JP4491537B2 - Perovskite solid solution composition and piezoelectric ceramics obtained therefrom - Google Patents

Perovskite solid solution composition and piezoelectric ceramics obtained therefrom Download PDF

Info

Publication number
JP4491537B2
JP4491537B2 JP2005513469A JP2005513469A JP4491537B2 JP 4491537 B2 JP4491537 B2 JP 4491537B2 JP 2005513469 A JP2005513469 A JP 2005513469A JP 2005513469 A JP2005513469 A JP 2005513469A JP 4491537 B2 JP4491537 B2 JP 4491537B2
Authority
JP
Japan
Prior art keywords
perovskite
solid solution
nbo
ceramics
solution composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005513469A
Other languages
Japanese (ja)
Other versions
JPWO2005021461A1 (en
Inventor
瑞平 王
善朗 下條
忠 関谷
邦男 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2005021461A1 publication Critical patent/JPWO2005021461A1/en
Application granted granted Critical
Publication of JP4491537B2 publication Critical patent/JP4491537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、ペロブスカイト化合物であるニオブ酸ナトリウム(NaNbO3)とニオブ酸カリウム(KNbO3)が主体をなし、これに単純酸化物を数モル%程度添加した組成のぺロブスカイト固溶体組成物およびこのものを焼結して得られる圧電セラミックスに関するものである。 The present invention is in the form of potassium sodium niobate perovskite compound (NaNbO 3) niobate (KNbO 3) is the principal, this single pure oxides Paix composition added several mol% perovskite solid solution composition and the The present invention relates to a piezoelectric ceramic obtained by sintering a product.

圧電セラミックスは、電圧をかけると伸び変形を生じるため、超音波振動子、超音波モーター、精密位置決め素子、圧電トランス等のアクチュエータとして、逆に変形を与えると電圧を発生するため、加速度センサ、カーナビ用圧電ジャイロ、ソナー、超音波診断素子等のセンサとして広範な用途がある。最近、様々な機械・システムを知能化する傾向が強まり、そのため、特にアクチュエータの重要性が高まっている。現在、汎用されている圧電セラミックスの主流は、チタン酸ジルコン酸鉛(PZT)を主成分とするものである。  Piezoelectric ceramics cause elongation deformation when a voltage is applied. As actuators such as ultrasonic vibrators, ultrasonic motors, precision positioning elements, and piezoelectric transformers, piezoelectric ceramics generate voltage when they are deformed. Widely used as a sensor for piezoelectric gyroscopes, sonars, ultrasonic diagnostic elements, etc. Recently, there is an increasing tendency to make various machines and systems intelligent, and in particular, the importance of actuators is increasing. At present, the mainstream of piezoelectric ceramics that are widely used is mainly composed of lead zirconate titanate (PZT).

このPZTセラミックスの圧電性は、菱面体構造で反強誘電体のジルコン酸鉛(PbZrO)と正方晶構造で強誘電体のチタン酸鉛(PbTiO)を組合わせたことによってもたらされるもので、菱面体相と正方晶相の相境界(Morphotropic phase boundary、MPB、PbZrO/PbTiO=52/48付近)付近の組成で最も高い。そのため、多くのPZT系圧電セラミックスはMPB付近の組成にして用いられる。この理由は、ペロブスカイト構造に不安定性が導入され、電気的な感受性が高まる結果、高い電気変位が得られるからである。The piezoelectricity of this PZT ceramic is brought about by the combination of antiferroelectric lead zirconate (PbZrO 3 ) with rhombohedral structure and ferroelectric lead titanate (PbTiO 3 ) with tetragonal structure. The composition is highest in the vicinity of the phase boundary between the rhombohedral phase and the tetragonal phase (Morphotropic phase boundary, MPB, PbZrO 3 / PbTiO 3 = 52/48). Therefore, many PZT-based piezoelectric ceramics are used with a composition near the MPB. This is because instability is introduced into the perovskite structure and electrical sensitivity is increased, resulting in high electrical displacement.

近年、圧電セラミックスを航空機、自動車、鉄道車両、船舶等の振動制御や土木建築物の免振用のアクチュエータとして利用しようとする機運が高まっているが、残念ながら前記したPZTセラミックスで実用できる電気歪(ΔL/L)はせいぜい2x10−3(0.2%)までであり、また縦効果の圧電定数d33は300〜600pC/N程度であるため、こうした要望に応えるには不十分であり、さらに高変位で高出力の特性を示す圧電セラミックス材料の開発が望まれている。In recent years, the momentum to use piezoelectric ceramics as an actuator for vibration control of aircraft, automobiles, railway vehicles, ships, etc. and vibration isolation of civil engineering buildings has increased. (ΔL / L) is at most 2 × 10 −3 (0.2%) and the piezoelectric constant d 33 of the longitudinal effect is about 300 to 600 pC / N, which is insufficient to meet such demands. Furthermore, development of a piezoelectric ceramic material exhibiting high displacement and high output characteristics is desired.

一方、最近、地球環境汚染の問題から種々の材料から鉛量を低減しようという動きがあり、圧電セラミックスも例外ではない。事実、PZTセラミックスを代表とする現在汎用されている圧電セラミックスのほとんどは多量の鉛を含んでいる。鉛問題に対しては、特にヨーロッパが深刻に受け止めており、近々、鉛含有製品の日本からヨーロッパへの輸出ができなくなる可能性がある。このような事情に鑑みて、現在、低鉛系あるいは非鉛系圧電セラミックス材料の開発研究が各方面で活発に行なわれているが、今のところPZTセラミックスほどの圧電特性を示す低鉛系あるいは非鉛系圧電セラミックス材料は生まれていない。  On the other hand, recently, there has been a movement to reduce the amount of lead from various materials due to the problem of global environmental pollution, and piezoelectric ceramics are no exception. In fact, most of the currently used piezoelectric ceramics represented by PZT ceramics contain a large amount of lead. Europe is particularly serious about the lead problem, and it may soon be impossible to export lead-containing products from Japan to Europe. In view of such circumstances, currently, research and development of low lead-based or non-lead-based piezoelectric ceramic materials has been actively conducted in various fields. Lead-free piezoelectric ceramic materials have not been born.

