JP4467168B2 - Piezoelectric ceramic and piezoelectric element - Google Patents
Piezoelectric ceramic and piezoelectric element Download PDFInfo
- Publication number
- JP4467168B2 JP4467168B2 JP2000332653A JP2000332653A JP4467168B2 JP 4467168 B2 JP4467168 B2 JP 4467168B2 JP 2000332653 A JP2000332653 A JP 2000332653A JP 2000332653 A JP2000332653 A JP 2000332653A JP 4467168 B2 JP4467168 B2 JP 4467168B2
- Authority
- JP
- Japan
- Prior art keywords
- nanbo
- occupying
- piezoelectric ceramic
- site
- piezoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 title claims description 40
- 239000013078 crystal Substances 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 15
- 229910013641 LiNbO 3 Inorganic materials 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 125000004436 sodium atom Chemical group 0.000 claims 1
- 230000008878 coupling Effects 0.000 description 23
- 238000010168 coupling process Methods 0.000 description 23
- 238000005859 coupling reaction Methods 0.000 description 23
- 239000011734 sodium Substances 0.000 description 18
- 229910052573 porcelain Inorganic materials 0.000 description 11
- 239000000843 powder Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000003513 alkali Substances 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- UYLYBEXRJGPQSH-UHFFFAOYSA-N sodium;oxido(dioxo)niobium Chemical compound [Na+].[O-][Nb](=O)=O UYLYBEXRJGPQSH-UHFFFAOYSA-N 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000005621 ferroelectricity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、圧電磁器および圧電素子に関し、特に、圧電共振子および発振子に好適に用いられる圧電磁器および圧電素子に関するものである。
【0002】
【従来技術】
近年、鉛を含有せず、高い圧電性を示すセラミック材料として、ニオブ酸アルカリ系の圧電磁器が注目されている。
【0003】
このニオブ酸アルカリ系の酸化物の中において、ニオブ酸ナトリウム(NaNbO3)は、ぺロブスカイト(ABO3)型に分類される酸化物であるが、例えば、Japan Journal of Applied Physics, p.3221, vol.31, 1992に記載されているように、それ自身では、−133℃付近よりも低い温度下でのみ強誘電性を示し、圧電共振子および発振子用材料の一般的な使用温度である−20〜80℃の範囲においては圧電性を示さず、圧電材料としての利用ができない。
【0004】
また、j.Phys:Condens.Matter,p6833,vol.6、1994.には、Naの一部をMnで置換したニオブ酸ナトリウム(NaNbO3)が開示されており、その組成では圧電特性を示さないことが開示されている。
【0005】
ところが、NaNbO3に対し、Ba0.5NbO3やSr0.5NbO3などの副成分を含有させると、圧電性を示すようになることが、例えば、特開平9−165262号公報の中に記載されている。このようなNaNbO3系の圧電セラミックスは、比誘電率が低く、電気機械結合係数が高く、かつ、機械的品質係数が比較的高いという特徴を有している。
【0006】
また、例えば、特開昭57−29396号公報に開示されるように、KxNayLizNbO3系セラミックスは、比誘電率が低く、高い電気機械結合係数を有すると同時に、低い機械的品質係数を有する圧電磁器であり、圧電共振子や発振子用材料としての利用が考えられている。
【0007】
【発明が解決しようとする課題】
しかしながら、従来のNaNbO3を主成分とする圧電磁器は、電気機械結合係数が高く、比誘電率が100から200程度と低く、高い比誘電率と高い電気機械結合係数が同時に要求されるフィルタ用材料などの用途には不向きであるという問題があった。
【0008】
また、従来のKxNayLizNbO3系セラミックスは、高い比誘電率と良好な電気機械結合係数が得られるものの、共振周波数の温度係数が大きいという問題があった。
【0009】
本発明は、比誘電率が高く、良好な電気機械結合係数を有する圧電磁器および圧電素子を提供することを目的とし、さらには、共振周波数の温度係数の絶対値が小さいニオブ酸アルカリ系の圧電磁器および圧電素子を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の圧電磁器は、NaNbO3型結晶粒子からなり、該NaNbO 3 型結晶粒子のAサイトを占めるNaの一部がMnで置換され、Bサイトを占めるNbの一部がTiで置換されている圧電磁器であって、金属元素として少なくともNa、Nb、MnおよびTiを含有し、これらの金属元素のモル比による組成式を(1−x)NaNbO 3 +xMnTiO 3 と表した時、xが0.014≦x≦0.08の条件を満足することを特徴とする。
