JP2006182643A - Piezoelectric ceramic composition - Google Patents

Piezoelectric ceramic composition Download PDF

Info

Publication number
JP2006182643A
JP2006182643A JP2006019575A JP2006019575A JP2006182643A JP 2006182643 A JP2006182643 A JP 2006182643A JP 2006019575 A JP2006019575 A JP 2006019575A JP 2006019575 A JP2006019575 A JP 2006019575A JP 2006182643 A JP2006182643 A JP 2006182643A
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
ceramic composition
weight
porcelain
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006019575A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nakai
泰広 中井
Shuichi Fukuoka
修一 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006019575A priority Critical patent/JP2006182643A/en
Publication of JP2006182643A publication Critical patent/JP2006182643A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric ceramic composition which is free from lead and can be used for applications such as piezoelectric resonators or oscillators. <P>SOLUTION: The piezoelectric ceramic composition contains, as a main component, a tungsten bronze-type multiple oxide containing metal elements of Na, Ba, Bi and Nb, and the amount of Bi based on total weight is 3-6 wt.% expressed in terms of metal. When the molar compositional formula is expressed by xNaNbO<SB>3</SB>-yBaNb<SB>2</SB>O<SB>6</SB>-zBiNb<SB>3</SB>O<SB>9</SB>(wherein, x+y+z=1), x, y and z exist within an area surrounded by a polygon having, as apexes, following points: A(0.382, 0.560, 0.058); B(0.422, 0.520, 0.058); C(0.422, 0.505, 0.073), and D(0.382, 0.545, 0.073). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、圧電素子、特に圧電共振子および発振子などの用途に利用できる圧電磁器組成物に関するものである。   The present invention relates to a piezoelectric ceramic composition that can be used for applications such as piezoelectric elements, particularly piezoelectric resonators and oscillators.

従来から圧電共振子および発振子用材料として、PbTiOを主成分とするPT系セラミックスおよびPb(Zr1−xTi)Oを主成分とするPZT系セラミックスが汎用されてきた。また、それらの圧電特性の向上や共振周波数の温度変化を小さく抑えるために、種々の微量添加物を添加したもの、Pbの一部をBa、Srおよび/またはCaなどの2価の元素で置換したもの、あるいは、Pb(Sb1/2Nb1/2)OやPb(Mg1/3Nb2/3)O3などの第3成分を固溶させたものが使用されてきた。 Conventionally, PT ceramics mainly composed of PbTiO 3 and PZT ceramics mainly composed of Pb (Zr 1-x Ti x ) O 3 have been widely used as materials for piezoelectric resonators and oscillators. In addition, in order to improve the piezoelectric characteristics and to suppress the temperature change of the resonance frequency to be small, a part of Pb is added, and a part of Pb is replaced with a divalent element such as Ba, Sr and / or Ca. Or a solid solution of a third component such as Pb (Sb 1/2 Nb 1/2 ) O 3 or Pb (Mg 1/3 Nb 2/3 ) O 3 has been used.

近年の電子機器の小型・高精度化に伴って、共振周波数の温度変化が小さい圧電共振子および発振子用材料が望まれており、これらの用途に適したPTおよびPZT系セラミックスが使用されてきた。   As electronic devices have become smaller and more accurate in recent years, piezoelectric resonators and oscillator materials that have a small temperature change in the resonance frequency have been desired, and PT and PZT ceramics suitable for these applications have been used. It was.

本発明は、上記課題に鑑み発明されたものであって、共振周波数の温度変化が小さく、キュリー温度が高い圧電共振子および発振子などの用途に利用できる圧電磁器組成物を提供することを目的とする。   The present invention has been invented in view of the above problems, and an object of the present invention is to provide a piezoelectric ceramic composition that can be used for applications such as a piezoelectric resonator and an oscillator having a small change in resonance frequency and a high Curie temperature. And

本発明は、Na、Ba、BiおよびNbの金属元素を含有するタングステンブロンズ型の複合酸化物を主成分とする圧電磁器組成物であって、全重量中Biを金属換算で3〜6重量%の割合で含有し、モル比による組成式を、xNaNbO−yBaNb−zBiNb(但し、x+y+z=1)で表わしたとき、x、yおよびzが次の各点を頂点とする多角形で囲まれる領域にあることを特徴とする圧電磁器組成物である。 The present invention relates to a piezoelectric ceramic composition mainly composed of a tungsten bronze type composite oxide containing metal elements of Na, Ba, Bi and Nb, wherein Bi in the total weight is 3 to 6% by weight in terms of metal. When the composition formula by molar ratio is represented by xNaNbO 3 -yBaNb 2 O 6 -zBiNb 3 O 9 (where x + y + z = 1), x, y and z A piezoelectric ceramic composition characterized by being in a region surrounded by a polygon.

これより、キュリー温度が、250℃以上と高く、共振周波数の温度変化の絶対値が50ppm/℃以下(以下、共振周波数の温度変化は絶対値で示す)と小さい圧電磁器組成物を提供できる。   Accordingly, it is possible to provide a piezoelectric ceramic composition having a low Curie temperature as high as 250 ° C. and a small absolute value of the temperature change of the resonance frequency of 50 ppm / ° C. or less (hereinafter, the temperature change of the resonance frequency is indicated by an absolute value).

特に、第一遷移金属の少なくとも1種を、磁器中に酸化物換算で2重量%以下の範囲で添加させたが好ましい。ここで言う第一遷移金属とは、元素の周期表における21Sc〜30Znまでの金属元素のことであり、前記構成においては、第一遷移金属は、特にV、Cr、Mn、Fe、Coおよび/またはNiであることが好ましい。   In particular, it is preferable that at least one of the first transition metals is added to the porcelain in a range of 2% by weight or less in terms of oxide. The first transition metal mentioned here is a metal element from 21Sc to 30Zn in the periodic table of elements, and in the above configuration, the first transition metal is V, Cr, Mn, Fe, Co and / or in particular. Or it is preferable that it is Ni.

これにより、電気機械結合係数および機械的品質係数が向上し、且つ、キュリー温度が250℃以上で、共振周波数の温度変化が10ppm/℃以下と非常に小さい圧電共振子および発振子等などの用途に好適な圧電磁器組成物となる。   As a result, the electromechanical coupling coefficient and the mechanical quality factor are improved, and the use of a piezoelectric resonator, an oscillator, or the like having a very low Curie temperature of 250 ° C. or less and a temperature change of the resonance frequency of 10 ppm / ° C. or less. It becomes a suitable piezoelectric ceramic composition.

上記のように、本発明の圧電磁器組成物は、Na、Ba、BiおよびNbの金属元素を含有するタングステンブロンズ型の複合酸化物を主成分とする磁器全量中において、Biを金属換算で3〜6重量%の割合で含有し、xNaNbO−yBaNb−zBiNb(但し、x+y+z=1)で表わしたとき、前記一般式における(x,y,z)が次の各点A(0.382,0.560,0.058)、点B(0.422,0.520,0.058)、点C(0.422,0.505,0.073)、点D(0.382,0.545,0.073)を頂点とする四角形で囲まれる領域内にあり、特にNa、Ba、BiおよびNbの金属元素を含有するタングステンブロンズ型の複合酸化物を主成分とする磁器全量中において、Biを金属換算で3〜6重量%の割合で含有し、第一遷移金属の少なくとも1種を磁器全量中に2重量%以下の割合で含有させているため、共振周波数の温度変化が小さく、キュリー温度が高い圧電共振子および発振子などの用途に利用できる圧電磁器組成物を提供することがきる。 As described above, in the piezoelectric ceramic composition of the present invention, Bi is 3 in terms of metal in the total amount of porcelain mainly composed of a tungsten bronze type complex oxide containing metal elements of Na, Ba, Bi and Nb. When contained in a ratio of ˜6% by weight and expressed by xNaNbO 3 —yBaNb 2 O 6 —zBiNb 3 O 9 (where x + y + z = 1), (x, y, z) in the above general formula represents the following points: A (0.382, 0.560, 0.058), point B (0.422, 0.520, 0.058), point C (0.422, 0.505, 0.073), point D ( 0.382, 0.545, 0.073) in a region surrounded by a quadrangle, and a tungsten bronze type complex oxide containing a metal element of Na, Ba, Bi and Nb in particular is a main component. In the total amount of porcelain , Bi is contained at a rate of 3 to 6% by weight in terms of metal, and at least one of the first transition metals is contained at a rate of 2% by weight or less in the total amount of porcelain, so that the temperature change of the resonance frequency is small. Thus, it is possible to provide a piezoelectric ceramic composition that can be used for applications such as a piezoelectric resonator and an oscillator having a high Curie temperature.

本発明の圧電磁器組成物を、必要に応じて図面を用いて説明する。   The piezoelectric ceramic composition of this invention is demonstrated using drawing as needed.

本発明の圧電磁器組成物は、Na、Ba、BiおよびNbの金属元素を含有するタングステンブロンズ型の複合酸化物を主成分とする圧電磁器組成物である。   The piezoelectric ceramic composition of the present invention is a piezoelectric ceramic composition mainly composed of a tungsten bronze-type composite oxide containing metal elements of Na, Ba, Bi, and Nb.

そして、Biを全量中金属換算で3〜6重量%の割合で含有し、Biは磁器の結晶粒子内にほとんどが固溶した結晶構造を有する。   And Bi is contained in the ratio of 3 to 6 weight% in metal conversion in the whole quantity, Bi has the crystal structure where most dissolved in the crystal grain of porcelain.

そして、このBi量を特定することにより、キュリー温度が高く(250℃以上)、共振周波数の温度変化を小さく、100ppm/℃以下に抑えることが可能となる。   By specifying this Bi amount, the Curie temperature is high (250 ° C. or higher), the temperature change of the resonance frequency is small, and can be suppressed to 100 ppm / ° C. or lower.

上述のように全磁器中に含有させるBi量を3〜6重量%としたのは、例えばBi量が3重量%未満では、結晶粒子内に固溶するBiが不足し、その結果、共振周波数の温度変化が大きくなり、実用に供さない圧電磁器組成物となってしまう。   As described above, the amount of Bi contained in all porcelain is 3 to 6% by weight. For example, when the amount of Bi is less than 3% by weight, Bi dissolved in crystal grains is insufficient, and as a result, the resonance frequency is reduced. As a result, the piezoelectric ceramic composition is not practically used.

また、6重量%越える場合、結晶粒子内に固溶するBiが過剰となり、その結果、キュリー温度が著しく低下し、200℃未満となる。   On the other hand, when it exceeds 6% by weight, Bi dissolved in crystal grains becomes excessive, and as a result, the Curie temperature is remarkably lowered to less than 200 ° C.

なお、上記磁器中に含有させるBiは、共振周波数の温度変化を小さく抑えるということから、磁器の結晶粒子内に固溶していることが望ましい。   The Bi contained in the porcelain is preferably dissolved in the crystal grains of the porcelain because the temperature change of the resonance frequency is kept small.

本発明によれば、Biで一部置換したタングステンブロンズ型の組成物は、一般式、xNaNbO−yBaNb−zBiNb(但し、x+y+z=1)であらわした時、この式(x,y,z)が、図1の3成分組成図上における各点A(0.382,0.560,0.058)、点B(0.422,0.520,0.058)、点C(0.422,0.505,0.073)、点D(0.382,0.545,0.073)を頂点とする四角形A、B、C、Dで囲まれる領域であることが重要である。これにより、特に、共振周波数の温度変化が50ppm/℃以下に抑えることができ、非常に安定した圧電磁器組成物となる。 According to the present invention, a composition of a tungsten bronze type partially substituted with Bi is expressed by the general formula xNaNbO 3 -yBaNb 2 O 6 -zBiNb 3 O 9 (where x + y + z = 1). x, y, z) are points A (0.382, 0.560, 0.058), points B (0.422, 0.520, 0.058) on the three-component composition diagram of FIG. It is an area surrounded by rectangles A, B, C, and D having a vertex at a point C (0.422, 0.505, 0.073) and a point D (0.382, 0.545, 0.073) is important. Thereby, in particular, the temperature change of the resonance frequency can be suppressed to 50 ppm / ° C. or less, and a very stable piezoelectric ceramic composition is obtained.

特に、本発明では、第一遷移金属(元素の周期表における21Sc〜30Znまでの金属元素)の少なくとも1種を、磁器全量中、酸化物換算で2重量%以下の割合で含有することが好ましい。   In particular, in the present invention, it is preferable to contain at least one first transition metal (a metal element from 21Sc to 30Zn in the periodic table of elements) in a proportion of 2% by weight or less in terms of oxide in the total amount of porcelain. .

磁器中に第一遷移金属の少なくとも1種の量を特定量含有させることにより、上記磁器の圧電特性、特に共振周波数の温度変化を10ppm/℃以下にすることが可能で、電気機械結合係数及び機械的品質係数を大きく向上させることができる。   By including a specific amount of at least one kind of the first transition metal in the porcelain, the piezoelectric characteristics of the porcelain, in particular, the temperature change of the resonance frequency can be made 10 ppm / ° C. or less, and the electromechanical coupling coefficient and The mechanical quality factor can be greatly improved.

尚、第一遷移金属は、電気機械結合係数及び機械的品質係数を向上させるという効果が大きいという理由から、V、Cr、Mn、Fe、Coおよび/またはNiであることが好ましい。そして、このように第一遷移金属を特定量含有させたこの圧電磁器組成物においては、第一遷移金属の含有量が増加すると、それらの金属元素の一部が粒界部にも存在する場合がある。   The first transition metal is preferably V, Cr, Mn, Fe, Co, and / or Ni because the effect of improving the electromechanical coupling coefficient and the mechanical quality factor is great. And in this piezoelectric ceramic composition containing a specific amount of the first transition metal in this way, when the content of the first transition metal increases, a part of those metal elements are also present in the grain boundary part There is.

本発明の圧電磁器組成物は、例えば、次のようにして製造することができる。   The piezoelectric ceramic composition of the present invention can be produced, for example, as follows.

出発原料として、NaCO、BaCO、Bi、Nbおよび第一遷移金属の酸化物の各粉末を所定の割合で混合し、900〜1100℃で3〜5時間仮焼した後、粉砕することによって所望の材料組成の粉末を作製する。この粉末に有機バインダーを混合し、金型プレス、静水圧プレス等により所望の形状に成形した後、1150〜1280℃で2〜5時間焼成することによって磁器を得ることができる。なお、第一遷移金属の酸化物は、上記の作製プロセス中において、調合時だけでなく、仮焼した粉体に対して混合しても同様な効果が得られる。 As starting materials, Na 2 CO 3 , BaCO 3 , Bi 2 O 3 , Nb 2 O 5 and first transition metal oxide powders were mixed at a predetermined ratio, and temporarily mixed at 900 to 1100 ° C. for 3 to 5 hours. After baking, the powder of a desired material composition is produced by grinding. A porcelain can be obtained by mixing this powder with an organic binder and molding it into a desired shape by a die press, an isostatic press or the like, and then firing at 1150 to 1280 ° C. for 2 to 5 hours. It is to be noted that the same effect can be obtained by mixing the oxide of the first transition metal not only at the time of preparation but also with the calcined powder during the above production process.

また、原料粉末としては炭酸塩や酸化物だけでなく、酢酸塩や有機金属などの化合物のいずれであっても、焼成などの熱処理プロセスによって酸化物になるものであれば良い。   Further, as the raw material powder, not only carbonates and oxides but also compounds such as acetates and organic metals may be used as long as they become oxides by a heat treatment process such as firing.

さらに、本発明の圧電磁器組成物においては、原料粉末などに微少量含まれるK、Mg、Ca、Si、Taなどの不可避不純物が混入する場合がある。   Furthermore, in the piezoelectric ceramic composition of the present invention, inevitable impurities such as K, Mg, Ca, Si, and Ta contained in a very small amount in the raw material powder may be mixed.

出発原料とし、NaCO、BaCO、Bi、Nb、V、Cr、MnO、Fe、CoおよびNiOを用いて磁器組成が例えば表1および2に示す値となるように秤量した。この混合物をZrOボールを用いたボールミルで12時間湿式混合した。 Porcelain using Na 2 CO 3 , BaCO 3 , Bi 2 O 3 , Nb 2 O 5 , V 2 O 5 , Cr 2 O 3 , MnO 2 , Fe 2 O 3 , Co 3 O 4 and NiO as starting materials The composition was weighed so as to have the values shown in Tables 1 and 2, for example. This mixture was wet mixed in a ball mill using ZrO 2 balls for 12 hours.

次いで、この混合物を乾燥した後、大気中で900〜1100℃で3時間仮焼し、該仮焼物を再び上記ボールミルで細かく粉砕した。その後、この粉砕物にポリビニルアルコール(PVA)などのバインダーを混合して造粒した。   Next, after drying this mixture, it was calcined at 900 to 1100 ° C. for 3 hours in the air, and the calcined product was again finely pulverized by the ball mill. Thereafter, the pulverized material was mixed with a binder such as polyvinyl alcohol (PVA) and granulated.

得られた粉末を1.5t/cm2の圧力で直径16mm、厚さ1.5mmの寸法からなる円盤にプレス成形した。これらの成形体を1150℃〜1280℃の範囲で2〜5時間焼成した。得られた磁器を0.5mmの厚みになるまで研磨した。上記の方法で作製した磁器のX線回折パターンを測定した結果、本発明の試料は、タングステンブロンズ型の複合酸化物であって、磁器中に含有させたBiは、結晶粒子中に固溶していることが確認された。   The obtained powder was press-molded into a disk having a diameter of 16 mm and a thickness of 1.5 mm at a pressure of 1.5 t / cm 2. These molded bodies were fired in the range of 1150 ° C. to 1280 ° C. for 2 to 5 hours. The obtained porcelain was polished to a thickness of 0.5 mm. As a result of measuring the X-ray diffraction pattern of the porcelain produced by the above method, the sample of the present invention is a tungsten bronze type complex oxide, and Bi contained in the porcelain is dissolved in the crystal particles. It was confirmed that

また、第一遷移金属である金属元素の大部分は結晶粒子中に固溶しているが、含有量が多くなるに従って、一部が粒界にも存在していることが確認された。   In addition, most of the metal element as the first transition metal was dissolved in the crystal grains, but it was confirmed that some of the metal elements were also present at the grain boundaries as the content increased.

上記方法で得た磁器に銀電極を形成し、200℃のシリコンオイル中で4kV/mmの直流電界を印加して分極処理を行った。但し、試料番号15は150℃のシリコンオイル中で分極処理を行なった。そして、厚み縦方向の共振・反共振周波数、共振抵抗、静電容量をインピーダンスアナライザーを用いて測定し、電気機械結合係数(k)、機械的品質係数(Q)と比誘電率(ε33 /ε)を求めた。 A silver electrode was formed on the porcelain obtained by the above method, and polarization treatment was performed by applying a DC electric field of 4 kV / mm in silicon oil at 200 ° C. However, Sample No. 15 was polarized in 150 ° C. silicone oil. Then, the resonance resonance frequency, antiresonance frequency, resonance resistance, and capacitance in the thickness direction are measured using an impedance analyzer, and an electromechanical coupling coefficient (k t ), a mechanical quality factor (Q m ), and a relative dielectric constant (ε 33 T / ε 0 ).