これらの問題点を解消するために、本発明者らは、先に、低鉛系圧電セラミックスとして、NaNbO−KNbO−PbTiO系圧電セラミックス材料を提案した(特許文献1)。
この圧電セラミックス材料は、鉛含量が従来のものに比べ著しく低減されているにも拘わらず、電気変位量が極めて高いといった優れた特性を発揮するものであるが、依然として鉛を含む組成からなるものであった。
従って、もし、低鉛ではなく、完全非鉛系で、PZTセラミックスと同等またはそれ以上の特性を示すアクチュエータ材料を得ることができれば、環境汚染問題の改善、更には計り知れない経済的波及効果が期待できる。
To solve these problems, the present inventors have previously as a low lead-based piezoelectric ceramics, and proposed NaNbO 3 -KNbO 3 -PbTiO 3 based piezoelectric ceramic material (Patent Document 1).
This piezoelectric ceramic material exhibits excellent properties such as extremely high electrical displacement, despite the fact that the lead content is significantly reduced compared to conventional materials, but it still has a composition containing lead. Met.
Therefore, if an actuator material that is not low-lead but completely lead-free and exhibits the same or better characteristics as PZT ceramics can be obtained, environmental pollution problems can be improved, and an immeasurable economic ripple effect can be obtained. I can expect.

特願2003−040125号Japanese Patent Application No. 2003-040125

本発明は、上記特願2003−040125号に係る提案を更に発展飛翔させたものであり、完全非鉛であるとともに、PZT系セラミックスを主流とする従来の実用化されている圧電材料よりも飛躍的に高い変位特性を示し、環境に優しい新規な固溶体組成物およびこのものから得られる圧電セラミックスを提供することを目的とする。  The present invention is a further development of the proposal related to the above-mentioned Japanese Patent Application No. 2003-040125, which is completely lead-free, and is a leap forward compared to a piezoelectric material that has been put to practical use and is mainly made of PZT ceramics. An object of the present invention is to provide a novel environmentally friendly solid solution composition exhibiting high displacement characteristics and a piezoelectric ceramic obtained therefrom.

本発明者らは、先に出願したNaNbO3-KNbO3-PbTiO3系低鉛圧電セラミックスの完全非鉛化を目途として、NaNbO3-KNbO3に対する各種酸化物の添加効果について綿密に研究を重ねた結果、PbTiO3の代わりにBaTiO3、SrTiO3、CaTiO3等の非鉛ペロブスカイトを添加しても、更には、ペロブスカイト酸化物でなくても単純酸化物を用いてもPbTiO3を使用した場合と同程度以上の電気変位量が得られるとの知見を得、本非鉛系高性能圧電セラミックスの発明を完成するに至った。
すなわち、本発明によれば、以下の発明が提供される。
(1)ペロブスカイトニオブ酸カリウムナトリウム(K1-xNax)NbO3と3価金属の酸化物M32O3を含有するペロブスカイト固溶体組成物(1-z)(K1-xNax)NbO3-zM32O3
(式中、M3はペロブスカイトA或いはBサイトに選択的に入りうる3価金属イオンを表し、Bi、La、Y、Ce、Pr、Ndから選ばれる。x及びzは、それぞれ0.4≦x≦0.6、0<z≦0.1の範囲の数値を表す。)
(2)M3がBi、La、Yから選ばれる上記(1)に記載のペロブスカイト固溶体組成物(1-z)(K1-xNax)NbO3-zM32O3
(3)上記(1)または(2)に記載のぺロブスカイト固溶体組成物を焼結して得られるぺロブスカイト固溶体圧電セラミックス。
(4)相対密度95%以上に緻密焼結したことを特徴とする上記(3)に記載のぺロブスカイト固溶体圧電セラミックス。
The present inventors have, as a goal to complete non-lead of NaNbO 3 -KNbO 3 -PbTiO 3 based low lead piezoelectric ceramic filed earlier, closely studying about the effect of adding various oxides for NaNbO 3 -KNbO 3 results, even with the addition of non-lead perovskite such as BaTiO 3, SrTiO 3, CaTiO 3 in place of PbTiO 3, further, if even using a simple oxide without a perovskite oxide using PbTiO 3 As a result, the inventors have obtained the knowledge that an electrical displacement amount equal to or higher than that of the present invention can be obtained, and have completed the invention of this lead-free high-performance piezoelectric ceramic.
That is, according to the present invention, the following inventions are provided.
(1) Perovskite solid solution composition (1-z) (K 1-x Na x ) NbO containing potassium perovskite sodium niobate (K 1-x Na x ) NbO 3 and trivalent metal oxide M3 2 O 3 3 -zM3 2 O 3 .
(Wherein, M3 represents a trivalent metal ions that enter the selective perovskite A or B-site, Bi, La, Y, Ce , Pr, Nd or et .x and z are chosen, 0.4 ≦ x ≦ respectively (Represents numerical values in the range of 0.6 and 0 <z ≦ 0.1.)
(2) The perovskite solid solution composition (1-z) (K 1-x Na x ) NbO 3 —zM3 2 O 3 according to the above (1), wherein M3 is selected from Bi, La, and Y.
(3) A perovskite solid solution piezoelectric ceramic obtained by sintering the perovskite solid solution composition described in (1) or (2) above.
(4) The perovskite solid solution piezoelectric ceramic according to (3) above, which is densely sintered to a relative density of 95% or more.

本発明による圧電セラミックスは、PZT系を代表とする従来材料よりも電気変位が飛躍的に改善されているだけでなく、鉛を含まないため環境に優しい高性能圧電セラミック材料として、新たな用途拡大の道を開くものである。本発明のセラミックスは、PZT系セラミックスと同様に超音波振動子、超音波モーター、精密位置決め素子、圧電トランス等のアクチュエータや、加速度センサ、カーナビ用圧電ジャイロ、ソナー、超音波診断素子等のセンサとして用いられるが、更には、航空機、自動車、鉄道車両、船舶等の振動制御や土木建築物の免振用のアクチュエータとしての新たな用途も期待できる。  Piezoelectric ceramics according to the present invention not only dramatically improve electrical displacement over conventional materials typified by PZT, but also contain new lead as an environment-friendly high-performance piezoelectric ceramic material that does not contain lead. Open the way. The ceramics of the present invention, like PZT ceramics, are used as actuators such as ultrasonic transducers, ultrasonic motors, precision positioning elements, piezoelectric transformers, and sensors such as acceleration sensors, piezoelectric gyroscopes for car navigation systems, sonars, and ultrasonic diagnostic elements. In addition, new applications can be expected as actuators for vibration control of aircraft, automobiles, railway vehicles, ships, etc. and for vibration isolation of civil engineering buildings.

