JP2576648B2 - Thickness longitudinal vibration piezoelectric transformer and its driving method - Google Patents

Thickness longitudinal vibration piezoelectric transformer and its driving method

Info

Publication number
JP2576648B2
JP2576648B2 JP1312466A JP31246689A JP2576648B2 JP 2576648 B2 JP2576648 B2 JP 2576648B2 JP 1312466 A JP1312466 A JP 1312466A JP 31246689 A JP31246689 A JP 31246689A JP 2576648 B2 JP2576648 B2 JP 2576648B2
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
transformer
thickness
piezoelectric
longitudinal vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1312466A
Other languages
Japanese (ja)
Other versions
JPH03173484A (en
Inventor
修 大西
武志 井上
延男 大出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1312466A priority Critical patent/JP2576648B2/en
Publication of JPH03173484A publication Critical patent/JPH03173484A/en
Application granted granted Critical
Publication of JP2576648B2 publication Critical patent/JP2576648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高周波数帯で動作可能な圧電トランス、特
に小型化、低ノイズ化が要求されるオンボード用圧電ト
ランスに関する。
Description: TECHNICAL FIELD The present invention relates to a piezoelectric transformer operable in a high frequency band, and more particularly, to an on-board piezoelectric transformer required to be reduced in size and noise.

(従来の技術) 近年、電子装置の電源回路を小型にするために、スイ
ッチング電源のスイッチング周波数の高周波化が図られ
ている。従来より、このスイッチング電源には電磁トラ
ンスが用いれらており、スイッチング電源の小型化には
周知のごとくスイッチング周波数の高周波化が望まし
い。しかしながら、スイッチング周波数を高くすると、
電磁トランスに用いられている磁性材料のヒステリシス
損失、渦電流損失や導線の表皮効果による損失が急激に
増大し、トランスの効率が非常に低くなる欠点があっ
た。このため、電磁トランスの実用的な周波数帯域の上
限はせいぜい500kHzであった。
(Related Art) In recent years, in order to reduce the size of a power supply circuit of an electronic device, the switching frequency of a switching power supply has been increased. Conventionally, an electromagnetic transformer has been used for this switching power supply, and it is desirable to increase the switching frequency as is well known in the art for reducing the size of the switching power supply. However, when the switching frequency is increased,
The hysteresis loss, the eddy current loss of the magnetic material used in the electromagnetic transformer, and the loss due to the skin effect of the conductor wire sharply increase, and the efficiency of the transformer becomes extremely low. For this reason, the upper limit of the practical frequency band of the electromagnetic transformer was at most 500 kHz.

これに対して、圧電トランスは、共振状態で使用さ
れ、一般の電磁トランスに比べて、(1)同一周波数に
おいてエネルギー密度が高いため小型化が図れること、
(2)不燃化が図れること、(3)電磁誘導によるノイ
ズがでないこと等数多くの長所を有している。
On the other hand, the piezoelectric transformer is used in a resonance state, and (1) has a higher energy density at the same frequency than the general electromagnetic transformer, so that the size can be reduced.
It has many advantages such as (2) non-combustibility and (3) no noise due to electromagnetic induction.

