JP2011029537A - Multilayer electronic component and method of manufacturing the same - Google Patents

Multilayer electronic component and method of manufacturing the same Download PDF

Info

Publication number
JP2011029537A
JP2011029537A JP2009176299A JP2009176299A JP2011029537A JP 2011029537 A JP2011029537 A JP 2011029537A JP 2009176299 A JP2009176299 A JP 2009176299A JP 2009176299 A JP2009176299 A JP 2009176299A JP 2011029537 A JP2011029537 A JP 2011029537A
Authority
JP
Japan
Prior art keywords
crystal
internal electrode
lead zirconate
zirconate titanate
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009176299A
Other languages
Japanese (ja)
Other versions
JP5597368B2 (en
Inventor
Shuichi Fukuoka
修一 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009176299A priority Critical patent/JP5597368B2/en
Publication of JP2011029537A publication Critical patent/JP2011029537A/en
Application granted granted Critical
Publication of JP5597368B2 publication Critical patent/JP5597368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer electronic component capable of using an internal electrode layer containing Ag as a principal component and Pd having a content ratio of ≤5 mass%, and capable of inhibiting time degradation of insulation while exhibiting superior piezoelectricity, and also to provide a method of manufacturing the same. <P>SOLUTION: The multilayer electronic component includes internal electrode layers 3 in a piezoelectric ceramic. The piezoelectric ceramic consists of crystal particles of lead zirconate titanate system crystal containing at least one kind of Sb and Nb, Pb, Zr, Ti, Zn, and Bi, does not substantially contain any amorphous phase and any other crystal phase except the lead zirconate titanate system crystal in the grain boundaries of the crystal particles of the lead zirconate titanate system crystal, and has a density of ≥7.7 g/cm<SP>3</SP>. The internal electrode layers 3 contain Ag as a metal component and as a principal component, and Pd having a content ratio of ≤5 mass%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、積層型電子部品およびその製法に関し、特に、セラミックフィルタ、超音波応用振動子、圧電ブザー、圧電点火ユニット、超音波モータ、圧電ファン、圧電センサ、圧電アクチュエータ等に用いられ、圧電磁器中に内部電極層を有する積層型電子部品およびその製法に関する。   The present invention relates to a multilayer electronic component and a method for manufacturing the same, and more particularly to a ceramic filter, an ultrasonic applied vibrator, a piezoelectric buzzer, a piezoelectric ignition unit, an ultrasonic motor, a piezoelectric fan, a piezoelectric sensor, a piezoelectric actuator, and the like. The present invention relates to a multilayer electronic component having an internal electrode layer therein and a method for manufacturing the same.

圧電磁器を利用した圧電アクチュエータは、圧電現象を介して発生する変位や力を機械的駆動源として利用するものであり、特に最近、メカトロニクスの分野において注目されているものの一つである。圧電アクチュエータは、圧電効果を利用した固体素子であるので、磁性体にコイルを巻いた構成の従来の電磁式アクチュエータと比較して、消費電力が少ない、応答速度が速い、変位量が大きい、発熱が少ない、寸法および重量が小さい等の優れた特徴を有している。このため、メカトロニクスの高度化に伴い多方面にわたる研究開発が進められている。近年では、車載インジェクタの燃料噴射弁の開閉に積層圧電アクチュエータが実用化され、またカメラ用オートフォーカス用積層圧電アクチュエータや圧電スピーカ等の音響部品としても展開される等、その応用は多彩に広がりつつある。   Piezoelectric actuators using piezoelectric ceramics use displacements and forces generated through piezoelectric phenomena as mechanical drive sources, and are one of the most recently noted in the field of mechatronics. Piezoelectric actuators are solid-state elements that use the piezoelectric effect, so they consume less power, have a faster response speed, have a larger amount of displacement, and generate heat compared to conventional electromagnetic actuators with a coil wound around a magnetic material. It has excellent features such as small amount, small size and weight. For this reason, research and development has been promoted in various fields with the advancement of mechatronics. In recent years, multilayer piezoelectric actuators have been put into practical use for opening and closing fuel injectors for in-vehicle injectors, and are being used as acoustic parts such as autofocus multilayer piezoelectric actuators for cameras and piezoelectric speakers. is there.

ところで、上述した圧電アクチュエータの用途が拡大するに従い、より低電圧で、より大きな変位や発生力が得られる積層圧電アクチュエータが多く使われる用になってきた。また、一般的に圧電アクチュエータとしては機能上、圧電歪定数、特にd33やd31定数ができるだけ大きいことが望まれるとともに、連続駆動時において絶縁性が劣化しないことも重要となる。 By the way, as the use of the above-described piezoelectric actuator is expanded, a laminated piezoelectric actuator that can obtain a larger displacement and generated force at a lower voltage has been widely used. Further, generally the function as a piezoelectric actuator, the piezoelectric strain constant, in particular with d 33 and d 31 constant is desired that as large as possible, insulation is also important not to deteriorate during continuous driving.

このような目的に合致する圧電磁器組成物として、モル比による組成式を、Pb1−x−ySrBa(Zn1/3Sb2/3ZrTi1−a−bと表した時に、x,y,a,bが0≦x≦0.14、0≦y≦0.14、0.04≦x+y、0.01≦a≦0.12、0.43≦b≦0.58を満足するものが知られており(例えば、特許文献1参照)、このような圧電磁器組成物は1240〜1300℃で焼成することが記載されている。 As a piezoelectric ceramic composition that meets such a purpose, the composition formula by molar ratio, Pb 1-x-y Sr x Ba y (Zn 1/3 Sb 2/3) a Zr b Ti 1-a-b O 3 , x, y, a, b are 0 ≦ x ≦ 0.14, 0 ≦ y ≦ 0.14, 0.04 ≦ x + y, 0.01 ≦ a ≦ 0.12, 0.43 ≦ Those satisfying b ≦ 0.58 are known (for example, see Patent Document 1), and it is described that such a piezoelectric ceramic composition is fired at 1240 to 1300 ° C.

しかしながら、特許文献1記載の圧電磁器組成物では、焼成温度が1240〜1300℃と高いことから、内部電極のAgとPdの比率において、Pdが30質量%以上含有されていた。そのため、積層数が多くなればなるほど、高コストとなりコスト競争力が失われ変位素子としての利用が極めて狭い範囲に限定されるという欠点があった。   However, in the piezoelectric ceramic composition described in Patent Document 1, since the firing temperature is as high as 1240 to 1300 ° C., 30% by mass or more of Pd was contained in the ratio of Ag and Pd of the internal electrode. Therefore, as the number of layers increases, there is a disadvantage that the cost is increased and the cost competitiveness is lost, and the use as a displacement element is limited to a very narrow range.

低温焼成できる圧電磁器組成物として、PbZrO−PbTiO−Pb(Zn1/3Sb2/3)Oを主成分とし、BiおよびFeの元素をBiFeO換算で、5〜15質量%含有し、1000〜1100℃で焼成した圧電磁器組成物、および前記主成分に対して、LiとBiとCd、B、Pb、SiおよびZnの少なくとも1種とを含有し、900〜1000℃で焼成した圧電磁器組成物が知られている(特許文献2参照)。 As a piezoelectric ceramic composition that can be fired at a low temperature, PbZrO 3 —PbTiO 3 —Pb (Zn 1/3 Sb 2/3 ) O 3 is a main component, and Bi and Fe elements are contained in an amount of 5 to 15% by mass in terms of BiFeO 3. The piezoelectric ceramic composition fired at 1000 to 1100 ° C. and the main component contains Li, Bi, and at least one of Cd, B, Pb, Si and Zn, and fired at 900 to 1000 ° C. A piezoelectric ceramic composition is known (see Patent Document 2).

特開平7−45124号公報JP-A-7-45124 特開2000−86341号公報JP 2000-86341 A

しかしながら、従来の特許文献2に記載の圧電磁器組成物では、1000℃以下の低温での焼成は可能になるものの、低温焼成に寄与した元素の一部は粒界に残存することから、圧電特性が低下するとともに、駆動時の電圧印加により絶縁性が徐々に劣化し、リーク電流が大きくなり信頼性が低下するという問題があった。   However, although the piezoelectric ceramic composition described in Patent Document 2 can be fired at a low temperature of 1000 ° C. or lower, some of the elements contributing to the low-temperature firing remain at the grain boundaries. In addition, there is a problem in that the insulation gradually deteriorates due to voltage application during driving, leak current increases, and reliability decreases.

本発明は、Agを主成分としPd含有比率が5質量%以下の内部電極層を使用できるとともに、圧電特性に優れ、絶縁性の経時的劣化を抑制できる積層型電子部品およびその製法を提供することを目的とする。   The present invention provides a multilayer electronic component capable of using an internal electrode layer containing Ag as a main component and having a Pd content ratio of 5% by mass or less, being excellent in piezoelectric characteristics, and capable of suppressing deterioration with time of insulation, and a method for manufacturing the same. For the purpose.

本発明の積層型電子部品は、圧電磁器中に内部電極層を有する積層型電子部品であって、前記圧電磁器が、SbおよびNbのうち少なくとも1種と、Pb、Zr、Ti、ZnおよびBiとを含有するチタン酸ジルコン酸鉛系結晶の結晶粒子からなるとともに、該チタン酸ジルコン酸鉛系結晶の結晶粒子の粒界には、非晶質相および前記チタン酸ジルコン酸鉛系結晶以外の結晶相が実質的に存在せず、かつ密度が7.7g/cm以上であり、前記内部電極層が、金属成分としてAgを主成分とし、Pdの含有比率が5質量%以下であることを特徴とする。 The multilayer electronic component of the present invention is a multilayer electronic component having an internal electrode layer in a piezoelectric ceramic, wherein the piezoelectric ceramic includes at least one of Sb and Nb, Pb, Zr, Ti, Zn, and Bi. And crystal grains of the lead zirconate titanate crystal containing the crystal, and the grain boundaries of the crystal grains of the lead zirconate titanate crystal include an amorphous phase and other than the lead zirconate titanate crystal. The crystal phase is substantially absent, the density is 7.7 g / cm 3 or more, the internal electrode layer is mainly composed of Ag as a metal component, and the content ratio of Pd is 5% by mass or less. It is characterized by.

従来では、チタン酸ジルコン酸鉛系結晶の結晶粒子の粒界に、非晶質相、チタン酸ジルコン酸鉛系結晶以外の結晶相が存在していたため、圧電特性が未だ低く、絶縁性が経時的に低下するものであったが、本発明では、金属成分としてAgを主成分とし、Pdの含有比率が5質量%以下の内部電極を焼結するような低温で焼成したとしても、チタン酸ジルコン酸鉛系結晶以外の結晶相が実質的に存在しないため、圧電磁器の絶縁性の経時的劣化を抑制できるとともに、密度が7.7g/cm以上であるため、圧電磁器中のチタン酸ジルコン酸鉛系結晶の結晶粒子の粒界に、チタン酸ジルコン酸鉛系結晶以外の結晶相および非晶質相が存在していなくても、十分に焼結しており、圧電特性を向上できる。また、内部電極層としてPd含有比率が少ないため、安価な積層型電子部品を得ることができる。 Conventionally, crystal phases other than the amorphous phase and lead zirconate titanate crystal existed at the grain boundaries of the lead zirconate titanate crystal. However, in the present invention, titanic acid can be used even when the internal electrode is mainly composed of Ag as a metal component and the internal electrode having a Pd content ratio of 5% by mass or less is sintered at a low temperature. Since there is substantially no crystal phase other than the lead zirconate-based crystal, it is possible to suppress deterioration over time of the insulation of the piezoelectric ceramic, and since the density is 7.7 g / cm 3 or more, titanic acid in the piezoelectric ceramic Even if there is no crystal phase or amorphous phase other than lead zirconate titanate crystal at the grain boundary of lead zirconate crystal grains, it is fully sintered and piezoelectric characteristics can be improved . Further, since the Pd content ratio is small as the internal electrode layer, an inexpensive multilayer electronic component can be obtained.

また、本発明の積層型電子部品は、前記内部電極層の金属成分がAgからなることを特徴とする。このような積層型電子部品では、内部電極層の金属成分としてPdを用いないため、より安価な積層型電子部品を得ることができる。   In the multilayer electronic component of the present invention, the metal component of the internal electrode layer is made of Ag. In such a multilayer electronic component, since Pd is not used as the metal component of the internal electrode layer, a cheaper multilayer electronic component can be obtained.

本発明の積層型電子部品の製法は、SbおよびNbのうち少なくとも1種と、Pb、Zr、TiおよびZnとを含有し、かつCukα線を用いたX線回折測定においてチタン酸ジルコン酸鉛系結晶の(101)のピーク(2θ≒30°)のピーク強度をIとし、(111)のピーク(2θ≒38°)のピーク強度をIとした時、I/Iが0.130〜0.160となる仮焼粉末を作製する工程と、該仮焼粉末に対してBi粉末を添加し混合して作製したスラリーを、シート状に成形してグリーンシートを作製する工程と、該グリーンシートに、金属成分としてAgを主成分とし、Pdの含有比率が5質量%以下である内部電極ペーストを塗布して内部電極パターンを形成する工程と、該内部電極パターンが形成されたグリーンシートを複数積層して積層成形体を作製する工程と、該積層成形体を大気中で920〜960℃で焼成することにより、チタン酸ジルコン酸鉛系結晶内にBiを固溶させ、SbおよびNbのうち少なくとも1種と、Pb、Zr、Ti、ZnおよびBiとを含有するチタン酸ジルコン酸鉛系結晶の結晶粒子からなる圧電磁器中に内部電極層を有する積層体を製造する工程とを具備することを特徴とする。 The method for producing a multilayer electronic component according to the present invention includes at least one of Sb and Nb, Pb, Zr, Ti and Zn, and a lead zirconate titanate system in X-ray diffraction measurement using Cukα rays. When the peak intensity of the (101) peak (2θ≈30 °) of the crystal is I 1 and the peak intensity of the (111) peak (2θ≈38 °) is I 2 , I 2 / I 1 is 0. A step of producing a calcined powder of 130 to 0.160 and a slurry produced by adding and mixing Bi 2 O 3 powder to the calcined powder are formed into a sheet shape to produce a green sheet. Forming an internal electrode pattern by applying an internal electrode paste containing Ag as a main component and a Pd content ratio of 5 mass% or less to the green sheet; and forming the internal electrode pattern Glee A step of preparing a molded laminate sheets by stacking a plurality of, by the laminated molded body is fired at nine hundred and twenty to nine hundred and sixty ° C. in air, a solid solution of Bi 2 O 3 in the lead zirconate titanate crystals A laminate having an internal electrode layer in a piezoelectric ceramic composed of crystal grains of lead zirconate titanate crystal containing at least one of Sb and Nb and Pb, Zr, Ti, Zn and Bi is manufactured. And a process.

このような積層型電子部品の製法では、920〜960℃の低温で焼成したとしても、Biが液相を形成し、チタン酸ジルコン酸鉛系結晶の結晶粒子を濡らし、構成元素の拡散と粒成長とを促進させることから、焼結性を向上できるとともに、焼結後には、チタン酸ジルコン酸鉛系結晶内にBiを適量固溶させることができるため、圧電磁器がチタン酸ジルコン酸鉛系結晶の結晶粒子からなるとともに、チタン酸ジルコン酸鉛系結晶の結晶粒子の粒界には、非晶質相およびチタン酸ジルコン酸鉛系結晶以外の結晶相が実質的に存在しない積層型電子部品を容易に得ることができる。 In such a method of manufacturing a multilayer electronic component, even when fired at a low temperature of 920 to 960 ° C., Bi 2 O 3 forms a liquid phase, wets the crystal grains of the lead zirconate titanate crystal, Since the diffusion and the grain growth are promoted, the sinterability can be improved, and after sintering, an appropriate amount of Bi 2 O 3 can be solid-solved in the lead zirconate titanate crystal. It consists of crystal grains of lead zirconate titanate crystals, and the grain boundaries of the crystal grains of lead zirconate titanate crystals are substantially free of amorphous phases and crystal phases other than lead zirconate titanate crystals. A multilayer electronic component that does not exist can be easily obtained.

本発明の積層型電子部品では、金属成分としてAgを主成分とし、Pdの含有比率が5質量%以下の内部電極を焼結するような低温で焼成したとしても、チタン酸ジルコン酸鉛系結晶以外の結晶相が実質的に存在しないため、圧電磁器の絶縁性の経時的劣化を抑制できるとともに、密度が7.7g/cm以上であるため、圧電磁器中のチタン酸ジルコン酸鉛系結晶の結晶粒子の粒界に、チタン酸ジルコン酸鉛系結晶以外の結晶相および非晶質相が存在していなくても、十分に焼結しており、圧電特性を向上でき、さらに、内部電極中のPd含有比率が少ないため、安価な積層型電子部品を得ることができる。 In the multilayer electronic component of the present invention, the lead zirconate titanate crystal even when fired at a low temperature such as sintering an internal electrode containing Ag as a main component and having a Pd content of 5% by mass or less. Since there is substantially no crystal phase other than the above, it is possible to suppress deterioration over time of the insulation of the piezoelectric ceramic, and since the density is 7.7 g / cm 3 or more, the lead zirconate titanate crystal in the piezoelectric ceramic Even if there is no crystal phase or amorphous phase other than the lead zirconate titanate-based crystal at the grain boundary of the crystal grain, it is sufficiently sintered and can improve the piezoelectric characteristics. Since the Pd content ratio is small, an inexpensive multilayer electronic component can be obtained.

本発明の積層型電子部品を示す断面図である。It is sectional drawing which shows the multilayer electronic component of this invention. 表1の試料No.1〜5の仮焼温度に対するI/Iを表すグラフであるSample No. in Table 1 Is a graph showing the I 2 / I 1 for 1-5 calcining temperature 表1の試料No.1〜5の仮焼温度を変化させた場合の仮焼粉末のX線回折測定結果を示す図である。Sample No. in Table 1 It is a figure which shows the X-ray-diffraction measurement result of the calcining powder at the time of changing the calcining temperature of 1-5. 試料No.3について焼成温度に対する積層体の嵩密度を示すグラフである。Sample No. 3 is a graph showing the bulk density of the laminate with respect to the firing temperature. 試料No.1のX線回折測定結果を示す図である。Sample No. It is a figure which shows the X-ray-diffraction measurement result of 1. 試料No.3のX線回折測定結果を示す図である。Sample No. FIG. 3 is a diagram showing the results of X-ray diffraction measurement of No. 3. 試料No.3の焼成温度に対する圧電歪定数d33を示すグラフである。Sample No. It is a graph showing the piezoelectric strain constant d 33 for the third firing temperature.

本発明の積層型電子部品は、図1に示すように、圧電磁器中に内部電極層を有するものであり、言い換えれば、圧電体層1と内部電極層3とを交互に積層して積層体5が構成され、圧電磁器中に複数の内部電極層3が形成されている。内部電極層3は、積層体5の両端面に形成された外部電極7により、交互に接続されている。   As shown in FIG. 1, the multilayer electronic component of the present invention has an internal electrode layer in a piezoelectric ceramic. In other words, the piezoelectric body layer 1 and the internal electrode layer 3 are alternately stacked to form a multilayer body. 5 is configured, and a plurality of internal electrode layers 3 are formed in the piezoelectric ceramic. The internal electrode layers 3 are alternately connected by external electrodes 7 formed on both end faces of the laminate 5.

圧電磁器は、SbおよびNbのうち少なくとも一種と、Pb、Zr、Ti、ZnおよびBiとを含有するチタン酸ジルコン酸鉛系結晶(以下、PZT系結晶ということがある)の結晶粒子からなるとともに、PZT系結晶の結晶粒子の粒界には、非晶質相およびPZT系結晶以外の結晶相が実質的に存在せず、かつ密度が7.7g/cm以上とされている。 The piezoelectric ceramic is composed of crystal grains of lead zirconate titanate crystal (hereinafter sometimes referred to as PZT crystal) containing at least one of Sb and Nb and Pb, Zr, Ti, Zn, and Bi. At the grain boundaries of the PZT crystal grains, there is substantially no crystal phase other than the amorphous phase and the PZT crystal, and the density is 7.7 g / cm 3 or more.

PZT系結晶の結晶粒子の粒界に、非晶質相またはPZT系結晶以外の結晶相が実質的に存在しない点については、圧電磁器の破断面や鏡面をエネルギー分散型X線分光分析(EDS)、あるいは波長分散型X線分光分析(WDS)の組成分析および電子線回折により結晶粒子の粒界(2面間粒界、3重点)に異相を構成するBiリッチの部分が見られないことにより、確認できる。   Regarding the point that the amorphous phase or the crystal phase other than the PZT crystal does not substantially exist at the grain boundary of the crystal grain of the PZT crystal, the fracture surface or mirror surface of the piezoelectric ceramic is analyzed by energy dispersive X-ray spectroscopy (EDS). ), Or Bi-rich parts constituting a heterogeneous phase at the grain boundaries (interfacial grain boundaries, triple points) of crystal grains are not found by wavelength dispersive X-ray spectroscopy (WDS) composition analysis and electron diffraction Can be confirmed.

また、PZT系結晶の結晶粒子の粒界に、PZT系結晶以外の結晶相が実質的に存在しないとは、透過型電子顕微鏡(TEM)にて粒界の格子像に異相が見られない点、または、圧電磁器断面のCukα線を用いたX線回折測定において、PZT系結晶ピーク以外の他の結晶によるピークが、実質的に存在しない点から確認できる。   Further, the fact that there is substantially no crystal phase other than the PZT crystal at the grain boundary of the crystal grain of the PZT crystal means that no different phase is seen in the lattice image of the grain boundary with a transmission electron microscope (TEM). Alternatively, in the X-ray diffraction measurement using the Cukα ray of the piezoelectric ceramic cross section, it can be confirmed from the point that a peak due to a crystal other than the PZT crystal peak does not substantially exist.

Cukα線を用いたX線回折測定において、PZT系結晶ピーク以外の他の結晶によるピークが、実質的に存在しないとは、PZT系結晶の(111)のピーク強度を100とした場合、PZT系結晶以外のピーク強度が3以下の場合である。ピーク強度は、図5に示すように、ピークの両側に接線を引き、この接線に対して垂直方向のピークまでの長さで表される。   In the X-ray diffraction measurement using Cukα rays, the fact that there are substantially no peaks due to crystals other than the PZT crystal peak means that when the (111) peak intensity of the PZT crystal is 100, the PZT system This is the case where the peak intensity other than the crystal is 3 or less. As shown in FIG. 5, the peak intensity is expressed by the length to the peak in the direction perpendicular to the tangent line drawn on both sides of the peak.

圧電磁器は、SbおよびNbのうち少なくとも一種と、Pb、Zr、Ti、ZnおよびBiとを含有するもので、金属成分としてSbおよびNbのうち少なくとも一種と、Pb、Zr、Ti、Sr、Ba、Zn、Biとを含む複合ペロブスカイト型化合物であって、これらの金属元素のモル比による組成式をPb1−x−y−zSrBaBi(Zn1/3α2/3ZrTi1−a−bと表した時に、x、y、z、a、bが、0≦x≦0.14、0≦y≦0.14、0<z≦0.015、0.04≦x+y、0.01≦a≦0.12、0.43≦b≦0.58を満足するものが望ましい。αはSbおよびNbのうち少なくとも一種である。 The piezoelectric ceramic contains at least one of Sb and Nb and Pb, Zr, Ti, Zn and Bi, and at least one of Sb and Nb as a metal component, Pb, Zr, Ti, Sr, Ba , Zn, and Bi, and a composition formula based on a molar ratio of these metal elements is Pb 1-xyz Sr x Bay B i z (Zn 1/3 α 2/3 ) When expressed as a Zr b Ti 1- abO 3 , x, y, z, a, b are 0 ≦ x ≦ 0.14, 0 ≦ y ≦ 0.14, 0 <z ≦ 0.015 , 0.04 ≦ x + y, 0.01 ≦ a ≦ 0.12, and 0.43 ≦ b ≦ 0.58 are desirable. α is at least one of Sb and Nb.

ここで、x、y、z、a、bを上記の範囲に設定した理由について説明する。PbのSrによる置換量xを0≦x≦0.14としたのは、Pbの一部をSrで置換することによりキュリー温度を高く維持できるからである。また、PbのBaによる置換量yを0≦y≦0.14としたのは、Pbの一部をBaで置換することによりキュリー温度を高く維持でき、高い圧電歪定数d33を得ることができるからである。 Here, the reason why x, y, z, a, and b are set in the above ranges will be described. The reason why the substitution amount x of Pb with Sr is set to 0 ≦ x ≦ 0.14 is that the Curie temperature can be kept high by substituting a part of Pb with Sr. The reason why the substitution amount y of Pb with Ba is set to 0 ≦ y ≦ 0.14 is that the Curie temperature can be kept high by substituting a part of Pb with Ba, and a high piezoelectric strain constant d 33 can be obtained. Because it can.

さらに、PbのBiによる置換量zを0<z≦0.015としたのは、この範囲内ならば、焼成時にBiが液相を形成し、PZT系結晶の結晶粒子を濡らし、焼結性を向上できるとともに、焼結後は、PZT系結晶内にBiが固溶し、圧電特性を向上できるためである。 Furthermore, if the substitution amount z of Pb by Bi is set to 0 <z ≦ 0.015, within this range, Bi 2 O 3 forms a liquid phase at the time of firing, and wets the crystal grains of the PZT crystal, This is because the sinterability can be improved and, after sintering, Bi 2 O 3 is dissolved in the PZT-based crystal and the piezoelectric characteristics can be improved.

また、Tiの(Zn1/3α2/3)による置換量aを0.01≦a≦0.12としたのは、大きな圧電歪定数d33および圧電出力定数g33が得られ、キュリー温度を高く維持し、誘電損失を小さく維持できるからである。本発明の圧電磁器組成物を圧電アクチュエータとして用いる場合には、0.05≦a≦0.12とすることにより大きな圧電歪定数を得ることができ、圧電センサとして用いる場合には0.01≦a≦0.05とすることにより大きな圧電出力定数g33を得ることができる。 Also, the reason why the substitution amount a of Ti with (Zn 1/3 α 2/3 ) is set to 0.01 ≦ a ≦ 0.12 is that a large piezoelectric strain constant d 33 and piezoelectric output constant g 33 are obtained. This is because the temperature can be kept high and the dielectric loss can be kept small. When the piezoelectric ceramic composition of the present invention is used as a piezoelectric actuator, a large piezoelectric strain constant can be obtained by setting 0.05 ≦ a ≦ 0.12, and when it is used as a piezoelectric sensor, 0.01 ≦ By setting a ≦ 0.05, a large piezoelectric output constant g 33 can be obtained.

PZTを主成分とした圧電磁器組成物は、PbZrOとPbTiOの固溶比率を変化させると圧電歪定数の極大値を示すMPB(組成相境界)が存在する。圧電アクチュエータ材料としては、このMPB及びその近傍の組成値を用いることになる。このMPBはx、aの量により変化するため、bの値はx、aの組成範囲内でMPBを捉えうる組成範囲とした。 A piezoelectric ceramic composition mainly composed of PZT has an MPB (composition phase boundary) showing a maximum value of the piezoelectric strain constant when the solid solution ratio of PbZrO 3 and PbTiO 3 is changed. As the piezoelectric actuator material, the MPB and the composition value in the vicinity thereof are used. Since this MPB varies depending on the amounts of x and a, the value of b is set to a composition range in which MPB can be captured within the composition range of x and a.

圧電磁器の密度は7.7g/cm以上とされている。特には、7.8g/cm以上が望ましい。なお、本発明では、積層体の嵩密度を圧電磁器の密度とした。 The density of the piezoelectric ceramic is 7.7 g / cm 3 or more. In particular, 7.8 g / cm 3 or more is desirable. In the present invention, the bulk density of the laminate is the density of the piezoelectric ceramic.

本発明の積層型電子部品では、内部電極層が金属成分としてAgを主成分とし、Pdの含有比率が5質量%以下である。特には、金属成分はAgからなることが望ましい。Agを主成分とし、Pdの含有比率が5質量%以下の内部電極層は、920〜960℃で焼成しなければならないため、圧電磁器も920〜960℃で焼結し、圧電磁器の密度が7.7g/cm以上ある必要がある。内部電極層として、セラミック粒子が存在する場合がある。 In the multilayer electronic component of the present invention, the internal electrode layer is mainly composed of Ag as a metal component, and the content ratio of Pd is 5% by mass or less. In particular, the metal component is preferably made of Ag. The internal electrode layer containing Ag as a main component and having a Pd content of 5% by mass or less must be fired at 920 to 960 ° C., so that the piezoelectric ceramic is also sintered at 920 to 960 ° C., and the density of the piezoelectric ceramic is It needs to be 7.7 g / cm 3 or more. Ceramic particles may be present as the internal electrode layer.

以上のように構成された積層型電子部品は以下のようにして作製することができる。先ず、SbおよびNbのうち少なくとも一種と、Pb、Zr、Ti、Znとを含有し、かつCukα線を用いたX線回折測定においてチタン酸ジルコン酸鉛系結晶の(101)のピーク(2θ≒30°)のピーク強度をIとし、(111)のピーク(2θ≒38°)のピーク強度をIとした時、I/Iが0.130〜0.160となる仮焼粉末を作製する。 The multilayer electronic component configured as described above can be manufactured as follows. First, in the X-ray diffraction measurement using at least one of Sb and Nb and Pb, Zr, Ti, and Zn and using Cukα rays, the (101) peak (2θ≈ the peak intensity of 30 °) and I 1, when the the I 2 peak intensity of the peak (2 [Theta] ≒ 38 °) of (111), calcined powder I 2 / I 1 is from 0.130 to 0.160 Is made.

具体的には、例えば、原料としてPbO、ZrO、TiO、SrCO、BaCO、ZnO、Sb、Nbの各粉末を秤量混合し、次いで、この混合物を脱水、乾燥した後、850〜950℃で1〜3時間仮焼する。仮焼後において、I/Iが0.130〜0.160となるようにした。再びボールミル等で粉砕し、例えば、平均粒径D50が0.5〜0.7μmの範囲になるようにする。 Specifically, for example, PbO, ZrO 2 , TiO 2 , SrCO 3 , BaCO 3 , ZnO, Sb 2 O 3 , and Nb 2 O 5 powders are weighed and mixed as raw materials, and then this mixture is dehydrated and dried. And calcining at 850 to 950 ° C. for 1 to 3 hours. After calcination, I 2 / I 1 was adjusted to 0.130 to 0.160. Again ground in a ball mill or the like, for example, the average particle diameter D 50 is set to be in the range of 0.5~0.7Myuemu.

/Iを0.130〜0.160としたのは、I/Iが0.130〜0.160の範囲内ならば、Bi添加により焼結性が向上し、チタン酸ジルコン酸鉛系結晶の合成が進行するとともに、Biが焼結に伴う粒成長と同時にチタン酸ジルコン酸鉛系結晶に取り込まれ、920〜960℃の焼結温度範囲においては液相成分が残存せずに焼結するためである。一方、I/Iが0.130よりも小さい場合には、チタン酸ジルコン酸鉛系結晶の合成が不十分であり、Bi粉末を添加し焼成したとしても、焼結性を向上できないからである。また、I/Iが0.160よりも大きい場合には、チタン酸ジルコン酸鉛系結晶の合成が進みすぎ、Bi粉末を添加し焼成したとしても、結晶内に固溶し難くなるからである。 The reason why I 2 / I 1 was set to 0.130 to 0.160 is that if I 2 / I 1 is in the range of 0.130 to 0.160, the sinterability is improved by adding Bi 2 O 3 , As the synthesis of lead zirconate titanate crystals progresses, Bi 2 O 3 is taken into the lead zirconate titanate crystals at the same time as the grain growth accompanying sintering, and in the sintering temperature range of 920 to 960 ° C. This is because the phase component does not remain and is sintered. On the other hand, when I 2 / I 1 is smaller than 0.130, the synthesis of lead zirconate titanate crystals is insufficient, and even if Bi 2 O 3 powder is added and fired, the sinterability is reduced. This is because it cannot be improved. In addition, when I 2 / I 1 is larger than 0.160, the synthesis of lead zirconate titanate-based crystals proceeds too much, and even if Bi 2 O 3 powder is added and baked, it is dissolved in the crystals. Because it becomes difficult.

ここで、チタン酸ジルコン酸鉛系結晶の合成程度を表す指標として、チタン酸ジルコン酸鉛系結晶の(101)のピーク(2θ≒30°)のピーク強度I、(111)のピーク(2θ≒38°)のピーク強度Iを用いたのは、他のピークは、仮焼温度により結晶相が変化するに伴い、ピーク位置やパターン形状が変化するからであり、(101)のピーク(2θ≒30°)と、(111)のピーク(2θ≒38°)は、そのようなことがなく、合成度を表すには最適と考えられたからである。 Here, as an index representing the synthesis degree of the lead zirconate titanate crystal, the peak intensity I 1 of the peak (2θ≈30 °) of the lead zirconate titanate crystal (2θ≈30 °), the peak (2θ) The reason why the peak intensity I 2 of ≈38 ° is used is that the peak position and pattern shape of other peaks change as the crystal phase changes depending on the calcining temperature. This is because the 2θ≈30 ° and the peak of (111) (2θ≈38 °) are not so, and are considered optimal for expressing the degree of synthesis.

この後、仮焼粉末に対して、例えばD50が0.5〜0.7μmのBi粉末、バインダを添加し混合した後、ドクターブレード法でグリーンシートを作製する。Bi粉末の添加量は、仮焼粉末に対するBiの添加量は、ABOの化学式で書き表されるチタン酸ジルコン酸鉛系結晶のAサイトPb1−x−y−zSrBaBiの組成表記で表したときのBiのモル数が0.015モルに相当する量以下のBiを添加することが望ましい。 Thereafter, for example, Bi 2 O 3 powder having a D 50 of 0.5 to 0.7 μm and a binder are added to and mixed with the calcined powder, and then a green sheet is produced by a doctor blade method. The amount of Bi 2 O 3 powder added is the same as the amount of Bi added to the calcined powder. The amount of Bi 2 O 3 powder expressed by the chemical formula of ABO 3 is the A-site Pb 1-xyz sr x Ba of the lead zirconate titanate crystal. y Bi moles of Bi when expressed in a composition notation z may be desirable to add a Bi 2 O 3 amount less, which corresponds to 0.015 moles.

一方、金属成分としてAg主成分とし、Pdの含有比率が5質量%以下である内部電極ペーストを作製する。内部電極ペースト中には、共材としてセラミック粒子を混合する場合がある。   On the other hand, an internal electrode paste having a main component of Ag as a metal component and a Pd content ratio of 5% by mass or less is prepared. Ceramic particles may be mixed as a common material in the internal electrode paste.

この内部電極ペーストをグリーンシートに塗布して内部電極パターンを形成する。   This internal electrode paste is applied to a green sheet to form an internal electrode pattern.

この内部電極パターンが形成されたグリーンシートを複数積層し、最後に内部電極パターンが形成されていないグリーンシートを積層して積層成形体を作製し、この積層成形体を、大気中で920〜960℃で焼成する。これにより、圧電磁器中のチタン酸ジルコン酸鉛系結晶内にBiが固溶する。 A plurality of green sheets on which the internal electrode patterns are formed are stacked, and finally, green sheets on which the internal electrode patterns are not formed are stacked to produce a stacked molded body. Bake at ℃. Accordingly, Bi 2 O 3 is dissolved in a lead zirconate titanate crystals in the piezoelectric ceramic.

このような積層型電子部品の製法では、920〜960℃の低温で焼成したとしても、Biが液相を形成し、チタン酸ジルコン酸鉛系結晶の結晶粒子を濡らし、焼結性を向上できるとともに、焼結後には、チタン酸ジルコン酸鉛系結晶内にBiがほぼ完全に固溶するため、圧電磁器がチタン酸ジルコン酸鉛系結晶の結晶粒子からなるとともに、チタン酸ジルコン酸鉛系結晶の結晶粒子の粒界には、非晶質相およびチタン酸ジルコン酸鉛系結晶以外の結晶相が実質的に存在せず、圧電特性を向上できる。 In such a method of manufacturing a multilayer electronic component, even when fired at a low temperature of 920 to 960 ° C., Bi 2 O 3 forms a liquid phase, wets the crystal grains of lead zirconate titanate crystal, and sinterability In addition, after sintering, Bi 2 O 3 is almost completely dissolved in the lead zirconate titanate crystal, so that the piezoelectric ceramic is composed of crystal grains of lead zirconate titanate crystal and titanium. There is substantially no crystal phase other than the amorphous phase and the lead zirconate titanate crystal at the grain boundary of the lead zirconate acid crystal, so that the piezoelectric characteristics can be improved.

従来、低温焼成するため、液相を形成するLiやB等を添加しており、低温焼成はできるものの、PZT系結晶の結晶粒子の粒界には、非晶質相やPZT系結晶以外の結晶相が存在し、絶縁抵抗が経時的に低下したり、圧電特性が低下していた。本発明では、液相を形成するBiを用い、焼成時には液相を形成して焼結性を向上させ、7.7g/cm以上の密度を得ることができ、焼結後には、ほぼ完全にPZT系結晶に固溶して、PZT系結晶の結晶粒子の粒界には、非晶質相やPZT系結晶以外の結晶相が存在しないことになり、圧電特性を向上できる。これにより、圧電磁器の絶縁抵抗値が85℃で100MΩ以上となり、連続駆動時の絶縁劣化を抑制できる。 Conventionally, Li, B, or the like that forms a liquid phase has been added to perform low-temperature firing, and low-temperature firing is possible, but at the grain boundaries of the PZT crystal grains, other than amorphous phases and PZT crystals There was a crystal phase, and the insulation resistance decreased with time, and the piezoelectric characteristics decreased. In the present invention, Bi 2 O 3 forming a liquid phase is used, and a liquid phase is formed at the time of firing to improve the sinterability, and a density of 7.7 g / cm 3 or more can be obtained. The solid phase is almost completely dissolved in the PZT crystal, and there is no amorphous phase or crystal phase other than the PZT crystal at the grain boundary of the PZT crystal grain, so that the piezoelectric characteristics can be improved. As a result, the insulation resistance value of the piezoelectric ceramic becomes 100 MΩ or more at 85 ° C., and insulation deterioration during continuous driving can be suppressed.

以下、本発明を次の実施例で説明する。原料粉末としてPbO、ZrO、TiO、SrCO、BaCO、ZnO、Sb、Nbの粉末を用いて、表1のa〜hの組成に秤量し、ボールミルにて24時間湿式混合した。次いで、この混合物を脱水、乾燥した後、表1に示す仮焼温度で3時間仮焼し、当該仮焼物を再びボールミルで24時間湿式粉砕し、D50が0.5〜0.7μmの仮焼粉末を得た。この仮焼粉末について、Cukα線を用いたX線回折測定においてチタン酸ジルコン酸鉛系結晶の(101)のピーク(2θ≒30°)のピーク強度をIとし、(111)のピーク(2θ≒38°)のピーク強度をIとした時、I/Iを求め、表1に記載した。 The invention will now be illustrated by the following examples. PbO, ZrO 2 , TiO 2 , SrCO 3 , BaCO 3 , ZnO, Sb 2 O 3 , and Nb 2 O 5 powders were used as raw material powders, weighed to the compositions a to h in Table 1, and 24 using a ball mill. Wet mixed for hours. Next, after dehydrating and drying the mixture, the mixture was calcined at the calcining temperature shown in Table 1 for 3 hours, and the calcined material was wet-ground again with a ball mill for 24 hours, and the D 50 was 0.5 to 0.7 μm. A baked powder was obtained. With respect to this calcined powder, the peak intensity of the (101) peak (2θ≈30 °) of the lead zirconate titanate-based crystal in the X-ray diffraction measurement using the Cukα ray is I 1, and the peak of (111) (2θ When the peak intensity at ≈38 ° is defined as I 2 , I 2 / I 1 was determined and listed in Table 1.

なお、表1の仮焼粉末の種類の欄のaの組成は、Pb0.92Ba0.07(Zn1/3Sb2/30.105Zr0.434Ti0.461、bの組成は、Pb0.925Ba0.07(Zn1/3Sb2/30.105Zr0.434Ti0.461、cの組成は、Pb0.915Ba0.07(Zn1/3Sb2/30.105Zr0.434Ti0.461、dの組成は、Pb0.914Ba0.07(Zn1/3Sb2/30.105Zr0.434Ti0.461、eの組成は、Pb0.92Ba0.07(Zn1/3Nb2/30.105Zr0.434Ti0.461、fの組成は、Pb0.92Ba0.07(Zn1/3Sb2/30.07(Zn1/3Nb2/30.035Zr0.434Ti0.461、gの組成は、Pb0.93Sr0.04Ba0.02(Zn1/3Sb2/30.0755Zr0.460Ti0.465、hの組成は、Pb0.92Ba0.07(Zn1/3Sb2/30.105Zr0.434Ti0.461である。 The composition of a in the column of the type of calcined powder in Table 1 is Pb 0.92 Ba 0.07 (Zn 1/3 Sb 2/3 ) 0.105 Zr 0.434 Ti 0.461 O 3 , The composition of b is Pb 0.925 Ba 0.07 (Zn 1/3 Sb 2/3 ) 0.105 Zr 0.434 Ti 0.461 O 3 , and the composition of c is Pb 0.915 Ba 0.07. (Zn 1/3 Sb 2/3 ) 0.105 Zr 0.434 Ti 0.461 O 3 , d has a composition of Pb 0.914 Ba 0.07 (Zn 1/3 Sb 2/3 ) 0.105 The composition of Zr 0.434 Ti 0.461 O 3 , e is Pb 0.92 Ba 0.07 (Zn 1/3 Nb 2/3 ) 0.105 Zr 0.434 Ti 0.461 O 3 , f composition, Pb 0.92 Ba 0.07 (Zn 1/3 S 2/3) 0.07 (Zn 1/3 Nb 2/3 ) 0.035 Zr 0.434 Ti 0.461 O 3, the composition of g, Pb 0.93 Sr 0.04 Ba 0.02 ( Zn 1/3 Sb 2/3 ) 0.0755 Zr 0.460 Ti 0.465 O 3 , h has a composition of Pb 0.92 Ba 0.07 (Zn 1/3 Sb 2/3 ) 0.105 Zr 0 .434 Ti 0.461 O 3 .

図2に、表1の試料No.1〜5について、仮焼温度に対するI/Iを記載し、図3に、表1の試料No.1〜5について仮焼温度を変化させた場合の仮焼粉末のX線回折測定結果を記載した。 In FIG. 1 to 5, I 2 / I 1 with respect to the calcining temperature is described, and in FIG. The X-ray-diffraction measurement result of the calcination powder at the time of changing calcination temperature about 1-5 was described.

その後、D50が0.5〜0.7μmのBi粉末を、表1に示す量だけ添加し(ABOの化学式で書き表されるチタン酸ジルコン酸鉛系結晶のAサイトPb1−x−y−zSrBaBiの組成表記で表したときのBiのモル数に相当する量をBiに換算して添加)、これに有機バインダを混合しドクターブレード法により30μm厚みのグリーンシートを作製した。このグリーンシートに、AgとPdからなり、Pdの含有比率が表1に示す量の内部電極ペーストをスクリーン印刷し、内部電極ペーストが印刷されたグリーンシートを15枚重ねた後、最後に内部電極ペーストが塗布されていないグリーンシートを積層し、積層成形体を作製した。 Thereafter, Bi 2 O 3 powder having a D 50 of 0.5 to 0.7 μm was added in an amount shown in Table 1 (A-site Pb 1 of lead zirconate titanate crystal expressed by the chemical formula of ABO 3. -x-y-z Sr x Ba y Bi added in an amount corresponding to the number of moles of Bi when expressed in a composition notation z in terms of Bi 2 O 3), a doctor blade method by mixing it into an organic binder Thus, a green sheet having a thickness of 30 μm was produced. On this green sheet, an internal electrode paste composed of Ag and Pd and having a Pd content ratio shown in Table 1 was screen-printed, and 15 green sheets on which the internal electrode paste was printed were stacked, and finally the internal electrode A green sheet to which no paste was applied was laminated to produce a laminated molded body.

その後、脱バイし、表1の焼成温度で3時間大気中で焼成し、冷却して、両端面に内部電極が交互に露出した積層体を作製した。その後、積層体の両端面に外部電極を形成した後、分極して積層型電子部品としての積層圧電アクチュエータを得た。圧電体層の1層の厚み(電極間の厚み)は25μmであった。   After that, it was deburied, fired in the atmosphere for 3 hours at the firing temperature shown in Table 1, cooled, and a laminated body in which internal electrodes were alternately exposed on both end faces was produced. Thereafter, external electrodes were formed on both end faces of the multilayer body, and then polarized to obtain a multilayer piezoelectric actuator as a multilayer electronic component. The thickness of one layer of the piezoelectric layer (thickness between the electrodes) was 25 μm.

圧電磁器の嵩密度については、積層体についてアルキメデス法により求めた。図4に、試料No.3について焼成温度に対する嵩密度を記載した。また、チタン酸ジルコン酸鉛系結晶の結晶粒子の粒界に、非晶質相が存在するか否か、チタン酸ジルコン酸鉛系結晶以外の結晶相が存在するか否かについて調査した。   About the bulk density of a piezoelectric ceramic, it calculated | required by the Archimedes method about the laminated body. In FIG. For 3, the bulk density with respect to the firing temperature is shown. In addition, it was investigated whether an amorphous phase exists at the grain boundary of the lead zirconate titanate crystal grains and whether a crystal phase other than the lead zirconate titanate crystal exists.

圧電磁器中の非晶質相の有無については、圧電磁器の破断面および鏡面部分をエネルギー分散型X線分光分析(EDS)および電子線回折により結晶粒子の任意の10箇所の3重点に非晶質相を構成するBiリッチの部分が見られない場合を非晶質相が無いと判断した。   As for the presence or absence of an amorphous phase in the piezoelectric ceramic, the fracture surface and mirror surface of the piezoelectric ceramic are amorphous at any three triple points of crystal grains by energy dispersive X-ray spectroscopy (EDS) and electron diffraction. A case where no Bi-rich part constituting the qualitative phase was observed was judged as having no amorphous phase.

また、チタン酸ジルコン酸鉛系結晶の結晶粒子の粒界に、チタン酸ジルコン酸鉛系結晶以外の結晶相が存在するか否かについては、圧電磁器のCukα線を用いたX線回折測定において、PZT系結晶ピーク以外の他の結晶によるピークが実質的に存在しない場合を無しと判断した。図5に、試料No.1のX線回折測定結果を、図6に、試料No.3のX線回折測定結果を記載した。   Whether or not there is a crystal phase other than the lead zirconate titanate crystal at the grain boundary of the lead zirconate titanate crystal is determined by the X-ray diffraction measurement using the piezoelectric ceramic Cukα ray. , It was judged that there was no case where there was substantially no peak due to a crystal other than the PZT crystal peak. In FIG. The X-ray diffraction measurement results of No. 1 are shown in FIG. 3 X-ray diffraction measurement results are shown.

圧電磁器の絶縁抵抗の劣化試験については、85℃の恒温槽の中で、積層型電子部品に2kV/mmの直流電界を付与して、積層型電子部品の初期の絶縁抵抗を測定し、100時間後における85℃の絶縁抵抗値とともに表1に記載した。   For the deterioration test of the insulation resistance of the piezoelectric ceramic, the initial insulation resistance of the multilayer electronic component was measured by applying a DC electric field of 2 kV / mm to the multilayer electronic component in an 85 ° C. constant temperature bath. It was described in Table 1 together with an insulation resistance value of 85 ° C. after the time.

圧電特性については、分極後100℃でエージング処理をした後、d33メータを用いて(積層圧電体に弱い振動を与え、圧電効果により発生した電荷を評価)、積層型電子部品の圧電歪定数d33を求め表1に記載した。また、図7に試料No.3の焼成温度に対する圧電歪定数d33を記載した。 Regarding piezoelectric characteristics, after polarization, after aging treatment at 100 ° C., using a d 33 meter (applying weak vibration to the laminated piezoelectric body and evaluating the charge generated by the piezoelectric effect), the piezoelectric strain constant of the laminated electronic component described determined table 1 d 33. In addition, in FIG. The piezoelectric strain constant d 33 with respect to the firing temperature of 3 was described.

Figure 2011029537
Figure 2011029537

Figure 2011029537
Figure 2011029537

表1、2から、積層体の嵩密度が7.7g/cm以上で、PZT系結晶の結晶粒子の粒界に、非晶質相およびPZT系結晶以外の結晶相が実質的に存在せず、内部電極層が、金属成分としてAgを主成分とし、Pdの含有比率が5質量%以下の本発明の試料では、積層型電子部品の初期の絶縁抵抗が3GΩ以上であり、85℃で100時間経過後においても絶縁抵抗の経時劣化が小さく、圧電歪定数d33が603p・m/V以上であり、比誘電率が3500以上の特性を有することがわかる。 From Tables 1 and 2, when the bulk density of the laminate is 7.7 g / cm 3 or more, the crystal phase other than the amorphous phase and the PZT crystal does not substantially exist at the grain boundary of the crystal grain of the PZT crystal. In the sample of the present invention in which the internal electrode layer is mainly composed of Ag as a metal component and the content ratio of Pd is 5% by mass or less, the initial insulation resistance of the multilayer electronic component is 3 GΩ or more at 85 ° C. It can be seen that even after 100 hours, the deterioration of the insulation resistance with time is small, the piezoelectric strain constant d 33 is 603 p · m / V or more, and the relative dielectric constant is 3500 or more.

これに対して、I/Iが0.130よりも小さい比較例の試料No.1では、嵩密度が小さく、PZT系結晶以外の結晶相が存在し、積層型電子部品の初期の絶縁抵抗が小さく、圧電特性を低いことがわかる。 On the other hand, the sample No. of the comparative example in which I 2 / I 1 is smaller than 0.130. 1 indicates that the bulk density is small, a crystal phase other than the PZT crystal is present, the initial insulation resistance of the multilayer electronic component is small, and the piezoelectric characteristics are low.

また、I/Iが0.160よりも大きい比較例の試料No.5では、PZT系結晶の結晶粒子の粒界に、非晶質相およびPZT系結晶以外の結晶相が存在し、積層型電子部品の絶縁抵抗が小さく、圧電特性が低いことがわかる。 In addition, the sample No. of the comparative example in which I 2 / I 1 is larger than 0.160. 5 shows that there are crystal phases other than the amorphous phase and the PZT crystal at the grain boundaries of the PZT crystal grains, the insulation resistance of the multilayer electronic component is small, and the piezoelectric characteristics are low.

さらに、Bi粉末の添加量が多く、PZT系結晶の結晶粒子の粒界に、PZT系結晶以外の結晶相が存在する比較例の試料No.8では、積層型電子部品の絶縁抵抗の経時劣化が大きく、圧電歪定数d33が低いことがわかる。 Further, the amount of Bi 2 O 3 powder added is large, and a comparative sample No. 1 in which a crystal phase other than the PZT crystal exists at the grain boundary of the crystal grain of the PZT crystal. In 8, greater aging of the insulation resistance multilayer electronic component, it can be seen that the piezoelectric strain constant d 33 is low.

1・・・圧電体層
3・・・内部電極層
5・・・積層体
7・・・外部電極
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric layer 3 ... Internal electrode layer 5 ... Laminated body 7 ... External electrode

Claims (3)

圧電磁器中に内部電極層を有する積層型電子部品であって、前記圧電磁器が、SbおよびNbのうち少なくとも1種類と、Pb、Zr、Ti、ZnおよびBiとを含有するチタン酸ジルコン酸鉛系結晶の結晶粒子からなるとともに、前記チタン酸ジルコン酸鉛系結晶の結晶粒子の粒界には、非晶質相および前記チタン酸ジルコン酸鉛系結晶以外の結晶相が実質的に存在せず、かつ密度が7.7g/cm以上であり、前記内部電極層が、金属成分としてAgを主成分とし、Pdの含有比率が5質量%以下であることを特徴とする積層型電子部品。 A laminated electronic component having an internal electrode layer in a piezoelectric ceramic, wherein the piezoelectric ceramic contains at least one of Sb and Nb and Pb, Zr, Ti, Zn and Bi. The crystal grain of the lead zirconate titanate crystal is substantially free from an amorphous phase and a crystal phase other than the lead zirconate titanate crystal. A multilayer electronic component having a density of 7.7 g / cm 3 or more, the internal electrode layer containing Ag as a metal component as a main component, and a Pd content ratio of 5 mass% or less. 前記内部電極の金属成分がAgからなることを特徴とする請求項1に記載の積層型電子部品。   The multilayer electronic component according to claim 1, wherein the metal component of the internal electrode is made of Ag. SbおよびNbのうち少なくとも1種類と、Pb、Zr、TiおよびZnとを含有し、かつCukα線を用いたX線回折測定においてチタン酸ジルコン酸鉛系結晶の(101)のピーク(2θ≒30°)のピーク強度をIとし、(111)のピーク(2θ≒38°)のピーク強度をIとした時、I/Iが0.130〜0.160となる仮焼粉末を作製する工程と、該仮焼粉末に対して、Bi粉末を添加し混合して作製したスラリーをシート状に成形してグリーンシートを作製する工程と、該グリーンシートに、金属成分としてAg主成分とし、Pdの含有比率が5質量%以下である内部電極ペーストを塗布して内部電極パターンを形成する工程と、該内部電極パターンが形成されたグリーンシートを複数積層して積層成形体を作製する工程と、該積層成形体を大気中で920〜960℃で焼成することにより、チタン酸ジルコン酸鉛系結晶内にBiを固溶させ、SbおよびNbのうち少なくとも1種類と、Pb、Zr、Ti、ZnおよびBiとを含有するチタン酸ジルコン酸鉛系結晶の結晶粒子からなる圧電磁器中に内部電極層を有する積層体を製造する工程とを具備することを特徴とする積層型電子部品の製法。 (101) peak (2θ≈30) of lead zirconate titanate-based crystal containing at least one of Sb and Nb, Pb, Zr, Ti and Zn and X-ray diffraction measurement using Cukα ray When the peak intensity of (°) is I 1 and the peak intensity of the (111) peak (2θ≈38 °) is I 2 , a calcined powder having I 2 / I 1 of 0.130 to 0.160 is obtained. A step of producing, a step of forming a green sheet by forming a slurry obtained by adding and mixing Bi 2 O 3 powder to the calcined powder, and forming a green sheet; A step of forming an internal electrode pattern by applying an internal electrode paste containing Ag as a main component and having a Pd content ratio of 5% by mass or less, and laminating a plurality of green sheets on which the internal electrode pattern is formed. A step of preparing, by the laminated molded body is fired at 920-960 ° C. in the air, a solid solution of Bi 2 O 3 in the lead zirconate titanate crystals, and at least one of Sb and Nb And a step of producing a laminate having an internal electrode layer in a piezoelectric ceramic composed of crystal grains of lead zirconate titanate crystals containing Pb, Zr, Ti, Zn and Bi. A manufacturing method for multilayer electronic components.
JP2009176299A 2009-07-29 2009-07-29 Multilayer electronic component and manufacturing method thereof Active JP5597368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009176299A JP5597368B2 (en) 2009-07-29 2009-07-29 Multilayer electronic component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009176299A JP5597368B2 (en) 2009-07-29 2009-07-29 Multilayer electronic component and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014121553A Division JP5894222B2 (en) 2014-06-12 2014-06-12 Multilayer electronic component and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011029537A true JP2011029537A (en) 2011-02-10
JP5597368B2 JP5597368B2 (en) 2014-10-01

Family

ID=43637914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009176299A Active JP5597368B2 (en) 2009-07-29 2009-07-29 Multilayer electronic component and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5597368B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146974A1 (en) 2012-03-30 2013-10-03 日本碍子株式会社 Piezoelectric/electrostrictive film type element and method for producing piezoelectric/electrostrictive film type element
WO2013146975A1 (en) 2012-03-30 2013-10-03 日本碍子株式会社 Piezoelectric/electrostrictive film type element and method for producing piezoelectric/electrostrictive film type element
US9818927B2 (en) 2013-02-08 2017-11-14 Canon Kabushiki Kaisha Vibration element, method for manufacturing same, and vibration-type driving device
US9837938B2 (en) 2013-02-08 2017-12-05 Canon Kabushiki Kaisha Vibration element, method for manufacturing same, and vibration-type driving device
US10177300B2 (en) 2014-08-29 2019-01-08 Kyocera Corporation Piezoelectric ceramic, manufacturing method therefor, and electronic component

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126665A (en) * 1989-10-09 1991-05-29 Mitsubishi Petrochem Co Ltd Production of lead titanate/zirconate sintered body
JP2001089235A (en) * 1999-09-27 2001-04-03 Sony Corp Production of piezoelectric ceramics
JP2004292173A (en) * 2002-04-16 2004-10-21 Murata Mfg Co Ltd Non-reducing dielectric ceramic, its production method, and multilayered ceramic capacitor
JP2005272294A (en) * 2004-02-27 2005-10-06 Canon Inc Piezoelectric thin film, method of manufacturing piezoelectric thin film, piezoelectric element, and inkjet recording head
JP2006269813A (en) * 2005-03-24 2006-10-05 Tdk Corp Process for producing piezoelectric ceramics and piezoelectric element
JP2006351725A (en) * 2005-06-14 2006-12-28 Fujifilm Holdings Corp Piezoelectric actuator, method for manufacturing the same and liquid discharge head
WO2008096761A1 (en) * 2007-02-07 2008-08-14 Murata Manufacturing Co., Ltd. Piezoelectric porcelain and piezoelectric element
JP2008305821A (en) * 2007-06-05 2008-12-18 Panasonic Corp Piezoelectric thin-film element, its manufacturing method, ink jet head and ink-jet-type recorder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126665A (en) * 1989-10-09 1991-05-29 Mitsubishi Petrochem Co Ltd Production of lead titanate/zirconate sintered body
JP2001089235A (en) * 1999-09-27 2001-04-03 Sony Corp Production of piezoelectric ceramics
JP2004292173A (en) * 2002-04-16 2004-10-21 Murata Mfg Co Ltd Non-reducing dielectric ceramic, its production method, and multilayered ceramic capacitor
JP2005272294A (en) * 2004-02-27 2005-10-06 Canon Inc Piezoelectric thin film, method of manufacturing piezoelectric thin film, piezoelectric element, and inkjet recording head
JP2006269813A (en) * 2005-03-24 2006-10-05 Tdk Corp Process for producing piezoelectric ceramics and piezoelectric element
JP2006351725A (en) * 2005-06-14 2006-12-28 Fujifilm Holdings Corp Piezoelectric actuator, method for manufacturing the same and liquid discharge head
WO2008096761A1 (en) * 2007-02-07 2008-08-14 Murata Manufacturing Co., Ltd. Piezoelectric porcelain and piezoelectric element
JP2008305821A (en) * 2007-06-05 2008-12-18 Panasonic Corp Piezoelectric thin-film element, its manufacturing method, ink jet head and ink-jet-type recorder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146974A1 (en) 2012-03-30 2013-10-03 日本碍子株式会社 Piezoelectric/electrostrictive film type element and method for producing piezoelectric/electrostrictive film type element
WO2013146975A1 (en) 2012-03-30 2013-10-03 日本碍子株式会社 Piezoelectric/electrostrictive film type element and method for producing piezoelectric/electrostrictive film type element
US9553252B2 (en) 2012-03-30 2017-01-24 Ngk Insulators, Ltd. Piezoelectric/electrostrictive film type element containing lead zirconate titanate and a bismuth compound and method for producing the same
US9818927B2 (en) 2013-02-08 2017-11-14 Canon Kabushiki Kaisha Vibration element, method for manufacturing same, and vibration-type driving device
US9837938B2 (en) 2013-02-08 2017-12-05 Canon Kabushiki Kaisha Vibration element, method for manufacturing same, and vibration-type driving device
US10177300B2 (en) 2014-08-29 2019-01-08 Kyocera Corporation Piezoelectric ceramic, manufacturing method therefor, and electronic component
US10297744B2 (en) 2014-08-29 2019-05-21 Kyocera Corporation Piezoelectric ceramic plate, plate-shaped substrate and electronic component

Also Published As

Publication number Publication date
JP5597368B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP4973931B2 (en) Piezoelectric ceramic composition
JP4849338B2 (en) Piezoelectric ceramic composition
KR101191246B1 (en) Piezoelectric ceramic, method for producing same, and piezoelectric device
JP5929640B2 (en) Piezoelectric ceramic and piezoelectric element
KR20130111610A (en) Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
JPWO2006117952A1 (en) Piezoelectric ceramic composition and piezoelectric ceramic electronic component
JP2010150126A (en) Piezoelectric/electrostrictive ceramic composition, piezoelectric/electro-stric sintered compact, piezoelectric/electrostrictive element, method for producing piezoelectric/electrostrictive composition, and method for producing piezoelectric/electrostrictive element
JP2011144100A (en) Piezoelectric/electrostrictive ceramic sintered body
JP5597368B2 (en) Multilayer electronic component and manufacturing method thereof
JP5937774B1 (en) Piezoelectric ceramic and manufacturing method thereof, and electronic component
JP2004075448A (en) Piezoelectric ceramic composition, method of manufacturing piezoelectric ceramic composition and piezoelectric ceramic part
JP5129067B2 (en) Piezoelectric / electrostrictive porcelain composition and piezoelectric / electrostrictive element
JP2011032157A (en) Piezo-electric/electrostrictive ceramics sintered body
Hong et al. Effect of LiBiO2 on low-temperature sintering of PZT-PZNN ceramics
JP6798902B2 (en) Piezoelectric plate and plate-like substrate and electronic components
JP5036758B2 (en) Piezoelectric ceramic and piezoelectric element using the same
JP5894222B2 (en) Multilayer electronic component and manufacturing method thereof
JP4868881B2 (en) Piezoelectric ceramic composition, piezoelectric ceramic, piezoelectric actuator element and circuit module
JP6798901B2 (en) Plate-shaped substrate and electronic components
JP5021595B2 (en) Piezoelectric / electrostrictive porcelain composition and piezoelectric / electrostrictive element
WO2024070625A1 (en) Lead-free piezoelectric composition and piezoelectric element
JP2010052977A (en) Piezoelectric ceramic and piezoelectric element using the same
JP5935187B2 (en) Piezoelectric ceramics and piezoelectric actuator using the same
JP2015067505A (en) Piezoelectric ceramic, piezoelectric ceramic composition and piezoelectric element
JP2011144101A (en) Piezoelectric/electrostrictive ceramic sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140811

R150 Certificate of patent or registration of utility model

Ref document number: 5597368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150