本発明者らは、前記したように、特願2003−040125号発明において、NaNbO−KNbO−PbTiO系低鉛圧電セラミックスを提案したが、その後の検討により、この低鉛系圧電セラミックスが優れた電気変位特性を与えるのは、ほぼ以下の理由によるものであることを突き止めた。The present inventors, as described above, in Japanese Patent Application No. 2003-040125 Patent invention has been proposed NaNbO 3 -KNbO 3 -PbTiO 3 based low lead piezoelectric ceramic, the subsequent examination, the low lead-based piezoelectric ceramics It has been found that the excellent electrical displacement characteristics are given for the following reasons.

NaNbO−KNbO系ペロブスカイトにPbTiOを添加すると、(Na,K,Pb2+)(Nb5+,Ti4+)Oのように、Aサイトイオン(Na、K)の一部がPb2+で、Bサイトイオン(Nb5+)の一部がTi4+で置き換わったペロブスカイトとなる。このとき、Pb2+とTi4+は、元のイオンと比べてイオンサイズや価数が異なるため、結晶格子に不安定性が導入され、形成される強誘電ドメインのサイズは小さくなる。強誘電ドメインは、サイズが小さくなると印加電場により回転しやすくなるため、電場誘起歪も大きくなる。NaNbO−KNbO−PbTiO系高密度焼結体が高い圧電性を示す理由は、このようにドメイン構造の性質を変えたことによるものと考えられる。When PbTiO 3 is added to a NaNbO 3 -KNbO 3 perovskite, a part of the A site ion (Na + , K + ), such as (Na + , K + , Pb 2+ ) (Nb 5+ , Ti 4+ ) O 3 There in Pb 2+, part of B site ions (Nb 5+) is perovskite replaced by Ti 4+. At this time, Pb 2+ and Ti 4+ have different ion sizes and valences compared to the original ions, so that instability is introduced into the crystal lattice and the size of the formed ferroelectric domain is reduced. When the size of the ferroelectric domain is reduced, the ferroelectric domain is easily rotated by the applied electric field, so that the electric field induced strain is also increased. The reason why the NaNbO 3 —KNbO 3 —PbTiO 3 high-density sintered body exhibits high piezoelectricity is thought to be due to such a change in the properties of the domain structure.

すなわち、強誘電セラミックスの電場誘起ひずみ特性は、強誘電ドメインの回転しやすさに影響され、回転しやすさが増大すると電場誘起ひずみが増大する。よって、NaNbO−KNbOに添加する酸化物はPbTiOに特に限定されるものではなく、そのイオンサイズ或いは価数がNa、K、Nb5+のそれと差があるものであれば、NaNbO−KNbOの電場誘起歪み特性を向上する効果が期待される。そこで、本発明者等は、PbTiOの代わりにBaTiO、SrTiO、CaTiO等の非鉛ペロブスカイトを添加する実験例を積み重ねた結果、上記仮説が正しいものであるとの結論に達したのである。
また、ペロブスカイト酸化物でなくても3価の単純金属酸化物を添加してもイオンサイズや価数に差が生じることができる。この単純酸化物をペロブスカイトに添加した場合、その金属イオンは、ペロブスカイト格子のA、Bどちらかのサイトに選択的に入るが、電価のバランス上、一方は格子欠陥となる。いずれにしても、NaNbO−KNbOに対する単純酸化物の添加は、異種ペロブスカイトの添加と同様の効果をもたらすことも確認した。
That is, the electric field induced strain characteristics of the ferroelectric ceramics are affected by the ease of rotation of the ferroelectric domain, and the electric field induced strain increases as the ease of rotation increases. Therefore, the oxide added to NaNbO 3 -KNbO 3 is not particularly limited to PbTiO 3. If the ion size or valence is different from that of Na + , K + , and Nb 5+ , NaNbO 3 may be used. The effect of improving the electric field induced strain characteristics of 3- KNbO 3 is expected. Therefore, as a result of accumulating experimental examples in which non-lead perovskites such as BaTiO 3 , SrTiO 3 and CaTiO 3 are added instead of PbTiO 3 , the present inventors have concluded that the above hypothesis is correct. is there.
Even if not a perovskite oxide but a trivalent simple metal oxide is added, a difference in ion size and valence can be produced. When this simple oxide is added to the perovskite, the metal ion selectively enters either the A or B site of the perovskite lattice, but one of them becomes a lattice defect in terms of the balance of the valence. In any case, it was also confirmed that the addition of a simple oxide to NaNbO 3 —KNbO 3 has the same effect as the addition of a different perovskite.

参考例に係るペロブスカイト固溶体組成物は、(i)ペロブスカイト型ニオブ酸カリウムナトリウム(K1-xNax)NbO3とペロブスカイト型酸化物M1M2O3を含有し、一般式 (1-y)(K1-xNax)NbO3- yM1M2O3で表される混合酸化物を主成分とする。
ここで、M1M2O3は、2価のM1金属イオン(但し、鉛は除く)と4価のM2金属イオンからなるペロブスカイト型酸化物、またはペロブスカイト型酸化物Aサイトに選択的に入りうる3価のM1金属イオンとペロブスカイト型酸化物Bサイトに選択的に入りうる3価のM2金属イオンからなるペロブスカイト型酸化物を表す。x、y及びzは、それぞれ0.4≦x≦0.6、0<y≦0.1、0<z≦0.1の範囲の数値を表す。ただし、M1=Ba、M2=Tiのときのy範囲は0<y<0.05である。
M1としては、具体的に、ペロブスカイトAサイトに選択的に入りうる2価または3価金属イオン(但し、鉛は除く)が挙げられ、たとえば、Mg、Ca、Sr、Ba、Bi、La、Y、Ce、Prなどの金属イオンが例示され、この中でもBa、Sr、Ca等が好ましい。
M2としては、具体的に、ペロブスカイトBサイトに選択的に入りうる4価または3価金属イオンが挙げられ、たとえば、Ti、Zr、Sc、Ga、In、Zn、Fe が例示され、この中でもTi及びZrが好ましい。
本発明に係るペロブスカイト固溶体組成物は、(ii)ペロブスカイト型ニオブ酸カリウムナトリウム(K1-xNax)NbO3と3価金属の酸化物M32O3からなる混合酸化物(1-z)(K1-xNax)NbO3-zM32O3を主成分とする。
ここで、M3としては、ペロブスカイトA或いはBサイトに選択的に入りうる3価金属イオンであって、Bi、La、Y、Ce、Pr、Ndから選ばれ、中でもBi、La、Yが好ましい。xは、0.4≦x≦0.6の範囲の数値を表す。
上記(i)及び(ii)において、ペロブスカイト型酸化物M1M2O3または、3価金属の酸化物M32O3の使用割合は、ペロブスカイト型ニオブ酸カリウムナトリウム(K1-xNax)NbO3に対して10モル%以下、好ましくは5モル%以下である。
The perovskite solid solution composition according to the reference example includes (i) perovskite-type potassium sodium niobate (K 1-x Na x ) NbO 3 and perovskite-type oxide M1M2O 3 , and has the general formula (1-y) (K 1 -x Na x) NbO 3 - as a main component a mixed oxide represented by yM1M2O 3.
Here, M1M2O 3 is a trivalent that can selectively enter a perovskite oxide or a perovskite oxide A site composed of a divalent M1 metal ion (excluding lead) and a tetravalent M2 metal ion. This represents a perovskite type oxide composed of M1 metal ions and trivalent M2 metal ions that can selectively enter perovskite type oxide B sites. x, y, and z represent numerical values in the range of 0.4 ≦ x ≦ 0.6, 0 <y ≦ 0.1, and 0 <z ≦ 0.1, respectively. However, the y range when M1 = Ba and M2 = Ti is 0 <y <0.05.
Specific examples of M1 include divalent or trivalent metal ions (excluding lead) that can selectively enter the perovskite A site. For example, Mg, Ca, Sr, Ba, Bi, La, Y Metal ions such as Ce, Pr and the like are exemplified, and among these, Ba, Sr, Ca and the like are preferable.
Specific examples of M2 include tetravalent or trivalent metal ions that can selectively enter the perovskite B site, and examples thereof include Ti, Zr, Sc, Ga, In, Zn, and Fe. And Zr are preferred.
The perovskite solid solution composition according to the present invention comprises (ii) a mixed oxide (1-z) comprising perovskite-type potassium sodium niobate (K 1-x Na x ) NbO 3 and a trivalent metal oxide M3 2 O 3. (K 1-x Na x ) NbO 3 -zM3 2 O 3 is the main component.
Here, as the M3, a trivalent metal ions that enter the selective perovskite A or B-site, Bi, La, Y, Ce , Pr, Nd or al chosen, among others Bi, La, Y is preferably . x represents a numerical value in the range of 0.4 ≦ x ≦ 0.6.
In the above (i) and (ii), the perovskite type oxide M1M2O 3 or the trivalent metal oxide M3 2 O 3 is used in a perovskite type potassium sodium niobate (K 1-x Na x ) NbO 3 . It is 10 mol% or less with respect to it, Preferably it is 5 mol% or less.

本発明や参考例に係るペロブスカイト固溶体組成物は、ニオブ酸カリウムナトリウム(K,Na)NbO3を主成分とし、これに10モル%以下の前記した他のペロブスカイト酸化物(M1M2O3)または3価の単純金属酸化物(M32O3)を添加することにより得られる。
原料としては、炭酸塩、シュウ酸塩、硝酸塩、水酸化物、酸化物等、種々の形態のものを用いることができ、これらの原料を所定の組成に混合し、最終的な組成になるように調製すればよい。
The perovskite solid solution composition according to the present invention and the reference example is mainly composed of potassium sodium niobate (K, Na) NbO 3 and 10 mol% or less of the other perovskite oxide (M1M2O 3 ) or trivalent. It is obtained by adding a simple metal oxide (M3 2 O 3 ).
As raw materials, various forms such as carbonates, oxalates, nitrates, hydroxides, oxides and the like can be used, and these raw materials are mixed in a predetermined composition to obtain a final composition. Can be prepared.

本発明や参考例の前記ペロブスカイト固溶体組成物はこれを好ましくは相対密度95%以上に緻密焼結することにより圧電セラミックスとすることができる。
このような焼結手段は制限されるものではないが、常圧下で焼結できればそれに越したことはない。しかし、KNbO3-NaNbO3系材料は焼結が困難であるため、高密度焼結体を効率よく得るために加圧下で焼結できる加圧加熱焼結法を採用することが望ましい。
The perovskite solid solution composition of the present invention or the reference example can be made into a piezoelectric ceramic by densely sintering it preferably to a relative density of 95% or more.
Such a sintering means is not limited, but if it can be sintered under normal pressure, it will not exceed it. However, since the KNbO 3 —NaNbO 3 -based material is difficult to sinter, it is desirable to employ a pressure heating sintering method capable of sintering under pressure in order to efficiently obtain a high-density sintered body.

このような加圧加熱焼結法として、スパークプラズマ焼結法(Spark plasma sintering法、以下SPS法と呼ぶ)、ホットプレス(Hot press法、以下HP法と呼ぶ)、アンビル法、HIP法(熱間静水圧法)等が挙げられるが、本発明で好ましく用いられた方法は、SPS法とHP法である。  As such pressure heating sintering method, spark plasma sintering method (Spark plasma sintering method, hereinafter referred to as SPS method), hot press (Hot press method, hereinafter referred to as HP method), anvil method, HIP method (thermal Among them, the methods preferably used in the present invention are the SPS method and the HP method.

SPS法は、試料に加圧した状態で直流のパルス電流を流し、火花放電により瞬時に発生する高温プラズマの高エネルギーを利用して粒界拡散や粒子接合を起こさせる技術であり、最近、セラミックスの高速焼結法として注目されているものである。  The SPS method is a technology in which a DC pulse current is applied to a specimen in a pressurized state, and high temperature plasma generated instantaneously by spark discharge is used to cause grain boundary diffusion and particle bonding. It is attracting attention as a high-speed sintering method.

このSPS法では、昇温・保持時間も含めて概ね15分以内という短時間で焼結が完了するため、NaNbO−KNbO系のように易蒸発成分(特にNa及びK)を多量に含み、加熱による組成変動が懸念される材料の焼結法としては最も好ましいものである。In the SPS method, since the sintering is completed in a short time of approximately 15 minutes, including heating and holding time, NaNbO 3 -KNbO 3 system comprises large amounts of an easily volatile components (especially Na and K) as It is most preferable as a sintering method for materials in which composition fluctuation due to heating is a concern.

因みに、先の特願2003−040125に見られるように、NaNbO−KNbO−PbTiO系にSPS法を適用した結果、ほとんどの組成物が相対密度96%以上の焼結体に変換され、SPS法は高密度化に対して著しい効果を示し、また、得られたセラミックスの圧電変位特性も飛躍的に改善されることが実証されている。Incidentally, as seen in the previous Japanese Patent Application No. 2003-040125, as a result of applying the SPS method to the NaNbO 3 —KNbO 3 —PbTiO 3 system, most of the composition was converted into a sintered body having a relative density of 96% or more. It has been demonstrated that the SPS method has a remarkable effect on densification, and that the piezoelectric displacement characteristics of the obtained ceramics are dramatically improved.

本発明や参考例の圧電セラミックスのSPS法またはHP法による製造方法の一例を説明する。
まず、K2CO3、Na2CO3及びNb2O5 の主原料および添加剤としての酸化物を所望のペロブスカイト組成になるように配合し、ペロブスカイト固溶体単一相になるまで仮焼―粉砕―混合の過程を繰り返す。仮焼条件は、原料の種類及び組成によっても異なるが、通常、温度は850〜1000℃、時間は2〜10時間である。こうして得られたセラミックス粉を、SPS法またはHP法に供する。
An example of a method for manufacturing the piezoelectric ceramic of the present invention or the reference example by the SPS method or the HP method will be described.
First, the main raw materials of K 2 CO 3 , Na 2 CO 3 and Nb 2 O 5 and the oxides as additives are blended to achieve the desired perovskite composition, and calcined and pulverized until a perovskite solid solution single phase is obtained. -Repeat the mixing process. Although the calcination conditions vary depending on the type and composition of the raw material, the temperature is usually 850 to 1000 ° C. and the time is 2 to 10 hours. The ceramic powder thus obtained is subjected to the SPS method or the HP method.

SPS処理は、たとえば、住友石炭鉱業製SPS−1030型装置などの装置を用いて行えばよい。具体的には、グラファイト製のダイスに試料を適量充填した後、上下からグラファイト製パンチで荷重加圧しながら、真空中、上下パンチに直流のオンオフパルスを流せば、所望とする焼結体が得られる。このSPS法では、試料は5分程度で所定の温度に達し、その温度を5分程度保持することで焼結する。焼結温度は組成によって異なるが、1020〜1100℃の範囲である。得られる焼結体は、直径15mm、厚さ3〜4mmの大きさであり、相対密度は96%以上に達する。  What is necessary is just to perform SPS processing using apparatuses, such as the Sumitomo Coal Mining SPS-1030 type | mold apparatus, for example. Specifically, after a suitable amount of sample is filled in a graphite die, a desired sintered body can be obtained by applying a DC on / off pulse to the upper and lower punches in a vacuum while applying pressure with a graphite punch from above and below. It is done. In this SPS method, the sample reaches a predetermined temperature in about 5 minutes, and is sintered by holding the temperature for about 5 minutes. Although sintering temperature changes with compositions, it is the range of 1020-1100 degreeC. The obtained sintered body has a diameter of 15 mm and a thickness of 3 to 4 mm, and the relative density reaches 96% or more.

また、HP法は、たとえば東京真空(株)製PRESS−VAC−2型装置などの装置を用いて行えばよい。HP法では、試料をグラファイトダイスに入れ、上下パンチで加圧する点はSPS法と同じであるが、加熱はダイスの周囲に取り付けられた外部ヒーターによって行われる。
まず、仮焼したセラミックス粉をグラファイト製のダイスに適量充填した後、排気し、上下からグラファイト製パンチで荷重加圧しながら、外部ヒーターに通電して加熱する。このホットプレス法では、2時間程度で所定の温度(1100℃)に達するので、その温度を5〜10分程度保持することで相対密度95%以上の焼結体が得られる。
Moreover, what is necessary is just to perform HP method using apparatuses, such as the Tokyo Vacuum Co., Ltd. PRES-VAC-2 type apparatus. The HP method is the same as the SPS method in that a sample is placed in a graphite die and pressed with an upper and lower punch, but heating is performed by an external heater attached around the die.
First, an appropriate amount of the calcined ceramic powder is filled in a graphite die, and then evacuated, and heated by energizing an external heater while applying pressure with a graphite punch from above and below. In this hot press method, a predetermined temperature (1100 ° C.) is reached in about 2 hours, and a sintered body having a relative density of 95% or more can be obtained by maintaining the temperature for about 5 to 10 minutes.

なお、SPS法もHP法も、真空中グラファイトダイスを用いるので、焼結体はある程度還元されることは否めず、還元成分の混入で黒色化して得られるが、その後で酸素雰囲気中、例えば950℃で5時間程度の条件でアニールすることによって白色化される。  Note that since both the SPS method and the HP method use a graphite die in a vacuum, the sintered body is inevitably reduced to some extent, and is obtained by blackening with the inclusion of a reducing component. Thereafter, in an oxygen atmosphere, for example, 950 It is whitened by annealing at 5 ° C. for about 5 hours.

SPS法もHP法も、常圧法では不可能な高密度セラミックスを得るのに有効な手段であるが、HP法の方は、昇温・降温時間が長い分、試料の組成変動が多少懸念される。因みに、SPS法で得られたNaNbO−KNbO−PbTiO系セラミックス[1]を化学分析した結果、仕込み組成と最終製品の組成との間に大きな変動がないことも確認されている。Both the SPS method and the HP method are effective means for obtaining high-density ceramics that cannot be achieved by the atmospheric pressure method. However, the HP method is somewhat concerned about the compositional variation of the sample because of the long temperature rise / fall time. The Incidentally, as a result of chemical analysis of the NaNbO 3 —KNbO 3 —PbTiO 3 -based ceramics [1] obtained by the SPS method, it has also been confirmed that there is no significant variation between the charged composition and the final product composition.

以下、本発明を実施例、参考例により更に詳しく説明する。
本発明や参考例のペロブスカイト固溶体組成物を、上述のSPS装置及びHP装置を用いて焼結した。得られたセラミックスについては、圧電特性を評価するため、5mm×5mm×0.5mmサイズの板状に切り出し、両面を鏡面研磨した後、金スパッタ膜を付け、電極とした。次に、室温で30kV/cmの条件で分極処理を行った後、レーザー変位計を用いて印加電圧と電気変位の関係を調べた。
Hereinafter, the present invention will be described in more detail with reference to Examples and Reference Examples .
The perovskite solid solution compositions of the present invention and reference examples were sintered using the above SPS apparatus and HP apparatus. The obtained ceramic was cut into a 5 mm × 5 mm × 0.5 mm size plate and subjected to mirror polishing on both sides, and then a gold sputtered film was attached to make an electrode to evaluate piezoelectric characteristics. Next, after polarization treatment was performed at room temperature under the condition of 30 kV / cm, the relationship between the applied voltage and the electric displacement was examined using a laser displacement meter.

表1に、本発明や参考例のペロブスカイトセラミックスの組成、製造方法、焼結密度、表2に、参考例のペロブスカイトセラミックスの相転移温度tc、比誘電率、誘電損失、電気機械結合係数kp、周波数定数Nr、最大ひずみを示している。
得られたセラミックスの相対密度は、組成及び製造法によって多少の差はあるが、ほとんどの試料において96%以上は得られており、SPS法もHP法も本願の発明のセラミックスを高密度化する手段として有効であることが実証された。
Table 1 shows the composition, manufacturing method, and sintered density of the perovskite ceramics of the present invention and reference examples , and Table 2 shows the phase transition temperature t c , relative permittivity, dielectric loss, and electromechanical coupling coefficient kp of the perovskite ceramics of the reference examples. , Shows frequency constant Nr, maximum strain.
The relative density of the ceramics obtained varies slightly depending on the composition and manufacturing method, but 96% or more was obtained in most samples. Both the SPS method and the HP method increase the density of the ceramic of the present invention. It proved to be effective as a means.

参考例1〜3
この参考例群は、(Na0.5K0.5)NbO3組成に対してBaTiO3を1、2、4mol%と添加したものをSPS処理して得たセラミックスに関する。80kV/cmにおける変位は、それぞれ、0.9%、0.6%、0.6%という高い値であり、NaNbO3-KNbO3-BaTiO3系でも高性能な圧電体が生成しうることが知見される。また、BaTiO3の添加量が少ないほど、相転移温度tcが高くて電気機械結合係数kpおよび周波数定数Nrが優れていることが明らかである。
Reference examples 1-3
This group of reference examples relates to ceramics obtained by SPS treatment of BaTiO 3 added at 1, 2 and 4 mol% to the (Na 0.5 K 0.5 ) NbO 3 composition. Displacement at 80 kV / cm, respectively, 0.9%, 0.6%, a high value of 0.6%, it is knowledge NaNbO 3 -KNbO 3 -BaTiO high performance piezoelectric be three systems are able to form. It is also clear that the smaller the amount of BaTiO 3 added, the higher the phase transition temperature t c and the better the electromechanical coupling coefficient kp and the frequency constant Nr.

参考例4〜5
これらの参考例では、(Na0.6K0.4)NbO3または(Na0.4K0.6)NbO3組成に対してBaTiO3を2mol%添加したものをHP処理することによりセラミックスを得た。得られたセラミックスの電気変位は、0.3%〜0.5%という高い値を示すことが分かる。(Na0.6K0.4)NbO3ベースと(Na0.4K0.6)NbO3ベースを比較すると(Na0.4K0.6)NbO3をベースとした方が幾分高いようである。
Reference examples 4-5
In these reference examples , ceramics were obtained by subjecting (Na 0.6 K 0.4 ) NbO 3 or (Na 0.4 K 0.6 ) NbO 3 composition to 2 mol% addition of BaTiO 3 to HP treatment. It can be seen that the electrical displacement of the obtained ceramic shows a high value of 0.3% to 0.5%. Comparing the (Na 0.6 K 0.4 ) NbO 3 base and the (Na 0.4 K 0.6 ) NbO 3 base, it seems that the (Na 0.4 K 0.6 ) NbO 3 base is somewhat higher.

参考例6〜7
これらは、(Na0.4K0.6)NbO3組成に対してSrTiO3を2、8 mol%と添加したものをHP処理して得たセラミックスに関する。80kV/cmにおける変位は、0.2%である。
Reference Examples 6-7
These relate to ceramics obtained by subjecting a (Na 0.4 K 0.6 ) NbO 3 composition to SrTiO 3 added at 2 and 8 mol% and subjected to HP treatment. The displacement at 80 kV / cm is 0.2%.

参考例8〜10
これらは、(Na0.5K0.5)NbO3組成に対してSrTiO3を1、5、10 mol%と添加したものをSPS処理して得たセラミックスに関する。80kV/cmにおける変位は、NaNbO3-KNbO3-PbTiO3系及びNaNbO3-KNbO3-PbTiO3系の場合と比較して劣るもののPZT系の場合とほぼ匹敵する値である。また、実施例8〜10において、Srの代わりにCaを導入したものもほぼ同様な結果が得られた。
Reference examples 8-10
These relate to ceramics obtained by SPS treatment of 1,5,10 mol% of SrTiO 3 added to the (Na 0.5 K 0.5 ) NbO 3 composition. Displacement at 80 kV / cm is a value which is substantially comparable to that of PZT-based inferior as compared with the case of NaNbO 3 -KNbO 3 -PbTiO 3 system and NaNbO 3 -KNbO 3 -PbTiO 3 system. In Examples 8 to 10, the same results were obtained when Ca was introduced instead of Sr.

参考例11-14
これらは、(Na0.5K0.5)NbO3組成に対してBaZrO3あるいはSrZrO3を添加したものをSPS処理して得たセラミックスに関する。最大ひずみは0.2-0.4%の範囲であり、NaNbO3-KNbO3-BaTiO3系あるいはNaNbO3-KNbO3-SrTiO3系よりは幾分低い。
Reference Example 11-14
These relate to ceramics obtained by SPS treatment of (Na 0.5 K 0.5 ) NbO 3 composition with BaZrO 3 or SrZrO 3 added. Maximum strain is in the range of 0.2-0.4%, NaNbO 3 -KNbO 3 -BaTiO 3 system or NaNbO 3 -KNbO 3 -SrTiO somewhat lower than 3 system.

以上、参考例1〜14において、NaNbO3-KNbO3系に対する代表的な各種ペロブスカイト型酸化物の添加効果について示したが、これらの参考例では示さなかった他のペロブスカイト型化合物も先の理論からみてこれらと同等の効果を示すことは明らかである。 As described above, in Reference Examples 1 to 14, the effects of adding various perovskite oxides to the NaNbO 3 —KNbO 3 system have been shown. However, other perovskite compounds not shown in these reference examples are also based on the previous theory. Obviously, it shows the same effect as these.

実施例14
これらの実施例では、(Na0.5K0.5)NbO3組成に対してペロブスカイトA−サイトを選択的に置換しうる3価の金属酸化物La2O3及びBi2O3を添加し、HPによりセラミックスを作成した。得られたセラミックスの電気変位は、0.15〜0.25%の範囲であり、PZT系の場合にほぼ匹敵する値となった。
Examples 1 to 4
In these examples, trivalent metal oxides La 2 O 3 and Bi 2 O 3 capable of selectively substituting the perovskite A-site with respect to the (Na 0.5 K 0.5 ) NbO 3 composition were added, and by HP Made ceramics. The electric displacement of the obtained ceramics was in the range of 0.15 to 0.25%, which was a value almost comparable to that of the PZT system.

Figure 0004491537
Figure 0004491537

Figure 0004491537
Figure 0004491537

Claims (4)

ペロブスカイト型ニオブ酸カリウムナトリウム酸化物(K1-xNax)NbO3と3価金属の酸化物M32O3を含有するペロブスカイト固溶体組成物(1-z)(K1-xNax)NbO3-zM32O3
(式中、M3はペロブスカイトA或いはBサイトに選択的に入りうる3価金属イオンを表し、Bi、La、Y、Ce、Pr、Ndから選ばれる。x及びzは、それぞれ0.4≦x≦0.6、0<z≦0.1の範囲の数値を表す。)
Perovskite potassium sodium niobate oxide (K 1-x Na x ) NbO 3 and trivalent metal oxide M3 2 O 3 perovskite solid solution composition (1-z) (K 1-x Na x ) NbO 3 -zM3 2 O 3 .
(Wherein, M3 represents a trivalent metal ions that enter the selective perovskite A or B-site, Bi, La, Y, Ce , Pr, Nd or et .x and z are chosen, 0.4 ≦ x ≦ respectively (Represents numerical values in the range of 0.6 and 0 <z ≦ 0.1.)
M3がBi、La、Yから選ばれる請求項1に記載のペロブスカイト固溶体組成物(1-z)(K1-xNax)NbO3-zM32O3The perovskite solid solution composition (1-z) (K 1-x Na x ) NbO 3 -zM3 2 O 3 according to claim 1, wherein M3 is selected from Bi, La, and Y. 請求項1または請求項2に記載のぺロブスカイト固溶体組成物を焼結して得られるぺロブスカイト固溶体圧電セラミックス。  A perovskite solid solution piezoelectric ceramic obtained by sintering the perovskite solid solution composition according to claim 1. 相対密度95%以上に緻密焼結したことを特徴とする請求項3に記載のぺロブスカイト固溶体圧電セラミックス。  4. The perovskite solid solution piezoelectric ceramic according to claim 3, which is densely sintered to a relative density of 95% or more.
JP2005513469A 2003-08-28 2004-08-27 Perovskite solid solution composition and piezoelectric ceramics obtained therefrom Expired - Fee Related JP4491537B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003305110 2003-08-28
JP2003305110 2003-08-28
PCT/JP2004/012354 WO2005021461A1 (en) 2003-08-28 2004-08-27 Perovskite solid solution composition and piezoelectric ceramics produced therefrom

Publications (2)

Publication Number Publication Date
JPWO2005021461A1 JPWO2005021461A1 (en) 2007-11-01
JP4491537B2 true JP4491537B2 (en) 2010-06-30

Family

ID=34269291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005513469A Expired - Fee Related JP4491537B2 (en) 2003-08-28 2004-08-27 Perovskite solid solution composition and piezoelectric ceramics obtained therefrom

Country Status (2)

Country Link
JP (1) JP4491537B2 (en)
WO (1) WO2005021461A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111302798A (en) * 2020-02-25 2020-06-19 西安工业大学 Lanthanum oxide doped modified potassium-sodium niobate-based transparent ceramic and preparation method thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022854A (en) * 2005-07-15 2007-02-01 Toyota Motor Corp Potassium-sodium niobate based lead-free piezoelectric ceramic, and method for producing the same
WO2007119653A1 (en) * 2006-04-13 2007-10-25 Murata Manufacturing Co., Ltd. Ceramic powder, and method for production of ceramic powder
WO2008029574A1 (en) * 2006-09-08 2008-03-13 Konica Minolta Holdings, Inc. Droplet ejection head
US8354038B2 (en) * 2007-05-16 2013-01-15 National Institute Of Advanced Industrial Science And Technology Piezoelectric ceramic, and piezoelectric, dielectric or pyroelectric element using the same
JP5008090B2 (en) * 2008-10-16 2012-08-22 独立行政法人産業技術総合研究所 Lead-free piezoelectric ceramics and piezoelectric, dielectric and pyroelectric elements using the same
CN101857436B (en) * 2010-06-12 2013-03-13 中国地质大学(武汉) Preparation methodof potassium-sodium niobate base lead-free piezoelectric ceramic powder
CN101935213A (en) * 2010-09-07 2011-01-05 聊城大学 Relaxation type K-NA niobate (KNN) based piezoelectric ceramic complex as well as preparation method and application thereof
JP5711990B2 (en) * 2011-02-03 2015-05-07 Fdk株式会社 Piezoelectric equipment
JP5418725B2 (en) * 2011-04-15 2014-02-19 株式会社村田製作所 Piezoelectric thin film element
US20150311425A1 (en) * 2012-11-27 2015-10-29 Toyama Prefecture Method for manufacturing piezoelectric ceramic, piezoelectric ceramic, and piezoelectric element
US9147827B2 (en) * 2012-11-28 2015-09-29 Tdk Corporation Piezoelectric element, piezoelectric actuator, piezoelectric sensor, hard disk drive, and inkjet printer device
US9130169B2 (en) * 2013-03-14 2015-09-08 Tdk Corporation Piezoelectric element, piezoelectric actuator, piezoelectric sensor, hard disk drive, and inkjet printer device
US20160163960A1 (en) * 2013-07-25 2016-06-09 Hitachi Metals, Ltd. Crystal-oriented piezoelectric ceramic, piezoelectric element, and method for manufacturing crystal-oriented piezoelectric ceramic
WO2015033791A1 (en) * 2013-09-09 2015-03-12 株式会社村田製作所 Piezoelectric thin film element and method for manufacturing same
JP5737540B2 (en) * 2014-01-17 2015-06-17 セイコーエプソン株式会社 Piezoelectric element, liquid ejecting head, sensor and motor
CN107056290B (en) * 2016-11-04 2021-01-19 西安交通大学 Method for regulating Curie temperature of ferroelectric ceramic
JP6724266B2 (en) * 2018-03-01 2020-07-15 Jx金属株式会社 Potassium sodium niobate sputtering target and manufacturing method thereof
JP7406876B2 (en) * 2018-10-17 2023-12-28 キヤノン株式会社 Piezoelectric transformers and electronic equipment
CN113429205B (en) * 2021-07-16 2022-04-01 桂林电子科技大学 Transparent down-conversion photoluminescent ceramic material and preparation method and application thereof
WO2023090249A1 (en) * 2021-11-19 2023-05-25 住友化学株式会社 Sputtering target material and sputtering target

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612031B2 (en) * 1973-01-30 1981-03-18
JP3362473B2 (en) * 1993-09-08 2003-01-07 株式会社村田製作所 Piezoelectric ceramic composition
JP3259678B2 (en) * 1998-02-18 2002-02-25 株式会社村田製作所 Piezoelectric ceramic composition
JP3259677B2 (en) * 1998-02-18 2002-02-25 株式会社村田製作所 Piezoelectric ceramic composition
JP4929522B2 (en) * 2000-08-25 2012-05-09 株式会社豊田中央研究所 Piezoelectric ceramic composition
JP4467168B2 (en) * 2000-10-31 2010-05-26 京セラ株式会社 Piezoelectric ceramic and piezoelectric element
JP4003920B2 (en) * 2001-05-10 2007-11-07 Tdk株式会社 Piezoelectric ceramic composition, piezoelectric ceramic sintered body and electronic component
JP5000817B2 (en) * 2001-08-16 2012-08-15 株式会社豊田中央研究所 Piezoelectric ceramic composition, method for producing the same, and piezoelectric element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111302798A (en) * 2020-02-25 2020-06-19 西安工业大学 Lanthanum oxide doped modified potassium-sodium niobate-based transparent ceramic and preparation method thereof
CN111302798B (en) * 2020-02-25 2022-02-22 西安工业大学 Lanthanum oxide doped modified potassium-sodium niobate-based transparent ceramic and preparation method thereof

Also Published As

Publication number Publication date
WO2005021461A1 (en) 2005-03-10
JPWO2005021461A1 (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4491537B2 (en) Perovskite solid solution composition and piezoelectric ceramics obtained therefrom
EP2159206B1 (en) Piezoelectric ceramic, and piezoelectric, dielectric, and pyroelectric elements using the piezoelectric ceramic
Fan et al. Effects of Li2CO3 and Sm2O3 additives on low-temperature sintering and piezoelectric properties of PZN-PZT ceramics
JP4929522B2 (en) Piezoelectric ceramic composition
JP7078037B2 (en) Piezoelectric compositions and piezo elements
JP5929640B2 (en) Piezoelectric ceramic and piezoelectric element
Yoo et al. High-power properties of piezoelectric hard materials sintered at low temperature for multilayer ceramic actuators
JP5008090B2 (en) Lead-free piezoelectric ceramics and piezoelectric, dielectric and pyroelectric elements using the same
JP2006206429A (en) Piezoelectric solid solution composition, piezoelectric ceramic obtained by sintering the same and piezoelectric/dielectric element using the piezoelectric ceramic
JP4140796B2 (en) Piezoelectric ceramics
Hou et al. Effects of CuO addition on the structure and electrical properties of low temperature sintered Pb ((Zn1/3Nb2/3) 0.20 (Zr0. 50Ti0. 50) 0.80) O3 ceramics
KR101091192B1 (en) Composition and fabrication method of lead-free piezoelectric ceramics for low temperature firing
JP3468461B2 (en) Piezoelectric ceramic composition
JP3020493B1 (en) Piezoelectric ceramics
JP3032761B1 (en) Piezoelectric ceramics
KR20130090696A (en) Pzn-pzt piezoelectric ceramic and method for manufactruing the same
JP2001181034A (en) Piezoelectric ceramic composition
JP4291545B2 (en) Piezoelectric device
JP2014069988A (en) Piezoelectric ceramic and piezoelectric element using the same
Jin et al. Piezoelectric Properties of 0.2 [Pb (Mg 1/3 Nb 2/3)]-0.8 [PbTiO 3-PbZrO 3] Ceramics Sintered at a Low Temperature with the Aid of Li 2 O
JPH0516380B2 (en)
JP2627480B2 (en) Oxide piezoelectric material
JP6105777B2 (en) Piezoelectric ceramic and piezoelectric element using the same
JP2001097774A (en) Piezoelectric porcelain composition
CN117843364B (en) Piezoelectric ceramic composition and piezoelectric ceramic element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees