JP2725603B2 - Piezoelectric transformer and its driving method - Google Patents
Piezoelectric transformer and its driving methodInfo
- Publication number
- JP2725603B2 JP2725603B2 JP6174417A JP17441794A JP2725603B2 JP 2725603 B2 JP2725603 B2 JP 2725603B2 JP 6174417 A JP6174417 A JP 6174417A JP 17441794 A JP17441794 A JP 17441794A JP 2725603 B2 JP2725603 B2 JP 2725603B2
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric ceramic
- transformer
- piezoelectric
- ceramic transformer
- power generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title description 9
- 239000000919 ceramic Substances 0.000 claims description 56
- 238000010248 power generation Methods 0.000 claims description 23
- 229910052573 porcelain Inorganic materials 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 9
- 230000010287 polarization Effects 0.000 description 7
- 239000004020 conductor Substances 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/40—Piezoelectric or electrostrictive devices with electrical input and electrical output, e.g. functioning as transformers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Piezo-Electric Transducers For Audible Bands (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、各種の高電圧発生用電
源回路で動作可能な圧電トランス、特に小型化,高信頼
度が要求される小型・薄型でかつ高電圧を発生する圧電
トランスに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric transformer operable with various power supply circuits for generating a high voltage, and more particularly to a small and thin piezoelectric transformer which requires a small size and high reliability and generates a high voltage. .
【0002】[0002]
【従来の技術】従来、テレビジョンの偏向装置や複写機
の帯電装置など高電圧を必要とする装置内の電源回路で
は高電圧発生用の変圧素子として巻線型の電磁トランス
が用いられてきた。この電磁トランスは磁性体のコアに
導線を巻き付ける構造になっており、高い変性比を実現
するためには巻き付ける導線の数を多くする必要があ
る。そのため、小型・薄型の電磁トランスを実現するの
は非常に困難であった。2. Description of the Related Art Conventionally, a winding type electromagnetic transformer has been used as a transformer for generating a high voltage in a power supply circuit in a device requiring a high voltage such as a deflection device of a television or a charging device of a copying machine. This electromagnetic transformer has a structure in which a conductor is wound around a core of a magnetic material, and it is necessary to increase the number of conductors to be wound in order to realize a high denaturation ratio. Therefore, it has been very difficult to realize a small and thin electromagnetic transformer.
【0003】これに対し、圧電効果を用いた圧電トラン
スが提案されている。図4に従来の代表的な圧電トラン
スであるローゼン型圧電トランスの構造を示す。このロ
ーゼン型圧電トランスでは、表面に電極が設けられた長
方形状の圧電板において、41で示す部分は圧電トラン
スの低インピーダンスの駆動部であり、その上下面に電
極43,44が設けられており、この部分は図中矢印4
9で示すように厚み方向に分極されている。また、同様
に42で示す部分は高インピーダンスの発電部分であ
り、その端面に電極45が設けられており、発電部42
は図中矢印50で示すように圧電板の長さ方向に分極さ
れている。On the other hand, a piezoelectric transformer using a piezoelectric effect has been proposed. FIG. 4 shows the structure of a Rosen type piezoelectric transformer which is a typical conventional piezoelectric transformer. In this Rosen-type piezoelectric transformer, in a rectangular piezoelectric plate provided with electrodes on the surface, a portion indicated by 41 is a low impedance driving section of the piezoelectric transformer, and electrodes 43 and 44 are provided on upper and lower surfaces thereof. , This part is arrow 4 in the figure
It is polarized in the thickness direction as shown at 9. Similarly, a portion indicated by 42 is a high-impedance power generation portion, and an electrode 45 is provided on an end face thereof.
Is polarized in the length direction of the piezoelectric plate as indicated by an arrow 50 in the figure.
