WO2005021461A1 - Perovskite solid solution composition and piezoelectric ceramics produced therefrom - Google Patents

Perovskite solid solution composition and piezoelectric ceramics produced therefrom Download PDF

Info

Publication number
WO2005021461A1
WO2005021461A1 PCT/JP2004/012354 JP2004012354W WO2005021461A1 WO 2005021461 A1 WO2005021461 A1 WO 2005021461A1 JP 2004012354 W JP2004012354 W JP 2004012354W WO 2005021461 A1 WO2005021461 A1 WO 2005021461A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
document
solid solution
oxide
international
Prior art date
Application number
PCT/JP2004/012354
Other languages
French (fr)
Japanese (ja)
Inventor
Ruiping Wang
Yoshiro Shimojo
Tadashi Sekiya
Kunio Matsuzaki
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2005513469A priority Critical patent/JP4491537B2/en
Publication of WO2005021461A1 publication Critical patent/WO2005021461A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • the present invention relates to a perovskite toy conjugate, sodium niobate (NaNbO) and potassium niobate (KNbO), which are composed mainly of different perovskite compounds such as BaTiO, SrTiO, and CaTiO.
  • the present invention relates to a perovskite solid solution composition having a composition in which an oxide is added in an amount of about several mol%, and a piezoelectric ceramic obtained by sintering the composition.
  • Piezoelectric ceramics undergo elongation deformation when a voltage is applied, and as an actuator such as an ultrasonic vibrator, an ultrasonic motor, a precision positioning element, or a piezoelectric transformer, a voltage is generated when a piezoelectric ceramic is deformed. It has a wide range of applications as sensors, sensors for piezoelectric gyros for car navigation systems, sonars, ultrasonic diagnostic devices, etc. In recent years, there has been a growing trend to make various machine systems intelligent, which has increased the importance of factories in particular. At present, the mainstream of piezoelectric ceramics widely used is mainly composed of lead zirconate titanate (PZT).
  • PZT lead zirconate titanate
  • the piezoelectricity of this PZT ceramic is brought about by the combination of antiferroelectric lead zirconate (PbZrO) with a rhombohedral structure and ferroelectric lead titanate (PbTiO) with a tetragonal structure.
  • PbZrO antiferroelectric lead zirconate
  • PbTiO ferroelectric lead titanate
  • MPB tetragonal phase boundary
  • many PZT-based piezoelectric ceramics are used with a composition near the MPB. The reason for this is that the instability is introduced into the perovskite structure, and the electrical sensitivity is increased, resulting in high electrical displacement.
  • Patent Document 1 a NaNbO-KNbO-PbTiO-based piezoelectric ceramic material as a low-lead-based piezoelectric ceramic
  • this piezoelectric ceramic material has excellent characteristics such as extremely high electric displacement, despite its lead content being significantly reduced as compared with conventional ones, it still has a composition containing lead. Met.
  • an actuator material can be obtained that is completely lead-free rather than low-lead and exhibits properties equal to or better than PZT ceramics, it is expected to improve the environmental pollution problem and have an immeasurable economic ripple effect. it can.
  • Patent Document 1 Japanese Patent Application No. 2003-040125
  • the present invention is a further development of the proposal of the above-mentioned Japanese Patent Application No. 2003-040125, which is completely lead-free and has been used in a conventional piezoelectric device mainly made of PZT ceramics. It is an object of the present invention to provide a novel environmentally friendly solid solution composition exhibiting a displacement characteristic significantly higher than that of a material and a piezoelectric ceramic obtained from the composition.
  • M1M20 is a divalent Ml metal ion (excluding lead) and a tetravalent M2 metal ion
  • a trivalent Ml metal ion that can selectively enter the alobskite-type oxide or perovskite-type oxide A site and a trivalent M2 metal ion that can selectively enter the perovskite-type oxide B site Represents a lobskite-type oxide.
  • Perovskite solid solution composition containing l 3 2 3 (l-z) (K Na) NbO _z M3 O
  • M3 represents a trivalent metal ion that can selectively enter the perovskite A or B site.
  • X and z represent numerical values in the range of 0.4 ⁇ x ⁇ 0.6 and 0 ⁇ z ⁇ 0.1, respectively.
  • the piezoelectric ceramic according to the present invention is a new environmentally friendly high-performance piezoelectric ceramic material because it has a significantly improved electrical displacement than conventional materials represented by the PZT system and does not contain lead. It opens the way for expanding applications.
  • the ceramics of the present invention include actuators such as ultrasonic vibrators, ultrasonic motors, precision positioning elements, piezoelectric transformers, acceleration sensors, piezoelectric gyros for car navigation systems, sonars, ultrasonic diagnostic elements, etc. Used in aircraft, automobiles, railway vehicles, ships It is also expected to have new applications as an actuator for vibration control of ships and vibration isolation of civil engineering buildings.
  • the oxide added to NaNbO-KNbO is not particularly limited to PbTiO but its ion size or valence power SNa + , KNb 5+
  • the perovskite solid solution composition according to the present invention contains (i) perovskite-type potassium sodium niobate Na) NbO and perovskite-type oxide M1M20, and has a general formula
  • the main component is (l-z) (K Na) NbO 2 -zM 3 O.
  • M1M20 is a divalent Ml metal ion (except for lead and lead) and a tetravalent M2 metal ion
  • Trivalent Ml metal ions that can selectively enter the perovskite-type oxide or perovskite-type oxide B site, and trivalent M2 metal ion forces that can selectively enter the perovskite-type oxide B site Represents a perovskite oxide.
  • x, y, and z represent numerical values in the range of 0.4 ⁇ x ⁇ 0.6, 0 ⁇ y ⁇ 0.1, and 0 ⁇ 0.1.
  • the y range is 0 ⁇ y ⁇ 0.05.
  • Ml include divalent or trivalent metal ions (excluding lead) that can selectively enter the perovskite A site.
  • Mg, Ca, Sr, Ba, Bi, La , Y, Ce, Pr and the like are exemplified, and among them, Ba, Sr, Ca and the like are preferable.
  • M2 include tetravalent or trivalent metal ions that can selectively enter the perovskite B site.
  • examples include Ti, Zr, Sc, Ga, In, Zn, and Fe. Among them, Ti and Zr are preferable.
  • M3 include trivalent metal ions that can selectively enter the perovskite A or B site, and examples thereof include Bi, La, Y, Ce, Pr, Nd, and Fe. , La and Y are preferred.
  • represents a numerical value in the range of 0 ⁇ 4 ⁇ 0.6.
  • the perovskite oxide M1M20 or the acid of a trivalent metal in the above (i) and (ii), the perovskite oxide M1M20 or the acid of a trivalent metal
  • the use ratio of the compound M30 is ⁇ potassium sodium niobate (K Na) Nb ⁇
  • the perovskite solid solution composition according to the present invention comprises potassium sodium niobate.
  • M1M20 a trivalent simple metal oxide (M30).
  • raw materials various forms such as carbonates, oxalates, nitrates, hydroxides and oxides can be used, and these raw materials are mixed into a predetermined composition to obtain a final composition. It may be prepared as follows.
  • the perovskite solid solution composition of the present invention can be made into a piezoelectric ceramic by densely sintering the perovskite solid solution composition preferably at a relative density of 95% or more.
  • Such sintering means is not limited, but if it can be sintered under normal pressure, it would be better than that. However, since sintering of KNbO-NaNbO-based materials is difficult, it is desirable to adopt a pressure and heat sintering method that can sinter under pressure in order to obtain a high-density sintered body efficiently.
  • Examples of such pressure heating and sintering methods include a spark plasma sintering method (hereinafter, referred to as an SPS method), a hot press method (hereinafter, referred to as an HP method), an anvil method, and a HIP method. (Hot isostatic method) and the like, and the methods preferably used in the present invention are the SPS method and the HP method.
  • the SPS method is a technique in which a DC pulse current is applied to a sample in a pressurized state, and grain boundary diffusion and particle bonding are caused by using the high energy of high-temperature plasma instantaneously generated by spark discharge. Recently, it has attracted attention as a high-speed sintering method for ceramics.
  • the main raw materials of KCO, NaCO and Nb0 and the oxides as additives are blended so as to have a desired perovskite composition, and calcined until a perovskite solid solution single phase is obtained.
  • the calcination conditions vary depending on the type and composition of the raw materials. Normally, the temperature is 850 1000 ° C and the time is 210 hours. The thus obtained ceramic powder is subjected to the SPS method or the HP method.
  • the SPS treatment can be performed using, for example, an apparatus such as an SPS-1030 apparatus manufactured by Sumitomo Coal Mining.
  • an apparatus such as an SPS-1030 apparatus manufactured by Sumitomo Coal Mining.
  • the desired sintered body can be obtained. Is obtained.
  • the sample reaches a predetermined temperature in about 5 minutes, and is sintered by holding that temperature for about 5 minutes.
  • the sintering temperature varies depending on the composition, but is in the range of 1020-1100 ° C.
  • the obtained sintered body has a diameter of 15 mm and a thickness of 34 mm, and the relative density reaches 96% or more.
  • the HP method may be performed using an apparatus such as a PRESS-VAC-2 type apparatus manufactured by Tokyo Vacuum Co., Ltd.
  • the sample is placed in a graphite die and pressed with upper and lower punches.
  • the force S is the same as in the SPS method, and heating is performed by an external heater mounted around the die.
  • an appropriate amount of the calcined ceramic powder is filled in a graphite die, and then the air is evacuated.
  • the external heater is energized and heated while applying pressure from above and below with a graphite punch.
  • the temperature reaches a predetermined temperature (1100 ° C) in about 2 hours.
  • a sintered body with a relative density of 95% or more can be obtained.
  • the perovskite solid solution composition of the present invention was sintered using the above-described SPS device and HP device.
  • the obtained ceramic was cut out into a plate of 5 mm X 5 mm X 0.5 mm size, mirror-polished on both sides, and a gold sputtered film was applied.
  • the polarization was performed at room temperature under the condition of 111, and the relationship between applied voltage and electric displacement was examined using a laser displacement meter.
  • Table 1 shows the composition, manufacturing method, and sintering density of the perovskite ceramics of the present invention.
  • Table 2 shows the phase transition temperature t, relative dielectric constant, dielectric loss, and electromechanical c of the perovskite ceramics of the present invention.
  • BaTiO was added to (Na K) NbO composition.
  • the displacements at 80 kV m are 0.9%, 0.6%, and 0.6%, respectively, which are high values, and high-performance piezoelectric materials are produced even with the NaNbO-KNbO-BaTiO system.
  • BaTiO is used for (Na K) NbO or (Na K) NbO composition.
  • Ceramics obtained by subjecting (Na K) NbO composition with BaZrO or SrZrO to SPS treatment.
  • the maximum strain is in the range of 0.2-0.4%, which is somewhat lower than NaNb ⁇ -KNbO-BaTiO or NaNb ⁇ -KNbO-SrTiO system.
  • trivalent metal oxides La 0 and Bi 0 capable of selectively substituting a viscous A-site with respect to the composition of (Na K) NbO were added, and a ceramic was prepared by HP.
  • the electric displacement of the obtained ceramics was in the range of 0.15 to 0.25%, which was almost comparable to that of the PZT system.