第6図に従来の代表的な圧電トランスであるローゼン
型圧電トランスの構造を示す。以下、図面に沿って説明
する。高圧電を取り出す場合、表面に電極が設けられた
圧電板において、61で示す部分は圧電トランスの低イン
ピーダンスの駆動部分であり、その上下面に電極63,64
が設けられており、この部分は図中66で示すように厚み
方向に分極されている。また、同様に62で示す部分は高
インピーダンスの発電部であり、その端面に電極65が設
けられており、発電部分82は図中67で示すように圧電板
の長さ方向に分極されている。この圧電トランスの動作
は、駆動電極63,64に電圧が印加されると横効果31モー
ドで電気機械結合係数k31に依って縦振動が励振され、
トランス全体が振動する。さらに発電部分62では、電気
機械結合係数k33に依って縦効果縦振動モード(33モー
ド)により、出力電極65から高電圧が取り出される。一
方、高電圧を入力し、低電圧を出力させる場合には、縦
効果の高インピーダンス部分82を入力側とし、横効果の
インピーダンス部分61を出力側にすれば良いことは明ら
かである。他のタイプの圧電トランスも、いずれもロー
ゼン型と同じ平板の伸び振動や円板の半径方向拡がり振
動を利用したものであり、適用周波数は最高200kHz程度
までである。
FIG. 6 shows the structure of a Rosen type piezoelectric transformer which is a typical conventional piezoelectric transformer. Hereinafter, description will be given with reference to the drawings. In the case of extracting high piezoelectricity, in the piezoelectric plate having electrodes provided on the surface, a portion indicated by 61 is a low impedance driving portion of the piezoelectric transformer, and electrodes 63 and 64 are provided on upper and lower surfaces thereof.
Are provided, and this portion is polarized in the thickness direction as shown by 66 in the figure. Similarly, a portion indicated by 62 is a high-impedance power generating portion, and an electrode 65 is provided on an end face thereof, and a power generating portion 82 is polarized in the length direction of the piezoelectric plate as indicated by 67 in the drawing. . The piezoelectric transformer operation, longitudinal vibration depending on the electromechanical coupling factor k 31 is excited when a voltage is applied to the drive electrodes 63, 64 with transverse effect 31 mode,
The whole transformer vibrates. In addition power portion 62, the longitudinal effect longitudinal vibration mode depending on the electromechanical coupling factor k 33 (33 mode), a high voltage is taken from the output electrode 65. On the other hand, when a high voltage is input and a low voltage is output, it is clear that the high impedance portion 82 of the vertical effect should be on the input side and the impedance portion 61 of the horizontal effect should be on the output side. All other types of piezoelectric transformers use the same extensional vibration of a flat plate and radial expansion of a circular plate as the Rosen type, and the applicable frequency is up to about 200 kHz.

(発明が解決しようとする課題) 以上の従来例で示したように、圧電トランスの適用周
波数領域は、200kHz以下の低周波領域においてのみであ
った。また、ローゼン型の圧電トランスは、縦効果の電
気機械結合係数に比べて著しく小さい横効果縦振動モー
ドの電気機械結合係数k31を用いざるを得ないため、帯
域幅が小さいという欠点があった。
(Problems to be Solved by the Invention) As shown in the above conventional example, the applicable frequency range of the piezoelectric transformer is only in the low frequency range of 200 kHz or less. The piezoelectric transformer of Rosen type, for comparison with the electromechanical coupling coefficient of the longitudinal effect inevitably using the electromechanical coupling factor k 31 of significantly smaller transverse effect longitudinal vibration mode, there is a disadvantage that the bandwidth is small .

(課題を解決するための手段) 本発明は、厚み方向に分極した同じ厚さの圧電セラミ
ック板を積み重ねる構造の圧電磁器トランスにおいて、
該トランスの隣接する二つの部分の一方は分極の向きが
同じ向きになるように積み重ね、他方は分極の向きが互
い違いに逆向きになるように積み重ねと構造を特徴とす
る圧電トランスと、該圧電トランスを厚み縦高次モード
で駆動することを特徴とする駆動方法である。
(Means for Solving the Problems) The present invention relates to a piezoelectric ceramic transformer having a structure in which piezoelectric ceramic plates polarized in the thickness direction and having the same thickness are stacked.
A piezoelectric transformer characterized in that one of two adjacent parts of the transformer is stacked so that the directions of polarization are the same, and the other is stacked and structured so that the directions of polarization are alternately opposite to each other; This is a driving method characterized in that the transformer is driven in a thickness vertical higher order mode.