【0004】この圧電トランスの動作は以下の通りであ
る。外部端子46,47から駆動電極43,44に電圧
が印加されると、駆動部41では分極方向に電界が加わ
り分極とは垂直方向に変位する圧電効果(以後、圧電横
効果31モードと略す)で長さ方向の縦振動が励振さ
れ、トランス全体が振動する。さらに発電部42では、
分極方向に機械的歪が生じ分極方向に電位差が発生する
圧電効果(以後、圧電縦効果33モードと略す)によ
り、出力電極45から外部端子48に入力電圧と同じ周
波数の電圧が取り出される。このとき、駆動周波数を圧
電トランスの共振周波数と等しくすれば非常に高い出力
電圧が得られる。The operation of this piezoelectric transformer is as follows. When a voltage is applied to the drive electrodes 43 and 44 from the external terminals 46 and 47, an electric field is applied in the polarization direction in the drive unit 41, and the piezoelectric effect is displaced in a direction perpendicular to the polarization (hereinafter, abbreviated as piezoelectric transverse effect 31 mode). , Longitudinal vibration in the length direction is excited, and the entire transformer vibrates. Further, in the power generation unit 42,
A voltage having the same frequency as the input voltage is extracted from the output electrode 45 to the external terminal 48 by a piezoelectric effect (hereinafter, abbreviated as a piezoelectric longitudinal effect 33 mode) in which mechanical distortion occurs in the polarization direction and a potential difference occurs in the polarization direction. At this time, if the drive frequency is made equal to the resonance frequency of the piezoelectric transformer, a very high output voltage can be obtained.
【0005】なお、高電圧を入力し、低電圧を出力させ
る場合には、縦効果の高インピーダンス部分42を入力
側とし、横効果の低インピーダンス部分41を出力側に
すれば良いことは明らかである。When a high voltage is input and a low voltage is output, it is clear that the vertical effect high impedance portion 42 should be set to the input side and the horizontal effect low impedance portion 41 should be set to the output side. is there.
【0006】この圧電トランスは共振状態で使用され、
一般の電磁トランスに比べて(1)巻線構造が不用でエ
ネルギー密度も高いため小型化・薄型化が図れること、
(2)不燃化が図れること、(3)電磁誘導によるノイ
ズがでないこと、など数多くの長所を有している。[0006] This piezoelectric transformer is used in a resonance state,
(1) Compared with general electromagnetic transformers, it is possible to reduce the size and thickness because the winding structure is unnecessary and the energy density is high.
There are many advantages such as (2) non-combustibility and (3) no noise due to electromagnetic induction.
【0007】[0007]
【発明が解決しようとする課題】従来のローゼン型圧電
トランスでは、発電部の電極がトランスの端面すなわち
振動の腹に位置しており、リード線等の外部電気端子も
そこから取り出さざるを得ない。その場合、リード線等
の端子および半田等の接続部の質量が振動の腹に存在す
るため、機械的損失の増加や共振時の周波数特性の乱れ
を引き起こす。機械的損失の増加は効率の低下の原因と
なり、また周波数特性の乱れにより回路内での動作が不
安定となるため実用化の大きな障害となる。In the conventional Rosen-type piezoelectric transformer, the electrode of the power generation unit is located at the end face of the transformer, that is, at the antinode of vibration, and external electric terminals such as lead wires have to be taken out therefrom. . In this case, since the mass of the terminal such as the lead wire and the connection portion such as the solder exists at the antinode of the vibration, the mechanical loss increases and the frequency characteristics at the time of resonance are disturbed. An increase in mechanical loss causes a decrease in efficiency, and a disturbance in frequency characteristics makes operation in a circuit unstable, which is a major obstacle to practical use.
【0008】また圧電トランスは、フィルタなどの信号
処理用の圧電素子とは異なり、比較的ハイパワーでの動
作が求められており、圧電材料が持つ限界性能近くまで
大振動で振動させる。このような圧電トランスにおいて
接続部が振動の腹に位置するということは接続部が大き
な振動を受けることを意味し、半田やボンディング等ど
のような接続方法であっても、寿命などの点で接続部の
信頼性を著しく下げる結果となる。[0008] Unlike a piezoelectric element for signal processing such as a filter, a piezoelectric transformer is required to operate at relatively high power, and vibrates with a large vibration to near the limit performance of a piezoelectric material. In such a piezoelectric transformer, the fact that the connection portion is located at the antinode of vibration means that the connection portion is subject to large vibration, and the connection can be made in terms of life and the like regardless of the connection method such as soldering or bonding. As a result, the reliability of the part is significantly reduced.
【0009】さらに、このローゼン型圧電トランスは、
図4からも明らかなように3端子構造であり、入出力間
の電気的絶縁が取れないという問題もある。Furthermore, this Rosen-type piezoelectric transformer has
As is apparent from FIG. 4, the three-terminal structure has a problem that electrical insulation between input and output cannot be obtained.
【0010】本発明の目的は、上記のような問題点を解
決し、高電圧・高電力・高信頼性の特性を持ち、かつ小
型で小型・薄型である圧電磁器トランスを提供すること
にある。An object of the present invention is to solve the above-mentioned problems and to provide a piezoelectric ceramic transformer which has characteristics of high voltage, high power and high reliability, and is small, small and thin. .
【0011】本発明の他の目的は、このような圧電磁器
トランスの駆動方法を提供することにある。Another object of the present invention is to provide a method for driving such a piezoelectric ceramic transformer.
【0012】[0012]
【課題を解決するための手段】本発明は、長板構造の圧
電磁器トランスにおいて、主面上に配置された対向する
櫛形電極を有し、それぞれの電極指間が長手方向に交互
に分極された圧電磁器からなる駆動部と、駆動部と同様
に主面上に配置された対向する櫛形電極を有し、それぞ
れの電極指間が長手方向に交互に分極された圧電磁器か
らなる発電部、あるいは駆動部と反対側の端面から圧電
磁器トランス全体の長さの1/4の位置の主面上に短冊
形の電極を配置し、駆動部と短冊形電極の間を長手方向
に分極した圧電磁器からなる発電部とを有することを特
徴とする。SUMMARY OF THE INVENTION The present invention is directed to a piezoelectric ceramic transformer having a long plate structure, having opposing comb-shaped electrodes arranged on a main surface, and between electrode fingers are alternately polarized in the longitudinal direction. A driving unit composed of a piezoelectric ceramic having a comb-shaped electrode disposed on the main surface in the same manner as the driving unit, and a power generation unit composed of a piezoelectric ceramic in which each electrode finger is alternately polarized in the longitudinal direction, Alternatively, a strip-shaped electrode is arranged on the main surface at a position 1/4 of the entire length of the piezoelectric ceramic transformer from the end face opposite to the drive section, and a piezoelectric element in which the drive section and the strip-shaped electrode are polarized in the longitudinal direction. And a power generation unit made of porcelain.
【0013】また本発明の圧電磁器トランスの駆動方法
は、圧電磁器トランスを、長さ方向縦振動2次モードで
駆動することを特徴とする。Further, the method of driving a piezoelectric ceramic transformer according to the present invention is characterized in that the piezoelectric ceramic transformer is driven in a longitudinal longitudinal vibration secondary mode.
【0014】[0014]
【作用】本発明の圧電磁器トランスでは、長さ方向縦振
動共振周波数と同じ周波数で駆動すれば、発電部では高
い電圧が得られるが、2次モード(1波長モード)を利
用すれば、端面から圧電磁器トランスの全体の1/4の
位置に振動の節が存在する。本発明の構造によれば外部
電気端子はすべてこの振動の節から取り出せるので、非
常に高い信頼性を得ることが可能である。In the piezoelectric ceramic transformer according to the present invention, a high voltage can be obtained in the power generation section if it is driven at the same frequency as the longitudinal vibration resonance frequency in the longitudinal direction. There is a vibration node at a quarter of the entire piezoelectric ceramic transformer. According to the structure of the present invention, since all the external electric terminals can be taken out from the nodes of the vibration, it is possible to obtain very high reliability.
【0015】また、本発明の圧電磁器トランスではトラ
ンス全体の長さ(駆動部、発電部の数)、幅、厚さ以外
にも駆動部と発電部の主面上の電極の数にも自由度があ
り、負荷と圧電磁器トランスの出力インピーダンスを整
合させられる範囲が広いという特徴を持つ。Further, in the piezoelectric ceramic transformer of the present invention, the number of electrodes on the main surfaces of the drive unit and the power generation unit is free in addition to the length (number of drive units and power generation units), width and thickness of the entire transformer. It is characterized by a wide range in which the output impedance of the load and the piezoelectric ceramic transformer can be matched.
【0016】また、この圧電磁器トランスは、入出力の
電気端子はそれぞれ直流的に絶縁された4端子構造であ
り、3端子型のローゼン型の圧電トランスに比べて周辺
回路の自由度を高くすることが可能である。The piezoelectric ceramic transformer has a four-terminal structure in which the input and output electric terminals are each insulated in a direct current manner, so that the degree of freedom of the peripheral circuit is higher than that of a three-terminal Rosen-type piezoelectric transformer. It is possible.