このような圧電磁器では、比誘電率が800以上と高く、良好な電気機械結合係数を示し、キュリー温度が250℃以上と高い圧電磁器を得ることが可能となる。
【0011】
従来、NaNbO3のAサイトを占めるNaの一部をMnで置換しても圧電性を示さないことが知られているが、本発明では、NaNbO3型結晶粒子からなり、Aサイトを占めるNaの一部がMnで置換され、Bサイトを占めるNbの一部がTiで置換されているので、比誘電率が高く、良好な電気機械結合係数を有する等、優れた圧電特性を示すことができる。
【0012】
Aサイトを占めるNaがMnで、Bサイトを占めるNbがTiで、それぞれ1.4原子%以上置換されていることが望ましい。NaのMnによる置換量、NbのTiにより置換量を1.4原子%以上とすることにより、室温における結晶相を変化させることができ、圧電特性を飛躍的に向上できる。
【0015】
また、本発明の圧電磁器は、NaNbO 3 型結晶粒子からなり、該NaNbO 3 型結晶粒子のAサイトを占めるNaの一部がMnで置換され、Bサイトを占めるNbの一部がTiで置換されている圧電磁器であって、金属元素として少なくともNa、Nb、MnおよびTiを含有し、これらの金属元素のモル比による組成式を(1−x)NaNbO3+xMnTiO3と表した時、xが0.014≦x≦0.08の条件を満足する主成分と、KNbO3で表される副成分とを含有し、該副成分を全量中0.5〜15モル%含有することを特徴とする。これにより、電気機械結合係数をより高くできるととともに、共振周波数の温度係数の絶対値を小さくすることが可能となる。
【0016】
さらに、本発明の圧電磁器は、NaNbO 3 型結晶粒子からなり、該NaNbO 3 型結晶粒子のAサイトを占めるNaの一部がMnで置換され、Bサイトを占めるNbの一部がTiで置換されている圧電磁器であって、金属元素として少なくともNa、Nb、MnおよびTiを含有し、これらの金属元素のモル比による組成式を(1−x)NaNbO 3 +xMnTiO 3 と表した時、xが0.014≦x≦0.08の条件を満足する主成分と、LiNbO3で表される副成分とを含有するとともに、該副成分を全量中0.5〜10モル%含有することを特徴とする。これにより、キュリー温度を向上することが可能となり、半田付けリフローなどで高温に晒された場合においても、特性の安定性を高めることが可能となる。
【0017】
また、本発明の圧電素子は、上記した圧電磁器の両面に電極を形成してなるものである。
【0018】
圧電磁器は、上記したように、比誘電率が高く、良好な電気機械結合係数を示し、さらにキュリー温度が高く、共振周波数の温度係数を小さくできるという特徴を有するため、圧電共振子や発振子用材料としての優れた特性を発揮できる。
【0019】
【発明の実施の形態】
本発明の圧電磁器は、NaNbO3型結晶粒子からなり、Aサイトを占めるNaの一部がMnで置換され、Bサイトを占めるNbの一部がTiで置換されているものであり、Aサイトを占めるNaが、Mnで1.4原子%以上置換されていることが望ましい。
【0020】
本発明の圧電磁器は、NaNbO3型結晶粒子からなるもので、添加量が増加した場合にはMnの一部が粒界に存在する場合もあるが、Mnは殆どNaNbO3内に固溶し、Naの一部と置換される。本発明の圧電磁器は粒界は殆ど存在しない。また、後述するKはAサイトを占めるNaの一部を置換している。Liは、殆どNaの一部と置換されているが、Tiの一部と置換される場合もある。
【0021】
また、本発明の圧電磁器は、金属元素として少なくとNa、Nb、MnおよびTiを含有し、これらの金属元素のモル比による組成式を(1−x)NaNbO3+xMnTiO3と表した時、xが0.014≦x≦0.08の条件を満足するものである。言い換えれば、NaNbO3に対し、副成分としてMnTiO3をモル比で全量中1.4〜8モル%の範囲で含有することを特徴とする。
【0022】
MnTiO3の含有量xを0.014〜0.08としたのは、xが0.014未満では、比誘電率が低く、良好な電気機械的結合係数が得られないからである。一方、xが0.08を越える場合には、キュリー温度が250℃以下まで低下するからである。
【0023】
MnTiO3の含有量xは、比誘電率および電気機械的結合係数を高くし、キュリー温度を高くするという点から、0.02〜0.05であることが望ましい。
【0024】
このような圧電磁器では、比誘電率が800以上と高く、良好な電気機械結合係数を示し、キュリー温度を300℃以上とすることができる。
【0025】
また、本発明では、金属元素として少なくともNa、Nb、MnおよびTiを含有し、これらの金属元素のモル比による組成式を(1−x)NaNbO3+xMnTiO3と表した時、xが0.014≦x≦0.08の条件を満足する主成分と、KNbO3で表される副成分を含有するとともに、該副成分を全量中0.5〜15モル%の範囲で含有することが望ましい。これにより、KNbO3を含有することにより電気機械結合係数を高くできると同時に、共振周波数の温度係数の絶対値を小さくすることが可能となる。
【0026】
KNbO3の含有量を全量0.5〜15モル%の範囲としたのは、含有量が0.5モル%未満では、電気機械結合係数と共振周波数の温度特性の向上効果が小さく、一方、含有量が15モル%を越えると、キュリー温度が低下する傾向にあるからである。
【0027】
KNbO3は、特に電気機械結合係数およびキュリー温度を高くし、共振周波数の温度係数の絶対値を小さくするという点から、全量2〜10モル%含有することが望ましい。
【0028】
また、本発明の圧電磁器では、上記主成分と、副成分としてLiNbO3を含有し、LiNbO3を全量中0.5〜10モル%の範囲で含有することが望ましい。
【0029】
これにより、上記構成で得られる圧電磁器のキュリー温度を向上することが可能となり、半田付けリフローなどで高温に晒された場合においても、特性の安定性を高めることが可能となる。
【0030】
