13mmの
長方形にカットし、所望の圧電素子を得た。
The surface of this ceramic sintered body had a thickness of about 0.
After polishing to 5 mm, measuring the density of the sintered body, and forming electrodes on both main surfaces (both end surfaces in the thickness direction) by Cu / Ag vapor deposition, 1.5 kV / mm ~ in insulating oil at 80 ° C. 3.
The polarization treatment was performed with an electric field (thickness direction) of 5 kV / mm.
This polarized ceramic sintered body was cut into a rectangle of 3 mm × 13 mm to obtain a desired piezoelectric element.

【0045】次に、この圧電素子の電気抵抗率ρ、比誘
電率ε33 T /ε0 (以下εrと記す)、圧電素子の長辺
方向振動の共振周波数fr、このfrから算出した弾性
コンプライアンスs11 E 、共振−反共振法より算出した
電気機械結合係数k31および圧電d31定数、frのキュ
リー温度以下の範囲内の温度変化、キュリー温度Tcを
それぞれ測定した。それらの結果を表2に示す。
Next, the electrical resistivity ρ of this piezoelectric element, the relative permittivity ε 33 T / ε 0 (hereinafter referred to as εr), the resonance frequency fr of the long-side vibration of the piezoelectric element fr, and the elastic compliance calculated from this fr s 11 E , the electromechanical coupling coefficient k 31 and the piezoelectric d 31 constant calculated by the resonance-antiresonance method, the temperature change of fr within the Curie temperature or lower range, and the Curie temperature Tc were measured. The results are shown in Table 2.

【0046】[0046]

【表2】 [Table 2]

【0047】表2において、*印の試料は本発明の範囲
外を示し、Tmin1は、リフロー前において共振周波数f
rが極小を示す温度を表す。
In Table 2, the samples marked with * are outside the scope of the present invention, and T min1 is the resonance frequency f before reflow.
r represents the temperature at which the minimum is shown.

【0048】次に、圧電素子をリフロー炉に2回通過さ
せ(ピーク温度:200℃〜260℃)、24時間放置
後のεr、fr、s11 E 、k31、|d31|、frのキュ
リー温度以下の範囲内の温度変化をそれぞれ測定した。
それらの結果を表3に示す。
Next, the piezoelectric element was passed through the reflow furnace twice (peak temperature: 200 ° C. to 260 ° C.), and after leaving for 24 hours, εr, fr, s 11 E , k 31 , | d 31 |, fr The temperature change within the range below the Curie temperature was measured.
The results are shown in Table 3.

【0049】[0049]

【表3】 [Table 3]

【0050】表3において、*印の試料は本発明の範囲
外を示し、Tmin2は、リフロー後において共振周波数f
rが極小を示す温度を表し、|d31|低下率はリフロー
による|d31|の低下率を示し、また、(#)値が負の
場合は、リフローにより|d 31|が増加したことを表し
ている。
In Table 3, the samples marked with * are within the scope of the present invention.
Show outside, Tmin2Is the resonance frequency f after reflow.
r is the temperature at which the minimum is shown, and | d31| Reduction rate is reflow
By | d31Shows the decrease rate of |, and (#) value is negative
In case of reflow, | d 31Indicates that | has increased
ing.

【0051】試料番号2乃至6、および試料番号10乃
至13の試料は、本発明の範囲内に存在するものであ
り、リフロー(加熱処理)を行う前の該圧電素子の圧電
共振の共振周波数が極小を示す温度が、60℃以上20
0℃以下の範囲に存在し、かつリフローを行った後の該
圧電素子の圧電共振の共振周波数が極小を示す温度が、
0℃以上140℃以下の範囲に存在しているため、加熱
処理による|d31|の劣化が小さくなっている。
The samples Nos. 2 to 6 and the samples Nos. 10 to 13 exist within the scope of the present invention, and the resonance frequency of the piezoelectric resonance of the piezoelectric element before the reflow (heat treatment) is performed. The minimum temperature is 60 ℃ or more 20
The temperature which exists in the range of 0 ° C. or less and at which the resonance frequency of the piezoelectric resonance of the piezoelectric element after reflow shows a minimum value is
Since it exists in the range of 0 ° C. or higher and 140 ° C. or lower, the deterioration of | d 31 | due to the heat treatment is small.

【0052】例として、試料番号1乃至9の試料の|d
31|の加熱処理前と加熱処理後の比較を図3に示した。
試料番号1乃至9の試料は、材料組成のTi量(Y)を
試料番号が大きくなるに従い大きくなるよう変化させた
ものである。
As an example, | d of the samples Nos. 1 to 9
FIG. 3 shows a comparison between 31 | before and after heat treatment.
The samples Nos. 1 to 9 are obtained by changing the Ti amount (Y) of the material composition so as to increase as the sample number increases.

【0053】図3より、試料番号7(Y=0.49)で
は、リフロー前の|d31|が、リフローにより大幅に低
下した。低下率は13.2%であった。これと比較し
て、試料番号2乃至6の試料はリフローによる|d31
の低下率は10%以下と、試料番号7と比較して格段に
小さくなっている。ただし、リフローによる|d31|の
低下率が10%以下ということは、あくまで実施例にお
ける一例にすぎず、本発明の請求範囲を限定するもので
はない。
From FIG. 3, in the sample No. 7 (Y = 0.49), | d 31 | before reflow significantly decreased due to reflow. The rate of decrease was 13.2%. In comparison with this, the samples of sample numbers 2 to 6 are | d 31 |
Is 10% or less, which is significantly smaller than that of Sample No. 7. However, the reduction rate of | d 31 | of 10% or less due to reflow is merely an example in the examples, and does not limit the scope of the claims of the present invention.

【0054】さらに試料番号2乃至4の試料のように、
リフロー後の|d31|の値をリフロー前の|d31|と比
較して高くすることも、場合によっては可能である。ま
た、試料番号2乃至6、および試料番号10、11、1
3のように、圧電素子のキュリー温度が260℃以上で
ある場合、加熱処理が、ピーク温度約240℃の共晶は
んだ用リフローである場合にも対応できるため、高耐熱
圧電素子として望ましい。
Further, like the samples Nos. 2 to 4,
In some cases, it is possible to make the value of | d 31 | after reflow higher than that of | d 31 | before reflow. In addition, sample numbers 2 to 6 and sample numbers 10, 11, and 1
As described in No. 3, when the Curie temperature of the piezoelectric element is 260 ° C. or higher, it can be applied to the case where the heat treatment is reflow for eutectic solder having a peak temperature of about 240 ° C., which is desirable as a high heat resistant piezoelectric element.

【0055】また、試料番号2乃至6、および試料番号
10、13のように、圧電素子のキュリー温度が280
℃以上である場合、加熱処理が、ピーク温度約260℃
の鉛フリーはんだ用リフローである場合にも対応できる
ため、環境的な側面からも、さらに高耐熱圧電素子とし
て望ましい。
Further, as in sample numbers 2 to 6 and sample numbers 10 and 13, the Curie temperature of the piezoelectric element is 280.
If the temperature is above ℃, the heat treatment is about 260 ℃.
Since it can be applied to the case of reflow soldering for lead-free solder, it is desirable as a high heat resistant piezoelectric element from the environmental aspect.

【0056】試料番号2乃至6、および試料番号10、
11、12のように、電気絶縁抵抗率(ρ)が1.0×
1012Ω・cm未満である場合、加熱処理により生じた
焦電電荷による減極作用を抑制する効果が大きいため、
さらに耐熱性を高めることができる。
Sample Nos. 2 to 6 and Sample No. 10,
11 and 12, the electrical insulation resistivity (ρ) is 1.0 ×
When it is less than 10 12 Ω · cm, the effect of suppressing the depolarization effect due to the pyroelectric charge generated by the heat treatment is large,
Furthermore, heat resistance can be improved.

【0057】さらに、試料番号2乃至6、および試料番
号10、11のように、キュリー温度が260℃以上で
あり、かつ電気絶縁抵抗率が1.0×1012Ω・cm未
満である場合は、共振周波数frが極小となる温度を調
整する方法との複合効果により、非常に高い耐熱性が得
られる。特に最適設計された試料番号3、4、5、6、
10の試料は、ピーク温度が260℃の鉛フリーはんだ
用リフローを行った後の|d31|が200pC/N以上
と非常に高い値を示しており、高耐熱素子として非常に
有望である。
Further, as in Sample Nos. 2 to 6 and Sample Nos. 10 and 11, when the Curie temperature is 260 ° C. or higher and the electrical insulation resistivity is less than 1.0 × 10 12 Ω · cm, As a result of the combined effect with the method of adjusting the temperature at which the resonance frequency fr becomes minimum, extremely high heat resistance can be obtained. Sample numbers 3, 4, 5, 6, which are especially optimally designed,
Sample No. 10 has a very high value of | d 31 | of 200 pC / N or more after reflow for lead-free solder having a peak temperature of 260 ° C., which is very promising as a high heat resistance element.

【0058】比較例としては、試料番号1、7、8、9
のように、加熱処理を行う前の該圧電素子の圧電共振の
共振周波数が極小を示す温度が.60℃以上200℃以
下の範囲に存在しない場合、加熱処理によるεr、k、
sの低下を十分に抑制できないため、耐熱性が悪く、望
ましくない。
As comparative examples, sample numbers 1, 7, 8, 9 were used.
As described above, the temperature at which the resonance frequency of the piezoelectric resonance of the piezoelectric element before the heat treatment exhibits the minimum value is. When it does not exist in the range of 60 ° C. or higher and 200 ° C. or lower, εr, k by heat treatment,
Since the decrease of s cannot be suppressed sufficiently, the heat resistance is poor, which is not desirable.

【0059】なお、本発明の圧電材料は、前述の(3)
式の組成のみに限定されるものではなく、MPBを有す
る圧電材料一般に適用可能である。
The piezoelectric material of the present invention has the above-mentioned (3).
The present invention is not limited to the composition of the formula, but is applicable to piezoelectric materials having MPB in general.

【0060】このような本発明の高耐熱圧電素子は、加
熱処理後においても優れた圧電特性を維持できるので、
圧電発音体、圧電センサ、圧電アクチュエータ等の圧電
装置に好適に用いることができる。
Since such a high heat resistant piezoelectric element of the present invention can maintain excellent piezoelectric characteristics even after heat treatment,
It can be suitably used for piezoelectric devices such as a piezoelectric sounding body, a piezoelectric sensor, and a piezoelectric actuator.

【0061】[0061]

【発明の効果】本発明の高耐熱圧電素子は、以上のよう
に、圧電材料の室温における結晶系が、加熱処理によっ
て菱面体晶相から正方晶相へ相転移するよう、MPBよ
り菱面体晶相側に設定されている構成である。
As described above, the highly heat-resistant piezoelectric element of the present invention has a rhombohedral structure rather than MPB so that the crystal system of the piezoelectric material at room temperature undergoes a phase transition from a rhombohedral phase to a tetragonal phase by heat treatment. This is the configuration set on the phase side.

【0062】本発明の他の高耐熱圧電素子は、以上のよ
うに、加熱処理を行う前の該圧電素子の圧電共振の共振
周波数が極小を示す温度が、60℃以上200℃以下の
範囲に存在している構成である。
As described above, in another high heat-resistant piezoelectric element of the present invention, the temperature at which the resonance frequency of the piezoelectric resonance of the piezoelectric element before the heat treatment exhibits a minimum is in the range of 60 ° C. to 200 ° C. It is an existing configuration.

【0063】本発明のさらに他の高耐熱圧電素子は、以
上のように、加熱処理を行った後の該圧電素子の圧電共
振の共振周波数が極小を示す温度が、0℃以上140℃
以下の範囲に存在している構成である。
As described above, according to still another high heat-resistant piezoelectric element of the present invention, the temperature at which the resonance frequency of the piezoelectric resonance of the piezoelectric element after the heat treatment exhibits a minimum is 0 ° C. or higher and 140 ° C. or higher.
The configuration exists in the following range.

【0064】それゆえ、上記構成は、実装時のはんだリ
フロー等の加熱処理による圧電d定数の劣化が小さく、
また、加熱処理後の圧電d定数が大きいといった優れた
圧電特性を発揮できるという効果を奏する。
Therefore, in the above structure, deterioration of the piezoelectric d constant due to heat treatment such as solder reflow at the time of mounting is small,
Further, there is an effect that excellent piezoelectric characteristics such as a large piezoelectric d constant after heat treatment can be exhibited.

【0065】さらに本発明の高耐熱圧電素子を用いるこ
とにより、高耐熱かつ高性能の圧電装置が得られる。ま
た、本発明の高耐熱圧電素子を得るにあたり、素子を形
成する圧電材料には組成系の変更および添加物等の組成
変成を行う必要性が少ないため、特性劣化の懸念が少な
く、また早期の開発、実用化も容易となる。さらに、上
記構成では、従来必要であった、電極間の短絡などの余
分な工程も不必要であるため、コストダウンが可能であ
るという効果も奏する。
Further, by using the high heat resistant piezoelectric element of the present invention, a high heat resistant and high performance piezoelectric device can be obtained. Further, in obtaining the high heat resistant piezoelectric element of the present invention, there is little need to change the composition system and composition change of additives etc. in the piezoelectric material forming the element, so there is little concern about characteristic deterioration, and early It is easy to develop and put to practical use. Further, in the above-described configuration, since an extra step such as a short circuit between electrodes, which is conventionally required, is unnecessary, there is an effect that the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る高耐熱圧電素子のPZTにおける
相変化を示すグラフである。
FIG. 1 is a graph showing a phase change in PZT of a high heat resistant piezoelectric element according to the present invention.

【図2】上記PZTの加熱処理前後での共振周波数の温
度変化を示すグラフである。
FIG. 2 is a graph showing changes in resonance frequency with temperature before and after heat treatment of the PZT.

【図3】上記PZTの試料番号1乃至9における|d31
|のリフローによる変化を示す説明図であって、(a)
はグラフであり、(b)は横軸Yと試料番号との対比を
示す表である。
FIG. 3 | d 31 in sample numbers 1 to 9 of the PZT
FIG. 6A is an explanatory diagram showing a change due to reflow of |
Is a graph, and (b) is a table showing a comparison between the horizontal axis Y and the sample number.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G031 AA03 AA11 AA12 AA14 AA16 AA18 AA19 AA21 AA23 AA24 AA25 AA31 AA32 AA34 BA10 BA21 CA01    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G031 AA03 AA11 AA12 AA14 AA16                       AA18 AA19 AA21 AA23 AA24                       AA25 AA31 AA32 AA34 BA10                       BA21 CA01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】チタン酸ジルコン酸鉛系の圧電材料を用い
た、加熱処理に対応可能な高耐熱圧電素子であって、 該圧電材料の室温における結晶系が、上記加熱処理によ
って菱面体晶相から正方晶相へ相転移するよう、モルフ
ォトロピック相境界より菱面体晶相側に設定されている
ことを特徴とする高耐熱圧電素子。
1. A high heat-resistant piezoelectric element using a lead zirconate titanate-based piezoelectric material, which can be subjected to heat treatment, wherein the crystal system of the piezoelectric material at room temperature is rhombohedral phase by the heat treatment. A high heat-resistant piezoelectric element, characterized in that it is set on the side of a rhombohedral crystal phase from a morphotropic phase boundary so as to make a phase transition from a tetragonal phase to a tetragonal phase.
【請求項2】加熱処理に対応可能な高耐熱圧電素子であ
って、 加熱処理を行う前の該圧電素子における圧電共振の共振
周波数が極小を示す温度が、60℃以上200℃以下の
範囲に存在していることを特徴とする高耐熱圧電素子。
2. A high heat-resistant piezoelectric element that can be subjected to heat treatment, wherein the temperature at which the resonance frequency of the piezoelectric resonance in the piezoelectric element before heat treatment exhibits a minimum is in the range of 60 ° C. to 200 ° C. A high heat resistant piezoelectric element characterized by being present.
【請求項3】加熱処理に対応可能な高耐熱圧電素子であ
って、 加熱処理を行った後の該圧電素子における圧電共振の共
振周波数が極小を示す温度が、0℃以上140℃以下の
範囲に存在していることを特徴とする高耐熱圧電素子。
3. A high heat-resistant piezoelectric element which can be subjected to heat treatment, wherein the temperature at which the resonance frequency of piezoelectric resonance in the piezoelectric element after heat treatment exhibits a minimum is in the range of 0 ° C. to 140 ° C. A high heat-resistant piezoelectric element characterized by being present in.
【請求項4】加熱処理に対応可能な高耐熱圧電素子であ
って、 加熱処理を行う前の該圧電素子における圧電共振の共振
周波数が極小を示す温度が、60℃以上200℃以下の
範囲に存在し、かつ、加熱処理を行うことにより圧電共
振の共振周波数が極小を示す温度が低下し、かつ、加熱
処理を行った後の該圧電素子における圧電共振の共振周
波数が極小を示す温度が、0℃以上140℃以下の範囲
に存在していることを特徴とする高耐熱圧電素子。
4. A high heat-resistant piezoelectric element that can be subjected to heat treatment, wherein the temperature at which the resonance frequency of piezoelectric resonance in the piezoelectric element before heat treatment exhibits a minimum is in the range of 60 ° C. to 200 ° C. Existence, and the temperature at which the resonance frequency of the piezoelectric resonance exhibits a minimum by performing heat treatment decreases, and the temperature at which the resonance frequency of the piezoelectric resonance in the piezoelectric element after performing the heat treatment exhibits a minimum, A high heat-resistant piezoelectric element, which is present in the range of 0 ° C. or higher and 140 ° C. or lower.
【請求項5】キュリー温度が260℃以上であり、か
つ、室温における電気絶縁抵抗率が、1.0×1012Ω
・cm未満であることを特徴とする請求項1乃至4の何
れかに記載の高耐熱圧電素子。
5. The Curie temperature is 260 ° C. or higher, and the electrical insulation resistivity at room temperature is 1.0 × 10 12 Ω.
-It is less than cm, The high heat resistant piezoelectric element in any one of Claim 1 thru | or 4 characterized by the above-mentioned.
【請求項6】該高耐熱圧電素子を形成するためのチタン
酸ジルコン酸鉛系ペロブスカイト化合物からなる圧電磁
器は、Cr、Mn、Fe、Ni、Mg、Sn、Cu、A
gのうち少なくとも1種以上を含有し、かつ、Nb、S
b、Wのうち少なくとも1種以上を含有することを特徴
とする請求項1乃至5の何れかに記載の高耐熱圧電素
子。
6. A piezoelectric ceramic made of a lead zirconate titanate-based perovskite compound for forming the high heat resistant piezoelectric element comprises Cr, Mn, Fe, Ni, Mg, Sn, Cu, A.
at least one of g, and Nb, S
6. The high heat resistant piezoelectric element according to claim 1, containing at least one of b and W.
【請求項7】上記加熱処理が、圧電素子実装のときのは
んだリフローの加熱であり、上記加熱処理における最高
温度が200℃以上であることを特徴とする請求項1乃
至6の何れかに記載の高耐熱圧電素子。
7. The heat treatment is a solder reflow heating at the time of mounting a piezoelectric element, and the maximum temperature in the heat treatment is 200 ° C. or higher. High heat resistant piezoelectric element.
【請求項8】請求項1乃至7の何れかに記載の高耐熱圧
電素子を用いたことを特徴とする圧電装置。
8. A piezoelectric device comprising the high heat-resistant piezoelectric element according to claim 1.
JP2001209274A 2001-07-10 2001-07-10 Highly heat resistant piezoelectric element and piezoelectric device comprising it Pending JP2003023187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001209274A JP2003023187A (en) 2001-07-10 2001-07-10 Highly heat resistant piezoelectric element and piezoelectric device comprising it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001209274A JP2003023187A (en) 2001-07-10 2001-07-10 Highly heat resistant piezoelectric element and piezoelectric device comprising it

Publications (1)

Publication Number Publication Date
JP2003023187A true JP2003023187A (en) 2003-01-24

Family

ID=19044950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001209274A Pending JP2003023187A (en) 2001-07-10 2001-07-10 Highly heat resistant piezoelectric element and piezoelectric device comprising it

Country Status (1)

Country Link
JP (1) JP2003023187A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005002049A1 (en) * 2003-06-26 2005-01-06 Murata Manufacturing Co., Ltd. Surface acoustic wave element
JP2008515213A (en) * 2004-09-30 2008-05-08 シーメンス アクチエンゲゼルシヤフト Solid actuators, especially piezoelectric ceramic actuators
JP2009123974A (en) * 2007-11-15 2009-06-04 Sony Corp Piezoelectric element, angular velocity sensor, and method of manufacturing piezoelectric element
JP2009123973A (en) * 2007-11-15 2009-06-04 Sony Corp Piezoelectric element, angular velocity sensor, and method of manufacturing piezoelectric element
JP2009123972A (en) * 2007-11-15 2009-06-04 Sony Corp Piezoelectric element, angular velocity sensor, and method of manufacturing piezoelectric element
JP2010004007A (en) * 2007-10-24 2010-01-07 Fujifilm Corp Ferroelectric oxide, process for producing the same, piezoelectric body, and piezoelectric body, and piezoelectric element
US7915794B2 (en) 2007-11-15 2011-03-29 Sony Corporation Piezoelectric device having a tension stress, and angular velocity sensor
JP2013197496A (en) * 2012-03-22 2013-09-30 Fujifilm Corp Piezoelectric device and method of manufacturing the same, and method of manufacturing electronic apparatus
EP2866272A1 (en) * 2013-10-25 2015-04-29 Seiko Epson Corporation Piezoelectric element, liquid ejecting head, liquid ejecting apparatus, actuator, sensor, and motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748172A (en) * 1993-08-05 1995-02-21 Toyota Motor Corp Piezoelectric material composition for actuator
JPH0955549A (en) * 1995-06-06 1997-02-25 Kasei Optonix Co Ltd Piezoelectric element and its driving method
JPH1045470A (en) * 1996-07-29 1998-02-17 Kyocera Corp Piezoelectric ceramics
JPH10120463A (en) * 1996-10-11 1998-05-12 Tdk Corp Piezoelectric porcelaneous composition
JPH11268955A (en) * 1998-03-25 1999-10-05 Tdk Corp Piezoelectric ceramic composition and its production
JP2000151342A (en) * 1998-11-12 2000-05-30 Ngk Spark Plug Co Ltd Piezoelectric element
JP2000294852A (en) 1999-04-08 2000-10-20 Murata Mfg Co Ltd Piezoelectric ceramics composition and piezoelectric buzzer and piezoelectric actuator utilizing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748172A (en) * 1993-08-05 1995-02-21 Toyota Motor Corp Piezoelectric material composition for actuator
JPH0955549A (en) * 1995-06-06 1997-02-25 Kasei Optonix Co Ltd Piezoelectric element and its driving method
JPH1045470A (en) * 1996-07-29 1998-02-17 Kyocera Corp Piezoelectric ceramics
JPH10120463A (en) * 1996-10-11 1998-05-12 Tdk Corp Piezoelectric porcelaneous composition
JPH11268955A (en) * 1998-03-25 1999-10-05 Tdk Corp Piezoelectric ceramic composition and its production
JP2000151342A (en) * 1998-11-12 2000-05-30 Ngk Spark Plug Co Ltd Piezoelectric element
JP2000294852A (en) 1999-04-08 2000-10-20 Murata Mfg Co Ltd Piezoelectric ceramics composition and piezoelectric buzzer and piezoelectric actuator utilizing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005002049A1 (en) * 2003-06-26 2005-01-06 Murata Manufacturing Co., Ltd. Surface acoustic wave element
US7282835B2 (en) 2003-06-26 2007-10-16 Murata Manufacturing Co., Ltd. Surface acoustic wave element
JP2008515213A (en) * 2004-09-30 2008-05-08 シーメンス アクチエンゲゼルシヤフト Solid actuators, especially piezoelectric ceramic actuators
JP2010004007A (en) * 2007-10-24 2010-01-07 Fujifilm Corp Ferroelectric oxide, process for producing the same, piezoelectric body, and piezoelectric body, and piezoelectric element
JP2009123974A (en) * 2007-11-15 2009-06-04 Sony Corp Piezoelectric element, angular velocity sensor, and method of manufacturing piezoelectric element
JP2009123973A (en) * 2007-11-15 2009-06-04 Sony Corp Piezoelectric element, angular velocity sensor, and method of manufacturing piezoelectric element
JP2009123972A (en) * 2007-11-15 2009-06-04 Sony Corp Piezoelectric element, angular velocity sensor, and method of manufacturing piezoelectric element
US7915794B2 (en) 2007-11-15 2011-03-29 Sony Corporation Piezoelectric device having a tension stress, and angular velocity sensor
JP4715836B2 (en) * 2007-11-15 2011-07-06 ソニー株式会社 Piezoelectric element, angular velocity sensor, and method of manufacturing piezoelectric element
JP2013197496A (en) * 2012-03-22 2013-09-30 Fujifilm Corp Piezoelectric device and method of manufacturing the same, and method of manufacturing electronic apparatus
EP2866272A1 (en) * 2013-10-25 2015-04-29 Seiko Epson Corporation Piezoelectric element, liquid ejecting head, liquid ejecting apparatus, actuator, sensor, and motor
CN104576916A (en) * 2013-10-25 2015-04-29 精工爱普生株式会社 Piezoelectric element, liquid ejecting head, liquid ejecting apparatus, actuator, sensor, and motor

Similar Documents

Publication Publication Date Title
JP4973931B2 (en) Piezoelectric ceramic composition
JP4510966B2 (en) Piezoelectric ceramics
JP4849338B2 (en) Piezoelectric ceramic composition
JP3482394B2 (en) Piezoelectric ceramic composition
JP4929522B2 (en) Piezoelectric ceramic composition
JP4684089B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic
WO2007049764A1 (en) Piezoelectric ceramic composition and piezoelectric ceramic
JP4298232B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP2003023187A (en) Highly heat resistant piezoelectric element and piezoelectric device comprising it
JP2003055045A (en) Piezoelectric ceramic composition for multilayer piezoelectric element, multilayer piezoelectric element, method for producing multilayer piezoelectric element and multilayer piezoelectric device
JP2001130956A (en) Piezoelectric ceramic composition and piezoelectric ceramic element by using the same
JP3570294B2 (en) Piezoelectric ceramic material and piezoelectric ceramic sintered body obtained using the same
JP3385999B2 (en) Piezoelectric ceramic composition, piezoelectric buzzer and piezoelectric actuator using the same
JP4169203B2 (en) Piezoelectric ceramic composition
JP2011029537A (en) Multilayer electronic component and method of manufacturing the same
JP4404217B2 (en) Piezoelectric element
JP2009078964A (en) Method for producing piezoelectric ceramic
JP2001322870A (en) Piezoelectric material and method for manufacturing the same
JP2004323325A (en) Piezoelectric ceramic and piezoelectric ceramic element using the same
JP4509481B2 (en) Piezoelectric ceramics
JP3771776B2 (en) Piezoelectric ceramic composition
JP2737451B2 (en) Piezoelectric material
JP5894222B2 (en) Multilayer electronic component and manufacturing method thereof
JP2000327418A (en) Piezoelectric porcelain composition
KR100481718B1 (en) Piezoelectric ceramic composition and piezoelectric device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120815

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121019