また、厚み縦方向の共振周波数(f)の温度変化を−20〜80℃の範囲で調べた。frの温度係数(f−TC)を式:f−TC=△f/(f[20℃]×100)×10(ppm/℃)から算出した。ただし、△fは−20〜80℃の範囲におけるfの変化量、f[20℃]は20℃におけるfの値である。さらに、比誘電率(ε33 /ε)を温度の関数としてプロットし、磁器のキュリー温度(T)を求めた。 Moreover, the temperature change of the resonance frequency (f r ) in the thickness longitudinal direction was examined in the range of −20 to 80 ° C. The temperature coefficient of fr (f r -TC) formula was calculated from f r -TC = △ f r / (f r [20 ℃] × 100) × 10 6 (ppm / ℃). However, △ f r is the amount of change in f r in the range of -20~80 ℃, f r [20 ℃ ] is the value of f r at 20 ° C.. Further, the dielectric constant (ε 33 T / ε 0 ) was plotted as a function of temperature, and the Curie temperature (T C ) of the porcelain was obtained.

これらの結果を表1と2に記載した。

Figure 2006182643
These results are shown in Tables 1 and 2.
Figure 2006182643

Figure 2006182643
Figure 2006182643

表1から、Na、Ba、BiおよびNbの金属元素を含有するタングステンブロンズ型の複合酸化物を主成分とする圧電磁器組成物であって、全重量中Biを金属換算で3〜6重量%の割合で含有した第1の発明の圧電磁器組成物は、温度係数(f−TC)が100ppm/℃以下であることが判る(試料番号2〜14)。本発明の好ましい例によると、50ppm/℃以下、さらに好ましい例によると、10ppm/℃以下の温度係数を示し、従来の圧電共振子および発振子などの用途に使用されているPTおよびPZTセラミックスと同レベルの温度係数を有することがわかる。 From Table 1, a piezoelectric ceramic composition mainly composed of a tungsten bronze type composite oxide containing metal elements of Na, Ba, Bi and Nb, wherein Bi in the total weight is 3 to 6% by weight in terms of metal It can be seen that the piezoelectric ceramic composition of the first invention contained at a ratio of 1 to 10 has a temperature coefficient (f r -TC) of 100 ppm / ° C. or less (sample numbers 2 to 14). According to a preferred example of the present invention, PT and PZT ceramics having a temperature coefficient of 50 ppm / ° C. or less, and more preferably 10 ppm / ° C. or less, which are used for applications such as conventional piezoelectric resonators and oscillators, It can be seen that they have the same level of temperature coefficient.

試料番号2〜14から、磁器中に含まれるBi含有量が3〜6重量%の場合においては、温度係数が100ppm以下であると同時に、キュリー温度(T)が250℃以上と高いことから、半田付けリフロー時の熱にも耐え得るものであることがわかる。 From Sample No. 2-14, when Bi content in the porcelain of 3-6% by weight, at the same time when the temperature coefficient is 100ppm or less, since the Curie temperature (T C) is as high as 250 ° C. or higher It can be seen that it can withstand the heat during reflow soldering.

本発明の圧電磁器組成物では、試料番号2〜14に示すように、Bi含有量が3〜6重量%の範囲において、温度係数(f−TC)の符号が負から正に転じていることがわかる。この符号が変わる付近の組成において温度係数の値が小さい磁器を得ることができる。 In the piezoelectric ceramic composition of the present invention, as shown in sample numbers 2 to 14, the sign of the temperature coefficient (f r -TC) changes from negative to positive when the Bi content is in the range of 3 to 6% by weight. I understand that. A porcelain having a small temperature coefficient value can be obtained in the vicinity of the composition where the sign changes.

また、モル比による組成式をxNaNbO−yBaNb−zBiNb(但し、x+y+z=1)で表わしたとき、図1のx,y,zのモル比率を3成分組成図に示す試料番号3(点A(0.382,0.560,0.058))、試料番号5(点B(0.422,0.520,0.058))、試料番号11(点C(0.422,0.505,0.073))、試料番号13(点、D(0.382,0.545,0.073)を頂点とする四角形A、B、C、Dで囲まれる領域にある試料、例えば、試料番号3、4、5、6、8、10、11、12、13においては、このBiの含有効果によって温度係数が50ppm/℃以下まで小さくなることがわかる。 Moreover, when the composition formula by molar ratio is expressed by xNaNbO 3 -yBaNb 2 O 6 -zBiNb 3 O 9 (where x + y + z = 1), the molar ratio of x, y, z in FIG. Sample number 3 (point A (0.382, 0.560, 0.058)), sample number 5 (point B (0.422, 0.520, 0.058)), sample number 11 (point C (0 .422, 0.505, 0.073)) and sample number 13 (dot, D (0.382, 0.545, 0.073)) in the area surrounded by rectangles A, B, C, D It can be seen that in a certain sample, for example, sample numbers 3, 4, 5, 6, 8, 10, 11, 12, and 13, the temperature coefficient is reduced to 50 ppm / ° C. or lower due to the effect of containing Bi.

試料番号2〜13から、Bi含有量が増加するにしたがって、電気機械結合係数(k)とキュリ―温度(T)が低下する傾向にあることがわかる。一方、比誘電率(ε33 /ε)は、Bi含有量が増加すると、大きくなる傾向を示すことがわかる。また、機械的品質係数(Q)は、Bi含有量が3.9〜5.1の範囲において大きな値を示すことがわかる。 The sample No. 2-13, in accordance with Bi content increases, the electromechanical coupling coefficient (k t) and Curie - temperature (T C) it can be seen that there is a tendency to decrease. On the other hand, it can be seen that the relative permittivity (ε 33 T / ε 0 ) tends to increase as the Bi content increases. Moreover, the mechanical quality factor (Q m) is, Bi content is seen to exhibit a large value in the range of 3.9 to 5.1.

また、第1の発明であって、図1に示す3成分組成図で示す四角形A,B,C,Dの領域がする多角形の領域外の試料番号2、7、9、14では実用レベルを満足し得る温度係数ではあるが、50ppm/℃よりも大きくなってしまう。特に、共振周波数の温度変化が小さい圧電磁器を得るという点から、3成分組成図で示す四角形A,B,C,Dの領域内に設定するように組成を制御することが望ましい。   In the first invention, the sample numbers 2, 7, 9, and 14 outside the polygonal area formed by the squares A, B, C, and D shown in the three-component composition diagram shown in FIG. Although it is the temperature coefficient which can satisfy | fill, it will become larger than 50 ppm / degrees C. In particular, it is desirable to control the composition so that it is set within the region of the squares A, B, C, and D shown in the three-component composition diagram from the viewpoint of obtaining a piezoelectric ceramic with a small temperature change of the resonance frequency.

尚、試料番号1のように、Bi含有量が3重量%未満(試料番号1では2.1重量%)では、温度係数(f−TC)が顕著に大きくなり、実用上好ましくない。また、Bi含有量が6重量%を越える試料番号15では、温度係数(f−TC)が100ppm/℃よりも大きく、且つキュリー温度(T)が顕著に低下するので好ましくない。 Incidentally, as in Sample No. 1, the Bi content is less than 3 wt% (Sample No. 1 2.1% by weight), the temperature coefficient (f r -TC) becomes remarkably large, is not preferable for practical use. Sample No. 15 having a Bi content exceeding 6% by weight is not preferable because the temperature coefficient (f r -TC) is larger than 100 ppm / ° C. and the Curie temperature (T C ) is significantly reduced.

表2に示す試料番号16〜39は、表1の試料番号8を用いて、第一遷移金属の少なくとも1種を、磁器全量中に酸化物換算で0.01〜2重量%の割合で含有させた場合の結果を示す。この結果から全体として、電気機械結合係数(k33)と機械的品質係数(Q)が向上することがわかる。また、温度係数(f−TC)も添加しない場合と比較して向上できることがわかる。 Sample numbers 16 to 39 shown in Table 2 contain at least one of the first transition metals in the amount of 0.01 to 2% by weight in terms of oxide in the total amount of porcelain using the sample number 8 of Table 1. The result is shown. From this result, it is understood that the electromechanical coupling coefficient (k 33 ) and the mechanical quality coefficient (Q m ) are improved as a whole. The temperature coefficient (f r -TC) also it can be seen that improved as compared with no addition.

試料番号16〜24から、MnO添加量が0.2〜2.0重量%の範囲において、MnO2添加量が0.4重量%で電気機械結合係数(k33)と機械的品質係数(Q)がピークを示すことがわかる(試料番号20)。この試料番号20では、MnOを添加しない場合と比較し、電気機械結合係数(k33)が約30%、機械的品質係数(Q)が5倍程度向上することがわかる。 From sample numbers 16 to 24, when the MnO 2 addition amount is in the range of 0.2 to 2.0% by weight, the electromechanical coupling coefficient (k 33 ) and the mechanical quality factor (Q It can be seen that m ) shows a peak (sample number 20). In Sample No. 20, it can be seen that the electromechanical coupling coefficient (k 33 ) is improved by about 30% and the mechanical quality coefficient (Q m ) is improved by about 5 times compared to the case where MnO 2 is not added.

MnO添加量が増加すると、キュリー温度(TC)は低下し、比誘電率(ε33T/ε0)は大きくなることがわかる。MnO添加量を2重量%まで増加すると、キュリー温度(T)は251℃まで低下することがわかる。 It can be seen that as the amount of MnO 2 added increases, the Curie temperature (TC) decreases and the relative dielectric constant (ε33T / ε0) increases. It can be seen that the Curie temperature (T C ) decreases to 251 ° C. when the amount of MnO 2 added is increased to 2% by weight.

尚、MnO添加量を2.0重量%以上添加する(試料番号24)と、添加してない試料番号8と比較すると、温度係数(f−TC)は−10ppm/℃から、+42ppm/℃まで大きくなる。従って、第一遷移金属を添加は2重量%未満とすることが望ましい。 When the addition amount of MnO 2 is 2.0% by weight or more (sample number 24), the temperature coefficient (f r -TC) is from −10 ppm / ° C. to +42 ppm / ° C. as compared with sample number 8 not added. Increases to ° C. Therefore, the addition of the first transition metal is desirably less than 2% by weight.

MnO添加量が0.4〜0.8重量%の範囲において、温度係数(f−TC)の符号は、負から正に変化することがわかる。 Within the scope MnO 2 added amounts of 0.4 to 0.8 wt%, the sign of the temperature coefficient (f r -TC) is seen to changes from negative to positive.

試料番号25〜29では、MnOの代わりに、Cr、Fe、CoO、NiO、Vを添加量0.4重量%添加しても、同様に電気機械結合係数(k33)と機械的品質係数(Q)が向上することがわかる。 In Sample Nos. 25 to 29, even if Cr 2 O 3 , Fe 2 O 3 , CoO, NiO, and V 2 O 5 are added in an amount of 0.4% by weight instead of MnO 2, the electromechanical coupling coefficient is the same. It can be seen that (k 33 ) and the mechanical quality factor (Q m ) are improved.

試料番号30〜39では、MnO、Cr、Fe、CoO、NiO、Vから選ばれる酸化物を複合添加した場合で、その合計添加量を0.4重量%とした。この場合において、電気機械結合係数(k33)と機械的品質係数(Q)が向上する効果が大きいことがわかる。試料番号30〜33においては、機械的品質係数(Q)が600を越えることがわかる。また、試料番号35〜39に示す添加物の比率にした場合において、酸化物を単独で添加する場合と比較し、電気機械結合係数(k33)を向上する効果が大きいことがわかる。 In sample numbers 30 to 39, an oxide selected from MnO 2 , Cr 2 O 3 , Fe 2 O 3 , CoO, NiO, and V 2 O 5 was added in combination, and the total addition amount was 0.4 wt%. It was. In this case, it can be seen that the effect of improving the electromechanical coupling coefficient (k 33 ) and the mechanical quality coefficient (Q m ) is great. In sample numbers 30 to 33, it can be seen that the mechanical quality factor (Q m ) exceeds 600. In addition, it can be seen that the effect of improving the electromechanical coupling coefficient (k 33 ) is greater when the ratio of the additives shown in sample numbers 35 to 39 is used than when the oxide is added alone.

本発明における圧電磁器組成物においては、上記のように、磁器の圧電特性を向上するという点から、第一遷移金属の少なくとも1種を磁器全量中に2重量%以下の割合で含有することが好ましい。   In the piezoelectric ceramic composition according to the present invention, as described above, in order to improve the piezoelectric characteristics of the porcelain, at least one first transition metal may be contained in the total amount of the porcelain in a proportion of 2% by weight or less. preferable.

本発明の圧電磁器組成物の3成分組成図である。It is a 3 component composition figure of the piezoelectric ceramic composition of the present invention.

符号の説明Explanation of symbols

A、B、C、D・・・・請求項2記載の好ましい領域 A, B, C, D... Preferred region according to claim 2

Claims (2)

Na、Ba、BiおよびNbの金属元素を含有するタングステンブロンズ型の複合酸化物を主成分とする圧電磁器組成物であって、全重量中Biを金属換算で3〜6重量%の割合で含有し、モル比による組成式を、xNaNbO−yBaNb−zBiNb(但し、x+y+z=1)で表わしたとき、x、yおよびzが次の各点を頂点とする多角形で囲まれる領域にあることを特徴とする圧電磁器組成物。
x y z
A(0.382,0.560,0.058)
B(0.422,0.520,0.058)
C(0.422,0.505,0.073)
D(0.382,0.545,0.073)
A piezoelectric ceramic composition mainly composed of a tungsten bronze type composite oxide containing metal elements of Na, Ba, Bi and Nb, and containing Bi in a ratio of 3 to 6% by weight in terms of metal. When the composition formula based on the molar ratio is expressed by xNaNbO 3 -yBaNb 2 O 6 -zBiNb 3 O 9 (where x + y + z = 1), x, y and z are polygons having the following points as vertices. A piezoelectric ceramic composition characterized by being in an enclosed region.
x y z
A (0.382, 0.560, 0.058)
B (0.422, 0.520, 0.058)
C (0.422, 0.505, 0.073)
D (0.382, 0.545, 0.073)
第一遷移金属の少なくとも1種を、酸化物換算で2重量%以下の割合で添加させたことを特徴とする請求項1記載の圧電磁器組成物。 2. The piezoelectric ceramic composition according to claim 1, wherein at least one of the first transition metals is added at a ratio of 2% by weight or less in terms of oxide.
JP2006019575A 2006-01-27 2006-01-27 Piezoelectric ceramic composition Pending JP2006182643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006019575A JP2006182643A (en) 2006-01-27 2006-01-27 Piezoelectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006019575A JP2006182643A (en) 2006-01-27 2006-01-27 Piezoelectric ceramic composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP08997199A Division JP3830298B2 (en) 1999-03-30 1999-03-30 Piezoelectric ceramic composition

Publications (1)

Publication Number Publication Date
JP2006182643A true JP2006182643A (en) 2006-07-13

Family

ID=36736032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006019575A Pending JP2006182643A (en) 2006-01-27 2006-01-27 Piezoelectric ceramic composition

Country Status (1)

Country Link
JP (1) JP2006182643A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126158A3 (en) * 2009-04-30 2011-02-24 Canon Kabushiki Kaisha Compound having piezoelectric property, piezoelectric device, liquid discharge head using the piezoelectric device, and ultrasonic motor using the piezoelectric device
JP2011093791A (en) * 2009-09-30 2011-05-12 Canon Inc Piezoelectric material, piezoelectric element, liquid discharge head and ultrasonic motor
CN102934248A (en) * 2010-06-10 2013-02-13 佳能株式会社 Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust cleaning device
US8884498B2 (en) 2010-06-10 2014-11-11 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust cleaning device
US9054309B2 (en) 2010-06-10 2015-06-09 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust cleaning device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126158A3 (en) * 2009-04-30 2011-02-24 Canon Kabushiki Kaisha Compound having piezoelectric property, piezoelectric device, liquid discharge head using the piezoelectric device, and ultrasonic motor using the piezoelectric device
CN102414144A (en) * 2009-04-30 2012-04-11 佳能株式会社 Compound having piezoelectric property, piezoelectric device, liquid discharge head using the piezoelectric device, and ultrasonic motor using the piezoelectric device
KR101340209B1 (en) 2009-04-30 2013-12-10 캐논 가부시끼가이샤 Compound having piezoelectric property, piezoelectric device, liquid discharge head using the piezoelectric device, and ultrasonic motor using the piezoelectric device
US8932477B2 (en) 2009-04-30 2015-01-13 Canon Kabushiki Kaisha Compound having piezoelectric property, piezoelectric device, liquid discharge head using the piezoelectric device, and ultrasonic motor using the piezoelectric device
JP2011093791A (en) * 2009-09-30 2011-05-12 Canon Inc Piezoelectric material, piezoelectric element, liquid discharge head and ultrasonic motor
CN102934248A (en) * 2010-06-10 2013-02-13 佳能株式会社 Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust cleaning device
US8884498B2 (en) 2010-06-10 2014-11-11 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust cleaning device
US9054309B2 (en) 2010-06-10 2015-06-09 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust cleaning device
US9076969B2 (en) 2010-06-10 2015-07-07 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust cleaning device

Similar Documents

Publication Publication Date Title
JP4355084B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JP2004244300A (en) Piezoelectric ceramic composition, its production method, piezoelectric element, and dielectric element
JP2009227535A (en) Piezoelectric ceramic composition
JP4995412B2 (en) Piezoelectric ceramic composition and piezoelectric element using the same
JP2006182643A (en) Piezoelectric ceramic composition
JP2001316182A (en) Piezoelectric ceramic and piezoelectric resonator
EP1630149B1 (en) Piezoelectric ceramic composition and piezoelectric element including the same
JP3686382B2 (en) Piezoelectric ceramic composition and piezoelectric device using the same
JP4493226B2 (en) Piezoelectric ceramic and piezoelectric element
JP3771756B2 (en) Piezoelectric ceramic composition
JP3771760B2 (en) Piezoelectric ceramic composition
JP3720572B2 (en) Piezoelectric ceramic
JP3830298B2 (en) Piezoelectric ceramic composition
JP2001342065A (en) Piezoelectric ceramic composition
JP4003920B2 (en) Piezoelectric ceramic composition, piezoelectric ceramic sintered body and electronic component
JP2022178888A (en) Lead-free piezoelectric porcelain composition
JPH11240759A (en) Piezoelectric porcelain for actuator
JP3771762B2 (en) Piezoelectric ceramic composition
JP4355115B2 (en) Piezoelectric ceramic and piezoelectric element
JP2006256925A (en) Sintering aid for piezoelectric ceramic and piezoelectric ceramic
JP4370135B2 (en) Piezoelectric ceramic composition
JP2000086341A (en) Piezoelectric composition and its production
JP4467168B2 (en) Piezoelectric ceramic and piezoelectric element
JP3114886B2 (en) Piezoelectric ceramics
JP2005194150A (en) Piezoelectric ceramics

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090619