(作用) 本発明は、1MHz以上の高周波において低損失で十分な
機能を有する圧電トランスを提供するためになされたも
のである。第1図に示すように、本発明の圧電磁器トラ
ンスは、厚み方向に分極された圧電セラミック板を多数
積み重ねた構造になっている。積み重ねる際に、圧電磁
器板111〜114からなる図の11の部分は分極の向きが互い
に逆向きになるようにし、圧電磁器板121〜124からなる
図の12の部分は分極の向きを揃えて積み重ねるのが本発
明の特徴である。
(Operation) The present invention has been made to provide a piezoelectric transformer having low loss and sufficient functions at a high frequency of 1 MHz or more. As shown in FIG. 1, the piezoelectric ceramic transformer of the present invention has a structure in which many piezoelectric ceramic plates polarized in the thickness direction are stacked. In stacking, the portion 11 in the figure composed of the piezoelectric ceramic plates 111 to 114 is arranged so that the directions of polarization are opposite to each other, and the portion 12 in the figure composed of the piezoelectric ceramic plates 121 to 124 is aligned in the direction of polarization. Stacking is a feature of the present invention.

本圧電トランスを厚み縦振動高次モードで使用できる
結線図を第2図に示す。分極の向きが互いに逆向きにな
っている部分11では全体の上下面から外部電極21,22を
取り出し、高インピーダンスとし、分極の向きが揃って
いる部分12では各圧電磁器板の上下面から外部電極22,2
3を取り出し交互に接続し低インピーダンス部分とす
る。このように接続した場合、電気端子21,22間に電圧
を印加すると圧電セラミック板111,113が厚み方向に伸
びる時に112,114が縮むため、2分の1波長が1枚の圧
電セラミック板と等しい厚み縦振動高次モードが強く励
振できる。この厚み縦振動高次モードの共振状態では、
圧電セラミック板111,113が伸びる時、121,123が伸び、
122,124が縮む。そのため、121,12と122,124では逆向き
の電圧が発生する。その時この部分12は入力部分11に比
べて低インピーダンスであるために電気端子23からは電
気端子21に印加した入力信号と同一周波数で低電圧の信
号が出力される。逆に低電圧を高電圧に変換する場合
は、端子23,22間に低電圧を印加すれば端子21,22間から
高電圧が出力される。
FIG. 2 shows a connection diagram in which the present piezoelectric transformer can be used in the thickness longitudinal vibration higher-order mode. In the part 11 in which the polarization directions are opposite to each other, the external electrodes 21 and 22 are taken out from the upper and lower surfaces of the whole to have a high impedance, and in the part 12 in which the polarization directions are aligned, the external electrodes are Electrodes 22,2
Take out 3 and connect them alternately to make a low impedance part. In such a connection, when a voltage is applied between the electrical terminals 21 and 22, the piezoelectric ceramic plates 111 and 113 contract when they expand in the thickness direction, so that a half wavelength has a thickness longitudinal vibration equal to that of one piezoelectric ceramic plate. Higher order modes can be strongly excited. In the resonance state of this thickness longitudinal vibration higher-order mode,
When the piezoceramic plates 111 and 113 expand, 121 and 123 expand,
122,124 shrink. Therefore, opposite voltages are generated at 121 and 12 and at 122 and 124. At this time, since the portion 12 has a lower impedance than the input portion 11, a low voltage signal is output from the electric terminal 23 at the same frequency as the input signal applied to the electric terminal 21. Conversely, when converting a low voltage to a high voltage, a high voltage is output from between the terminals 21 and 22 by applying a low voltage between the terminals 23 and 22.

また、第3図に示すように、低インピーダンス部12の
高インピーダンスとの境界にある圧電セラミック板121
の上面からは出力端子を取り出さないようにすれば入力
端子31,32と出力端子33,34を電気的に分離できるため周
辺回路の自由度を増すことができる。
As shown in FIG. 3, the piezoelectric ceramic plate 121 at the boundary between the low impedance portion 12 and the high impedance is provided.
If the output terminals are not taken out from the upper surface of the device, the input terminals 31, 32 and the output terminals 33, 34 can be electrically separated, so that the degree of freedom of the peripheral circuit can be increased.

本発明の圧電磁器トランスによれば、厚み縦振動高次
モードを用いるため、10MHz程度の高周波帯で使用する
圧電トランス実現できる。厚み縦振動で動作する圧電ト
ランスの出力P(W)は、簡単なエネルギー的考察によ
り、近似的に P=A・fr・εS 33・V・kt2 となる。ここに、Aは比例定数、εS 33は拘束誘電率、
Vは、圧電トランスの体積、ktは厚み縦振動の電気機械
結合係数である。したがって圧電トランスは圧電セラミ
ック材料の電気機械結合係数ktが大きいほど、共振周波
数frが高いほど、単位体積当りの出力が大きくなり、そ
れだけ小型化を図ることができる。
According to the piezoelectric ceramic transformer of the present invention, the piezoelectric transformer used in the high frequency band of about 10 MHz can be realized because the higher-order mode of the thickness longitudinal vibration is used. The output P (W) of the piezoelectric transformer operated by the thickness longitudinal vibration is approximately P = A · fr · ε S 33 · V · kt 2 by simple consideration of energy. Where A is a proportionality constant, ε S 33 is a constrained permittivity,
V is the volume of the piezoelectric transformer, and kt is the electromechanical coupling coefficient of the thickness longitudinal vibration. Therefore, as the electromechanical coupling coefficient kt of the piezoelectric ceramic material increases and the resonance frequency fr increases, the output per unit volume of the piezoelectric transformer increases, and the size can be reduced accordingly.

(実施例) 本発明に基づく圧電磁器トランスの実施例として、第
2図に示した圧電磁器トランスをグリーンシート法によ
り作製した。圧電セラミックの材料はPbTiO3系圧電セラ
ミック(株式会社トーキン製、NEPEC−200(商品名))
である。圧電セラミック層の厚さは0.5mmとし、低イン
ピーダンス部、高インピーダンス部ともに4枚ずつ積層
した。Ptペーストをスクリーン印刷し圧電セラミックと
ともに一体焼結することによりPtの内部電極を形成し
た。圧電磁器トランスの寸法は、長さ5mm、幅3.5mm、厚
さ4mmとした。その際、焼結時の反りや収縮率の違いに
よる寸法のずれに基づく特性の劣化をなくすために、上
下端の圧電セラミックを1層ずつ0.1mm程度内部の層よ
り厚く積層し、焼結した後に#3000の研磨材を用いて平
行平面研磨を行なった。さらにスパッタ法により上下面
にAu−Ti電極を形成した。その後直流高電圧により分極
処理を施した。本実施例では、高インピーダンス部11の
電気端子21,22から厚み縦8次モードを励振する高周波
・高電圧信号を入力し、低インピーダンス部12の電気端
子23,22から出力を取り出す降圧型のトランスとして評
価した。
(Example) As an example of the piezoelectric ceramic transformer according to the present invention, the piezoelectric ceramic transformer shown in FIG. 2 was produced by a green sheet method. The piezoelectric ceramic material is PbTiO 3 based piezoelectric ceramic (Co. Tokin made, NEPEC-200 (trade name))
It is. The thickness of the piezoelectric ceramic layer was 0.5 mm, and four low impedance portions and four high impedance portions were laminated. Pt internal electrodes were formed by screen printing the Pt paste and sintering it together with the piezoelectric ceramic. The dimensions of the piezoelectric ceramic transformer were 5 mm in length, 3.5 mm in width, and 4 mm in thickness. At that time, in order to eliminate the deterioration of the characteristics due to the dimensional deviation due to the difference in warpage and shrinkage during sintering, the upper and lower piezoelectric ceramics were laminated one by one to a thickness of about 0.1 mm thicker than the inner layer and sintered. Later, parallel plane polishing was performed using an abrasive of # 3000. Further, Au-Ti electrodes were formed on the upper and lower surfaces by sputtering. Thereafter, a polarization treatment was performed with a DC high voltage. In the present embodiment, a step-down type in which a high-frequency / high-voltage signal for exciting the thickness vertical eighth-order mode is input from the electric terminals 21 and 22 of the high-impedance section 11 and an output is taken out from the electric terminals 23 and 22 of the low-impedance section 12. Evaluated as a transformer.