Abstract

A perovskite solid solution which comprises potassium sodium niobate (K1-xNax)NbO3 and one of a perovskite type oxide M1M2O3 and a simple oxide M32O3, wherein M1 represents a metal ion, such as Mg, Ca, Sr, Ba, Bi, La, Y, Ce or Pr, which is capable of selectively entering into a perovskite A site and is exclusive of lead, M2 represents a trivalent or tetravalent metal ion, such as Ti, Zr, Ga, In, Ni, Mn or Fe, which is capable of selectively entering into a perovskite B site, M3 represents a trivalent metal ion, such as Bi, La, Y, Ce, Pr, Nd or Fe, which is capable of selectively entering into a perovskite A or B site, and x represents a number of 0.4 ≤ x ≤ 0.6. The above perovskite solid solution is completely free of lead and thus is friendly to the environment and also a piezoelectric ceramics being composed of the solid solution exhibits displacement characteristics tremendously higher than those of conventional piezoelectric materials used practically which are mainly PZT type ceramics.

Description

明 細 書  Specification
ぺロブスカイト固溶体組成物およびこのものから得られる圧電セラミックス 技術分野  Perovskite solid solution composition and piezoelectric ceramics obtained therefrom
[0001] 本発明は、ぺロブスカイトイ匕合物であるニオブ酸ナトリウム(NaNbO )とニオブ酸カリ ゥム(KNbO )が主体をなし、これに BaTiO、 SrTiO、 CaTiO等の異種ぺロブスカイト 化合物または単純酸化物を数モル %程度添加した組成のぺロブスカイト固溶体組成 物およびこのものを焼結して得られる圧電セラミックスに関するものである。  [0001] The present invention relates to a perovskite toy conjugate, sodium niobate (NaNbO) and potassium niobate (KNbO), which are composed mainly of different perovskite compounds such as BaTiO, SrTiO, and CaTiO. The present invention relates to a perovskite solid solution composition having a composition in which an oxide is added in an amount of about several mol%, and a piezoelectric ceramic obtained by sintering the composition.
^景技術  ^ Scenic technology
[0002] 圧電セラミックスは、電圧をかけると伸び変形を生じるため、超音波振動子、超音波 モーター、精密位置決め素子、圧電トランス等のァクチユエータとして、逆に変形を 与えると電圧を発生するため、加速度センサ、カーナビ用圧電ジャイロ、ソナ一、超 音波診断素子等のセンサとして広範な用途がある。最近、様々な機械'システムを知 能化する傾向が強まり、そのため、特にァクチユエータの重要性が高まっている。現 在、汎用されている圧電セラミックスの主流は、チタン酸ジルコン酸鉛(PZT)を主成 分とするものである。  [0002] Piezoelectric ceramics undergo elongation deformation when a voltage is applied, and as an actuator such as an ultrasonic vibrator, an ultrasonic motor, a precision positioning element, or a piezoelectric transformer, a voltage is generated when a piezoelectric ceramic is deformed. It has a wide range of applications as sensors, sensors for piezoelectric gyros for car navigation systems, sonars, ultrasonic diagnostic devices, etc. In recent years, there has been a growing trend to make various machine systems intelligent, which has increased the importance of factories in particular. At present, the mainstream of piezoelectric ceramics widely used is mainly composed of lead zirconate titanate (PZT).
[0003] この PZTセラミックスの圧電性は、菱面体構造で反強誘電体のジルコン酸鉛 ( PbZrO )と正方晶構造で強誘電体のチタン酸鉛 (PbTiO )を組合わせたことによって もたらされるもので、菱面体相と正方晶相の相境界(Mo卬 hotropic phase boundary, MPB、 PbZrO /PbTiO = 52/48付近)付近の組成で最も高い。そのため、多くの PZT 系圧電セラミックスは MPB付近の組成にして用いられる。この理由は、ぺロブスカイト 構造に不安定性が導入され、電気的な感受性が高まる結果、高い電気変位が得ら れるからである。  [0003] The piezoelectricity of this PZT ceramic is brought about by the combination of antiferroelectric lead zirconate (PbZrO) with a rhombohedral structure and ferroelectric lead titanate (PbTiO) with a tetragonal structure. In the composition near the rhombohedral phase and the tetragonal phase boundary (Mo 卬 hotropic phase boundary, MPB, around PbZrO / PbTiO = 52/48), it is the highest. For this reason, many PZT-based piezoelectric ceramics are used with a composition near the MPB. The reason for this is that the instability is introduced into the perovskite structure, and the electrical sensitivity is increased, resulting in high electrical displacement.
[0004] 近年、圧電セラミックスを航空機、 自動車、鉄道車両、船舶等の振動制御や土木建 築物の免振用のァクチユエータとして利用しょうとする機運が高まっているが、残念な 力 Sら前記した PZTセラミックスで実用できる電気歪( Δ L/L)はせレ、ぜレ、2x10— 3 (0.2%)ま でであり、また縦効果の圧電定数 d は 300— 600pC/N程度であるため、こうした要望 に応えるには不十分であり、さらに高変位で高出力の特性を示す圧電セラミックス材 料の開発が望まれている。 [0004] In recent years, there has been an increasing trend to use piezoelectric ceramics as an actuator for vibration control of aircraft, automobiles, railcars, ships, etc. and for vibration isolation of civil engineering structures. since PZT ceramics practically possible electrostrictive (Δ L / L) Hasere, ze les, and in 2x10- 3 (0.2%) or in, also the piezoelectric constant d of the longitudinal effect is about 300- 600pC / N, Piezoelectric ceramic materials that are insufficient to meet such demands and exhibit high displacement and high output characteristics The development of a fee is desired.
[0005] 一方、最近、地球環境汚染の問題から種々の材料から鉛量を低減しょうという動き があり、圧電セラミックスも例外ではなレ、。事実、 PZTセラミックスを代表とする現在汎 用されている圧電セラミックスのほとんどは多量の鉛を含んでいる。鉛問題に対して は、特にヨーロッパが深刻に受け止めており、近々、鉛含有製品の日本からョ一口ッ パへの輸出ができなくなる可能性がある。このような事情に鑑みて、現在、低鉛系あ るいは非鉛系圧電セラミックス材料の開発研究が各方面で活発に行なわれているが 、今のところ PZTセラミックスほどの圧電特性を示す低鉛系あるいは非鉛系圧電セラミ ックス材料は生まれてレ、なレ、。  [0005] On the other hand, recently, there has been a movement to reduce the amount of lead from various materials due to the problem of global environmental pollution, and piezoelectric ceramics are no exception. In fact, most of the currently widely used piezoelectric ceramics, such as PZT ceramics, contain large amounts of lead. Europe is taking the lead issue seriously, and it may soon be impossible to export lead-containing products from Japan to Japan. In view of such circumstances, research and development of low-lead or lead-free piezoelectric ceramic materials are currently being actively conducted in various fields, but at present, low-lead or low-lead piezoelectric ceramics exhibiting piezoelectric properties comparable to PZT ceramics. -Based or lead-free piezoelectric ceramic materials were born.
[0006] これらの問題点を解消するために、本発明者らは、先に、低鉛系圧電セラミックスと して、 NaNbO -KNbO -PbTiO系圧電セラミックス材料を提案した(特許文献 1)。  [0006] In order to solve these problems, the present inventors have previously proposed a NaNbO-KNbO-PbTiO-based piezoelectric ceramic material as a low-lead-based piezoelectric ceramic (Patent Document 1).
3 3 3  3 3 3
この圧電セラミックス材料は、鉛含量が従来のものに比べ著しく低減されているにも 拘わらず、電気変位量が極めて高いといった優れた特性を発揮するものであるが、 依然として鉛を含む組成からなるものであった。  Although this piezoelectric ceramic material has excellent characteristics such as extremely high electric displacement, despite its lead content being significantly reduced as compared with conventional ones, it still has a composition containing lead. Met.