LiNbO3の含有量を全量中0.5〜10モル%の範囲としたのは、含有量が0.5モル%未満では、キュリー温度向上効果が小さく、一方、含有量が10モル%を越えると、絶縁性が低下し、分極処理が困難となる傾向にあるからである。
【0031】
LiNbO3の含有量は、キュリー温度向上効果が大きく、絶縁性を大きくし、分極処理が容易という点から、全量中2〜4モル%含有することが望ましい。
【0032】
特に、上記主成分と、副成分としてKNbO3とLiNbO3とを含有し、KNbO3を全量0.5〜15mol%、LiNbO3を全量中0.5〜10mol%の範囲で含有することが望ましい。
【0033】
本発明の圧電磁器は、例えば、次のようにして製造することができる。まず、Nb2O5、K2CO3、Na2CO3、Li2CO3、MnCO3、TiO2の原料を用いて、予め所望の組成になるよう秤量し、これをZrO2ボールを用いて湿式混合する。この混合粉体を900〜1050℃の温度で仮焼成し、所望の組成の合成粉体を得る。
【0034】
これを上記ボールを用いて湿式粉砕し、乾燥させ、この混合粉末に有機バインダーを加え、金型プレス、静水圧プレス等により所望の形状に成形した後、これを大気中、1080〜1250℃の温度で2〜3時間焼成して磁器を得ることができる。
【0035】
仮焼粉体の粉砕後における粉末の平均粒径は、磁器の焼結性を向上させ、緻密な磁器を得るという観点から、0.3〜0.8μmの範囲であることが望ましい。さらに、使用する各原料粉末は酸化物だけでなく、炭酸塩、酢酸塩または有機金属などの化合物のいずれであっても、焼成などの熱処理プロセスによって酸化物になるものであれば何ら差し支えない。
【0036】
尚、本発明の圧電磁器では、ZrO2ボールの成分が混入する場合がある。また、不純物としては、Zr、Rb等が混入する場合がある。さらに、NaNbO3の一部を、第1遷移金属、Ta、希土類元素等で置換しても良い。特にTaで置換することにより、共振周波数の温度特性を向上することができる。
【0037】
【実施例】
出発原料として、Nb2O5、K2CO3、Na2CO3、Li2CO3、MnCO3、TiO2の原料粉末を混合した後、この混合粉体を1000℃で3時間仮焼し、金属元素のモル比による組成式(1−x)NaNbO3+xMnTiO3のxが、表1、2に示す値となるような仮焼粉体、およびxが表2で示す値でKNbO3、LiNbO3で表される副成分を表2に示す量となるような仮焼粉体を作製した。
この混合仮焼粉体をZrO2ボールを用いたボールミルで0.5μmとなるまで粉砕した。
【0038】
次いで、この仮焼粉体の粉砕物に有機バインダーを混合して造粒し、得られた粉末を150MPaの圧力で直径20mm、厚さ1.5mmの円板に成形した後、この成形体を大気中において950〜1150℃で2時間焼成して円板状の磁器を得た。得られた磁器板の粉末X線回折パターンを測定した結果、本発明に係る試料は、いずれもニオブ酸アルカリ系に特有なペロブスカイト型の結晶構造を有しており、発光分光分析(EPNA)により結晶粒子の元素分析を行ったところ、Na、Mn、Nb、Tiが検出されており、これらが固溶していることを確認した。得られた磁器を0.5mmの厚みになるまで研磨して磁器板を得た。
【0039】
そして、この磁器板の上下面に銀電極を形成して圧電磁器板を得た。そして、この圧電磁器板に対し、150〜200℃のシリコンオイル中で3〜4kV/mmの直流電界を30分間印加して分極処理を行った。
【0040】
そして、これらの圧電素子の静電容量、共振・反共振周波数、共振抵抗をインピーダンスアナライザを用いて測定し、比誘電率、電気機械結合係数を求めた。静電容量の温度変化を測定し、キュリー温度を求めた。
【0041】
また、共振周波数をfrとして、−20〜80℃の温度範囲で共振周波数を測定し、−20〜80℃におけるfrの変化量(Δfr)、20℃での共振周波数をfr(20)を用いて、式:frTC=Δfr/{fr(20)×100}×106(ppm/℃)から、共振周波数の温度係数frTCを求め、これらの結果を表1、2に記載した。なお、表1の試料No.8は参考例を示す。
【0042】
【表1】
【0043】
【表2】
【0044】
本発明の試料No.2〜7は、磁器の比誘電率が800以上と高く、また、電気機械結合係数は15%以上であり、キュリー温度が250℃以上であることがわかる。特に、試料No.3〜5は、電気機械結合係数が20%以上であると同時に、300℃以上のキュリー温度を示すことがわかる。一方、試料No.1では比誘電率が小さいことが判る。
【0045】
さらに、表2から、KNbO3を添加した本発明の試料No.10〜16では、電気機械結合係数が向上することがわかる。特に、本発明の試料No.11〜15は、電気機械結合係数が30以上で、共振周波数の温度係数の絶対値が68ppm/℃以下と小さく温度特性に優れることがわかる。さらに、磁器の比誘電率が1000以上と高く、キュリー温度が275℃以上であることがわかる。
【0046】
さらに、LiNbO3を添加した本発明の試料No.19〜23は、添加効果によってキュリー温度が向上することがわかる。特に、本発明の試料No.20〜23は、キュリー温度が320℃以上と高く、電気機械結合係数が30%以上と優れると同時に、共振周波数の温度係数の絶対値も、50ppm/℃以下と小さく優れた圧電磁器であることがわかる。
【0047】
【発明の効果】
本発明の圧電磁器では、NaNbO3型結晶粒子からなり、該NaNbO 3 型結晶粒子のAサイトを占めるNaの一部がMnで置換され、Bサイトを占めるNbの一部がTiで置換されている圧電磁器であって、金属元素のモル比による組成式を(1−x)NaNbO3+xMnTiO3と表した時、xが0.014≦x≦0.08の条件を満足すると、比誘電率が800以上と高く、良好な電気機械結合係数を示し、キュリー温度を250℃以上とすることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric ceramic and a piezoelectric element, and more particularly to a piezoelectric ceramic and a piezoelectric element that are suitably used for a piezoelectric resonator and an oscillator.