本圧電トランスの集中定数近似等価回路は第4図の様
になる。第4図においてCd1,Cd2はそれぞれ入力側、出
力側の制動容量A1,A2は力係数、m,c,rmは厚み縦振動8
次モードに関する等価質量、等価コンプライアンス、等
価機械抵抗である。本圧電トランスは第4図に示した等
価回路に基づき、バターワース1次のフィルタとして設
計された。第5図に圧電トランスの入出力側に適当な抵
抗負荷で終端した時の動作減衰量特性の実測値を示す。
中心周波数における減衰量は1dB以下であり、3dB比帯域
幅は13%であった。また、電圧伝送に関して、入力電圧
を50Vとした時、出力側に安定に10Vの電圧を得ることが
できた。
FIG. 4 shows a lumped constant approximation equivalent circuit of the present piezoelectric transformer. Cd 1, Cd 2 respectively input side in FIG. 4, the damping capacity of the output-side A 1, A 2 is the force factor, m, c, r m is the thickness longitudinal vibration 8
The equivalent mass, equivalent compliance, and equivalent mechanical resistance for the next mode. This piezoelectric transformer was designed as a first-order Butterworth filter based on the equivalent circuit shown in FIG. FIG. 5 shows measured values of the operation attenuation characteristic when the input and output sides of the piezoelectric transformer are terminated with an appropriate resistance load.
The attenuation at the center frequency was less than 1 dB, and the 3 dB relative bandwidth was 13%. Regarding voltage transmission, when the input voltage was 50 V, a voltage of 10 V could be obtained stably on the output side.

また、第3図に示したような結線においても3dB比帯
域幅は12%で出力電圧10Vとほぼ同様の結果が得られ
た。
Also, in the connection as shown in FIG. 3, the same result as the output voltage of 10 V was obtained with the 3 dB relative bandwidth of 12%.

尚、本実施例に用いた圧電トランスの材料は、厚み縦
振動の電気機械結合係数ktに比べて、スプリアス振動の
原因となる横効果縦振動モードの電気機械結合係数k31
が十分小さいPbTiO3系の材料を用いた。しかしながら、
PZT系圧電セラミック材料を用いる場合は、k31がktの1/
3〜1/2程度とかなり大きいので、k31に起因するスプリ
アス共振周波数を、使用する厚み縦振動高次モードの共
振周波数から十分遠ざける様に幅、長さ寸法を定めるこ
とにより、良好な厚み縦振動高次モードの共振特性を有
する圧電トランスが実現できることは言うまでもない。
The piezoelectric transformer material used in this embodiment, as compared with the electromechanical coupling factor kt of thickness longitudinal vibration, the electromechanical coupling coefficient of the transverse effect longitudinal vibration mode which causes spurious vibration k 31
A PbTiO 3 -based material having a sufficiently small value was used. However,
When using a PZT piezoelectric ceramic material, k 31 is the kt 1 /
Since 3-1 / 2 about a fairly large, spurious resonant frequency due to k 31, well away as the width from the resonant frequency of the thickness longitudinal vibration higher mode to be used, by determining the length dimension, good thickness It goes without saying that a piezoelectric transformer having a longitudinal vibration higher mode resonance characteristic can be realized.