従って、もし、低鉛ではなぐ完全非鉛系で、 PZTセラミックスと同等またはそれ以上 の特性を示すァクチユエータ材料を得ることができれば、環境汚染問題の改善、更に は計り知れない経済的波及効果が期待できる。  Therefore, if an actuator material can be obtained that is completely lead-free rather than low-lead and exhibits properties equal to or better than PZT ceramics, it is expected to improve the environmental pollution problem and have an immeasurable economic ripple effect. it can.
[0007] 特許文献 1 :特願 2003-040125号  [0007] Patent Document 1: Japanese Patent Application No. 2003-040125
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明は、上記特願 2003-040125号に係る提案を更に発展飛翔させたものであり、 完全非鉛であるとともに、 PZT系セラミックスを主流とする従来の実用化されている圧 電材料よりも飛躍的に高い変位特性を示し、環境に優しい新規な固溶体組成物およ びこのものから得られる圧電セラミックスを提供することを目的とする。 [0008] The present invention is a further development of the proposal of the above-mentioned Japanese Patent Application No. 2003-040125, which is completely lead-free and has been used in a conventional piezoelectric device mainly made of PZT ceramics. It is an object of the present invention to provide a novel environmentally friendly solid solution composition exhibiting a displacement characteristic significantly higher than that of a material and a piezoelectric ceramic obtained from the composition.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者らは、先に出願した NaNbO -KNbO -PbTiO系低鉛圧電セラミックスの完 [0009] The present inventors have completed the NaNbO-KNbO-PbTiO-based low-lead piezoelectric ceramics previously filed.
3 3 3  3 3 3
全非鉛化を目途として、 NaNbO -KNbOに対する各種酸化物の添加効果について  Effect of adding various oxides on NaNbO-KNbO for the purpose of total lead-free
3 3  3 3
綿密に研究を重ねた結果、 PbTiOの代わりに BaTiO、 SrTiO、 CaTiO等の非鉛ぺロ ブスカイトを添加しても、更には、ぺロブスカイト酸化物でなくても単純酸化物を用い ても PbTiOを使用した場合と同程度以上の電気変位量が得られるとの知見を得、本 As a result of thorough research, it was found that instead of PbTiO, lead-free powders such as BaTiO, SrTiO, and CaTiO It has been found that the addition of buskite and the use of simple oxides, not perovskite oxides, can provide an electrical displacement equivalent to or greater than that of PbTiO.
3  Three
非鉛系高性能圧電セラミックスの発明を完成するに至った。 The invention of lead-free high-performance piezoelectric ceramics has been completed.
すなわち、本発明によれば、以下の発明が提供される。  That is, according to the present invention, the following inventions are provided.
(1)ぺロブスカイトニオブ酸カリウムナトリウム (K Na )NbOとぺロブスカイト型酸化物  (1) Perovskite potassium sodium niobate (K Na) NbO and perovskite oxide
1  1
M1M20を含有し、一般式 (l_y)(K Na )NbO - yMlM20で表される、ぺロブスカイト  Perovskite containing M1M20 and represented by the general formula (l_y) (K Na) NbO-yMlM20
1  1
固溶体組成物。 Solid solution composition.
(式中、 M1M20は、 2価の Ml金属イオン(但し、鉛は除く)と 4価の M2金属イオンから  (Where M1M20 is a divalent Ml metal ion (excluding lead) and a tetravalent M2 metal ion
3  Three
なるぺロブスカイト型酸化物ないしぺロブスカイト型酸化物 Aサイトに選択的に入りうる 3価の Ml金属イオンとぺロブスカイト型酸化物 Bサイトに選択的に入りうる 3価の M2金 属イオンからなるぺロブスカイト型酸化物を表す。 X及び yは、それぞれ 0.4≤x≤0.6、 0<y≤0.1の範囲の数値を表す。ただし、 Ml=Ba、 M2=Tiのときの y範囲は 0< y< 0.05である。 ) A trivalent Ml metal ion that can selectively enter the alobskite-type oxide or perovskite-type oxide A site and a trivalent M2 metal ion that can selectively enter the perovskite-type oxide B site Represents a lobskite-type oxide. X and y represent numerical values in the range of 0.4≤x≤0.6 and 0 <y≤0.1, respectively. However, when Ml = Ba and M2 = Ti, the y range is 0 <y <0.05. )
(2)ぺロブスカイトニオブ酸カリウムナトリウム (K Na )NbOと 3価金属の酸化物 M3 0  (2) Perovskite potassium sodium niobate (K Na) NbO and oxide of trivalent metal M30
l 3 2 3 を含有するぺロブスカイト固溶体組成物 (l-z)(K Na )NbO _z M3 O  Perovskite solid solution composition containing l 3 2 3 (l-z) (K Na) NbO _z M3 O
l 3 2 3。  l 3 2 3.
(式中、 M3はぺロブスカイト A或いは Bサイトに選択的に入りうる 3価金属イオンを表す 。 X及び zは、それぞれ 0.4≤x≤0.6、 0< z≤0.1の範囲の数値を表す。 )  (In the formula, M3 represents a trivalent metal ion that can selectively enter the perovskite A or B site. X and z represent numerical values in the range of 0.4≤x≤0.6 and 0 <z≤0.1, respectively.)
(3)上記(1)または(2)に記載のぺロブスカイト固溶体組成物を焼結して得られるぺ 口ブスカイト固溶体圧電セラミックス。  (3) An open bouskite solid solution piezoelectric ceramic obtained by sintering the perovskite solid solution composition according to (1) or (2).
(4)相対密度 95%以上に緻密焼結したことを特徴とする上記(1)または(2)に記載の ぺロブスカイト固溶体圧電セラミックス。 発明の効果  (4) The perovskite solid solution piezoelectric ceramic according to the above (1) or (2), which is densely sintered to a relative density of 95% or more. The invention's effect
本発明による圧電セラミックスは、 PZT系を代表とする従来材料よりも電気変位が飛 躍的に改善されているだけでなぐ鉛を含まないため環境に優しい高性能圧電セラミ ック材料として、新たな用途拡大の道を開くものである。本発明のセラミックスは、 PZT 系セラミックスと同様に超音波振動子、超音波モーター、精密位置決め素子、圧電ト ランス等のァクチユエータや、加速度センサ、カーナビ用圧電ジャイロ、ソナ一、超音 波診断素子等のセンサとして用いられるが、更には、航空機、自動車、鉄道車両、船 舶等の振動制御や土木建築物の免振用のァクチユエータとしての新たな用途も期待 できる。 The piezoelectric ceramic according to the present invention is a new environmentally friendly high-performance piezoelectric ceramic material because it has a significantly improved electrical displacement than conventional materials represented by the PZT system and does not contain lead. It opens the way for expanding applications. As with the PZT ceramics, the ceramics of the present invention include actuators such as ultrasonic vibrators, ultrasonic motors, precision positioning elements, piezoelectric transformers, acceleration sensors, piezoelectric gyros for car navigation systems, sonars, ultrasonic diagnostic elements, etc. Used in aircraft, automobiles, railway vehicles, ships It is also expected to have new applications as an actuator for vibration control of ships and vibration isolation of civil engineering buildings.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明者らは、前記したように、特願 2003-040125号発明において、 NaNbO  [0011] As described above, the present inventors have set forth NaNbO in the invention of Japanese Patent Application No. 2003-040125.
-KNbO -PbTiO系低鉛圧電セラミックスを提案した力 その後の検討により、この低 鉛系圧電セラミックスが優れた電気変位特性を与えるのは、ほぼ以下の理由によるも のであることを突き止めた。  Proposed power of -KNbO-PbTiO-based low-lead piezoelectric ceramics Through subsequent studies, it was determined that the reason why the low-lead piezoelectric ceramics provided excellent electrical displacement characteristics was due to the following reasons.
[0012] NaNbO -KNbO系ぺロブスカイトに PbTiOを添加すると、 (Na+,K+,Pb2+)(Nb5+,Ti4+)0 のように、 Aサイトイオン (Na+、 K+)の一部が Pb2+で、 Bサイトイオン (Nb5+)の一部が Ή4+で 置き換わったぺロブスカイトとなる。このとき、 Pb2+と Ή4+は、元のイオンと比べてイオン サイズや価数が異なるため、結晶格子に不安定性が導入され、形成される強誘電ド メインのサイズは小さくなる。強誘電ドメインは、サイズが小さくなると印加電場により 回転しやすくなるため、電場誘起歪も大きくなる。 NaNbO -KNbO -PbTiO系高密度 焼結体が高い圧電性を示す理由は、このようにドメイン構造の性質を変えたことによ るものと考えられる。 [0012] The addition of PbTiO to NaNbO -KNbO system perovskite, (Na +, K +, Pb 2+) (Nb 5+, Ti 4+) as 0, A-site ions (Na +, K +) Part is Pb 2+ and part of B site ion (Nb 5+ ) is perovskite replaced by Ή 4+ . At this time, Pb 2+ and Ή 4+ have different ion sizes and valences as compared with the original ions, so that instability is introduced into the crystal lattice and the size of the formed ferroelectric domain is reduced. The smaller the size of the ferroelectric domain, the easier it is for the applied electric field to rotate, so that the electric field induced strain also increases. It is considered that the reason why the NaNbO-KNbO-PbTiO-based high-density sintered body exhibits high piezoelectricity is that the properties of the domain structure are changed in this way.
[0013] すなわち、強誘電セラミックスの電場誘起ひずみ特性は、強誘電ドメインの回転し やすさに影響され、回転しやすさが増大すると電場誘起ひずみが増大する。よって、 [0013] That is, the electric field-induced strain characteristics of ferroelectric ceramics are affected by the ease of rotation of the ferroelectric domain, and the electric field-induced strain increases as the ease of rotation increases. Therefore,
NaNbO -KNbOに添加する酸化物は PbTiOに特に限定されるものではなぐそのィ オンサイズ或いは価数力 SNa+、 K Nb5+のそれと差があるものであれば、 NaNbOThe oxide added to NaNbO-KNbO is not particularly limited to PbTiO but its ion size or valence power SNa + , KNb 5+
-KNbOの電場誘起歪み特性を向上する効果が期待される。そこで、本発明者等はThe effect of improving the electric field induced strain characteristics of -KNbO is expected. Therefore, the present inventors
、 PbTiOの代わりに BaTiO、 SrTiO、 CaTiO等の非鉛ぺロブスカイトを添加する実験 例を積み重ねた結果、上記仮説が正しいものであるとの結論に達したのである。 また、ぺロブスカイト酸化物でなくても 3価の単純金属酸化物を添加してもイオンサ ィズゃ価数に差が生じることができる。この単純酸化物をぺロブスカイトに添カ卩した場 合、その金属イオンは、ぺロブスカイト格子の A、 Bどちらかのサイトに選択的に入るが 、電価のバランス上、一方は格子欠陥となる。いずれにしても、 NaNbO -KNbOに対 する単純酸化物の添加は、異種ぺロブスカイトの添加と同様の効果をもたらすことも 確認した。 [0014] 本発明に係るぺロブスカイト固溶体組成物は、(i)ぺロブスカイト型ニオブ酸カリウム ナトリウム Na )NbOとぺロブスカイト型酸化物 M1M20を含有し、一般式 After accumulating experimental examples in which lead-free perovskites such as BaTiO, SrTiO, and CaTiO were added instead of PbTiO, the conclusion was reached that the above hypothesis was correct. In addition, even if a trivalent simple metal oxide is added instead of the perovskite oxide, a difference in ion size valence can occur. When this simple oxide is added to perovskite, its metal ions selectively enter either the A or B site of the perovskite lattice, but one of them becomes a lattice defect due to the balance of charge. . In any case, it was confirmed that the addition of the simple oxide to NaNbO-KNbO had the same effect as the addition of the different perovskite. The perovskite solid solution composition according to the present invention contains (i) perovskite-type potassium sodium niobate Na) NbO and perovskite-type oxide M1M20, and has a general formula
l 3 3  l 3 3
(l-y)(K Na )NbO - yMlM20で表される混合酸化物、または(ii)ぺロブスカイト型二 l 3 3  a mixed oxide represented by (l-y) (KNa) NbO-yMlM20, or (ii) a perovskite-type
ォブ酸カリウムナトリウム (K Na )NbOと 3価金属の酸化物 M3 0からなる混合酸化物  Mixed oxide consisting of potassium sodium borate (K Na) NbO and oxide of trivalent metal M30
l 3 2 3  l 3 2 3
(l-z)(K Na )NbO -zM3 Oを主成分とする。  The main component is (l-z) (K Na) NbO 2 -zM 3 O.
l 3 2 3  l 3 2 3
ここで、 M1M20は、 2価の Ml金属イオン(伹し、鉛は除く)と 4価の M2金属イオンか  Where M1M20 is a divalent Ml metal ion (except for lead and lead) and a tetravalent M2 metal ion
3  Three
らなるぺロブスカイト型酸化物、またはべ口ブスカイト型酸化物 Aサイトに選択的に入り うる 3価の Ml金属イオンとぺロブスカイト型酸化物 Bサイトに選択的に入りうる 3価の M2金属イオン力、らなるぺロブスカイト型酸化物を表す。 x、 y及び zは、それぞれ 0.4≤x ≤0·6、 0<y≤0.1、 0< ζ≤0· 1の範囲の数値を表す。ただし、 Ml=Ba、 M2=Tiのときの y範囲は 0<y< 0.05である。  Trivalent Ml metal ions that can selectively enter the perovskite-type oxide or perovskite-type oxide B site, and trivalent M2 metal ion forces that can selectively enter the perovskite-type oxide B site Represents a perovskite oxide. x, y, and z represent numerical values in the range of 0.4≤x≤0.6, 0 <y≤0.1, and 0 <ζ≤0.1. However, when Ml = Ba and M2 = Ti, the y range is 0 <y <0.05.
Mlとしては、具体的に、ぺロブスカイト Aサイトに選択的に入りうる 2価または 3価金 属イオン(但し、鉛は除く)が挙げられ、たとえば、 Mg、 Ca、 Sr、 Ba、 Bi、 La、 Y、 Ce、 Pr などの金属イオンが例示され、この中でも Ba、 Sr、 Ca等が好ましい。  Specific examples of Ml include divalent or trivalent metal ions (excluding lead) that can selectively enter the perovskite A site. For example, Mg, Ca, Sr, Ba, Bi, La , Y, Ce, Pr and the like are exemplified, and among them, Ba, Sr, Ca and the like are preferable.
M2としては、具体的に、ぺロブスカイト Bサイトに選択的に入りうる 4価または 3価金 属イオンが挙げられ、たとえば、 Ti、 Zr、 Sc、 Ga、 In、 Zn、 Feが例示され、この中でも Ti 及び Zrが好ましい。  Specific examples of M2 include tetravalent or trivalent metal ions that can selectively enter the perovskite B site.Examples include Ti, Zr, Sc, Ga, In, Zn, and Fe. Among them, Ti and Zr are preferable.
M3としては、具体的に、ぺロブスカイト A或いは Bサイトに選択的に入りうる 3価金属 イオンが挙げられ、たとえば、 Bi、 La、 Y、 Ce、 Pr、 Nd、 Feが例示され、この中でも Bi、 La、 Yが好ましい。 χは、 0·4≤χ≤0.6の範囲の数値を表す。  Specific examples of M3 include trivalent metal ions that can selectively enter the perovskite A or B site, and examples thereof include Bi, La, Y, Ce, Pr, Nd, and Fe. , La and Y are preferred. χ represents a numerical value in the range of 0 · 4≤χ≤0.6.
上記(i)及び(ii)において、ぺロブスカイト型酸化物 M1M20または、 3価金属の酸  In the above (i) and (ii), the perovskite oxide M1M20 or the acid of a trivalent metal
3  Three
化物 M3 0の使用割合は、ぺロブスカイト型ニオブ酸カリウムナトリウム (K Na )Nb〇  The use ratio of the compound M30 is {potassium sodium niobate (K Na) Nb}
2 3 l 3 に対して 10モル%以下、好ましくは 5モル%以下である。  It is at most 10 mol%, preferably at most 5 mol%, based on 23 l3.
[0015] 本発明に係るぺロブスカイト固溶体組成物は、ニオブ酸カリウムナトリウム [0015] The perovskite solid solution composition according to the present invention comprises potassium sodium niobate.
(K,Na)NbOを主成分とし、これに 10モル%以下の前記した他のぺロブスカイト酸化  (K, Na) NbO as a main component, to which other perovskite oxidation of 10 mol% or less
3  Three
物(M1M20 )または 3価の単純金属酸化物(M3 0 )を添加することにより得られる。  (M1M20) or a trivalent simple metal oxide (M30).
3 2 3  3 2 3
原料としては、炭酸塩、シユウ酸塩、硝酸塩、水酸化物、酸化物等、種々の形態の ものを用いることができ、これらの原料を所定の組成に混合し、最終的な組成になる ように調製すればよい。 As raw materials, various forms such as carbonates, oxalates, nitrates, hydroxides and oxides can be used, and these raw materials are mixed into a predetermined composition to obtain a final composition. It may be prepared as follows.
[0016] 本発明の前記ぺロブスカイト固溶体組成物はこれを好ましくは相対密度 95%以上に 緻密焼結することにより圧電セラミックスとすることができる。  The perovskite solid solution composition of the present invention can be made into a piezoelectric ceramic by densely sintering the perovskite solid solution composition preferably at a relative density of 95% or more.
このような焼結手段は制限されるものではないが、常圧下で焼結できればそれに越 したことはなレ、。しかし、 KNbO -NaNbO系材料は焼結が困難であるため、高密度焼 結体を効率よく得るために加圧下で焼結できる加圧加熱焼結法を採用することが望 ましい。  Such sintering means is not limited, but if it can be sintered under normal pressure, it would be better than that. However, since sintering of KNbO-NaNbO-based materials is difficult, it is desirable to adopt a pressure and heat sintering method that can sinter under pressure in order to obtain a high-density sintered body efficiently.
[0017] このような加圧加熱焼結法として、スパークプラズマ焼結法(Spark plasma sintering 法、以下 SPS法と呼ぶ)、ホットプレス(Hot press法、以下 HP法と呼ぶ)、アンビル法、 HIP法 (熱間静水圧法)等が挙げられるが、本発明で好ましく用いられた方法は、 SPS 法と HP法である。  [0017] Examples of such pressure heating and sintering methods include a spark plasma sintering method (hereinafter, referred to as an SPS method), a hot press method (hereinafter, referred to as an HP method), an anvil method, and a HIP method. (Hot isostatic method) and the like, and the methods preferably used in the present invention are the SPS method and the HP method.
[0018] SPS法は、試料に加圧した状態で直流のパルス電流を流し、火花放電により瞬時に 発生する高温プラズマの高エネルギーを利用して粒界拡散や粒子接合を起こさせる 技術であり、最近、セラミックスの高速焼結法として注目されているものである。  [0018] The SPS method is a technique in which a DC pulse current is applied to a sample in a pressurized state, and grain boundary diffusion and particle bonding are caused by using the high energy of high-temperature plasma instantaneously generated by spark discharge. Recently, it has attracted attention as a high-speed sintering method for ceramics.
[0019] この SPS法では、昇温'保持時間も含めて概ね 15分以内という短時間で焼結が完了 するため、 NaNbO -KNbO系のように易蒸発成分(特に Na及び K)を多量に含み、加 熱による組成変動が懸念される材料の焼結法としては最も好ましいものである。  [0019] In this SPS method, sintering is completed in a short time of about 15 minutes or less, including the time of temperature rise and holding, so that a large amount of easily evaporable components (particularly Na and K) are generated like the NaNbO-KNbO system. This method is the most preferable as a sintering method for a material that includes a composition fluctuation due to heating.
[0020] 因みに、先の特願 2003-040125に見られるように、 NaNbO -KNbO - PbTiO系に SPS 法を適用した結果、ほとんどの組成物が相対密度 96%以上の焼結体に変換され、 SPS法は高密度化に対して著しい効果を示し、また、得られたセラミックスの圧電変位 特性も飛躍的に改善されることが実証されている。  [0020] By the way, as seen in the earlier Japanese Patent Application No. 2003-040125, as a result of applying the SPS method to the NaNbO-KNbO-PbTiO system, most of the compositions were converted to sintered bodies with a relative density of 96% or more. It has been demonstrated that the SPS method has a remarkable effect on densification, and that the piezoelectric displacement characteristics of the obtained ceramics are also dramatically improved.
[0021] 本発明の圧電セラミックスの SPS法または HP法による製造方法の一例を説明する。  An example of a method for producing the piezoelectric ceramic of the present invention by the SPS method or the HP method will be described.
まず、 K CO、 Na CO及び Nb 0の主原料および添加剤としての酸化物を所望の ぺロブスカイト組成になるように配合し、ぺロブスカイト固溶体単一相になるまで仮焼 First, the main raw materials of KCO, NaCO and Nb0 and the oxides as additives are blended so as to have a desired perovskite composition, and calcined until a perovskite solid solution single phase is obtained.
7刀 w- -混合の過程を繰り返す。仮焼条件は、原料の種類及び組成によっても異な る力 通常、温度は 850 1000°C、時間は 2 10時間である。こうして得られたセラミツ タス粉を、 SPS法または HP法に供する。 7 sword w--Repeat the mixing process. The calcination conditions vary depending on the type and composition of the raw materials. Normally, the temperature is 850 1000 ° C and the time is 210 hours. The thus obtained ceramic powder is subjected to the SPS method or the HP method.
[0022] SPS処理は、たとえば、住友石炭鉱業製 SPS-1030型装置などの装置を用いて行え ばよレ、。具体的には、グラフアイト製のダイスに試料を適量充填した後、上下からダラ ファイト製パンチで荷重加圧しながら、真空中、上下パンチに直流のオンオフパルス を流せば、所望とする焼結体が得られる。この SPS法では、試料は 5分程度で所定の 温度に達し、その温度を 5分程度保持することで焼結する。焼結温度は組成によって 異なるが、 1020— 1100°Cの範囲である。得られる焼結体は、直径 15mm、厚さ 3 4mm の大きさであり、相対密度は 96%以上に達する。 [0022] The SPS treatment can be performed using, for example, an apparatus such as an SPS-1030 apparatus manufactured by Sumitomo Coal Mining. Bye, Specifically, after filling an appropriate amount of a sample into a graphite die, and applying a DC on / off pulse to the upper and lower punches in a vacuum while applying pressure from above and below using a Dallaphite punch, the desired sintered body can be obtained. Is obtained. In this SPS method, the sample reaches a predetermined temperature in about 5 minutes, and is sintered by holding that temperature for about 5 minutes. The sintering temperature varies depending on the composition, but is in the range of 1020-1100 ° C. The obtained sintered body has a diameter of 15 mm and a thickness of 34 mm, and the relative density reaches 96% or more.
[0023] また、 HP法は、たとえば東京真空 (株)製 PRESS-VAC-2型装置などの装置を用い て行えばよレ、。 HP法では、試料をグラフアイトダイスに入れ、上下パンチで加圧する 点は SPS法と同じである力 S、加熱はダイスの周囲に取り付けられた外部ヒーターによつ て行われる。  The HP method may be performed using an apparatus such as a PRESS-VAC-2 type apparatus manufactured by Tokyo Vacuum Co., Ltd. In the HP method, the sample is placed in a graphite die and pressed with upper and lower punches. The force S is the same as in the SPS method, and heating is performed by an external heater mounted around the die.
まず、仮焼したセラミックス粉をグラフアイト製のダイスに適量充填した後、排気し、 上下からグラフアイト製パンチで荷重加圧しながら、外部ヒーターに通電して加熱す る。このホットプレス法では、 2時間程度で所定の温度(1100°C)に達するので、その 温度を 5— 10分程度保持することで相対密度 95%以上の焼結体が得られる。  First, an appropriate amount of the calcined ceramic powder is filled in a graphite die, and then the air is evacuated. The external heater is energized and heated while applying pressure from above and below with a graphite punch. In this hot pressing method, the temperature reaches a predetermined temperature (1100 ° C) in about 2 hours. By maintaining the temperature for about 5 to 10 minutes, a sintered body with a relative density of 95% or more can be obtained.
[0024] なお、 SPS法も HP法も、真空中グラフアイトダイスを用いるので、焼結体はある程度 還元されることは否めず、還元成分の混入で黒色化して得られる力 S、その後で酸素 雰囲気中、例えば 950°Cで 5時間程度の条件でァニールすることによって白色化され る。  [0024] Since both the SPS method and the HP method use a graphite die in a vacuum, the sintered body cannot be reduced to some extent, and the force S obtained by blackening by mixing a reducing component and then the oxygen S It is whitened by annealing in an atmosphere, for example, at 950 ° C for about 5 hours.
[0025] SPS法も HP法も、常圧法では不可能な高密度セラミックスを得るのに有効な手段で あるが、 HP法の方は、昇温 ·降温時間が長い分、試料の組成変動が多少懸念される [0025] Both the SPS method and the HP method are effective means for obtaining high-density ceramics that cannot be achieved by the normal-pressure method. Somewhat concerned
。因みに、 SPS法で得られた NaNbO -KNbO -PbTiO系セラミックス [ 1]を化学分析し た結果、仕込み組成と最終製品の組成との間に大きな変動がないことも確認されて いる。 . Incidentally, a chemical analysis of the NaNbO-KNbO-PbTiO-based ceramics [1] obtained by the SPS method confirmed that there was no significant variation between the charged composition and the final product composition.
実施例  Example
[0026] 以下、本発明を実施例により更に詳しく説明する。  Hereinafter, the present invention will be described in more detail with reference to Examples.
本発明のぺロブスカイト固溶体組成物を、上述の SPS装置及び HP装置を用いて焼 結した。得られたセラミックスについては、圧電特性を評価するため、 5mm X 5mm X 0.5mmサイズの板状に切り出し、両面を鏡面研磨した後、金スパッタ膜を付け、電極 とした。次に、室温で 30 ん111の条件で分極処理を行った後、レーザー変位計を用 レ、て印加電圧と電気変位の関係を調べた。 The perovskite solid solution composition of the present invention was sintered using the above-described SPS device and HP device. In order to evaluate the piezoelectric properties, the obtained ceramic was cut out into a plate of 5 mm X 5 mm X 0.5 mm size, mirror-polished on both sides, and a gold sputtered film was applied. And Next, the polarization was performed at room temperature under the condition of 111, and the relationship between applied voltage and electric displacement was examined using a laser displacement meter.
[0027] 表 1に、本発明のぺロブスカイトセラミックスの組成、製造方法、焼結密度、表 2に、 本発明のぺロブスカイトセラミックスの相転移温度 t、比誘電率、誘電損失、電気機械 c [0027] Table 1 shows the composition, manufacturing method, and sintering density of the perovskite ceramics of the present invention. Table 2 shows the phase transition temperature t, relative dielectric constant, dielectric loss, and electromechanical c of the perovskite ceramics of the present invention.
結合係数 kp、周波数定数 Nr、最大ひずみを示している。  It shows the coupling coefficient kp, frequency constant Nr, and maximum distortion.
得られたセラミックスの相対密度は、組成及び製造法によって多少の差はあるが、 ほとんどの試料において 96%以上は得られており、 SPS法も HP法も本願の発明のセラ ミックスを高密度化する手段として有効であることが実証された。  Although the relative density of the obtained ceramics varies slightly depending on the composition and manufacturing method, 96% or more was obtained in most samples, and both the SPS method and the HP method increased the density of the ceramics of the present invention. It has been proved to be effective as a means for performing
[0028] 実施例 1一 3 Example 11
本実施例群は、 (Na K )NbO組成に対して BaTiOを 1  In this example group, BaTiO was added to (Na K) NbO composition.
0.5 0.5 3 3 、 2、 4mol%と添加したものを 0.5 0.5 3 3、2、4mol%
SPS処理して得たセラミックスに関する。 80kVん mにおける変位は、それぞれ、 0.9%, 0.6%、 0.6%とレ、う高い値であり、 NaNbO -KNbO -BaTiO系でも高性能な圧電体が生 It relates to ceramics obtained by SPS processing. The displacements at 80 kV m are 0.9%, 0.6%, and 0.6%, respectively, which are high values, and high-performance piezoelectric materials are produced even with the NaNbO-KNbO-BaTiO system.
3 3 3  3 3 3
成しうることが知見される。また、 BaTiOの添加量が少ないほど、相転移温度 tが高く  It is found that this can be achieved. Also, the smaller the amount of BaTiO added, the higher the phase transition temperature t
3 c て電気機械結合係数 kpおよび周波数定数 Nrが優れていることが明らかである。  It is clear that the electromechanical coupling coefficient kp and the frequency constant Nr are excellent.
[0029] 実施例 4一 5 Example 4-1-5
これらの実施例では、(Na K )NbOまたは(Na K )NbO組成に対して BaTiOを  In these examples, BaTiO is used for (Na K) NbO or (Na K) NbO composition.
0.6 0.4 3 0.4 0.6 3 3 0.6 0.4 3 0.4 0.6 3 3
2mol%添加したものを HP処理することによりセラミックスを得た。得られたセラミックスの 電気変位は、 0.3%— 0.5%という高い値を示すことが分かる。 (Na K )NbOベース Ceramics were obtained by subjecting 2 mol% added to HP treatment. It can be seen that the electric displacement of the obtained ceramic shows a high value of 0.3% -0.5%. (Na K) NbO base
0.6 0.4 3 と(Na K )NbOベースを比較すると (Na K )NbOをベースとした方が幾分高いよう Comparing 0.6 0.43 with (Na K) NbO base, it seems that the one based on (Na K) NbO is somewhat higher
0.4 0.6 3 0.4 0.6 3 0.4 0.6 3 0.4 0.6 3
である。  It is.
[0030] 実施例 6— 7  Example 6—7
これらは、 (Na K )NbO組成に対して SrTiOを 2  These are based on (Na K) NbO composition with SrTiO 2
0.4 0.6 3 3 、 8 mol%と添加したものを HP処理 して得たセラミックスに関する。 80kVん mにおける変位は、 0.2%である。  It relates to ceramics obtained by adding 0.4, 0.633, and 8 mol% to HP. The displacement at 80 kV m is 0.2%.
[0031] 実施例 8— 10 Example 8—10
これらは、 (Na K )NbO組成に対して SrTiOを 1  These are based on (Na K) NbO composition with SrTiO 1
3 3 、 5、 10 mol%と添加したものを SPS処 33 Add 3, 3, 5 and 10 mol% to the SPS
0.5 0.5 0.5 0.5
理して得たセラミックスに関する。 80kVん mにおける変位は、 NaNbO -KNbO -PbTiO  On ceramics obtained by processing. The displacement at 80 kV m is NaNbO-KNbO-PbTiO
3 3 3 系及び NaNbO -KNbO -PbTiO系の場合と比較して劣るものの PZT系の場合とほぼ  Although it is inferior to the case of the 33 3 system and NaNbO-KNbO-PbTiO system, it is almost the same as that of the PZT system.
3 3 3  3 3 3
匹敵する値である。また、実施例 8— 10において、 Srの代わりに Caを導入したものもほ ぼ同様な結果が得られた。 Comparable values. Also, in Examples 8-10, Ca was introduced instead of Sr. Similar results were obtained.
[0032] 実施例 11-14  Example 11-14
これらは、 (Na K )NbO組成に対して BaZrOあるいは SrZrOを添加したものを SPS 処理して得たセラミックスに関する。最大ひずみは 0.2-0.4%の範囲であり、 NaNb〇 -KNbO -BaTiO系あるいは NaNb〇 -KNbO -SrTiO系よりは幾分低い。  They relate to ceramics obtained by subjecting (Na K) NbO composition with BaZrO or SrZrO to SPS treatment. The maximum strain is in the range of 0.2-0.4%, which is somewhat lower than NaNb〇-KNbO-BaTiO or NaNb〇-KNbO-SrTiO system.
[0033] 以上、実施例 1一 14において、 NaNbO -KNbO系に対する代表的な各種ぺ  [0033] As described above, in Examples 1-114, various typical examples for the NaNbO-KNbO system were used.
イト型酸化物の添加効果について示したが、これらの実施例では示さなかった他の ぺロブスカイト型化合物も先の理論からみてこれらと同等の効果を示すことは明らか である。  Although the effects of the addition of the oxides of the oxide type have been shown, it is clear that other perovskite-type compounds, which were not shown in these examples, show the same effects as those seen from the above theory.
[0034] 実施例 15— 18  Example 15-18
これらの実施例では、(Na K )NbO組成に対してべ口ブスカイト A—サイトを選択的 に置換しうる 3価の金属酸化物 La 0及び Bi 0を添加し、 HPによりセラミックスを作成 した。得られたセラミックスの電気変位は、 0.15— 0.25%の範囲であり、 PZT系の場合 にほぼ匹敵する値となった。  In these examples, trivalent metal oxides La 0 and Bi 0 capable of selectively substituting a viscous A-site with respect to the composition of (Na K) NbO were added, and a ceramic was prepared by HP. The electric displacement of the obtained ceramics was in the range of 0.15 to 0.25%, which was almost comparable to that of the PZT system.
[0035] [表 1] [Table 1]
M1M203の M3203の含 製 相対密度 実施例 Ml M2 M3 X M1M20 3 of M3 2 0 3-containing steel relative density Example Ml M2 M3 X
含有量 y 有量 Z 方法 (¾)  Content y Weight Z Method (¾)
1 Ba Ti 0.5 0.01 SPS 98  1 Ba Ti 0.5 0.01 SPS 98
2 Ba Ti 0.5 0.02 SPS 96  2 Ba Ti 0.5 0.02 SPS 96
3 Ba Ti 0.5 0.04 SPS 97  3 Ba Ti 0.5 0.04 SPS 97
4 Ba Ti 0.4 0.02 HP 98  4 Ba Ti 0.4 0.02 HP 98
5 Ba Ti 0.6 0.02 HP 96  5 Ba Ti 0.6 0.02 HP 96
6 Sr Ti 0.4 0.02 HP 97  6 Sr Ti 0.4 0.02 HP 97
7 Sr Ti 0.4 0.08 HP 96  7 Sr Ti 0.4 0.08 HP 96
8 Sr Ti 0.5 0.01 SPS 96  8 Sr Ti 0.5 0.01 SPS 96
9 Sr Ti 0.5 0.05 SPS 96  9 Sr Ti 0.5 0.05 SPS 96
10 Sr Ti 0.5 0.10 SPS 96 10 Sr Ti 0.5 0.10 SPS 96
11 Ba Zr 0.5 0.01 SPS 9911 Ba Zr 0.5 0.01 SPS 99
12 Ba Zr 0.5 0.05 SPS 9712 Ba Zr 0.5 0.05 SPS 97
13 Sr Zr 0.5 0.01 SPS 9813 Sr Zr 0.5 0.01 SPS 98
14 Sr Zr 0.5 0.04 SPS 9814 Sr Zr 0.5 0.04 SPS 98
15 La 0.5 0.01 HP 9615 La 0.5 0.01 HP 96
16 La 0.5 0.05 HP 9716 La 0.5 0.05 HP 97
17 Bi 0.5 0.01 HP 9517 Bi 0.5 0.01 HP 95
18 Bi 0.5 0.05 HP 96 2] 18 Bi 0.5 0.05 HP 96 2]
Figure imgf000011_0001
Figure imgf000011_0001

Claims

請求の範囲 The scope of the claims
[1] ぺロブスカイト型ニオブ酸カリウムナトリウム (K Na )NbOとぺロブスカイト型酸化物  [1] Perovskite-type potassium sodium niobate (K Na) NbO and perovskite-type oxide
1 3  13
M1M20を含有し、一般式 (1 - y)(K Na )NbO - yMlM20で表されるぺロブスカイト固 Perovskite solid containing M1M20 and represented by the general formula (1-y) (K Na) NbO-yMlM20
3 1 3 3 3 1 3 3
溶体組成物。  Solution composition.
(式中、 M1M20は、 2価の Ml金属イオン(但し、鉛は除く)と 4価の M2金属イオンから  (Where M1M20 is a divalent Ml metal ion (excluding lead) and a tetravalent M2 metal ion
3  Three
なるぺロブスカイト型酸化物、またはべ口ブスカイト型酸化物 Aサイトに選択的に入りう る 3価の Ml金属イオンとぺロブスカイト型酸化物 Bサイトに選択的に入りうる 3価の M2 金属イオンからなるぺロブスカイト型酸化物を表す。 X及び yは、それぞれ 0.4≤x≤ 0.6 、 0<y≤0.1の範囲の数値を表す。ただし、 Ml=Ba、 M2=Tiのときの y範囲は 0<y< 0.05である。 ) Perovskite-type oxides or trivalent Ml metal ions that can selectively enter the perovskite-type oxide A site and trivalent M2 metal ions that can selectively enter the perovskite-type oxide B site Represents a perovskite oxide. X and y represent numerical values in the range of 0.4≤x≤0.6 and 0 <y≤0.1, respectively. However, when Ml = Ba and M2 = Ti, the y range is 0 <y <0.05. )
[2] ぺロブスカイト型ニオブ酸カリウムナトリウム酸化物 (K Na )NbOと 3価金属の酸化物  [2] Perovskite-type potassium sodium niobate oxide (K Na) NbO and oxide of trivalent metal
1- 3  13
M3 0を含有するぺロブスカイト固溶体組成物 (l-z)(K Na )NbO -zM3〇。  {Rovskite solid solution composition (l-z) (K Na) NbO 2 -zM3} containing M30.
2 3 1 3 2 3 2 3 1 3 2 3
(式中、 M3はぺロブスカイト A或いは Bサイトに選択的に入りうる 3価金属イオンを表す(Where M3 represents a trivalent metal ion that can selectively enter the perovskite A or B site
。 X及び zは、それぞれ 0.4≤x≤0.6、 0< z≤0.1の範囲の数値を表す。 ) . X and z represent numerical values in the range of 0.4≤x≤0.6 and 0 <z≤0.1, respectively. )
[3] 請求項 1または請求項 2に記載のぺロブスカイト固溶体組成物を焼結して得られるぺ 口ブスカイト固溶体圧電セラミックス。 [3] An open bouskite solid solution piezoelectric ceramic obtained by sintering the perovskite solid solution composition according to claim 1 or 2.
[4] 相対密度 95%以上に緻密焼結したことを特徴とする請求項 1または請求項 2に記載の ぺロブスカイト固溶体圧電セラミックス。 [4] The perovskite solid solution piezoelectric ceramic according to claim 1 or 2, characterized in that it is densely sintered to a relative density of 95% or more.
INTERNATIONAL SEARCH REPORT International application No. INTERNATIONAL SEARCH REPORT International application No.
PCT/JP2004/012354 PCT / JP2004 / 012354
A. CLASSIFICATION OF SUBJECT MATTER A. CLASSIFICATION OF SUBJECT MATTER
Int. CI7 C04B35/495, H01L41/18 Int. CI 7 C04B35 / 495, H01L41 / 18
According to International Patent Classification (IPC) or to both national classification and IPC According to International Patent Classification (IPC) or to both national classification and IPC
B.„ FIELDS SEARCHED  B. „FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)  Minimum documentation searched (classification system followed by classification symbols)
Int. CI7 C04B35/42- 35/50, C04B35/00, H01L41/18 Int.CI 7 C04B35 / 42- 35/50, C04B35 / 00, H01L41 / 18
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1926-1996 Toroka Jitsuyo Shinan Koho 1994-2004  Jitsuyo Shinan Koho 1926-1996 Toroka Jitsuyo Shinan Koho 1994-2004
Kokai Jitsuyo Shinan Koho 1971-2004 Jitsuyo Shinan Toroku Koho 1996-2004  Kokai Jitsuyo Shinan Koho 1971-2004 Jitsuyo Shinan Toroku Koho 1996-2004
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)  Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
CA, REGISTRY (STN)  CA, REGISTRY (STN)
C. DOCUMENTS CONSIDERED TO BE RELEVANT C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.  Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A JP 2002-338351 A (TDK Corp.) , 1,3,4  A JP 2002-338351 A (TDK Corp.), 1,3,4
27 November, 2002 (27.11.02) ,  27 November, 2002 (27.11.02),
Claims  Claims
(Family: none)  (Family: none)
A JP 2002-137966 A (Kyocera Corp.) , 1,3,4  A JP 2002-137966 A (Kyocera Corp.), 1,3,4
14 May, 2002 (14.05.02) ,  14 May, 2002 (14.05.02),
Claims  Claims
(Family: none)  (Family: none)
X JP 2002-68835 A (Toyota Central Research And 2-4  X JP 2002-68835 A (Toyota Central Research And 2-4
Development Laboratories, Inc.) ,  Development Laboratories, Inc.),
08 March, 2002 (08.03.02) ,  08 March, 2002 (08.03.02),
Claims; tables 1, 3  Claims; tables 1, 3
(Family: none)  (Family: none)
I x 1 Further documents are listed in the continuation of Box C. | J See patent family annex. I x 1 Further documents are listed in the continuation of Box C. | J See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority * Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand to be of particular relevance the principle or theory underlying tiie invention "A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand to be of particular relevance the principle or theory underlying tiie invention
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be filing date considered novel or cannot be considered to involve an inventive "E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step hen the document is taken alone "L" document which may throw doubts on priority claim (s) or which is step hen the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other means combined with one or more other such documents, such combination"O" document referring to an oral disclosure, use, exhibition or other means combined with one or more other such documents, such combination
"P" document published prior to the international filing date but later than being obvious to a person skilled in the art "P" document published prior to the international filing date but later than being obvious to a person skilled in the art
the priority date claimed "&" document member of the same patent family  the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report  Date of the actual completion of the international search Date of mailing of the international search report
14 September, 2004 (14.09.04) 28 September, 2004 (28.09.04)  14 September, 2004 (14.09.04) 28 September, 2004 (28.09.04)
Name and mailing address of the ISA/ Authorized officer Name and mailing address of the ISA / Authorized officer
Japanese Patent Office  Japanese Patent Office
Facsimile No. Telephone No.  Facsimile No. Telephone No.
Form PCT/ISA/210 (second sheet) (January 2004) INTERNATIONAL SEARCH REPORT International application No. Form PCT / ISA / 210 (second sheet) (January 2004) INTERNATIONAL SEARCH REPORT International application No.
PCT/JP2004/012354 PCT / JP2004 / 012354
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.  Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X JP 2003-55048 A (Toyota Central Research And 2-4  X JP 2003-55048 A (Toyota Central Research And 2-4
Development Laboratories, Inc.) ,  Development Laboratories, Inc.),
26 February, 2003 (26.02.03) ,  26 February, 2003 (26.02.03),
Claims; table 1  Claims; table 1
& DE 10237291 Al  & DE 10237291 Al
X JP 7-82024 A (Murata Mfg. Co. Ltd. ) 2-4  X JP 7-82024 A (Murata Mfg. Co. Ltd.) 2-4
28' March, 1995 (28.03.95) ,  28 'March, 1995 (28.03.95),
Claims  Claims
(Family: none)  (Family: none)
Form PCT/ISA/210 (continuation of second sheet) (January 2004) Form PCT / ISA / 210 (continuation of second sheet) (January 2004)
PCT/JP2004/012354 2003-08-28 2004-08-27 Perovskite solid solution composition and piezoelectric ceramics produced therefrom WO2005021461A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005513469A JP4491537B2 (en) 2003-08-28 2004-08-27 Perovskite solid solution composition and piezoelectric ceramics obtained therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-305110 2003-08-28
JP2003305110 2003-08-28

Publications (1)

Publication Number Publication Date
WO2005021461A1 true WO2005021461A1 (en) 2005-03-10

Family

ID=34269291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012354 WO2005021461A1 (en) 2003-08-28 2004-08-27 Perovskite solid solution composition and piezoelectric ceramics produced therefrom

Country Status (2)

Country Link
JP (1) JP4491537B2 (en)
WO (1) WO2005021461A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022854A (en) * 2005-07-15 2007-02-01 Toyota Motor Corp Potassium-sodium niobate based lead-free piezoelectric ceramic, and method for producing the same
EP2006263A1 (en) * 2006-04-13 2008-12-24 Murata Manufacturing Co. Ltd. Ceramic powder, and method for production of ceramic powder
JP2010095404A (en) * 2008-10-16 2010-04-30 National Institute Of Advanced Industrial Science & Technology Non-lead piezoelectric ceramic and piezoelectric, dielectric and pyroelectric element using the same
US20100187466A1 (en) * 2007-05-16 2010-07-29 National Institute Of Advanced Industrial Science Piezoelectric ceramic, and piezoelectric, dielectric or pyroelectric element using the same
CN101857436A (en) * 2010-06-12 2010-10-13 中国地质大学(武汉) Potassium-sodium niobate base lead-free piezoelectric ceramic powder and preparation method thereof
CN101935213A (en) * 2010-09-07 2011-01-05 聊城大学 Relaxation type K-NA niobate (KNN) based piezoelectric ceramic complex as well as preparation method and application thereof
JP2012162407A (en) * 2011-02-03 2012-08-30 Fdk Corp Piezoelectric material
WO2012141105A1 (en) * 2011-04-15 2012-10-18 株式会社村田製作所 Piezoelectric thin film element
JP5444714B2 (en) * 2006-09-08 2014-03-19 コニカミノルタ株式会社 Droplet discharge head
JP2014065317A (en) * 2014-01-17 2014-04-17 Seiko Epson Corp Piezoelectric device, and liquid spray head
WO2014084265A1 (en) * 2012-11-27 2014-06-05 富山県 Method for manufacturing piezoelectric ceramic, piezoelectric ceramic, and piezoelectric element
JP2014179609A (en) * 2013-03-14 2014-09-25 Tdk Corp Piezoelectric element, piezoelectric actuator, and piezoelectric sensor, and hard disk drive and ink-jet printer system
WO2015012344A1 (en) * 2013-07-25 2015-01-29 日立金属株式会社 Crystal-oriented piezoelectric ceramic, piezoelectric element, and method for manufacturing crystal-oriented piezoelectric ceramic
WO2015033791A1 (en) * 2013-09-09 2015-03-12 株式会社村田製作所 Piezoelectric thin film element and method for manufacturing same
US20150194592A1 (en) * 2012-11-28 2015-07-09 Tdk Corporation Piezoelectric element, piezoelectric actuator, piezoelectric sensor, hard disk drive, and inkjet printer device
CN107056290A (en) * 2016-11-04 2017-08-18 西安交通大学 A kind of method of regulation and control ferroelectric ceramics Curie temperature
CN113429205A (en) * 2021-07-16 2021-09-24 桂林电子科技大学 Transparent down-conversion photoluminescent ceramic material and preparation method and application thereof
WO2023090249A1 (en) * 2021-11-19 2023-05-25 住友化学株式会社 Sputtering target material and sputtering target
EP3660183B1 (en) * 2018-03-01 2023-07-19 JX Nippon Mining & Metals Corporation Potassium sodium niobate sputtering target and method for producing same
JP7406876B2 (en) 2018-10-17 2023-12-28 キヤノン株式会社 Piezoelectric transformers and electronic equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111302798B (en) * 2020-02-25 2022-02-22 西安工业大学 Lanthanum oxide doped modified potassium-sodium niobate-based transparent ceramic and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782024A (en) * 1993-09-08 1995-03-28 Murata Mfg Co Ltd Piezoelectric ceramic composition
JP2002068835A (en) * 2000-08-25 2002-03-08 Toyota Central Res & Dev Lab Inc Piezoelectric ceramic composition
JP2002137966A (en) * 2000-10-31 2002-05-14 Kyocera Corp Piezoelectric ceramic and piezoelectric element
JP2002338351A (en) * 2001-05-10 2002-11-27 Tdk Corp Piezoelectric ceramic composition, piezoelectric ceramic sintered compact and electronic parts
JP2003055048A (en) * 2001-08-16 2003-02-26 Toyota Central Res & Dev Lab Inc Piezoelectric ceramic composition, method for manufacturing the same and piezoelectric element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612031B2 (en) * 1973-01-30 1981-03-18
JP3259678B2 (en) * 1998-02-18 2002-02-25 株式会社村田製作所 Piezoelectric ceramic composition
JP3259677B2 (en) * 1998-02-18 2002-02-25 株式会社村田製作所 Piezoelectric ceramic composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782024A (en) * 1993-09-08 1995-03-28 Murata Mfg Co Ltd Piezoelectric ceramic composition
JP2002068835A (en) * 2000-08-25 2002-03-08 Toyota Central Res & Dev Lab Inc Piezoelectric ceramic composition
JP2002137966A (en) * 2000-10-31 2002-05-14 Kyocera Corp Piezoelectric ceramic and piezoelectric element
JP2002338351A (en) * 2001-05-10 2002-11-27 Tdk Corp Piezoelectric ceramic composition, piezoelectric ceramic sintered compact and electronic parts
JP2003055048A (en) * 2001-08-16 2003-02-26 Toyota Central Res & Dev Lab Inc Piezoelectric ceramic composition, method for manufacturing the same and piezoelectric element

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022854A (en) * 2005-07-15 2007-02-01 Toyota Motor Corp Potassium-sodium niobate based lead-free piezoelectric ceramic, and method for producing the same
EP2006263A1 (en) * 2006-04-13 2008-12-24 Murata Manufacturing Co. Ltd. Ceramic powder, and method for production of ceramic powder
US7838453B2 (en) * 2006-04-13 2010-11-23 Murata Manufacturing Co., Ltd. Ceramic powder and method for producing ceramic powder
EP2006263A4 (en) * 2006-04-13 2012-02-22 Murata Manufacturing Co Ceramic powder, and method for production of ceramic powder
JP5444714B2 (en) * 2006-09-08 2014-03-19 コニカミノルタ株式会社 Droplet discharge head
US8354038B2 (en) * 2007-05-16 2013-01-15 National Institute Of Advanced Industrial Science And Technology Piezoelectric ceramic, and piezoelectric, dielectric or pyroelectric element using the same
US20100187466A1 (en) * 2007-05-16 2010-07-29 National Institute Of Advanced Industrial Science Piezoelectric ceramic, and piezoelectric, dielectric or pyroelectric element using the same
JP2010095404A (en) * 2008-10-16 2010-04-30 National Institute Of Advanced Industrial Science & Technology Non-lead piezoelectric ceramic and piezoelectric, dielectric and pyroelectric element using the same
CN101857436A (en) * 2010-06-12 2010-10-13 中国地质大学(武汉) Potassium-sodium niobate base lead-free piezoelectric ceramic powder and preparation method thereof
CN101935213A (en) * 2010-09-07 2011-01-05 聊城大学 Relaxation type K-NA niobate (KNN) based piezoelectric ceramic complex as well as preparation method and application thereof
JP2012162407A (en) * 2011-02-03 2012-08-30 Fdk Corp Piezoelectric material
WO2012141105A1 (en) * 2011-04-15 2012-10-18 株式会社村田製作所 Piezoelectric thin film element
JP5418725B2 (en) * 2011-04-15 2014-02-19 株式会社村田製作所 Piezoelectric thin film element
US9437805B2 (en) 2011-04-15 2016-09-06 Murata Manufacturing Co., Ltd. Piezoelectric thin film element
WO2014084265A1 (en) * 2012-11-27 2014-06-05 富山県 Method for manufacturing piezoelectric ceramic, piezoelectric ceramic, and piezoelectric element
JPWO2014084265A1 (en) * 2012-11-27 2017-01-05 富山県 Method for manufacturing piezoelectric ceramic, piezoelectric ceramic, and piezoelectric element
US20150194592A1 (en) * 2012-11-28 2015-07-09 Tdk Corporation Piezoelectric element, piezoelectric actuator, piezoelectric sensor, hard disk drive, and inkjet printer device
US9147827B2 (en) * 2012-11-28 2015-09-29 Tdk Corporation Piezoelectric element, piezoelectric actuator, piezoelectric sensor, hard disk drive, and inkjet printer device
JP2014179609A (en) * 2013-03-14 2014-09-25 Tdk Corp Piezoelectric element, piezoelectric actuator, and piezoelectric sensor, and hard disk drive and ink-jet printer system
WO2015012344A1 (en) * 2013-07-25 2015-01-29 日立金属株式会社 Crystal-oriented piezoelectric ceramic, piezoelectric element, and method for manufacturing crystal-oriented piezoelectric ceramic
JP6044719B2 (en) * 2013-09-09 2016-12-14 株式会社村田製作所 Piezoelectric thin film element and manufacturing method thereof
WO2015033791A1 (en) * 2013-09-09 2015-03-12 株式会社村田製作所 Piezoelectric thin film element and method for manufacturing same
JP2014065317A (en) * 2014-01-17 2014-04-17 Seiko Epson Corp Piezoelectric device, and liquid spray head
CN107056290A (en) * 2016-11-04 2017-08-18 西安交通大学 A kind of method of regulation and control ferroelectric ceramics Curie temperature
EP3660183B1 (en) * 2018-03-01 2023-07-19 JX Nippon Mining & Metals Corporation Potassium sodium niobate sputtering target and method for producing same
JP7406876B2 (en) 2018-10-17 2023-12-28 キヤノン株式会社 Piezoelectric transformers and electronic equipment
CN113429205A (en) * 2021-07-16 2021-09-24 桂林电子科技大学 Transparent down-conversion photoluminescent ceramic material and preparation method and application thereof
CN113429205B (en) * 2021-07-16 2022-04-01 桂林电子科技大学 Transparent down-conversion photoluminescent ceramic material and preparation method and application thereof
WO2023090249A1 (en) * 2021-11-19 2023-05-25 住友化学株式会社 Sputtering target material and sputtering target

Also Published As

Publication number Publication date
JP4491537B2 (en) 2010-06-30
JPWO2005021461A1 (en) 2007-11-01

Similar Documents

Publication Publication Date Title
WO2005021461A1 (en) Perovskite solid solution composition and piezoelectric ceramics produced therefrom
KR100905886B1 (en) Piezoelectric ceramic composition and piezoelectric ceramic electronic component
JP4744052B2 (en) Piezoelectric structure element
EP2178131A2 (en) Piezoelectric ceramic, vibrator and ultrasonic motor
EP1728773A1 (en) Piezoelectric ceramic composition
JP4513948B2 (en) Piezoelectric ceramic and manufacturing method thereof
CN110520397B (en) Piezoelectric composition and piezoelectric element
Yoo et al. High-power properties of piezoelectric hard materials sintered at low temperature for multilayer ceramic actuators
JP2006206429A (en) Piezoelectric solid solution composition, piezoelectric ceramic obtained by sintering the same and piezoelectric/dielectric element using the piezoelectric ceramic
US6551522B2 (en) Piezoelectric ceramics
Hou et al. Effects of CuO addition on the structure and electrical properties of low temperature sintered Pb ((Zn1/3Nb2/3) 0.20 (Zr0. 50Ti0. 50) 0.80) O3 ceramics
US20080282536A1 (en) Lead Zirconate Titanate with Iron/Tungstein Doping, Method of Producing a Piezoceramic Material with the Lead Zirconate Titanate, and Use of the Piezoceramic Material
JP4260410B2 (en) Piezoelectric ceramics
JP3020493B1 (en) Piezoelectric ceramics
JP2001220226A (en) Piezoelectric ceramic
JP4291545B2 (en) Piezoelectric device
JP3032761B1 (en) Piezoelectric ceramics
Jin et al. Piezoelectric Properties of 0.2 [Pb (Mg 1/3 Nb 2/3)]-0.8 [PbTiO 3-PbZrO 3] Ceramics Sintered at a Low Temperature with the Aid of Li 2 O
JP7004183B2 (en) Piezoelectric compositions and piezoelectric elements
JP2009091215A (en) Composition for piezoelectric material and piezoelectric actuator element
JP7077704B2 (en) Piezoelectric compositions and piezo elements
JP4108349B2 (en) Piezoelectric ceramics
KR20130090696A (en) Pzn-pzt piezoelectric ceramic and method for manufactruing the same
US11812665B1 (en) Hard piezoelectric ceramic composition for multilayer piezoelectric transformers
JP2001294486A (en) Piezoelectric ceramic

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513469

Country of ref document: JP

122 Ep: pct application non-entry in european phase