【0017】[0017]
【実施例】以下、図面を用いて本発明の実施例を説明す
る。Embodiments of the present invention will be described below with reference to the drawings.
【0018】(第1の実施例)第1の実施例である長板
構造の圧電磁器トランスを図1に示す。この圧電磁器ト
ランスは、長方形状の圧電磁器単板10を備え、圧電磁
器トランス全体は、駆動部11と発電部12に大きく分
割され、駆動部11の主面上には対向する櫛形電極11
1と112が配置されている。櫛形電極は、圧電磁器ト
ランスの幅方向に伸びる多くの電極指とそれらを電気的
に接続している1つの連結部で構成されている。全体が
一様に分極されている表面波デバイス等と異なり、対向
する電極指間は図中矢印で示したように長手方向に交互
に分極されている。また、連結部においては駆動部11
の長手方向の中央から外部電気端子113,114が取
り出されている。(First Embodiment) FIG. 1 shows a piezoelectric ceramic transformer having a long plate structure according to a first embodiment. The piezoelectric ceramic transformer includes a rectangular piezoelectric ceramic single plate 10, and the piezoelectric ceramic transformer as a whole is largely divided into a driving unit 11 and a power generation unit 12, and a main surface of the driving unit 11 has opposing comb-shaped electrodes 11.
1 and 112 are arranged. The comb-shaped electrode is composed of a number of electrode fingers extending in the width direction of the piezoelectric ceramic transformer and one connecting portion that electrically connects them. Unlike a surface wave device or the like in which the whole is uniformly polarized, the space between the opposing electrode fingers is alternately polarized in the longitudinal direction as indicated by the arrow in the figure. In the connecting portion, the driving portion 11
The external electric terminals 113 and 114 are taken out from the center in the longitudinal direction of.
【0019】発電部12も駆動部11と同様に対向する
櫛形電極121,122が配置され、各電極指間は図中
矢印で示したように長手方向に交互に分極されている。
櫛形電極121,122の長手方向の中央から外部電気
端子123,124がそれぞれ取り出されている。Similarly to the driving unit 11, the power generating unit 12 has comb electrodes 121 and 122 facing each other, and the space between the electrode fingers is alternately polarized in the longitudinal direction as indicated by the arrow in the figure.
External electric terminals 123 and 124 are respectively taken out from the longitudinal center of the comb electrodes 121 and 122.
【0020】図1で示す構造の駆動部11の外部電気端
子113−114間に交流電圧を印加すると、各電極指
間では電気機械結合係数k33を介して圧電縦効果33モ
ードに長手方向の歪が発生する。このとき、分極の方向
および印加電界の方向が両方とも交互になっているた
め、駆動部11の電極指間は全て同位相で伸縮を繰り返
す。その結果、圧電磁器トランス全体に長さ方向の縦振
動が発生する。この長さ方向の縦振動が発電部12に伝
搬し、発電部でも各電極指間で電気機械結合係数k33を
介して圧電縦効果33モードにより電圧が発生する。[0020] When an AC voltage is applied between external electrical terminals 113-114 of the structure of the driving unit 11 shown in FIG. 1, the longitudinal direction in the piezoelectric longitudinal effect 33 mode through electromechanical coupling factor k 33 is between the electrode fingers Distortion occurs. At this time, since both the direction of the polarization and the direction of the applied electric field are alternated, the space between the electrode fingers of the driving unit 11 repeats expansion and contraction in the same phase. As a result, longitudinal vibration in the length direction is generated in the entire piezoelectric ceramic transformer. Longitudinal vibrations of the length direction is propagated to the power generation unit 12, a voltage by the piezoelectric longitudinal effect 33 mode is also generated through an electromechanical coupling coefficient k 33 between the electrode fingers in the power generation unit.
【0021】このとき、長さ方向縦振動共振周波数と同
じ周波数で駆動すれば、発電部12では高い電圧が得ら
れるが、2次モード(1波長モード)を利用すれば、端
面から圧電磁器トランスの全体の1/4の位置に振動の
節が存在する。本発明の構造によれば外部電気端子はす
べてこの振動の節から取り出せるので、非常に高い信頼
性を得ることが可能である。At this time, if the driving is performed at the same frequency as the longitudinal vibration resonance frequency in the longitudinal direction, a high voltage can be obtained in the power generation unit 12. However, if the secondary mode (single-wavelength mode) is used, the piezoelectric ceramic transformer is connected from the end face. There is a vibration node at a quarter of the position. According to the structure of the present invention, since all the external electric terminals can be taken out from the nodes of the vibration, it is possible to obtain very high reliability.
【0022】この圧電磁器トランスの共振周波数近傍の
集中定数近似等価回路は、他の圧電トランスと同様に図
3で示される。図3においてCd1 ,Cd2 はそれぞれ
入力側,出力側の制動容量、A1 ,A2 は入出力の力係
数、m,c,rm は長さ縦振動3次モードに関する等価
容量,等価コンプライアンス,等価機械抵抗である。本
発明の圧電磁器トランスの入出力の力係数A1 ,A
2 は、幅、厚さ、駆動部,発電部の電極指間の距離,電
極指の本数で変化する。図3の等価回路から明らかなよ
うに、一般に圧電トランスの出力電圧Vout は、接続さ
れる負荷の抵抗値によって変化し、負荷抵抗の値が大き
いほどVout の値も大きくなる。また、エネルギー伝送
効率も負荷抵抗に依存し、圧電磁器トランスの出力イン
ピーダンスと整合した値の負荷以外では伝送効率はさほ
ど高くない。本発明の圧電磁器トランスではトランス全
体の長さ(駆動部、発電部の数)、幅、厚さ以外にも駆
動部と発電部の主面上の電極の数にも自由度があり、負
荷と圧電磁器トランスの出力インピーダンスを整合させ
られる範囲が広いという特徴を持つ。A lumped constant approximation equivalent circuit near the resonance frequency of this piezoelectric ceramic transformer is shown in FIG. 3 like other piezoelectric transformers. Cd 1, Cd 2 respectively input side in FIG. 3, the damping capacity of the output side, A 1, A 2 is the force factor of the input and output, m, c, r m is the equivalent capacitance on the length longitudinal vibration tertiary mode, the equivalent Compliance and equivalent mechanical resistance. Input and output force coefficients A 1 , A of the piezoelectric ceramic transformer of the present invention
2 changes according to the width, thickness, distance between the electrode fingers of the driving unit and the power generation unit, and the number of electrode fingers. As is apparent from the equivalent circuit of FIG. 3, generally, the output voltage V out of the piezoelectric transformer changes depending on the resistance of the connected load, and the larger the load resistance, the larger the value of V out . Further, the energy transmission efficiency also depends on the load resistance, and the transmission efficiency is not so high except for a load whose value matches the output impedance of the piezoelectric ceramic transformer. The piezoelectric ceramic transformer of the present invention has a degree of freedom in the number of electrodes on the main surfaces of the drive unit and the power generation unit in addition to the length (the number of drive units and power generation units), width, and thickness of the entire transformer. The feature is that the range in which the output impedance of the piezoelectric ceramic transformer can be matched is wide.
【0023】また、この圧電磁器トランスは、図1およ
び図3から明らかなように入出力の電気端子はそれぞれ
直流的に絶縁された4端子構造であり、図4で示した3
端子型のローゼン型の圧電トランスに比べて周辺回路の
自由度を高くすることが可能である。As shown in FIGS. 1 and 3, the piezoelectric ceramic transformer has a four-terminal structure in which input and output electric terminals are insulated from each other.
The degree of freedom of the peripheral circuit can be increased as compared with the terminal type Rosen type piezoelectric transformer.
【0024】第1の実施例の圧電磁器トランスの具体例
を、その製造方法とともに説明する。A specific example of the piezoelectric ceramic transformer according to the first embodiment will be described together with a method of manufacturing the same.
【0025】圧電磁器の材料にはPZT(PbZrO3
−PbTiO3 )系圧電磁器を用いた。まず、焼成され
た圧電磁器ブロックをダイアモンドカッターで切断し、
#3000のSiC研磨粉を用いて平行平面研磨するこ
とにより長さ30mm,幅8mm,厚さ1.0mmの圧
電磁器単板10を用意する。圧電磁器単板上にAgペー
ストをスクリーン印刷・焼成することにより櫛形電極1
11,112,121,122を形成した。この際、駆
動部11の櫛形電極111,112は電極指6本、発電
部12の櫛形電極は電極指3本とし、各電極指の幅は
0.3mmとした。これらの外部電極は、塗布・焼成以
外の方法、例えば蒸着法やスパッタ法を用いてAg以外
の導電性材料の薄膜を形成しても構わない。続いて導線
をハンダを用いて接続することにより外部端子113,
114,123,124を取り出した。その後、駆動部
11、発電部12共に100℃の絶縁油中において4k
V/mmの電圧を印加する分極処理を施した。The material of the piezoelectric ceramic is PZT (PbZrO 3).
-PbTiO 3 ) -based piezoelectric ceramic was used. First, cut the fired piezoelectric ceramic block with a diamond cutter,
A single piezoelectric ceramic plate 10 having a length of 30 mm, a width of 8 mm, and a thickness of 1.0 mm is prepared by performing parallel plane polishing using # 3000 SiC polishing powder. An Ag paste is screen-printed and fired on a piezoelectric ceramic veneer to form a comb-shaped electrode 1.
11, 112, 121 and 122 were formed. At this time, the comb-shaped electrodes 111 and 112 of the driving unit 11 had six electrode fingers, and the comb-shaped electrode of the power generation unit 12 had three electrode fingers, and the width of each electrode finger was 0.3 mm. For these external electrodes, a thin film of a conductive material other than Ag may be formed by a method other than coating and firing, for example, a vapor deposition method or a sputtering method. Subsequently, the external terminals 113,
114, 123 and 124 were taken out. Thereafter, both the drive unit 11 and the power generation unit 12 are set to 4 k in an insulating oil at 100 ° C.
A polarization process of applying a voltage of V / mm was performed.
【0026】この圧電磁器トランスの長さ縦振動2次モ
ードの共振周波数はアドミタンスの周波数特性から11
0kHzと測定された。この圧電磁器トランスに100
kΩの負荷抵抗を接続したところ、入力電圧10Vに対
して330Vの出力電圧が得られ、このときの出力電力
は1.1Wであった。The resonance frequency of the longitudinal mode of the piezoelectric ceramic transformer in the longitudinal vibration secondary mode is 11 due to the frequency characteristic of admittance.
It was measured as 0 kHz. This piezoelectric ceramic transformer has 100
When a load resistance of kΩ was connected, an output voltage of 330 V was obtained for an input voltage of 10 V, and the output power at this time was 1.1 W.
【0027】また、この実施例による圧電磁器トランス
100個を連続2000時間駆動したが、外部電極の剥
離や特性の異常が認められた試料は1個も無かった。Further, 100 piezoelectric ceramic transformers according to this embodiment were driven continuously for 2000 hours. However, none of the samples showed exfoliation of external electrodes or abnormal characteristics.
【0028】(第2の実施例)本発明の圧電磁器トラン
スの第2の実施例を図2に示した。駆動部11の電極は
第1の実施例と同じであるが、発電部12には、櫛形電
極ではなく、出力部の中央に幅1mmの短冊形電極12
5を配置し、外部電気端子126を取り出している。(Second Embodiment) FIG. 2 shows a piezoelectric ceramic transformer according to a second embodiment of the present invention. The electrodes of the driving unit 11 are the same as those of the first embodiment, but the power generating unit 12 is not a comb-shaped electrode but a rectangular electrode 12 mm wide at the center of the output unit.
5, and the external electric terminal 126 is taken out.
【0029】このような構成の圧電磁器トランスの作成
手順は第1の実施例と同じである。外部端子接続後の分
極処理は、駆動部11では電極111−112間に電圧
を印加するが、発電部12では入力部の電極112と発
電部の電極125間で分極している。そのため、発電部
では半分の領域しか圧電体として活性化されないが、小
電力かつ3端子構造で構わない用途にはこれで十分であ
る。The procedure for producing the piezoelectric ceramic transformer having such a configuration is the same as that of the first embodiment. In the polarization process after the connection of the external terminals, a voltage is applied between the electrodes 111 and 112 in the driving unit 11, but the power generation unit 12 polarizes between the electrode 112 in the input unit and the electrode 125 in the power generation unit. For this reason, only half the region is activated as a piezoelectric body in the power generation unit, but this is sufficient for applications requiring low power and a three-terminal structure.
【0030】この圧電磁器トランスの長さ縦振動2次モ
ードの共振周波数は、アドミタンスの周波数特性から1
10kHzと測定された。この圧電磁器トランスに、1
MΩの負荷抵抗を接続したところ、入力電圧10Vに対
して650Vの出力電圧が得られ、このときの出力電力
は0.42Wであった。The resonance frequency of the secondary mode of longitudinal vibration of the piezoelectric ceramic transformer has a resonance frequency of 1 from the frequency characteristic of admittance.
It was measured as 10 kHz. This piezoelectric ceramic transformer has 1
When a load resistance of MΩ was connected, an output voltage of 650 V was obtained with respect to an input voltage of 10 V, and the output power at this time was 0.42 W.
【0031】また、この実施例による圧電磁器トランス
100個を連続2000時間駆動したが、外部電極の剥
離や特性の異常が認められた試料は1個も無かった。When 100 piezoelectric ceramic transformers according to this embodiment were driven continuously for 2000 hours, none of the samples showed peeling of the external electrodes or abnormal characteristics.
【0032】[0032]
【発明の効果】以上詳述した如く、本発明に従った構成
の圧電磁器トランスは、高電圧・高電力・高信頼性の特
性を持ち、かつ小型で小型・薄型であるという点で従来
の圧電トランスにはない長所があり、工業的価値も多大
である。As described in detail above, the piezoelectric ceramic transformer having the structure according to the present invention has the characteristics of high voltage, high power and high reliability, and is small in size, small in size and thin in thickness. It has advantages not found in piezoelectric transformers, and has great industrial value.
【図1】第1の実施例の圧電磁器トランスの平面図であ
る。FIG. 1 is a plan view of a piezoelectric ceramic transformer according to a first embodiment.
【図2】第2の実施例の圧電磁器トランスの平面図であ
る。FIG. 2 is a plan view of a piezoelectric ceramic transformer according to a second embodiment.
【図3】圧電磁器トランスの集中定数等価回路図であ
る。FIG. 3 is a lumped constant equivalent circuit diagram of a piezoelectric ceramic transformer.
【図4】従来のローゼン型圧電トランスの斜視図であ
る。FIG. 4 is a perspective view of a conventional Rosen-type piezoelectric transformer.
10 圧電磁器単板 11,41 駆動部 12,42 発電部 43,44,45 外部電極 46,47,48,113,114,123,124,
126 外部電気端子 111,112,121,122 櫛形電極 125 短冊形電極10 piezoelectric ceramic single plate 11, 41 drive unit 12, 42 power generation unit 43, 44, 45 external electrode 46, 47, 48, 113, 114, 123, 124,
126 External electrical terminals 111, 112, 121, 122 Comb electrodes 125 Strip electrodes
Claims (4)
面上に配置された対向する櫛形電極を有し、それぞれの
電極指間が長手方向に交互に分極された圧電磁器からな
る駆動部を有することを特徴とする圧電磁器トランス。In a piezoelectric ceramic transformer having a long plate structure, there is provided a drive unit comprising a piezoelectric ceramic having opposing comb-shaped electrodes arranged on a main surface, and between each electrode finger being alternately polarized in a longitudinal direction. A piezoelectric ceramic transformer comprising:
て、駆動部と同様に主面上に配置された対向する櫛形電
極を有し、それぞれの電極指間が長手方向に交互に分極
された圧電磁器からなる発電部を有することを特徴とす
る圧電磁器トランス。2. The piezoelectric ceramic transformer according to claim 1, further comprising: opposing comb-shaped electrodes disposed on the main surface in the same manner as the driving section, wherein the electrode fingers are alternately polarized in the longitudinal direction. A piezoelectric ceramic transformer having a power generation unit made of porcelain.
て、駆動部と反対側の端面から圧電磁器トランス全体の
長さの1/4の位置の主面上に短冊形の電極を配置し、
駆動部とこの短冊形電極の間を長手方向に分極した圧電
磁器からなる発電部を有することを特徴とする圧電磁器
トランス。3. The piezoelectric ceramic transformer according to claim 1, wherein a strip-shaped electrode is disposed on a main surface at a position 1 / of the entire length of the piezoelectric ceramic transformer from an end face opposite to the driving section,
A piezoelectric ceramic transformer, comprising: a power generation unit including a piezoelectric ceramic in which a longitudinal direction is polarized between a driving unit and the strip-shaped electrode.
トランスにおいて、長さ方向縦振動2次モードで駆動す
ることを特徴とする圧電磁器トランスの駆動方法。4. The piezoelectric ceramic transformer according to claim 1, wherein said piezoelectric ceramic transformer is driven in a longitudinal longitudinal vibration secondary mode.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6174417A JP2725603B2 (en) | 1994-07-26 | 1994-07-26 | Piezoelectric transformer and its driving method |
US08/348,925 US5576590A (en) | 1994-07-26 | 1994-11-25 | Piezoelectric ceramic transformer |
EP94118587A EP0694978B1 (en) | 1994-07-26 | 1994-11-25 | Piezoelectric ceramic transformer |
DE69412247T DE69412247T2 (en) | 1994-07-26 | 1994-11-25 | Piezoelectric transformer |
US08/665,913 US5806159A (en) | 1994-07-26 | 1996-06-19 | Piezoelectric ceramic transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6174417A JP2725603B2 (en) | 1994-07-26 | 1994-07-26 | Piezoelectric transformer and its driving method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0847094A JPH0847094A (en) | 1996-02-16 |
JP2725603B2 true JP2725603B2 (en) | 1998-03-11 |
Family
ID=15978193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6174417A Expired - Lifetime JP2725603B2 (en) | 1994-07-26 | 1994-07-26 | Piezoelectric transformer and its driving method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2725603B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2671871B2 (en) * | 1995-05-31 | 1997-11-05 | 日本電気株式会社 | Piezoelectric transformer and manufacturing method thereof |
TW356618B (en) * | 1997-01-16 | 1999-04-21 | Nippon Electric Co | AC/DC converter with a piezoelectric transformer |
JP7406876B2 (en) * | 2018-10-17 | 2023-12-28 | キヤノン株式会社 | Piezoelectric transformers and electronic equipment |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3257037B2 (en) * | 1992-05-06 | 2002-02-18 | 富士通株式会社 | Piezoelectric transformer and DC / AC converter using piezoelectric transformer |
-
1994
- 1994-07-26 JP JP6174417A patent/JP2725603B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0847094A (en) | 1996-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2508575B2 (en) | Piezoelectric transformer and its driving method | |
US5806159A (en) | Piezoelectric ceramic transformer | |
JP3064458B2 (en) | Thickness longitudinal vibration piezoelectric transformer and its driving method | |
JP2606667B2 (en) | Piezoelectric transformer and driving method thereof | |
AU7798398A (en) | Multi-layer piezoelectric transformer | |
WO2003007392A1 (en) | Multilayer piezoelectric transformer | |
US5818150A (en) | Four-terminal piezoelectric ceramic transformer | |
JP2725603B2 (en) | Piezoelectric transformer and its driving method | |
JP2581394B2 (en) | Piezoelectric transformer and driving method thereof | |
JP2643810B2 (en) | Piezoelectric transformer and its driving method | |
JP2555985B2 (en) | Piezoelectric transformer and its driving method | |
JP3060666B2 (en) | Thickness longitudinal vibration piezoelectric transformer and its driving method | |
JP3706509B2 (en) | Piezoelectric transformer | |
JP2508964B2 (en) | Piezoelectric transformer and driving method thereof | |
JP2755177B2 (en) | Piezoelectric transformer | |
JP2576648B2 (en) | Thickness longitudinal vibration piezoelectric transformer and its driving method | |
JP2531087B2 (en) | Piezoelectric transformer and driving method thereof | |
JP2727969B2 (en) | Method of manufacturing piezoelectric ceramic transformer having comb-shaped electrode | |
JP3010896B2 (en) | Piezoelectric transformer and its driving method | |
JP2904137B2 (en) | Multilayer piezoelectric transformer | |
JP3709114B2 (en) | Piezoelectric transformer | |
JP4831859B2 (en) | Piezoelectric transformer | |
JPH05251785A (en) | Manufacture of thickness-wise vibration piezoelectric-porcelain transformer and manufacture thereof | |
JP2508575C (en) | ||
JPS639673B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19971104 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071205 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081205 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091205 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091205 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101205 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101205 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111205 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111205 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121205 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121205 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131205 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term |