(発明の効果) 以上詳述した如く、本発明に従った構成の圧電磁器ト
ランスは、1MHz以上の高周波帯で使用することができ、
かつ小型で高効率であるという従来の圧電トランスには
ない長所があり、工業的価値も多大である。
(Effect of the Invention) As described in detail above, the piezoelectric ceramic transformer having the configuration according to the present invention can be used in a high frequency band of 1 MHz or more,
The piezoelectric transformer has advantages that it is small and highly efficient, which is not found in the conventional piezoelectric transformer, and has great industrial value.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の圧電磁器トランスの斜視図、第2図、
第3図は結線した圧電磁器トランスの断面図、第4図は
圧電磁器トランスの集中定数等価回路図、第5図は本発
明の一実施例における圧電磁器トランスの動作減衰量特
性図、第6図は従来のローゼン型圧電トランスの斜視図
である。 図において、11は本発明の圧電磁器トランスの高インピ
ーダンス部、12は本発明の圧電磁器トランスの低インピ
ーダンス部、13は電極、111,112,113,114,121,122,123,
124は圧電磁器板、21,22,23,31,32,33,34は外部電気端
子、61は従来のローゼン型の圧電トランスの低インピー
ダンス部、62は従来のローゼン型の圧電トランスの高イ
ンピーダンス部、63,64,65は電極、66,67は分極の向
き。
FIG. 1 is a perspective view of a piezoelectric ceramic transformer of the present invention, FIG.
FIG. 3 is a cross-sectional view of a connected piezoelectric ceramic transformer, FIG. 4 is a lumped constant equivalent circuit diagram of the piezoelectric ceramic transformer, FIG. 5 is an operation attenuation characteristic diagram of the piezoelectric ceramic transformer in one embodiment of the present invention, and FIG. FIG. 1 is a perspective view of a conventional Rosen-type piezoelectric transformer. In the figure, 11 is a high impedance part of the piezoelectric ceramic transformer of the present invention, 12 is a low impedance part of the piezoelectric ceramic transformer of the present invention, 13 is an electrode, 111, 112, 113, 114, 121, 122, 123, 123.
124 is a piezoelectric ceramic plate, 21, 22, 23, 31, 32, 33 and 34 are external electric terminals, 61 is a low impedance part of a conventional Rosen-type piezoelectric transformer, and 62 is a high impedance of a conventional Rosen-type piezoelectric transformer. Part, 63, 64, 65 are electrodes, 66, 67 are directions of polarization.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】厚み方向に分極されてかつ分極の向きが同
じである複数の圧電磁器板と電極を交互に積層した領域
と、厚み方向に分極されてかつ隣接する圧電磁器板で分
極の向きが交互になるように複数の圧電磁器板と電極を
交互に積層した領域から構成されることを特徴とする圧
電磁器トランス。
1. A region in which a plurality of piezoelectric ceramic plates and electrodes polarized in the thickness direction and having the same polarization direction are alternately stacked, and a polarization direction in the thickness direction and the adjacent piezoelectric ceramic plates are polarized. A piezoelectric ceramic transformer comprising a region in which a plurality of piezoelectric ceramic plates and electrodes are alternately stacked so that the piezoelectric ceramic plates alternate.
【請求項2】請求項(1)の圧電磁器トランスにおい
て、圧電磁器板の分極の向きが互いに逆向きになってい
る部分は両端から外部電極を取り出し高インピーダンス
部とし、圧電磁器板の分極の向きが同じ向きの部分は各
圧電セラミック板の両面から外部電極を取り出し互い違
いに接続し低インピーダンス部とし、2分の1波長が圧
電磁器板の厚さと同じになる厚み縦高次モードの共振周
波数で駆動することを特徴とする圧電磁器トランスの駆
動方法。
2. The piezoelectric ceramic transformer according to claim 1, wherein the portions of the piezoelectric ceramic plate in which the polarization directions are opposite to each other are taken out from both ends to form a high impedance portion, and the polarization of the piezoelectric ceramic plate is reduced. In the part with the same direction, the external electrodes are taken out from both sides of each piezoelectric ceramic plate and connected alternately to form a low impedance part. The resonance frequency of the thickness longitudinal higher-order mode in which half the wavelength is the same as the thickness of the piezoelectric ceramic plate A piezoelectric ceramic transformer driving method.
【請求項3】請求項(1)または(2)の圧電磁器トラ
ンスにおいて、低インピーダンス部と高インピーダンス
部の境界面からは外部電極を取り出さずに、該低インピ
ーダンス部と高インピーダンス部が電気的に絶縁された
4端子回路として、2分の1波長が圧電セラミック板の
厚さと同じになる厚み縦高次モードの共振周波数で駆動
することを特徴とする圧電磁器トランスの駆動方法。
3. The piezoelectric ceramic transformer according to claim 1, wherein the low-impedance portion and the high-impedance portion are electrically connected without taking out an external electrode from a boundary surface between the low-impedance portion and the high-impedance portion. A half-wavelength is equal to the thickness of the piezoelectric ceramic plate at a resonance frequency in a thickness-longitudinal higher-order mode as a four-terminal circuit insulated from the piezoelectric ceramic plate.
JP1312466A 1989-12-01 1989-12-01 Thickness longitudinal vibration piezoelectric transformer and its driving method Expired - Fee Related JP2576648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1312466A JP2576648B2 (en) 1989-12-01 1989-12-01 Thickness longitudinal vibration piezoelectric transformer and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1312466A JP2576648B2 (en) 1989-12-01 1989-12-01 Thickness longitudinal vibration piezoelectric transformer and its driving method

Publications (2)

Publication Number Publication Date
JPH03173484A JPH03173484A (en) 1991-07-26
JP2576648B2 true JP2576648B2 (en) 1997-01-29

Family

ID=18029539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1312466A Expired - Fee Related JP2576648B2 (en) 1989-12-01 1989-12-01 Thickness longitudinal vibration piezoelectric transformer and its driving method

Country Status (1)

Country Link
JP (1) JP2576648B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153914A (en) * 1994-11-25 1996-06-11 Philips Japan Ltd Piezoelectric ceramic transformer
JP3139452B2 (en) * 1998-04-10 2001-02-26 日本電気株式会社 Piezoelectric transformer and method of manufacturing the same
WO2012045867A1 (en) 2010-10-07 2012-04-12 Epcos Ag Piezoelectric multi-layer component
CN112755919B (en) * 2020-12-04 2022-04-19 中国石油大学(华东) Vertical adjustment method for micron displacement in microscopic visualization experiment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139484A (en) * 1977-05-11 1978-12-05 Matsushita Electric Ind Co Ltd Piezo-electric porcelain transformer
JPS5852692Y2 (en) * 1979-02-14 1983-12-01 富士電気化学株式会社 Stacked piezoelectric transformer

Also Published As

Publication number Publication date
JPH03173484A (en) 1991-07-26

Similar Documents

Publication Publication Date Title
JP3064458B2 (en) Thickness longitudinal vibration piezoelectric transformer and its driving method
JP2508575B2 (en) Piezoelectric transformer and its driving method
US6326718B1 (en) Multilayer piezoelectric transformer
US6008565A (en) Laminated piezoelectric transformer
JP2576648B2 (en) Thickness longitudinal vibration piezoelectric transformer and its driving method
JP2940282B2 (en) Thickness vertical vibration piezoelectric transformer and method of driving the same
JP3060666B2 (en) Thickness longitudinal vibration piezoelectric transformer and its driving method
JPH07176804A (en) Piezoelectric porcelain transformer and its drive
JP2581394B2 (en) Piezoelectric transformer and driving method thereof
JP2531270B2 (en) Manufacturing method of thickness vibration piezoelectric ceramic transformer
JP2508964B2 (en) Piezoelectric transformer and driving method thereof
JP2001068752A (en) Piezoelectric transformer
JP2555985B2 (en) Piezoelectric transformer and its driving method
JP2910392B2 (en) Manufacturing method of thickness vibration pressure ceramic transformer
JP2531087B2 (en) Piezoelectric transformer and driving method thereof
JP2757561B2 (en) Thickness longitudinal vibration piezoelectric transformer and its driving method
JP2725603B2 (en) Piezoelectric transformer and its driving method
JP3709114B2 (en) Piezoelectric transformer
JP2755177B2 (en) Piezoelectric transformer
JP2655450B2 (en) Thickness longitudinal vibration piezoelectric transformer, manufacturing method and driving method thereof
JPH05235434A (en) Thickness longitudinal vibration piezoelectric porcelain transformer and driving method therefor
JPH065944A (en) Piezoelectric porcelain transformer filter and driving method therefor
JP3450689B2 (en) Piezoelectric transformer
JP4831859B2 (en) Piezoelectric transformer
JP3510516B2 (en) Piezoelectric transformer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees