JP4684089B2 - Piezoelectric ceramic composition and piezoelectric ceramic - Google Patents

Piezoelectric ceramic composition and piezoelectric ceramic Download PDF

Info

Publication number
JP4684089B2
JP4684089B2 JP2005342871A JP2005342871A JP4684089B2 JP 4684089 B2 JP4684089 B2 JP 4684089B2 JP 2005342871 A JP2005342871 A JP 2005342871A JP 2005342871 A JP2005342871 A JP 2005342871A JP 4684089 B2 JP4684089 B2 JP 4684089B2
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric ceramic
temperature
constant
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005342871A
Other languages
Japanese (ja)
Other versions
JP2007145650A (en
Inventor
知宣 江口
修一 福岡
仁 中久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005342871A priority Critical patent/JP4684089B2/en
Publication of JP2007145650A publication Critical patent/JP2007145650A/en
Application granted granted Critical
Publication of JP4684089B2 publication Critical patent/JP4684089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、圧電磁器組成物および圧電磁器に関し、特に、圧電センサ、圧電セラミックフィルタ、圧電セラミック発振子などの共振子用圧電セラミックスとして有用な圧電磁器組成物および圧電磁器に関するものである。   The present invention relates to a piezoelectric ceramic composition and a piezoelectric ceramic, and more particularly to a piezoelectric ceramic composition and a piezoelectric ceramic useful as piezoelectric ceramics for resonators such as piezoelectric sensors, piezoelectric ceramic filters, and piezoelectric ceramic oscillators.

圧電セラミックフィルタなどの圧電セラミック素子に用いられる圧電磁器として、チタン酸ジルコン酸鉛(Pb(Tix Zr1-x )O3 )あるいはチタン酸鉛(PbTiO3 )を主成分とする圧電磁器組成物が広く用いられている。 As a piezoelectric ceramic used for a piezoelectric ceramic element such as a piezoelectric ceramic filter, wide piezoelectric ceramic composition composed mainly of lead zirconate titanate (Pb (Tix Zr1-x) O 3) or lead titanate (PbTiO 3) It is used.

このようにチタン酸ジルコン酸鉛に代表される圧電セラミックスの高機能化には鉛の存在が不可欠であるが、近年、人体への影響の点で鉛の有害性が指摘されるようになり、結晶化されたチタン酸ジルコン酸鉛中に含まれる鉛成分は、他の非晶質の状態で含まれる鉛含有応用製品に比較して比較的安定な状態で存在するものの、環境保全の観点からも可能な限り鉛を含有しない圧電磁器が求められるようになってきている。   In this way, the presence of lead is indispensable for the enhancement of the functionality of piezoelectric ceramics represented by lead zirconate titanate, but in recent years, the harmfulness of lead has been pointed out in terms of the effect on the human body, Although the lead component contained in the crystallized lead zirconate titanate exists in a relatively stable state compared to other lead-containing products contained in other amorphous states, from the viewpoint of environmental conservation However, a piezoelectric ceramic containing as little lead as possible has been demanded.

また、チタン酸ジルコン酸鉛あるいはチタン酸鉛を主成分とする圧電磁器は、その製造過程において、鉛酸化物の蒸発を伴うために製品の均一性が低下するという課題をも有している。   Further, a piezoelectric ceramic mainly composed of lead zirconate titanate or lead titanate has a problem that the uniformity of the product is lowered due to evaporation of lead oxide in the manufacturing process.

そこで、鉛成分を含有することに起因する上述した課題を解決するために、ここにきて圧電共振子および発振子用材料として鉛フリーの新規な圧電用セラミックスが要求されているが、このような中で、鉛を含有せず高い圧電性を示すセラミック材料として、ニオブ酸アルカリ系の圧電磁器が注目されている。   Therefore, in order to solve the above-mentioned problems caused by containing a lead component, a new lead-free piezoelectric ceramic is now required as a material for piezoelectric resonators and oscillators. Among these, alkaline niobate piezoelectric ceramics are attracting attention as ceramic materials that do not contain lead and exhibit high piezoelectricity.

ニオブ酸アルカリ系の圧電磁器としては少なくとも下記の二つが例示される。ニオブ酸アルカリ系の圧電磁器の中でも、ニオブ酸ナトリウム(NaNbO 例えば、非特許文献1参照)は、ロブスカイト(ABO)型の結晶構造を有する酸化物であるが、それ自身では、−133℃付近よりも低い温度下でのみ強誘電性を示し、圧電共振子および発振子用材料の一般的な使用温度である−20〜80℃の範囲においては圧電性を示さず、
圧電磁器としての利用ができない。
Examples of the alkali niobate-based piezoelectric ceramic include at least the following two. Among the piezoelectric ceramic of the alkali niobate-based, sodium niobate (NaNbO 3 for example, see Non-Patent Document 1) is an oxide having a crystal structure of perovskite (ABO 3) type, in itself, -133 Ferroelectricity is exhibited only at temperatures lower than around 0 ° C., and piezoelectricity is not exhibited in the range of −20 to 80 ° C., which is a general use temperature of piezoelectric resonator and oscillator materials,
Cannot be used as a piezoelectric ceramic.

また、ニオブ酸カリウム・ナトリウム・リチウム(KNaLiNbO)を主成分とする圧電磁器の中には、電気機械結合係数が大きく、圧電セラミックフィルタおよび圧電セラミック発振子等の共振子用材料として有望であると考えられるものが存在する(例えば、特許文献1、2参照)。
Japan Journal of Applied Physics, p.322, vol.31, 1992 特開平11−228225号公報 特開平11−228227号公報
In addition, some piezoelectric ceramics mainly composed of potassium niobate / sodium / lithium (K x Na y Li z NbO 3 ) have a large electromechanical coupling coefficient, and resonators such as a piezoelectric ceramic filter and a piezoelectric ceramic oscillator. There are materials that are considered promising as materials for use (see, for example, Patent Documents 1 and 2).
Japan Journal of Applied Physics, p.322, vol.31, 1992 Japanese Patent Laid-Open No. 11-228225 Japanese Patent Laid-Open No. 11-228227

しかしながら、上述のニオブ酸カリウム・ナトリウム・リチウムを主成分とする圧電磁器は、キュリー温度(第一次相転移)が約200℃以上と高いものの、約−40〜150℃の温度範囲で、低温側の強誘電相から高温側の強誘電相に相変態する第二次相転移が存在するため、第二次相転移を通過する温度サイクル下においては、圧電特性や共振周波数の変化に不連続部分が存在することから、大きな温度ヒステリシスや特性劣化が起こりやすいという問題があった。ニオブ酸カリウム・ナトリウム・リチウムを主成分とする圧電磁器におけるこれら大きな温度ヒステリシスや特性劣化は実装工程におけるリフローに対応できない等の本質的問題であるため実使用化においては大きな制限が与えられていた。   However, the piezoelectric ceramic mainly composed of potassium, sodium, and niobate described above has a high Curie temperature (first-order phase transition) of about 200 ° C. or higher, but a low temperature in a temperature range of about −40 to 150 ° C. Since there is a secondary phase transition that transforms from the ferroelectric phase on the high-temperature side to the ferroelectric phase on the high-temperature side, there is a discontinuity in changes in piezoelectric characteristics and resonance frequency under temperature cycles that pass through the secondary phase transition. Since there is a portion, there is a problem that large temperature hysteresis and characteristic deterioration are likely to occur. These large temperature hysteresis and characteristic deterioration in piezoelectric ceramics mainly composed of potassium, sodium, and lithium niobate are essential problems such as inability to cope with reflow in the mounting process, and thus there are significant restrictions in practical use. .

従って本発明は、ニオブ酸カリウム・ナトリウム・リチウムを主成分とし、共振周波数の温度変化率、反共振周波数の温度変化率、圧電g33定数の温度変化率などの圧電特性の安定した圧電磁器組成物および圧電磁器を提供することを目的とする。 Accordingly, the present invention comprises a piezoelectric ceramic composition having stable piezoelectric characteristics, such as potassium niobate, sodium, and lithium niobate as the main components, and the temperature change rate of the resonance frequency, the temperature change rate of the antiresonance frequency, and the temperature change rate of the piezoelectric g 33 constant. The object is to provide an object and a piezoelectric ceramic.

本発明の圧電磁器組成物は、(1)ニオブ酸カリウム・ナトリウム・リチウムを(K Na Li 1−x−y )NbO 、チタン酸ストロンチウムをSrTiO 、鉄酸ビスマスをBiFeO としたときに、前記ニオブ酸カリウム・ナトリウム・リチウムと、前記チタン酸ストロンチウムと、前記鉄酸ビスマスとを、(1−a−b)(K Na Li 1−x−y )NbO + aSrTiO + bBiFeO
0< a ≦0.1
0< b ≦0.11
0≦ x ≦0.18
0.8≦ y <1
で表される範囲で含むことを特徴とする。
The piezoelectric ceramic composition of the present invention, was (1) potassium sodium lithium niobate (K x Na y Li 1- x-y) NbO 3, SrTiO 3 strontium titanate, BiFeO 3 and bismuth ferrite when, with the potassium niobate, sodium-lithium, and the strontium titanate, and the bismuth ferrite, (1-a-b) (K x Na y Li 1-x-y) NbO 3 + aSrTiO 3 + BBiFeO 3
0 <a ≦ 0.1
0 <b ≦ 0.11
0 ≦ x ≦ 0.18
0.8 ≦ y <1
It is characterized by including in the range represented by.

上記圧電磁器組成物は、(2
.01 a ≦0.08
0.01 b ≦0.09
x ≦0.075
0.80.98
であることが望ましい。
The piezoelectric ceramic composition is (2 )
0 . 01 a ≤ 0.08
0.01 b ≦ 0.09
0 x ≦ 0. 075
0.8 y 0.98
Der Rukoto is desirable.

また本発明の圧電磁器は、()上記の圧電磁器組成物を焼成して得られ、電気機械結合係数k33が30%以上であり、かつ圧電g33定数が20×10−3V/N以上であることを特徴とする。
The piezoelectric ceramic of the present invention is ( 3 ) obtained by firing the above piezoelectric ceramic composition, has an electromechanical coupling coefficient k 33 of 30% or more, and a piezoelectric g 33 constant of 20 × 10 −3 V / and wherein the N or der Turkey.

本発明によれば、ニオブ酸カリウム・ナトリウム・リチウムを主成分とする圧電磁器組成物について、その組成を上述のように、Naリッチ側とした上で、その化合物に対して、Sr、TiおよびBi、Feの各酸化物を含有させた特定の組成とすることにより、共振周波数の温度変化率、反共振周波数の温度変化率、圧電g33定数の温度変化率などの圧電特性の安定したものにできる。 According to the present invention, the piezoelectric ceramic composition mainly composed of potassium niobate / sodium / lithium is made Na-rich as described above, and Sr, Ti and Stabilized piezoelectric characteristics such as temperature change rate of resonance frequency, temperature change rate of anti-resonance frequency, temperature change rate of piezoelectric g 33 constant, etc. by using a specific composition containing each oxide of Bi and Fe Can be.

即ち、(NaKLi)NbOのNaがリッチな組成系は、結晶構造が斜方晶で、−40〜150℃の温度範囲に第二次相転移を有し、キュリー温度は約200〜400℃である。 That is, the Na-rich composition system of (NaKLi) NbO 3 has an orthorhombic crystal structure, a secondary phase transition in the temperature range of −40 to 150 ° C., and a Curie temperature of about 200 to 400 ° C. It is.

の組成系に対して、チタン酸ストロンチウムを最適量導入するとともに、さらに、菱面体晶からなるBiFeOを最適量導入(キュリー温度約870℃)することで、(Na
KLi)NbOに対して、異なる結晶を複合的に固溶させ、(1−a−b)(K Na
Li 1−x−y )NbO + aSrTiO + bBiFeO
0< a ≦0.1
0< b ≦0.11
0≦ x ≦0.18
0.8≦ y <1
で表される範囲とすることにより、相転移温度を変化させ、結果として弾性定数の温度変化や圧電g33定数の室温付近において不連続に変化する部分を抑制できる。つまり、弾性定数の温度変化や圧電g33定数の室温付近において不連続に変化する部分がなく連続的である場合に第二次相転移が存在しないものとなる。
Against this composition system, is introduced optimum amount of strontium titanate, further, by introducing the optimum amount of BiFeO 3 consisting of rhombohedral (Curie temperature about 870 ° C.), (Na
To KLi) NbO 3 , different crystals are combined and dissolved , and (1-ab) (K x Na
y Li 1-xy ) NbO 3 + aSrTiO 3 + bBiFeO 3
0 <a ≦ 0.1
0 <b ≦ 0.11
0 ≦ x ≦ 0.18
0.8 ≦ y <1
As a result , the phase transition temperature is changed, and as a result, the temperature change of the elastic constant and the portion of the piezoelectric g 33 constant that changes discontinuously near room temperature can be suppressed. That is, there is no second-order phase transition when the elastic constant is continuous and there is no portion of the piezoelectric g 33 constant that changes discontinuously near room temperature.

本願発明の圧電磁器組成物は、ニオブ酸カリウム・ナトリウム・リチウムを(K Na Li 1−x−y )NbO 、チタン酸ストロンチウムをSrTiO 、鉄酸ビスマスをBiFeO としたときに、前記ニオブ酸カリウム・ナトリウム・リチウムと、前記チタン酸ストロンチウムと、前記鉄酸ビスマスとを、(1−a−b)(K Na Li 1−x−y )NbO + aSrTiO + bBiFeO
0< a ≦0.1
0< b ≦0.11
0≦ x ≦0.18
0.8≦ y <1
で表される範囲で含むことを特徴とする。
When the piezoelectric ceramic composition of the present invention is potassium niobate / sodium / lithium (K x Na y Li 1-xy ) NbO 3 , strontium titanate is SrTiO 3 , and bismuth ferrate is BiFeO 3 , said potassium niobate, sodium-lithium, and the strontium titanate, and the bismuth ferrite, (1-a-b) (K x Na y Li 1-x-y) NbO 3 + aSrTiO 3 + bBiFeO 3
0 <a ≦ 0.1
0 <b ≦ 0.11
0 ≦ x ≦ 0.18
0.8 ≦ y <1
It is characterized by including in the range represented by.

上記組成式で表された化合物は、それに含まれるK、Na、Li、Nb、Ti、SrおよびFeの各酸化物を用いて上記組成になるように調整することにより、焼成後には不純物の殆どみられないほぼ単一相からなる圧電磁器を形成できる。
The compound represented by the above composition formula is adjusted to have the above composition using the oxides of K, Na, Li, Nb, Ti, Sr and Fe contained therein, so that most of the impurities after firing A piezoelectric ceramic composed of a substantially single phase that cannot be seen can be formed.

即ち、本発明の圧電磁器組成物は、ニオブ酸カリウム・ナトリウム・リチウム(K NaLi1−x−y)NbOにおいて、Naリッチ側の特定の組成に対して、SrTiOとBiFeOとが複合的に化合するようにペロブスカイト型結晶構造を形成することで、電気機械結合係数が高く、特に圧電g33定数が大きく、かつ、−40〜150℃の温度範囲において、圧電定数の不連続な変化を示す第二相転移を抑制でき、圧電g33定数の温度安定性に優れ、且つ耐熱性に優れた圧電磁器を得ることができる。 That is, the piezoelectric ceramic composition of the present invention is composed of SrTiO 3 and BiFeO 3 with respect to a specific composition on the Na-rich side in potassium niobate / sodium / lithium (K x Na y Li 1-xy ) NbO 3 . By forming a perovskite-type crystal structure so as to combine with each other, the electromechanical coupling coefficient is high, the piezoelectric g 33 constant is particularly large, and the piezoelectric constant is not constant in the temperature range of −40 to 150 ° C. a second phase transition showing a continuous change can be suppressed, excellent temperature stability of the piezoelectric g 33 constant, and it is possible to obtain an excellent piezoelectric ceramic heat resistance.

そして本発明の圧電磁器組成物は、特に
0.01 a ≦0.08
0.01 b ≦0.09
x ≦0.075
0.80.98
ある組成物を主成分とすることが望ましい。
And the piezoelectric ceramic composition of the present invention is, in particular ,
0.01 a ≤ 0.08
0.01 b ≦ 0.09
0 x ≦ 0. 075
0.8 y 0.98
It is not to desirable as the main component composition is.

上記の特定の組成範囲においては、電気機械結合係数k33が30%以上であり、かつ圧電g33定数が20×10−3V/N以上であり、さらに、共振周波数の温度変化率、反共振周波数の温度変化率または圧電g33定数のうち少なくとも一方について、−40〜150℃の温度範囲において第二次相転移といわれる不連続部が存在せず圧電特性に優れた圧電磁器を形成できる。 In the above specific composition range, the electromechanical coupling coefficient k 33 is 30% or more, the piezoelectric g 33 constant is 20 × 10 −3 V / N or more, the temperature change rate of resonance frequency, With respect to at least one of the temperature change rate of the resonance frequency and the piezoelectric g 33 constant, a piezoelectric ceramic having excellent piezoelectric characteristics can be formed without a discontinuous portion called a secondary phase transition in a temperature range of −40 to 150 ° C. .

本願発明では、ニオブ酸カリウム・ナトリウム・リチウム(K NaLi1−x−y)NbOに添加するABO型ペロブスカイト構造化合物はSrTiOであることが重要である。例えば、BaTiOやCaTiOなどのABO型ペロブスカイト構造の化合物では、例え、BiFeOを添加しても本発明のように共振周波数の温度変化率、反共振周波数の温度変化率または圧電g33定数のうち少なくとも一方について、−40〜150℃の温度範囲において第二次相転移といわれる不連続部を有しない圧電磁器は形成できない。これは、BaTiOやCaTiOとの違いは明確ではないがSrTiOの特有のもので、強誘電体と常誘電体の相転移温度が約−173℃であり、通常使用される−40℃〜150℃において構造相転移が存在しないことに起因していると推定している。 In the present invention, it is important that the ABO 3 type perovskite structure compound added to potassium niobate / sodium / lithium (K x Na y Li 1-xy ) NbO 3 is SrTiO 3 . For example, in the case of an ABO 3 type perovskite structure compound such as BaTiO 3 or CaTiO 3 , even if BiFeO 3 is added, the temperature change rate of the resonance frequency, the temperature change rate of the antiresonance frequency, or the piezoelectric g 33 as in the present invention. For at least one of the constants, a piezoelectric ceramic that does not have a discontinuous portion called a second-order phase transition in a temperature range of −40 to 150 ° C. cannot be formed. Although this is not clearly different from BaTiO 3 or CaTiO 3 , it is peculiar to SrTiO 3 , and the phase transition temperature between the ferroelectric and the paraelectric is about −173 ° C., which is normally used −40 ° C. It is presumed to be due to the absence of a structural phase transition at ˜150 ° C.

また、(K NaLi1−x−y)NbOにSrTiOとBiFeOとを複合的に固溶するように組成を調整したものは、磁器の緻密化を図ることができるという利点があり、総じて温度安定性に優れた、実使用が可能なものとなる。 Further, (K x Na y Li 1 -x-y) NbO 3 to SrTiO 3 and BiFeO 3 with a material obtained by adjusting the composition so as to compositely solid solution, advantage can be densified porcelain In general, it is excellent in temperature stability and can be actually used.

一方、ニオブ酸カリウム・ナトリウム・リチウム(K NaLi1−x−y)NbOにSrTiOを単独で導入した場合においては、200℃以上の高いキュリー温度は有しながら、圧電g33定数を大きくする効果があるものの、緻密な焼結体を得ることが難しく、ホットプレス等の装置を用いた焼結体の作製工程となるため、安価に生産されている従来から使用されている例えばPZT系圧電センサ等の部品への置き換えには対応できないという問題がある。 On the other hand, when SrTiO 3 is introduced alone into potassium niobate / sodium / lithium (K x Na y Li 1-xy ) NbO 3 , the piezoelectric g 33 has a high Curie temperature of 200 ° C. or higher. Although it has the effect of increasing the constant, it is difficult to obtain a dense sintered body, and since it is a process for producing a sintered body using an apparatus such as a hot press, it has been used at low cost. For example, there is a problem that it cannot be replaced with a component such as a PZT piezoelectric sensor.

さらには、ニオブ酸カリウム・ナトリウム・リチウム(K NaLi1−x−y)NbOにBiFeOを単独で導入した場合は、微少量の導入で圧電g33定数を大きくする効果があるものの、−20〜150℃の範囲において、第二次相転移といわれる不連続部が存在するために使用温度に制限が与えられるという問題がある。 Furthermore, when BiFeO 3 is introduced alone into potassium niobate / sodium / lithium (K x Na y Li 1-xy ) NbO 3 , there is an effect of increasing the piezoelectric g 33 constant by introducing a small amount. However, in the range of −20 to 150 ° C., there is a problem that the use temperature is limited because there is a discontinuous portion called second order phase transition.

このようにSrTiOおよびBiFeOを1−a−b(KNaLi1−x−y)NbO + a(Bi0.5Na0.5)TiO + bBiFeO,0< a ≦0.1,0< b ≦0.1,0≦ x ≦0.18,0.8 y <1の関係にな
るように組成を調整することにより、特に本願発明では広い温度範囲で使用できる圧電特性に優れた圧電磁器を得ることができる。
In this way, SrTiO 3 and BiFeO 3 are converted to 1-ab (K x Na y Li 1-xy ) NbO 3 + a (Bi 0.5 Na 0.5 ) TiO 3 + bBiFeO 3 , 0 <a ≦ 0. By adjusting the composition so that the relationship of 1, 0 <b ≦ 0.1 1 , 0 ≦ x ≦ 0.18, 0.8 y < 1 is satisfied, the piezoelectric material that can be used in a wide temperature range particularly in the present invention. A piezoelectric ceramic having excellent characteristics can be obtained.

上記組成式で表された圧電磁器において0<a≦0.10の範囲については、aが0.10を超える場合には、電気機械結合係数K33が30%より小さくなり、圧電g33定数が20×10−3V/N未満になり、圧電センサや圧電セラミックフィルタ、圧電セラミック発振子などの材料としての利用が困難となる。また、0の場合には、−40〜150℃の温度範囲に第二次相転移といわれる不連続部が存在することから、圧電定数の温度特性に不連続な挙動が存在するようになるため、広範囲での温度領域での使用が出来ない。 In the range of 0 <a ≦ 0.10 in the piezoelectric ceramic represented by the above composition formula, when a exceeds 0.10, the electromechanical coupling coefficient K 33 becomes smaller than 30%, and the piezoelectric g 33 constant Becomes less than 20 × 10 −3 V / N, making it difficult to use as a material for piezoelectric sensors, piezoelectric ceramic filters, piezoelectric ceramic oscillators, and the like. In the case of 0, there is a discontinuous portion called a second-order phase transition in the temperature range of −40 to 150 ° C., so that there is a discontinuous behavior in the temperature characteristics of the piezoelectric constant. Cannot be used in a wide temperature range.

0<b≦0.10の範囲については、bが0.1を超える場合には、電気機械結合係数K33が30%より小さくなり、圧電セラミック発振子などの材料としての利用が困難となるためである。また、0の場合には、−40〜150℃の温度範囲に第二次相転移といわれる不連続部が存在することから、圧電定数の温度特性に不連続な挙動が存在するようになるため、広範囲での温度領域での使用が出来ない。 0 <for the range of b ≦ 0.10, if b is more than 0.1, the electromechanical coupling coefficient K 33 is smaller than 30%, it becomes difficult to use as a material such as a piezoelectric ceramic oscillator Because. In the case of 0, there is a discontinuous portion called a second-order phase transition in the temperature range of −40 to 150 ° C., so that there is a discontinuous behavior in the temperature characteristics of the piezoelectric constant. Cannot be used in a wide temperature range.

x≦0.18の範囲については、xが0.18を超える場合、電気機械結合係数K33が30%より小さくなり、圧電g33定数が20×10−3V/N未満になり、圧電センサや圧電セラミックフィルタ、圧電セラミック発振子などの材料としての利用が困難となる
In the range of 0 x ≦ 0.18, when x exceeds 0.18, the electromechanical coupling coefficient K 33 is less than 30%, and the piezoelectric g 33 constant is less than 20 × 10 −3 V / N. Further, it becomes difficult to use as a material such as a piezoelectric sensor, a piezoelectric ceramic filter, and a piezoelectric ceramic oscillator .

0.8<y<1の範囲については、yが0.8未満の場合、−40〜150℃の温度
範囲に第二次相転移が存在するようになる、そのため圧電定数の温度特性に不連続な挙動が存在するようになるため、広範囲での温度領域での使用が出来ない。また、y=1の場合、圧電性が著しく低下し、電気機械結合係数K33が30%より小さくなり、圧電g33定数が20×10−3V/N未満になり、圧電センサや圧電セラミックフィルタ、圧電セラミック発振子などの材料としての利用が困難となる。
For the range of 0.8 <y <1, when y is less than 0.8, the second-order phase transition exists in the temperature range of −40 to 150 ° C. Since discontinuous behavior exists, it cannot be used in a wide temperature range. Further, when y = 1, the piezoelectricity is remarkably lowered, the electromechanical coupling coefficient K 33 is smaller than 30%, the piezoelectric g 33 constant is less than 20 × 10 −3 V / N, and the piezoelectric sensor or the piezoelectric ceramic. Use as a material for a filter, a piezoelectric ceramic oscillator or the like becomes difficult.

以上の理由から本発明では特に、キュリー温度をリフローが可能な温度である280℃よりも高く、また電気機械結合係数k33を30%以上、かつ圧電g33定数を20×10−3V/N以上にして、かつ、第二次相転移を無くすという点で、特に、1−a−b(KNaLi1−x−y)NbO + aSrTiO + bBiFeO 0.01 a ≦0.08、 0.01 b ≦0.09、 0 x ≦0.075、0.80.98、で表される範囲の組成物を主成分とすることが望ましい。
For the above reasons, in the present invention, in particular, the Curie temperature is higher than 280 ° C. which is a reflowable temperature, the electromechanical coupling coefficient k 33 is 30% or more, and the piezoelectric g 33 constant is 20 × 10 −3 V / in the above N, and in that eliminate the second order phase transition, in particular, 1-a-b (K x Na y Li 1-x-y) NbO 3 + aSrTiO 3 + bBiFeO 3 0.01 ≦ a ≦ 0.08, 0.01 b ≦ 0.09, 0 x ≦ 0. It is desirable that the main component is a composition in a range represented by 075 , 0.8 y 0.98.

そして、上記した圧電磁器組成物を焼成して得られる本発明の圧電磁器は、電気機械結合係数k33が30%以上で、さらには圧電g33定数が20×10−3V/N以上で、また、−40〜150℃の範囲に第二次相転移を含まず、キュリー点が200℃を超えるといった良好な特性を示す。このような圧電磁器組成物を用いて、圧電セラミックフィルタ、圧電セラミック発振子などの圧電セラミック素子を有利に作製することができる。 The piezoelectric ceramic of the present invention obtained by firing the piezoelectric ceramic composition described above, in the electromechanical coupling coefficient k 33 of 30% or more, still more piezoelectric g 33 constant is 20 × 10 -3 V / N or more Moreover, the secondary phase transition is not included in the range of −40 to 150 ° C., and good characteristics such that the Curie point exceeds 200 ° C. are exhibited. Using such a piezoelectric ceramic composition, piezoelectric ceramic elements such as piezoelectric ceramic filters and piezoelectric ceramic oscillators can be advantageously produced.

出発原料として、KCO、NaCO、LiCO、SrCO、Nb、TiO、Fe の各粉末を用いて、圧電磁器が、組成式1−a−b(K NaLi1−x−y)NbO + aSrTiO + bBiFeO おいて、a、b、xおよびyが表1に示すような組成となるように秤量した。
As the starting material, each powder of K 2 CO 3 , Na 2 CO 3 , Li 2 CO 3 , SrCO 3 , Nb 2 O 5 , TiO 2 , and Fe 2 O 3 was used, and the piezoelectric ceramic was represented by the composition formula 1- a -b (K x Na y Li 1 -x-y) Oite to NbO 3 + aSrTiO 3 + bBiFeO 3 , a, b, x and y are weighed so as to have the composition shown in Table 1.

次に、この混合物をIPA(イソプロピルアルコール)とZrOボールとを用いて、ボールミルで20時間湿式混合した。次いで、この混合物を乾燥した後、大気中で900〜1100℃で3時間仮焼し、該仮焼物を再び上記ボールミルで細かく粉砕した。その後、この粉砕物にポリビニルアルコール(PVA)等のバインダーを混合して造粒した。 Next, this mixture was wet mixed in a ball mill for 20 hours using IPA (isopropyl alcohol) and ZrO 2 balls. Next, after drying this mixture, it was calcined at 900 to 1100 ° C. for 3 hours in the air, and the calcined product was again finely pulverized by the ball mill. Thereafter, the pulverized material was mixed with a binder such as polyvinyl alcohol (PVA) and granulated.

得られた粉末を200MPaの圧力で、φ3×厚さ12mmの円柱状に成形した。この成形体を大気中において1000〜1250℃で2時間焼成した。得られた圧電磁器のXRDパターンを測定し同定した結果、いずれもペロブスカイト型結晶を主体としていることがわかった(図1:試料1)。つまり、本発明の圧電磁器は、3成分系から構成される複合ペロブスカイト型結晶構造を有するが、例えば試料1のX線回折図より、単一のペロブスカイト結晶構造を呈している事が確認された。     The obtained powder was molded into a cylindrical shape of φ3 × thickness 12 mm at a pressure of 200 MPa. The molded body was fired at 1000 to 1250 ° C. for 2 hours in the air. As a result of measuring and identifying the XRD pattern of the obtained piezoelectric ceramic, it was found that all were composed mainly of perovskite crystals (FIG. 1: Sample 1). That is, the piezoelectric ceramic of the present invention has a composite perovskite crystal structure composed of a three-component system. For example, from the X-ray diffraction diagram of Sample 1, it was confirmed that the piezoelectric ceramic had a single perovskite crystal structure. .

さらに、この磁器のφ3mmの両面に銀電極を形成した後、80℃のシリコンオイル中で4〜7kV/mmの直流電界を10〜30分間印加して分極処理を行った。そして、日本電子材料工業会が定めるEMASに準じて、これらの圧電素子の静電容量、共振・反共振周波数及び共振抵抗について、インピーダンスアナライザを用いて測定した。測定値より、縦振動モードの比誘電率、電気機械結合係数K33、圧電g33定数を求めた。さらに、共振周波数の温度依存性と圧電g33定数の温度依存性を調査し第二次相転移について調査した。共振周波数及び圧電g33定数の温度変化率は、25℃の値を基準に−40℃から+150℃までの各温度での変化を変化率として表した。 Further, after forming silver electrodes on both sides of φ3 mm of this porcelain, a polarization treatment was performed by applying a DC electric field of 4 to 7 kV / mm for 10 to 30 minutes in silicon oil at 80 ° C. Then, according to EMAS established by the Japan Electronic Materials Industry Association, the capacitance, resonance / antiresonance frequency and resonance resistance of these piezoelectric elements were measured using an impedance analyzer. From the measured values, the relative permittivity of the longitudinal vibration mode, the electromechanical coupling coefficient K 33 , and the piezoelectric g 33 constant were obtained. Furthermore, the temperature dependence of the resonance frequency and the temperature dependence of the piezoelectric g 33 constant were investigated to investigate the second-order phase transition. The temperature change rate of the resonance frequency and the piezoelectric g 33 constant was expressed as a change rate at each temperature from −40 ° C. to + 150 ° C. based on the value of 25 ° C.

次いで、各試料について、比誘電率ε33 T/ε、電気機械結合係数K33、圧電g
33定数及び圧電g33定数の温度変化、および共振周波数及び反共振周波数の変化を測定して、前記特性の不連続部を測定して第二次相転移の有無について調査した。作製した磁器の組成は得られた圧電磁器を硼酸と炭酸ナトリウムと混合し溶融させたものを塩酸に溶解させて、各元素を1000ppm含む標準溶液を希釈したものを標準試料としてICP発光分光分析にかけて定量化した。その結果を表1、2に示した。

Figure 0004684089
Next, for each sample, the relative dielectric constant ε 33 T / ε 0 , electromechanical coupling coefficient K 33 , piezoelectric g
33 constant and piezoelectric g The temperature change of the 33 constant and the change of the resonance frequency and the antiresonance frequency were measured, and the discontinuity part of the characteristic was measured to investigate the presence or absence of the secondary phase transition. The composition of the produced porcelain was subjected to ICP emission spectroscopic analysis using a solution obtained by mixing and melting the obtained piezoelectric ceramic with boric acid and sodium carbonate in hydrochloric acid and diluting a standard solution containing 1000 ppm of each element as a standard sample. Quantified. The results are shown in Tables 1 and 2.
Figure 0004684089

Figure 0004684089
Figure 0004684089

表1、2において、試料番号に*を付したものは、この発明の範囲外のものである。表1において、0< a ≦0.1,0< b ≦0.1,0 x ≦0.18,0.8 y <1の各条件をすべて満たす試料は、すべて、−40〜150℃の温度範囲で
第二次相転移に相当する不連続部が抑制された状態となり、良好な特性を示している。
In Tables 1 and 2, the sample numbers marked with * are outside the scope of the present invention. In Table 1, 0 <a ≦ 0.1,0 < b ≦ 0.1 1, 0 ≦ x ≦ 0.18,0.8 ≦ y < specimen meet all the conditions of 1 are all - 40 a state in which the discontinuous portion is suppressed corresponding to the second order phase transition at a temperature range of to 150 DEG ° C., shows good good properties.

これに対して、試料No.19に示すように、0< b ≦0.1,0 x ≦0.18,0.8 y <1の条件は満足するものの、a=0であるので、0< a ≦
0.1の条件を満足しない試料では、電気機械結合係数K33が30%以上であり、圧電g33定数が20×10−3V/N以上になるものの、図6及び図7に示す如く、−40〜150℃の温度範囲で大きな第二次相転移に相当する不連続部を含むことがわかる。
In contrast, sample no. As shown in FIG. 19, although 0 <b ≦ 0.1 1 , 0 x ≦ 0.18, 0.8 y <1 are satisfied, since a = 0 , 0 <a ≦
In a sample that does not satisfy the condition of 0.1, the electromechanical coupling coefficient K 33 is 30% or more and the piezoelectric g 33 constant is 20 × 10 −3 V / N or more, but as shown in FIG. 6 and FIG. It can be seen that a discontinuous portion corresponding to a large second-order phase transition is included in a temperature range of −40 to 150 ° C.

そして、試料19をベースとして、a=0.1あるいはa=0.4であり、各条件を全て満足する、試料1、試料においては、電気機械結合係数K33が30%以上であり、圧電g33定数が20×10−3V/N以上であり、図2図3図4及び図5に示す如く、−40〜150℃の温度範囲で第二次相転移に相当する不連続部を含まず、目標を達成していることがわかる。 Then, the sample 19 as a base, a a = 0.1 or a = 0.4, which satisfies all of the conditions in the specimen 1, the sample 3, the electromechanical coupling coefficient K 33 is located at least 30% , The piezoelectric g 33 constant is 20 × 10 −3 V / N or more, and corresponds to the secondary phase transition in the temperature range of −40 to 150 ° C. as shown in FIGS. 2 , 3 , 4 and 5. It can be seen that the target has been achieved without discontinuities.

図8は試料1の比誘電率の温度変化率の測定結果を示す図である。このように、例えば試料1において、−40〜150℃の温度範囲において第二次相転移に相当する不連続部が確認されないことが図1及び図2で確認されたが、それ以上のキュリー温度までの挙動において、比誘電率の温度依存性を調査した結果、図8に示す如く、第二次相転移に伴う比誘電率の不連続な挙動は確認されなかった。よって、例えば試料1の場合、−40からキュリー温度(300℃)までの範囲において第二次相転移を含まないことが確認された。例えば試料1は、高いキュリー温度を有しておりSMDリフロー実装が可能であり、鉛を含有しない圧電素子として、従来の鉛を含有した圧電素子に置き換わることが可能にすることができる。   FIG. 8 is a diagram showing the measurement result of the temperature change rate of the relative permittivity of the sample 1. Thus, for example, in sample 1, it was confirmed in FIGS. 1 and 2 that no discontinuous portion corresponding to the second-order phase transition was confirmed in the temperature range of −40 to 150 ° C., but the Curie temperature higher than that was confirmed. As a result of investigating the temperature dependence of the relative permittivity in the behavior up to, as shown in FIG. 8, the discontinuous behavior of the relative permittivity accompanying the second-order phase transition was not confirmed. Therefore, for example, in the case of sample 1, it was confirmed that the secondary phase transition was not included in the range from −40 to the Curie temperature (300 ° C.). For example, the sample 1 has a high Curie temperature, can be subjected to SMD reflow mounting, and can be replaced with a conventional lead-containing piezoelectric element as a piezoelectric element not containing lead.

試料1のX線回折図である。2 is an X-ray diffraction diagram of Sample 1. FIG. 試料1の圧電g33定数の温度変化率を表したグラフである。3 is a graph showing a temperature change rate of a piezoelectric g 33 constant of sample 1. 試料1の共振・反共振周波数の温度変化率を表したグラフである。3 is a graph showing a temperature change rate of a resonance / anti-resonance frequency of a sample 1. 試料3の圧電g33定数の温度変化率を表したグラフである。6 is a graph showing a temperature change rate of a piezoelectric g 33 constant of sample 3. 試料3の共振・反共振周波数の温度変化率を表したグラフである。4 is a graph showing a temperature change rate of a resonance / anti-resonance frequency of a sample 3. 試料19の圧電g33定数の温度変化率を表したグラフである。4 is a graph showing a temperature change rate of a piezoelectric g 33 constant of a sample 19. 試料19の共振・反共振周波数の温度変化率を表したグラフである。3 is a graph showing a temperature change rate of a resonance / anti-resonance frequency of a sample 19. 試料1の比誘電率の温度変化率の測定結果を示すグラフである。4 is a graph showing a measurement result of a temperature change rate of a relative dielectric constant of a sample 1;

Claims (3)

ニオブ酸カリウム・ナトリウム・リチウムを(K Na Li 1−x−y )NbO 、チタン酸ストロンチウムをSrTiO 、鉄酸ビスマスをBiFeO としたときに、前記ニオブ酸カリウム・ナトリウム・リチウムと、前記チタン酸ストロンチウムと、前記鉄酸ビスマスとを、(1−a−b)(K Na Li 1−x−y )NbO + aSrTiO + bBiFeO
0< a ≦0.1
0< b ≦0.11
0≦ x ≦0.18
0.8≦ y <1
で表される範囲で含むことを特徴とする圧電磁器組成物。
Potassium sodium lithium niobate (K x Na y Li 1- x-y) NbO 3, strontium titanate and SrTiO 3, when the bismuth ferrate and BiFeO 3, and the potassium niobate sodium-lithium , said strontium titanate, and the bismuth ferrite, (1-a-b) (K x Na y Li 1-x-y) NbO 3 + aSrTiO 3 + bBiFeO 3
0 <a ≦ 0.1
0 <b ≦ 0.11
0 ≦ x ≦ 0.18
0.8 ≦ y <1
The piezoelectric ceramic composition which comprises in the range expressed in.
.01 a ≦0.08
0.01 b ≦0.09
x ≦0.075
0.80.98
である請求項1記載の圧電磁器組成物。
0 . 01 a ≤ 0.08
0.01 b ≦ 0.09
0 x ≦ 0. 075
0.8 y 0.98
Der Ru claim 1 piezoelectric ceramic composition.
請求項1または2記載の圧電磁器組成物を焼成して得られ、電気機械結合係数k33が30%以上であり、かつ圧電g33定数が20×10−3V/N以上であることを特徴とする圧電磁器。 Obtained by firing the claims 1 or 2 piezoelectric ceramic composition according electromechanical coupling factor k 33 is 30% or more, and the piezoelectric g 33 constant is 20 × 10 -3 V / N or more der Turkey A piezoelectric ceramic characterized by
JP2005342871A 2005-11-28 2005-11-28 Piezoelectric ceramic composition and piezoelectric ceramic Active JP4684089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005342871A JP4684089B2 (en) 2005-11-28 2005-11-28 Piezoelectric ceramic composition and piezoelectric ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005342871A JP4684089B2 (en) 2005-11-28 2005-11-28 Piezoelectric ceramic composition and piezoelectric ceramic

Publications (2)

Publication Number Publication Date
JP2007145650A JP2007145650A (en) 2007-06-14
JP4684089B2 true JP4684089B2 (en) 2011-05-18

Family

ID=38207502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005342871A Active JP4684089B2 (en) 2005-11-28 2005-11-28 Piezoelectric ceramic composition and piezoelectric ceramic

Country Status (1)

Country Link
JP (1) JP4684089B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4881315B2 (en) * 2005-10-27 2012-02-22 京セラ株式会社 Piezoelectric ceramic composition and piezoelectric ceramic

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056549A (en) * 2006-09-04 2008-03-13 National Institute Of Advanced Industrial & Technology Unleaded piezoelectric porcelain composition
JP2008156172A (en) * 2006-12-25 2008-07-10 National Institute Of Advanced Industrial & Technology Lead-free piezoelectric porcelain composition
US8235507B2 (en) * 2007-12-06 2012-08-07 Konica Minolta Holdings, Inc. Liquid droplet ejection head
WO2009072369A1 (en) 2007-12-06 2009-06-11 Konica Minolta Holdings, Inc. Piezoelectric porcelain composition
JP2015038953A (en) * 2013-06-28 2015-02-26 セイコーエプソン株式会社 Piezoelectric material, piezoelectric element, liquid injection head, liquid injection device, ultrasonic sensor, piezoelectric motor and power generator
JP5958718B2 (en) * 2013-06-28 2016-08-02 セイコーエプソン株式会社 Method for manufacturing piezoelectric material
JP6388804B2 (en) * 2014-07-18 2018-09-12 国立研究開発法人産業技術総合研究所 Broadband high sensitivity AE sensor
GB2564634B (en) * 2017-05-12 2021-08-25 Xaar Technology Ltd A piezoelectric solid solution ceramic material
CN109206137A (en) * 2018-11-19 2019-01-15 福州大学 A kind of preparation method of potassium-sodium niobate-zinc titanate strontium crystalline ceramics
JP7275251B2 (en) 2019-03-13 2023-05-17 京セラ株式会社 Piezoelectric ceramic composition and piezoelectric actuator
JP7240481B2 (en) 2019-03-13 2023-03-15 京セラ株式会社 piezoelectric ceramic composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538799A (en) * 1976-07-10 1978-01-26 Kouichirou Sakata Magnetic capacitor material
JP2001240471A (en) * 2000-02-29 2001-09-04 Kyocera Corp Piezoelectric ceramic composition and piezoelectric resonator
JP2001316182A (en) * 2000-04-28 2001-11-13 Kyocera Corp Piezoelectric ceramic and piezoelectric resonator
JP2002193664A (en) * 2000-12-26 2002-07-10 Kyocera Corp Piezoelectric ceramic composition and piezoelectric resonator
JP2002255641A (en) * 2001-02-27 2002-09-11 Kyocera Corp Piezoelectric ceramic and piezoelectric element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4881315B2 (en) * 2005-10-27 2012-02-22 京セラ株式会社 Piezoelectric ceramic composition and piezoelectric ceramic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538799A (en) * 1976-07-10 1978-01-26 Kouichirou Sakata Magnetic capacitor material
JP2001240471A (en) * 2000-02-29 2001-09-04 Kyocera Corp Piezoelectric ceramic composition and piezoelectric resonator
JP2001316182A (en) * 2000-04-28 2001-11-13 Kyocera Corp Piezoelectric ceramic and piezoelectric resonator
JP2002193664A (en) * 2000-12-26 2002-07-10 Kyocera Corp Piezoelectric ceramic composition and piezoelectric resonator
JP2002255641A (en) * 2001-02-27 2002-09-11 Kyocera Corp Piezoelectric ceramic and piezoelectric element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4881315B2 (en) * 2005-10-27 2012-02-22 京セラ株式会社 Piezoelectric ceramic composition and piezoelectric ceramic

Also Published As

Publication number Publication date
JP2007145650A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4684089B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic
JP4881315B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic
JP4510966B2 (en) Piezoelectric ceramics
Guo et al. (Na0. 5K0. 5) NbO3–LiTaO3 lead-free piezoelectric ceramics
Guo et al. Structure and electrical properties of lead-free (Na0. 5K0. 5) NbO3-BaTiO3 ceramics
Lin et al. Piezoelectric and ferroelectric properties of KxNa1− xNbO3 lead-free ceramics with MnO2 and CuO doping
Lee et al. Crystal Structure, dielectric and ferroelectric properties of (Bi0. 5Na0. 5) TiO3–(Ba, Sr) TiO3 lead-free piezoelectric ceramics
KR100282598B1 (en) Piezoelectric Ceramic Composition
JP2009227535A (en) Piezoelectric ceramic composition
Chang et al. The effects of sintering temperature on the properties of (Na0. 5K0. 5) NbO3–CaTiO3 based lead-free ceramics
JP2001240471A (en) Piezoelectric ceramic composition and piezoelectric resonator
Shi et al. Full set of material constants of (Na0. 5K0. 5) NbO3–BaZrO3–(Bi0. 5Li0. 5) TiO3 lead-free piezoelectric ceramics at the morphotropic phase boundary
JP2001316182A (en) Piezoelectric ceramic and piezoelectric resonator
JP2008156172A (en) Lead-free piezoelectric porcelain composition
JP4432969B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP2007261864A (en) Piezoelectric ceramic composition and piezoelectric ceramic
KR101310450B1 (en) Lead-free piezoelectric ceramic composition with high mechanical quality
JP4726672B2 (en) Piezoelectric ceramic
JP4493226B2 (en) Piezoelectric ceramic and piezoelectric element
JP2007261863A5 (en)
JP4044951B2 (en) Piezoelectric ceramic materials
KR101306472B1 (en) Lead-free piezoelectric ceramic composition
JP2009012997A (en) Unleaded piezoelectric porcelain composition
JP2008056549A (en) Unleaded piezoelectric porcelain composition
JP5319208B2 (en) Piezoelectric ceramic and piezoelectric element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4684089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150