[0002]
[Prior art]
In recent years, alkaline niobate piezoelectric ceramics have attracted attention as ceramic materials that do not contain lead and exhibit high piezoelectricity.
[0003]
Among these alkali niobate-based oxides, sodium niobate (NaNbO 3 ) is an oxide classified into the perovskite (ABO 3 ) type. For example, Japan Journal of Applied Physics, p. 3221, vol. 31, 1992, itself exhibits ferroelectricity only at temperatures lower than around −133 ° C., which is −20, which is a general use temperature for piezoelectric resonator and oscillator materials. In the range of -80 ° C., it does not show piezoelectricity and cannot be used as a piezoelectric material.
[0004]
J. Phys: Condens. Matter, p6833, vol. 6, 1994. Discloses sodium niobate (NaNbO 3 ) in which a part of Na is substituted with Mn, and discloses that the composition does not exhibit piezoelectric properties.
[0005]
However, with respect to NaNbO 3, the inclusion of auxiliary components such as Ba 0.5 NbO 3 and Sr 0.5 NbO 3, it is shown a piezoelectric property, for example, it is described in JP-A-9-165262 JP Yes. Such NaNbO 3 type piezoelectric ceramics are characterized by a low relative dielectric constant, a high electromechanical coupling coefficient, and a relatively high mechanical quality factor.
[0006]
Further, for example, as disclosed in JP-A-57-29396, K x Na y Li z NbO 3 based ceramics, low dielectric constant and having a high electromechanical coupling factor at the same time, low mechanical It is a piezoelectric ceramic having a quality factor and is considered to be used as a material for piezoelectric resonators and oscillators.
[0007]
[Problems to be solved by the invention]
However, a conventional piezoelectric ceramic mainly composed of NaNbO 3 has a high electromechanical coupling coefficient, a low relative dielectric constant of about 100 to 200, and a filter for which a high relative dielectric constant and a high electromechanical coupling coefficient are required at the same time. There was a problem that it was unsuitable for uses such as materials.
[0008]
Further, the conventional K x Na y Li z NbO 3 based ceramics, although higher dielectric constant and good electromechanical coupling coefficient is obtained, there is a problem that the temperature coefficient of resonant frequency is large.
[0009]
An object of the present invention is to provide a piezoelectric ceramic and a piezoelectric element having a high relative dielectric constant and a good electromechanical coupling coefficient, and further, an alkali niobate-based piezoelectric having a small absolute value of a temperature coefficient of a resonance frequency. An object is to provide a porcelain and a piezoelectric element.
[0010]
[Means for Solving the Problems]
The piezoelectric ceramic of the present invention comprises NaNbO 3 type crystal particles, wherein a part of Na occupying the A site of the NaNbO 3 type crystal particles is replaced with Mn, and a part of Nb occupying the B site is replaced with Ti. a piezoelectric ceramic are, when containing at least Na, Nb, Mn and Ti as metal elements, representing the composition formula by molar ratio of these metal elements and (1-x) NaNbO 3 + xMnTiO 3, x is 0 .014 ≦ x ≦ 0.08 is satisfied .
In such a piezoelectric ceramic, it is possible to obtain a piezoelectric ceramic having a high relative dielectric constant of 800 or higher, a good electromechanical coupling coefficient, and a high Curie temperature of 250 ° C. or higher.
[0011]
Conventionally, it is known that even if a part of Na occupying the A site of NaNbO 3 is replaced with Mn, piezoelectricity is not exhibited. However, in the present invention, NaNbO 3 type crystal particles are used, and Na occupying the A site. Part of Nb is substituted with Mn and part of Nb occupying the B site is substituted with Ti, so that it has excellent piezoelectric properties such as high dielectric constant and good electromechanical coupling coefficient. it can.
[0012]
It is desirable that Na occupying the A site is Mn and Nb occupying the B site is Ti, each being substituted by 1.4 atomic% or more. By setting the amount of substitution of Na by Mn and the amount of substitution by Nb Ti by 1.4 atomic% or more, the crystal phase at room temperature can be changed, and the piezoelectric characteristics can be dramatically improved.
[0015]
The piezoelectric ceramic of the present invention is composed of NaNbO 3 type crystal particles, a part of Na occupying the A site of the NaNbO 3 type crystal particles is replaced with Mn, and a part of Nb occupying the B site is replaced with Ti. a piezoelectric ceramic which is when, containing at least Na, Nb, Mn and Ti as metal elements, representing the composition formula by molar ratio of these metal elements and (1-x) NaNbO 3 + xMnTiO 3, x a main component but to satisfy the condition of 0.014 ≦ x ≦ 0.08, and containing a sub-component represented by K NbO 3, that the auxiliary component contains 0.5 to 15 mol% in the total amount Features . As a result, the electromechanical coupling coefficient can be further increased, and the absolute value of the temperature coefficient of the resonance frequency can be reduced.
[0016]
Furthermore, the piezoelectric ceramic of the present invention comprises NaNbO 3 type crystal particles, a part of Na occupying the A site of the NaNbO 3 type crystal particles is replaced with Mn, and a part of Nb occupying the B site is replaced with Ti. a piezoelectric ceramic which is when, containing at least Na, Nb, Mn and Ti as metal elements, representing the composition formula by molar ratio of these metal elements and (1-x) NaNbO 3 + xMnTiO 3, x a main component but to satisfy the condition of 0.014 ≦ x ≦ 0.08, while containing a sub component represented by LiNbO 3, that the auxiliary component contains 0.5 to 10 mol% in the total amount Features . As a result, the Curie temperature can be improved, and the stability of characteristics can be improved even when exposed to high temperatures by soldering reflow or the like.
[0017]
In addition, the piezoelectric element of the present invention is formed by forming electrodes on both surfaces of the above-described piezoelectric ceramic.
[0018]
As described above, the piezoelectric ceramic has the characteristics that it has a high relative dielectric constant, exhibits a good electromechanical coupling coefficient, has a high Curie temperature, and can reduce the temperature coefficient of the resonance frequency. Excellent properties as a material for use.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The piezoelectric ceramic of the present invention is composed of NaNbO 3 type crystal particles, wherein a part of Na occupying the A site is replaced with Mn, and a part of Nb occupying the B site is replaced with Ti. It is desirable that Na occupying 1.4% or more is substituted with Mn.
[0020]
The piezoelectric ceramic of the present invention is composed of NaNbO 3 type crystal particles. When the amount added is increased, a part of Mn may exist at the grain boundary, but Mn is almost dissolved in NaNbO 3 . , Replaced with part of Na. The piezoelectric ceramic of the present invention has almost no grain boundary. Further, K described later replaces a part of Na occupying the A site. Li is almost replaced with a part of Na, but may be replaced with a part of Ti.
[0021]
The case, the piezoelectric ceramic of the present invention, which contains the least Na, Nb, Mn and Ti as metal elements, representing the composition formula by molar ratio of these metal elements and (1-x) NaNbO 3 + xMnTiO 3, x satisfies the condition of 0.014 ≦ x ≦ 0.08. In other words, with respect NaNbO 3, characterized in that it contains in the range of 1.4 to 8 mol% in the total amount of MnTiO 3 as a secondary component in a molar ratio.
[0022]
The reason why the content x of MnTiO 3 is set to 0.014 to 0.08 is that when x is less than 0.014, the relative dielectric constant is low and a good electromechanical coupling coefficient cannot be obtained. On the other hand, when x exceeds 0.08, the Curie temperature decreases to 250 ° C. or lower.
[0023]
The content x of MnTiO 3 is desirably 0.02 to 0.05 in terms of increasing the relative dielectric constant and the electromechanical coupling coefficient and increasing the Curie temperature.
[0024]
Such a piezoelectric ceramic has a high relative dielectric constant of 800 or more, exhibits a good electromechanical coupling coefficient, and can have a Curie temperature of 300 ° C. or more.
[0025]
In the present invention, when containing at least Na, Nb, Mn and Ti as metal elements, representing the composition formula by molar ratio of these metal elements and (1-x) NaNbO 3 + xMnTiO 3, x is 0. It is desirable that the main component satisfying the condition of 014 ≦ x ≦ 0.08 and the subcomponent represented by KNbO 3 are contained, and the subcomponent is contained in the range of 0.5 to 15 mol% in the total amount. . Thereby, by containing KNbO 3 , the electromechanical coupling coefficient can be increased, and at the same time, the absolute value of the temperature coefficient of the resonance frequency can be decreased.
[0026]
The total content of KNbO 3 is in the range of 0.5 to 15 mol%. If the content is less than 0.5 mol%, the effect of improving the temperature characteristics of the electromechanical coupling coefficient and the resonance frequency is small. This is because if the content exceeds 15 mol%, the Curie temperature tends to decrease.
[0027]
The total amount of KNbO 3 is desirably 2 to 10 mol%, particularly from the viewpoint of increasing the electromechanical coupling coefficient and the Curie temperature and decreasing the absolute value of the temperature coefficient of the resonance frequency.
[0028]
Further, in the piezoelectric ceramic of the present invention, the above-mentioned main components, contains LiNbO 3 as a secondary component, it is desirable to include LiNbO 3 in the range of 0.5 to 10 mol% total amount.
[0029]
Thereby, it becomes possible to improve the Curie temperature of the piezoelectric ceramic obtained by the said structure, and when it exposes to high temperature by soldering reflow etc., it becomes possible to improve the stability of a characteristic.
[0030]
The reason why the content of LiNbO 3 is in the range of 0.5 to 10 mol% in the total amount is that if the content is less than 0.5 mol%, the effect of improving the Curie temperature is small, while the content exceeds 10 mol%. This is because the insulating property is lowered and the polarization process tends to be difficult.
[0031]
The content of LiNbO 3 is desirably 2 to 4 mol% in the total amount from the viewpoint that the effect of improving the Curie temperature is great, the insulation is increased, and the polarization treatment is easy.
[0032]
In particular, it is desirable to contain KNbO 3 and LiNbO 3 as subcomponents, KNbO 3 in a total amount of 0.5 to 15 mol%, and LiNbO 3 in a range of 0.5 to 10 mol% in the total amount. .
[0033]
The piezoelectric ceramic of the present invention can be manufactured as follows, for example. First, the raw materials of Nb 2 O 5 , K 2 CO 3 , Na 2 CO 3 , Li 2 CO 3 , MnCO 3 , and TiO 2 are weighed in advance to have a desired composition, and this is used with a ZrO 2 ball. And wet mix. This mixed powder is calcined at a temperature of 900 to 1050 ° C. to obtain a synthetic powder having a desired composition.
[0034]
This is wet pulverized using the above balls, dried, an organic binder is added to the mixed powder, and the mixture is molded into a desired shape by a die press, an isostatic press, etc. The porcelain can be obtained by firing at a temperature for 2 to 3 hours.
[0035]
The average particle size of the powder after pulverization of the calcined powder is preferably in the range of 0.3 to 0.8 μm from the viewpoint of improving the sinterability of the porcelain and obtaining a dense porcelain. Furthermore, each raw material powder to be used is not limited to an oxide, and any compound such as carbonate, acetate or organic metal may be used as long as it becomes an oxide by a heat treatment process such as firing.
[0036]
In the piezoelectric ceramic according to the present invention, a ZrO 2 ball component may be mixed. Further, as impurities, Zr, Rb, etc. may be mixed. Further, a part of NaNbO 3 may be substituted with the first transition metal, Ta, rare earth element, or the like. In particular, by replacing with Ta, the temperature characteristics of the resonance frequency can be improved.
[0037]
【Example】
After mixing raw material powders of Nb 2 O 5 , K 2 CO 3 , Na 2 CO 3 , Li 2 CO 3 , MnCO 3 and TiO 2 as starting materials, this mixed powder is calcined at 1000 ° C. for 3 hours. , Calcined powder such that x in the composition formula (1-x) NaNbO 3 + xMnTiO 3 according to the molar ratio of metal elements has the values shown in Tables 1 and 2, and x is the value shown in Table 2 and KNbO 3 A calcined powder was prepared so that the subcomponent represented by LiNbO 3 was in the amount shown in Table 2.
This mixed calcined powder was pulverized to 0.5 μm with a ball mill using ZrO 2 balls.
[0038]
Next, the pulverized product of the calcined powder is mixed with an organic binder and granulated, and the obtained powder is molded into a disk having a diameter of 20 mm and a thickness of 1.5 mm at a pressure of 150 MPa. It was fired at 950 to 1150 ° C. for 2 hours in the air to obtain a disk-shaped porcelain. As a result of measuring the powder X-ray diffraction pattern of the obtained porcelain plate, all the samples according to the present invention have a perovskite type crystal structure peculiar to the alkali niobate system, and are analyzed by emission spectroscopic analysis (EPNA). When elemental analysis of the crystal particles was performed, Na, Mn, Nb, and Ti were detected, and it was confirmed that these were dissolved. The obtained porcelain was polished to a thickness of 0.5 mm to obtain a porcelain plate.
[0039]
And the silver electrode was formed in the upper and lower surfaces of this porcelain board, and the piezoelectric ceramic board was obtained. The piezoelectric ceramic plate was subjected to polarization treatment by applying a DC electric field of 3 to 4 kV / mm for 30 minutes in silicon oil at 150 to 200 ° C.
[0040]
Then, the capacitance, resonance / antiresonance frequency, and resonance resistance of these piezoelectric elements were measured using an impedance analyzer, and the relative dielectric constant and electromechanical coupling coefficient were obtained. The change in capacitance with temperature was measured to determine the Curie temperature.
[0041]
Further, the resonance frequency is set to fr, the resonance frequency is measured in the temperature range of −20 to 80 ° C., the amount of change in fr (−fr) at −20 to 80 ° C., and the resonance frequency at 20 ° C. using fr (20). Thus, the temperature coefficient frTC of the resonance frequency was obtained from the formula: frTC = Δfr / {fr (20) × 100} × 10 6 (ppm / ° C.), and these results are shown in Tables 1 and 2. In Table 1, sample No. 8 shows a reference example.
[0042]
[Table 1]
[0043]
[Table 2]
[0044]
Sample No. of the present invention. In Nos. 2 to 7, it can be seen that the dielectric constant of the porcelain is as high as 800 or more, the electromechanical coupling coefficient is 15% or more, and the Curie temperature is 250 ° C. or more. In particular, sample no. 3 to 5 show that the electromechanical coupling coefficient is 20% or more, and at the same time, the Curie temperature is 300 ° C. or more. On the other hand, Sample No. 1 indicates that the relative dielectric constant is small.
[0045]
Further, from Table 2, the sample No. of the present invention to which KNbO 3 was added was added. 10-16, it turns out that an electromechanical coupling coefficient improves. In particular, sample no. Nos. 11 to 15 have an electromechanical coupling coefficient of 30 or more and an absolute value of the temperature coefficient of the resonance frequency as small as 68 ppm / ° C. or less and excellent temperature characteristics. Furthermore, it can be seen that the dielectric constant of the porcelain is as high as 1000 or more, and the Curie temperature is 275 ° C. or more.
[0046]
Furthermore, sample No. 1 of the present invention to which LiNbO 3 was added. 19-23 show that the Curie temperature is improved by the effect of addition. In particular, sample no. Nos. 20 to 23 are excellent piezoelectric ceramics having a high Curie temperature of 320 ° C. or higher and an electromechanical coupling coefficient of 30% or higher, and an absolute value of the temperature coefficient of the resonance frequency as small as 50 ppm / ° C. or less. I understand.
[0047]
【The invention's effect】
In the piezoelectric ceramic according to the present invention, NaNbO 3 type crystal particles are formed, a part of Na occupying the A site of the NaNbO 3 type crystal particles is replaced with Mn, and a part of Nb occupying the B site is replaced with Ti. a piezoelectric ceramic are, when expressed the composition formula by molar ratio of metal elements and (1-x) NaNbO 3 + xMnTiO 3, when x satisfies the condition of 0.014 ≦ x ≦ 0.08, the dielectric constant Can be as high as 800 or higher, exhibiting a good electromechanical coupling coefficient, and a Curie temperature of 250 ° C. or higher.
Claims (5)
(1−x)NaNbO 3 +xMnTiO 3
と表した時、xが0.014≦x≦0.08の条件を満足することを特徴とする圧電磁器。A piezoelectric ceramic comprising NaNbO 3 type crystal particles, wherein a part of Na occupying the A site of the NaNbO 3 type crystal particles is substituted with Mn, and a part of Nb occupying the B site is substituted with Ti , It contains at least Na, Nb, Mn and Ti as metal elements, and the composition formula according to the molar ratio of these metal elements is
(1-x) NaNbO 3 + xMnTiO 3
In the piezoelectric ceramic , x satisfies the condition of 0.014 ≦ x ≦ 0.08 .
(1−x)NaNbO3+xMnTiO3
と表した時、xが0.014≦x≦0.08の条件を満足する主成分と、KNbO3で表される副成分とを含有するとともに、該副成分を全量中0.5〜15モル%含有することを特徴とする圧電磁器。 A piezoelectric ceramic comprising NaNbO 3 type crystal particles, wherein a part of Na occupying the A site of the NaNbO 3 type crystal particles is substituted with Mn, and a part of Nb occupying the B site is substituted with Ti, It contains at least Na, Nb, Mn and Ti as metal elements, the composition formula by molar ratio of the metal elements (1-x) NaNbO 3 + xMnTiO 3
And x contains a main component satisfying the condition of 0.014 ≦ x ≦ 0.08 and a subcomponent represented by KNbO 3 , and the subcomponent is 0.5 to 15 in the total amount. pressure electromagnetic device characterized by containing mol%.
(1−x)NaNbO3+xMnTiO3
と表した時、xが0.014≦x≦0.08の条件を満足する主成分と、LiNbO3で表される副成分とを含有するとともに、該副成分を全量中0.5〜10モル%含有することを特徴とする圧電磁器。 A piezoelectric ceramic comprising NaNbO 3 type crystal particles, wherein a part of Na occupying the A site of the NaNbO 3 type crystal particles is substituted with Mn, and a part of Nb occupying the B site is substituted with Ti, It contains at least Na, Nb, Mn and Ti as metal elements, the composition formula by molar ratio of the metal elements (1-x) NaNbO 3 + xMnTiO 3
And x contains a main component satisfying the condition of 0.014 ≦ x ≦ 0.08 and a subcomponent represented by LiNbO 3 , and the subcomponent in a total amount of 0.5 to 10%. pressure electromagnetic device characterized by containing mol%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000332653A JP4467168B2 (en) | 2000-10-31 | 2000-10-31 | Piezoelectric ceramic and piezoelectric element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000332653A JP4467168B2 (en) | 2000-10-31 | 2000-10-31 | Piezoelectric ceramic and piezoelectric element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002137966A JP2002137966A (en) | 2002-05-14 |
JP4467168B2 true JP4467168B2 (en) | 2010-05-26 |
Family
ID=18808831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000332653A Expired - Fee Related JP4467168B2 (en) | 2000-10-31 | 2000-10-31 | Piezoelectric ceramic and piezoelectric element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4467168B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005021461A1 (en) * | 2003-08-28 | 2005-03-10 | National Institute Of Advanced Industrial Science And Technology | Perovskite solid solution composition and piezoelectric ceramics produced therefrom |
JPWO2024070625A1 (en) * | 2022-09-30 | 2024-04-04 |
-
2000
- 2000-10-31 JP JP2000332653A patent/JP4467168B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002137966A (en) | 2002-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3259677B2 (en) | Piezoelectric ceramic composition | |
JP4355084B2 (en) | Piezoelectric ceramic composition and piezoelectric resonator | |
KR100282598B1 (en) | Piezoelectric Ceramic Composition | |
JP3259678B2 (en) | Piezoelectric ceramic composition | |
KR100282599B1 (en) | Piezoelectric Ceramic Composition | |
WO2007049764A1 (en) | Piezoelectric ceramic composition and piezoelectric ceramic | |
JP3654408B2 (en) | Piezoelectric ceramic composition | |
KR20010050207A (en) | Piezoelectric Ceramic Composition and Ceramic Piezoelectric Device Employing the Composition | |
JPH0782024A (en) | Piezoelectric ceramic composition | |
JP2001316182A (en) | Piezoelectric ceramic and piezoelectric resonator | |
JP4493226B2 (en) | Piezoelectric ceramic and piezoelectric element | |
JP3671791B2 (en) | Piezoelectric ceramic composition and piezoelectric ceramic element using the same | |
KR19990062784A (en) | Piezoelectric Composition and Piezoelectric Element Using the Same | |
JP2007055867A (en) | Piezoelectric ceramic composition | |
JP3198906B2 (en) | Piezoelectric porcelain composition | |
JP2006182643A (en) | Piezoelectric ceramic composition | |
JP4467168B2 (en) | Piezoelectric ceramic and piezoelectric element | |
JP4355115B2 (en) | Piezoelectric ceramic and piezoelectric element | |
JP3125624B2 (en) | Piezoelectric ceramic | |
JP3613140B2 (en) | Piezoelectric ceramic composition and piezoelectric ceramic element using the same | |
JP4417536B2 (en) | Piezoelectric ceramic and piezoelectric element | |
JP4361990B2 (en) | Piezoelectric ceramic composition | |
JP3830298B2 (en) | Piezoelectric ceramic composition | |
JP4003920B2 (en) | Piezoelectric ceramic composition, piezoelectric ceramic sintered body and electronic component | |
JP3771762B2 (en) | Piezoelectric ceramic composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080627 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090709 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100126 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100223 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4467168 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140305 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |