JP2003128460A - Piezoelectric ceramics, piezoelectric element and laminated piezoelectric element - Google Patents

Piezoelectric ceramics, piezoelectric element and laminated piezoelectric element

Info

Publication number
JP2003128460A
JP2003128460A JP2001324939A JP2001324939A JP2003128460A JP 2003128460 A JP2003128460 A JP 2003128460A JP 2001324939 A JP2001324939 A JP 2001324939A JP 2001324939 A JP2001324939 A JP 2001324939A JP 2003128460 A JP2003128460 A JP 2003128460A
Authority
JP
Japan
Prior art keywords
piezoelectric
laminated
piezoelectric element
piezoelectric ceramics
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001324939A
Other languages
Japanese (ja)
Other versions
JP4039029B2 (en
Inventor
Koji Ogiso
晃司 小木曽
Koichi Hayashi
宏一 林
Akira Ando
陽 安藤
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001324939A priority Critical patent/JP4039029B2/en
Publication of JP2003128460A publication Critical patent/JP2003128460A/en
Application granted granted Critical
Publication of JP4039029B2 publication Critical patent/JP4039029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a lead-free piezoelectric ceramics whose strains show little temperature dependency at near room temperature. SOLUTION: The piezoelectric ceramics comprise an essential component of formula: (Ba1-x Cax )y TiO3 (provided that 0.01<=x<=0.25; and 0.96<=y<=1.04).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、圧電セラミック
ス、圧電素子、および積層型圧電素子に関し、詳しく
は、インクジェットプリンタ等に用いられる圧電アクチ
ュエータとして最適な圧電セラミックス、圧電素子、お
よび積層型圧電素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to piezoelectric ceramics, piezoelectric elements, and laminated piezoelectric elements, and more particularly to piezoelectric ceramics, piezoelectric elements, and laminated piezoelectric elements that are optimal as piezoelectric actuators used in inkjet printers and the like. .

【0002】[0002]

【従来の技術】圧電アクチュエータは、電圧を印加して
発生する歪みおよび力を機械的駆動源とするものであ
り、精密工作機械における位置決め、超音波モータ、あ
るいはインクジェットプリンタ等に応用されている。こ
のような圧電アクチュエータにおいては、単位印加電圧
あたりの変位量を大きくするため、積層型の圧電アクチ
ュエータがよく用いられる。
2. Description of the Related Art A piezoelectric actuator uses a strain and force generated by applying a voltage as a mechanical drive source, and is applied to positioning in a precision machine tool, an ultrasonic motor, an ink jet printer and the like. In such a piezoelectric actuator, a laminated piezoelectric actuator is often used in order to increase the displacement amount per unit applied voltage.

【0003】従来、圧電アクチュエータに用いる圧電材
料としてはチタン酸ジルコン酸鉛(PZT)が主流であ
ったが、近年、鉛が環境に与える影響を考慮して、PZ
Tに代わる鉛を含まない圧電材料が望まれている。
Conventionally, lead zirconate titanate (PZT) has been the mainstream as the piezoelectric material used for the piezoelectric actuator, but in recent years, in consideration of the effect of lead on the environment, PZ
A lead-free piezoelectric material that replaces T is desired.

【0004】鉛を含有しない圧電材料としては、BaT
iO3系セラミックス組成物がよく知られている。Ba
TiO3は、120℃付近に正方晶(強誘電相)と立方
晶(常誘電相)との相転移点(キュリー点)、10℃付
近に斜方晶(強誘電相)と立方晶(強誘電相)との相転
移点、および−70℃付近に菱面体晶(強誘電相)と斜
方晶(強誘電相)との相転移点を有し、これらの相転移
点付近で大きな歪み量を示す。
A piezoelectric material containing no lead is BaT.
The iO 3 -based ceramic composition is well known. Ba
TiO 3 has a phase transition point (Curie point) between a tetragonal crystal (ferroelectric phase) and a cubic crystal (paraelectric phase) near 120 ° C. and an orthorhombic crystal (ferroelectric phase) and a cubic crystal (ferroelectric phase) around 10 ° C. Dielectric phase) and a rhombohedral (ferroelectric phase) and orthorhombic (ferroelectric phase) transition point near -70 ° C, and large strain near these phase transition points. Indicates the amount.

【0005】[0005]

【発明が解決しようとする課題】しかし、BaTiO3
においては、10℃付近に斜方晶と立方晶との相転移点
が存在し、相転移温度付近で歪み量のピークが現れるた
め、このピーク付近で歪み量が急変してしまうという問
題があった。
However, BaTiO 3
In the above, there is a phase transition point of orthorhombic and cubic at around 10 ° C., and a peak of strain appears near the phase transition temperature. Therefore, there is a problem that the strain suddenly changes near this peak. It was

【0006】本発明は、上記の問題点を解決し、鉛を含
有せず、室温付近で歪み量の温度依存性が小さい圧電セ
ラミックスを提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems and to provide a piezoelectric ceramic which does not contain lead and has a small temperature dependence of strain amount near room temperature.

【0007】[0007]

【課題を解決するための手段】本発明に係る圧電セラミ
ックスは、主成分が一般式(Ba1-xCaxyTiO
3(ただし、0.01≦x≦0.25、0.96≦y≦
1.04)で表されることを特徴とする。このとき、一
般式において0.075≦x≦0.25であることが好
ましく、1<y≦1.04であることが好ましい。ま
た、上記圧電セラミックスの平均粒径が3μm〜100
μmであることが好ましい。
In the piezoelectric ceramics according to the present invention, the main component is a general formula (Ba 1-x Ca x ) y TiO 2.
3 (However, 0.01 ≦ x ≦ 0.25, 0.96 ≦ y ≦
1.04). At this time, in the general formula, 0.075 ≦ x ≦ 0.25 is preferable, and 1 <y ≦ 1.04 is preferable. The average particle size of the piezoelectric ceramics is 3 μm to 100 μm.
It is preferably μm.

【0008】また、本発明に係る圧電素子は、上記圧電
セラミックスからなる素体の主面に電極を形成してなる
ことを特徴とする。
Further, the piezoelectric element according to the present invention is characterized in that an electrode is formed on the main surface of an element body made of the above-mentioned piezoelectric ceramics.

【0009】また、本発明に係る積層型圧電素子は、上
記圧電セラミックスからなるセラミック層を積層した積
層体と、積層体内においてセラミック層を介して対向
し、かつ積層体の第1、第2の各端面に交互に引き出さ
れた第1、第2の内部電極と、積層体の第1、第2の各
端面に形成され、第1、第2の内部電極と電気的に接続
される第1、第2の外部電極と、を備えることを特徴と
する。
Further, the laminated piezoelectric element according to the present invention is opposed to the laminated body in which the ceramic layers made of the above-mentioned piezoelectric ceramic are laminated, with the ceramic layer in the laminated body, and the first and second laminated bodies. First and second internal electrodes that are alternately drawn out to the respective end faces, and first electrodes that are formed on the first and second end faces of the laminated body and are electrically connected to the first and second internal electrodes, respectively. , And a second external electrode.

【0010】また、上記積層型圧電素子においては、第
1、第2の内部電極がNiからなることが好ましい。
In the laminated piezoelectric element, it is preferable that the first and second internal electrodes are made of Ni.

【0011】[0011]

【発明の実施の形態】本発明に係る圧電セラミックス
は、主成分が一般式(Ba1-xCaxyTiO3(ただ
し、0.01≦x≦0.25、0.96≦y≦1.0
4)で表される。
BEST MODE FOR CARRYING OUT THE INVENTION The piezoelectric ceramic according to the present invention has a main component of the general formula (Ba 1-x Ca x ) y TiO 3 (where 0.01 ≦ x ≦ 0.25 and 0.96 ≦ y ≦ 1.0
4).

【0012】BaTiO3のBaをCaで一部置換する
と、キュリー点を低下させずに、斜方晶と立方晶との相
転移点を使用温度範囲よりも低温側に移動させることが
できる。したがって、本発明に係る圧電セラミックスに
おいては、一定の電圧を印加する場合、室温付近に歪み
量のピークが現れず、室温付近の温度変化に対して歪み
量の変化が小さくなる。
When Ba of BaTiO 3 is partially replaced by Ca, the phase transition point of the orthorhombic crystal and cubic crystal can be moved to a temperature lower than the operating temperature range without lowering the Curie point. Therefore, in the piezoelectric ceramics according to the present invention, when a constant voltage is applied, the peak of the strain amount does not appear near room temperature, and the change in strain amount becomes small with respect to the temperature change near room temperature.

【0013】ここで、Ca置換量xの値が0.01より
小さい場合は、斜方晶と立方晶との相転移点を十分に低
温側まで移動させることができず、室温付近での歪み量
の温度依存性が大きくなる。一方、xの値が0.25よ
り大きい場合は、大きな歪み量が得られない。したがっ
て、0.01≦x≦0.25であることが望ましい。
Here, when the value of Ca substitution amount x is smaller than 0.01, the phase transition point between the orthorhombic crystal and the cubic crystal cannot be moved sufficiently to the low temperature side, and the strain near room temperature is strained. The temperature dependence of the amount becomes large. On the other hand, when the value of x is larger than 0.25, a large distortion amount cannot be obtained. Therefore, it is desirable that 0.01 ≦ x ≦ 0.25.

【0014】また、0.075≦x≦0.25の範囲に
おいては、斜方晶と立方晶との相転移点がさらに低温側
に移動するため、圧電アクチュエータの使用温度である
−10℃〜70℃の範囲に渡って、歪み量の温度依存性
が小さくなる。この場合、本発明に係る圧電セラミック
スを用いた圧電アクチュエータは、周囲の温度変化に対
して動作が安定する。
Further, in the range of 0.075≤x≤0.25, the phase transition point between the orthorhombic crystal and the cubic crystal moves to a lower temperature side, so that the operating temperature of the piezoelectric actuator is from -10 ° C to Over the range of 70 ° C., the temperature dependence of the strain amount becomes small. In this case, the piezoelectric actuator using the piezoelectric ceramics according to the present invention has stable operation with respect to changes in ambient temperature.

【0015】また、Aサイト(Ba1-xCax)とBサイ
ト(Ti)の比(A/B)であるyの値が0.96より
小さい場合は、焼成時に還元反応が起こりやすいため圧
電特性が劣化する。一方、yの値が1.04より大きい
場合は、焼結性が悪くなるため圧電特性が劣化する。し
たがって、0.96≦y≦1.04であることが望まし
い。
If the value of y, which is the ratio (A / B) of A site (Ba 1-x Ca x ) and B site (Ti), is smaller than 0.96, a reduction reaction is likely to occur during firing. The piezoelectric characteristics deteriorate. On the other hand, when the value of y is larger than 1.04, the sinterability deteriorates and the piezoelectric characteristics deteriorate. Therefore, it is desirable that 0.96 ≦ y ≦ 1.04.

【0016】さらに、本発明に係る圧電セラミックス
は、1<y≦1.04の範囲において、焼成時に特に優
れた耐還元性を示す。
Further, the piezoelectric ceramic according to the present invention exhibits particularly excellent reduction resistance during firing in the range of 1 <y ≦ 1.04.

【0017】また、本発明に係る圧電セラミックスにお
いて、平均粒径が3μmより小さい場合は、粒子の表面
エネルギーが高くなり、歪みが抑制されるため、大きな
歪み量が得られない。一方、平均粒径が100μmより
大きい場合は、セラミックス内部にポアやクラックが発
生して絶縁破壊を招くおそれがある。したがって、平均
粒径は3μm〜100μmであることが好ましい。
Further, in the piezoelectric ceramics according to the present invention, when the average particle size is smaller than 3 μm, the surface energy of the particles becomes high and the strain is suppressed, so that a large strain amount cannot be obtained. On the other hand, when the average particle size is larger than 100 μm, pores and cracks may occur inside the ceramics, which may cause dielectric breakdown. Therefore, the average particle size is preferably 3 μm to 100 μm.

【0018】また、本発明に係る積層型圧電素子におい
て、内部電極にNiを用いると以下のような効果が得ら
れる。すなわち、上記のように耐還元性を有する圧電セ
ラミックスとNiなどの卑金属からなる内部電極とを還
元雰囲気で同時焼成すると、圧電セラミックスと金属と
の界面に酸化皮膜が形成され、両者の結合が強固にな
る。したがって、圧電素子の歪みによるセラミックスと
内部電極との剥離が生じにくくなる。
Further, in the laminated piezoelectric element according to the present invention, the use of Ni for the internal electrodes brings about the following effects. That is, when the reduction-resistant piezoelectric ceramics and the internal electrode made of a base metal such as Ni are co-fired in a reducing atmosphere as described above, an oxide film is formed at the interface between the piezoelectric ceramics and the metal, and the bond between the two is strong. become. Therefore, peeling between the ceramic and the internal electrode due to the distortion of the piezoelectric element is less likely to occur.

【0019】次に、本発明に係る圧電セラミックスを用
いた圧電素子の実施形態を説明する。なお、以下に示す
実施形態1〜4においては、外部電極としてAg、C
u、Pt、Pdなど、内部電極としてNi、Pt、A
g、Pdなどを用いることができる。
Next, an embodiment of a piezoelectric element using the piezoelectric ceramics according to the present invention will be described. In Embodiments 1 to 4 described below, Ag and C are used as the external electrodes.
u, Pt, Pd, etc. as internal electrodes Ni, Pt, A
g, Pd, etc. can be used.

【0020】(実施形態1)図1は、本発明に係る圧電
セラミックスを用いた単板型の圧電素子を示す断面図で
ある。圧電素子11は、素体12の両主面に電極13が
形成されたものであり、素体12は矢印で示すように一
定方向に分極処理が施されている。
(Embodiment 1) FIG. 1 is a sectional view showing a single plate type piezoelectric element using the piezoelectric ceramics according to the present invention. The piezoelectric element 11 is one in which electrodes 13 are formed on both main surfaces of an element body 12, and the element body 12 is polarized in a certain direction as indicated by an arrow.

【0021】(実施形態2)図2は、本発明に係る圧電
セラミックスを用いたユニモルフ型の圧電素子を示す断
面図である。圧電素子21は、両主面に電極23、24
が形成された素体22と、金属製のシム板25とからな
る。シム板25は、接着剤等により素体22の電極24
と接合されている。素体22は矢印で示すように一定方
向に分極処理が施されている。
(Embodiment 2) FIG. 2 is a sectional view showing a unimorph type piezoelectric element using the piezoelectric ceramics according to the present invention. The piezoelectric element 21 has electrodes 23, 24 on both main surfaces.
And a shim plate 25 made of metal. The shim plate 25 is used for the electrode 24 of the element body 22 with an adhesive or the like.
It is joined with. The element body 22 is polarized in a certain direction as indicated by an arrow.

【0022】(実施形態3)図3は、本発明に係る圧電
セラミックスを用いたバイモルフ型の圧電素子を示す断
面図である。圧電素子31は、両主面に電極33a、3
4aが形成された素体32aと、両主面に電極33b、
34bが形成された素体32bと、素体32a、32b
に挟まれた金属製のシム板35とからなる。シム板35
は、接着剤等により素体32aの電極34a、および素
体32bの電極34bと接合されている。図3では、素
体32a、32bはそれぞれ矢印に示すように互いに逆
方向に分極処理が施されているが、互いに順方向に分極
処理が施されていてもよい。
(Embodiment 3) FIG. 3 is a sectional view showing a bimorph type piezoelectric element using the piezoelectric ceramics according to the present invention. The piezoelectric element 31 has electrodes 33a, 3 on both main surfaces.
4a is formed on the element body 32a, electrodes 33b on both main surfaces,
Element body 32b in which 34b is formed, and element bodies 32a and 32b
And a shim plate 35 made of metal sandwiched between. Shim plate 35
Are bonded to the electrode 34a of the element body 32a and the electrode 34b of the element body 32b with an adhesive or the like. In FIG. 3, the element bodies 32a and 32b are polarized in directions opposite to each other as shown by arrows, but may be polarized in the forward direction.

【0023】(実施形態4)図4は、本発明に係る圧電
セラミックスを用いた積層型の圧電素子を示す断面図で
ある。圧電素子41は、セラミック層45を積層した積
層体42の第1、第2の端面42a、42bにそれぞれ
第1、第2の外部電極43a、43bが形成され、積層
体42内において第1、第2の内部電極44a、44b
がセラミック層を介して対向し、積層体42の第1、第
2の端面42a、42bに引き出されたものである。セ
ラミック層45は、矢印で示すように互いに逆方向に分
極処理が施されている。
(Embodiment 4) FIG. 4 is a sectional view showing a laminated piezoelectric element using the piezoelectric ceramics according to the present invention. In the piezoelectric element 41, first and second external electrodes 43a and 43b are formed on the first and second end faces 42a and 42b of the laminated body 42 in which the ceramic layers 45 are laminated, respectively. Second internal electrodes 44a, 44b
Are opposed to each other via the ceramic layer and are drawn out to the first and second end faces 42a and 42b of the laminated body 42. The ceramic layers 45 are polarized in opposite directions, as indicated by the arrows.

【0024】[0024]

【実施例】本実施例は、図4に示す積層型圧電素子を作
製し、その特性を評価したものである。以下に、この積
層型圧電素子の作製方法について説明する。
EXAMPLE In this example, the laminated piezoelectric element shown in FIG. 4 was manufactured and its characteristics were evaluated. Hereinafter, a method of manufacturing this laminated piezoelectric element will be described.

【0025】まず、出発原料としてBaCO3、CaC
3、TiO2の各粉末を準備し、所定量を秤量して、ボ
ールミル中で湿式混合を16時間行う。このとき、出発
原料粉末の混合比を調整することにより、(Ba1-x
xyTiO3で表される圧電セラミックスにおける
x、yの値を調整することができる。また、焼結助剤と
して、SiO2やMnCO3などの酸化物粉末、炭酸物粉
末を添加してもよい。
First, BaCO 3 and CaC are used as starting materials.
Each powder of O 3 and TiO 2 is prepared, a predetermined amount is weighed, and wet mixing is performed for 16 hours in a ball mill. At this time, by adjusting the mixing ratio of the starting raw material powder, (Ba 1-x C
x in the piezoelectric ceramic represented by a x) y TiO 3, it is possible to adjust the value of y. Further, as a sintering aid, an oxide powder such as SiO 2 or MnCO 3 or a carbonate powder may be added.

【0026】次に、得られた混合物をステンレスバット
上で乾燥させ、整粒した後、アルミナのさやに入れて8
00〜1200℃で仮焼を行う。次に、得られた仮焼粉
末にバインダーおよび分散剤を加え、ボールミル中で湿
式混合を1〜200時間行ってセラミックスラリーを得
る。このとき、仮焼粉末の湿式混合の時間を調整するこ
とにより、圧電セラミックスの平均粒径を調整すること
ができる。
Next, the obtained mixture was dried on a stainless steel vat, sized, and then put in an alumina pod to obtain 8
Calcination is performed at 00 to 1200 ° C. Next, a binder and a dispersant are added to the obtained calcined powder, and wet mixing is performed in a ball mill for 1 to 200 hours to obtain a ceramic slurry. At this time, the average particle size of the piezoelectric ceramics can be adjusted by adjusting the time of wet mixing of the calcined powder.

【0027】次に、セラミックスラリーをドクターブレ
ード法にて厚み数μm〜数十μmのシート状に成形して
セラミックグリーンシートを得る。次に、このセラミッ
クグリーンシート上にNiペーストを印刷して電極パタ
ーンを形成する。次に、グリーンシートを電極パターン
の一端が端面に露出するように所定の大きさにカット
し、数十枚程度を積層、圧着して積層体を得る。
Next, the ceramic slurry is formed into a sheet having a thickness of several μm to several tens of μm by a doctor blade method to obtain a ceramic green sheet. Next, an Ni paste is printed on the ceramic green sheet to form an electrode pattern. Next, the green sheet is cut into a predetermined size so that one end of the electrode pattern is exposed at the end face, and several tens of sheets are stacked and pressure-bonded to obtain a stacked body.

【0028】次に、この積層体を、大気中にて100〜
500℃で脱脂した後、窒素雰囲気中にて1250〜1
400℃で焼成する。このとき、焼成温度を調整するこ
とにより、圧電セラミックスの平均粒径を調整すること
ができる。次に、得られた焼結体をダイシングソーでカ
ットし、内部電極が露出した焼結体の端面にAgからな
る外部電極を塗布して焼き付ける。
Next, this laminated body is heated to 100 to 100% in the atmosphere.
After degreasing at 500 ° C, 1250 to 1 in nitrogen atmosphere
Bake at 400 ° C. At this time, the average particle diameter of the piezoelectric ceramics can be adjusted by adjusting the firing temperature. Next, the obtained sintered body is cut with a dicing saw, and an external electrode made of Ag is applied to the end surface of the sintered body where the internal electrode is exposed and baked.

【0029】次に、得られたセラミック素子を80℃の
シリコンオイルに投入し、外部電極間に3.0kV/m
mの直流電界を印加して分極処理を施し、積層型圧電素
子を得る。
Next, the obtained ceramic element was put into silicon oil at 80 ° C., and 3.0 kV / m was applied between the external electrodes.
A direct current electric field of m is applied to carry out polarization treatment to obtain a laminated piezoelectric element.

【0030】そして、上記の作製方法により作製された
積層型圧電素子の試料について圧電特性を評価した。こ
こで、圧電特性は、1kV/mmの電界を印加したとき
の素子の歪み率から計算した圧電定数d31(単位:pC
/N)を指標とした。
Then, the piezoelectric characteristics of the laminated piezoelectric element sample manufactured by the above manufacturing method were evaluated. Here, the piezoelectric characteristic is a piezoelectric constant d 31 (unit: pC) calculated from the strain rate of the element when an electric field of 1 kV / mm is applied.
/ N) was used as an index.

【0031】まず、(Ba1-xCaxyTiO3において
x=0、0.025、0.05、0.075、0.1を
満たす各試料(それぞれy=1に固定)の歪み温度特性
を調べた。その結果を図5に示す。
First, the strain of each sample (fixed at y = 1) satisfying x = 0, 0.025, 0.05, 0.075, 0.1 in (Ba 1-x Ca x ) y TiO 3 The temperature characteristics were investigated. The result is shown in FIG.

【0032】図5からわかるように、xの値が増加する
にしたがって歪み量のピークが低温側へ移動する傾向に
ある。x=0の試料では、室温付近において歪み量のピ
ークが現れるため、室温前後で歪み量がばらついてい
る。一方、他の試料では、室温前後での歪み量の変化が
小さい。特に、x=0.075およびx=0.1の試料
においては、広い温度範囲に渡ってほぼ一様な歪み量が
得られている。
As can be seen from FIG. 5, as the value of x increases, the peak of strain tends to move to the low temperature side. In the sample of x = 0, the peak of strain appears near room temperature, and thus the strain varies around room temperature. On the other hand, in other samples, the change in strain amount around room temperature is small. Particularly, in the samples of x = 0.075 and x = 0.1, a substantially uniform strain amount was obtained over a wide temperature range.

【0033】次に、(Ba1-xCaxyTiO3において
y=1に固定し、xの値を変化させたときの圧電定数の
変化を調べた。その結果を表1に示す。
Next, in (Ba 1-x Ca x ) y TiO 3 , the change in piezoelectric constant was investigated when y = 1 was fixed and the value of x was changed. The results are shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】表1からわかるように、xの値が増加する
にしたがって圧電定数は低下する傾向にあり、xの値が
0.25より大きい範囲では、圧電定数が50pC/N
よりも小さくなるため実用的ではない。
As can be seen from Table 1, the piezoelectric constant tends to decrease as the value of x increases, and when the value of x is larger than 0.25, the piezoelectric constant is 50 pC / N.
It is not practical because it is smaller than

【0036】次に、(Ba1-xCaxyTiO3において
x=0.05に固定し、yの値を変化させたときの圧電
定数の変化を調べた。その結果を表2に示す。
Next, in (Ba 1-x Ca x ) y TiO 3 was fixed at x = 0.05, and the change in piezoelectric constant when the value of y was changed was examined. The results are shown in Table 2.

【0037】[0037]

【表2】 [Table 2]

【0038】表2からわかるように、yの値が0.96
より小さい範囲、およびyの値が1.04より大きい範
囲では、圧電定数が極端に低下している。
As can be seen from Table 2, the value of y is 0.96.
In the smaller range and the range where the value of y is larger than 1.04, the piezoelectric constant is extremely lowered.

【0039】次に、(Ba1-xCaxyTiO3において
x=0.05、y=1に固定し、圧電セラミックスの平
均粒径を変化させたときの圧電定数の変化を調べた。そ
の結果を表3に示す。
Next, in (Ba 1-x Ca x ) y TiO 3 , fixed at x = 0.05 and y = 1, the change of the piezoelectric constant when the average particle diameter of the piezoelectric ceramics was changed was examined. . The results are shown in Table 3.

【0040】[0040]

【表3】 [Table 3]

【0041】表3からわかるように、平均粒径が3μm
より小さい範囲では、圧電定数が極端に低下している。
As can be seen from Table 3, the average particle size is 3 μm.
In the smaller range, the piezoelectric constant is extremely reduced.

【0042】[0042]

【発明の効果】本発明に係る圧電セラミックスにおいて
は、BaTiO3のBaをCaで一部置換することによ
り、正方晶(強誘電相)と立方晶(常誘電相)との相転
移点を低下させずに、斜方晶(強誘電相)と立方晶(強
誘電相)との相転移点を使用温度範囲よりも低温側に移
動させることができるため、室温付近に歪み量のピーク
が現れず、室温付近で歪み量の温度依存性が小さくな
る。
In the piezoelectric ceramics according to the present invention, the phase transition point between the tetragonal crystal (ferroelectric phase) and the cubic crystal (paraelectric phase) is lowered by partially replacing Ba of BaTiO 3 with Ca. Without doing so, the phase transition point between orthorhombic (ferroelectric phase) and cubic (ferroelectric phase) can be moved to a temperature lower than the operating temperature range, so the peak strain appears near room temperature. However, the temperature dependence of the strain amount becomes small near room temperature.

【0043】また、(Ba1-xCaxyTiO3で表され
る本発明の圧電セラミックスは、0.075≦x≦0.
25の範囲において、さらに広い温度範囲に渡って歪み
量の温度依存性が小さくなる。
Further, the piezoelectric ceramic of the present invention represented by (Ba 1-x Ca x ) y TiO 3 has a composition of 0.075 ≦ x ≦ 0.
In the range of 25, the temperature dependence of the strain amount becomes smaller over a wider temperature range.

【0044】また、(Ba1-xCaxyTiO3で表され
る本発明の圧電セラミックスは、1.005≦y≦1.
04の範囲において、特に優れた耐還元性を示す。
The piezoelectric ceramic of the present invention represented by (Ba 1-x Ca x ) y TiO 3 has a composition of 1.005 ≦ y ≦ 1.
In the range of 04, particularly excellent reduction resistance is exhibited.

【0045】また、本発明に係る圧電セラミックスにお
いては、平均粒径3μm〜100μmの範囲において、
実用的な歪み量が得られる。
Further, in the piezoelectric ceramics according to the present invention, in the range of the average particle diameter of 3 μm to 100 μm,
A practical amount of distortion can be obtained.

【0046】また、本発明に係る積層型圧電素子におい
ては、内部電極にNiを用いることにより、圧電素子の
歪みによるセラミックスと内部電極との剥離が生じにく
くなる。
Further, in the laminated piezoelectric element according to the present invention, the use of Ni for the internal electrodes makes it difficult for the ceramics and the internal electrodes to separate due to the distortion of the piezoelectric elements.

【0047】以上から、本発明に係る圧電セラミックス
を用いれば、広い温度範囲(特に室温付近)、および広
い印加電界範囲に渡って安定した歪み量が得られるた
め、アクチュエータなどの用途に好適な圧電素子を得る
ことができる。
From the above, when the piezoelectric ceramics according to the present invention is used, a stable strain amount can be obtained over a wide temperature range (particularly near room temperature) and a wide applied electric field range, so that the piezoelectric ceramic suitable for applications such as actuators is obtained. An element can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態1における単板型の圧電素子を示す断
面図。
FIG. 1 is a cross-sectional view showing a single-plate type piezoelectric element according to a first embodiment.

【図2】実施形態2におけるユニモルフ型の圧電素子を
示す断面図。
FIG. 2 is a cross-sectional view showing a unimorph type piezoelectric element according to a second embodiment.

【図3】実施形態3におけるバイモルフ型の圧電素子を
示す断面図。
FIG. 3 is a cross-sectional view showing a bimorph type piezoelectric element according to a third embodiment.

【図4】実施形態4における積層型の圧電素子を示す断
面図。
FIG. 4 is a sectional view showing a laminated piezoelectric element according to a fourth embodiment.

【図5】実施例における歪み温度特性を示すグラフ。FIG. 5 is a graph showing strain temperature characteristics in the example.

【符号の説明】[Explanation of symbols]

11、21、31、41 圧電素子 12、22、32 素体 42 積層体 13、23、33 電極 24、34 電極 25、35 シム板 43 外部電極 44 内部電極 45 セラミック層 11, 21, 31, 41 Piezoelectric element 12, 22, 32 prime body 42 laminate 13, 23, 33 electrodes 24, 34 electrodes 25,35 shim plate 43 External electrode 44 Internal electrode 45 Ceramic layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 41/08 S Q (72)発明者 坂部 行雄 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 Fターム(参考) 4G031 AA04 AA06 AA11 AA39 BA10 CA03 CA04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 41/08 S Q (72) Inventor Yukio Sakabe 2 26-10 Tenjin, Nagaokakyo, Kyoto Murata Co., Ltd. Factory F-term (reference) 4G031 AA04 AA06 AA11 AA39 BA10 CA03 CA04

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 主成分が一般式(Ba1-xCaxyTi
3(ただし、0.01≦x≦0.25、0.96≦y
≦1.04)で表され、一定方向に残留分極を有するこ
とを特徴とする圧電セラミックス。
1. The main component is represented by the general formula (Ba 1-x Ca x ) y Ti.
O 3 (However, 0.01 ≦ x ≦ 0.25, 0.96 ≦ y
≦ 1.04) and having a remanent polarization in a certain direction.
【請求項2】 前記一般式において、0.075≦x≦
0.25であることを特徴とする請求項1に記載の圧電
セラミックス。
2. In the general formula, 0.075 ≦ x ≦
It is 0.25, The piezoelectric ceramics of Claim 1 characterized by the above-mentioned.
【請求項3】 前記一般式において、1<y≦1.04
であることを特徴とする請求項1または請求項2に記載
の圧電セラミックス。
3. In the general formula, 1 <y ≦ 1.04.
The piezoelectric ceramics according to claim 1 or 2, wherein
【請求項4】 平均粒径が3μm〜100μmであるこ
とを特徴とする請求項1から請求項3のいずれかに記載
の圧電セラミックス。
4. The piezoelectric ceramic according to claim 1, wherein the average particle size is 3 μm to 100 μm.
【請求項5】 請求項1から請求項4のいずれかに記載
の圧電セラミックスからなる素体の主面に電極を形成し
てなることを特徴とする圧電素子。
5. A piezoelectric element, characterized in that an electrode is formed on a main surface of an element body made of the piezoelectric ceramics according to any one of claims 1 to 4.
【請求項6】 請求項1から請求項4のいずれかに記載
の圧電セラミックスからなるセラミック層を積層した積
層体と、 前記積層体内において前記セラミック層を介して対向
し、かつ前記積層体の第1、第2の各端面に交互に引き
出された第1、第2の内部電極と、 前記積層体の第1、第2の各端面に形成され、前記第
1、第2の内部電極と電気的に接続される第1、第2の
外部電極と、 を備えることを特徴とする積層型圧電素子。
6. A laminated body in which ceramic layers made of the piezoelectric ceramics according to claim 1 are laminated, and a laminated body that faces the laminated ceramic body in the laminated body with the ceramic layer interposed therebetween. First and second internal electrodes alternately drawn out to the first and second end faces, and electrically connected to the first and second internal electrodes formed on the first and second end faces of the laminate. And a first and a second external electrode that are electrically connected to each other.
【請求項7】 前記第1、第2の内部電極は、Niから
なることを特徴とする請求項6に記載の積層型圧電素
子。
7. The multilayer piezoelectric element according to claim 6, wherein the first and second internal electrodes are made of Ni.
JP2001324939A 2001-10-23 2001-10-23 Piezoelectric ceramics, piezoelectric element, and multilayer piezoelectric element Expired - Fee Related JP4039029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001324939A JP4039029B2 (en) 2001-10-23 2001-10-23 Piezoelectric ceramics, piezoelectric element, and multilayer piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001324939A JP4039029B2 (en) 2001-10-23 2001-10-23 Piezoelectric ceramics, piezoelectric element, and multilayer piezoelectric element

Publications (2)

Publication Number Publication Date
JP2003128460A true JP2003128460A (en) 2003-05-08
JP4039029B2 JP4039029B2 (en) 2008-01-30

Family

ID=19141581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001324939A Expired - Fee Related JP4039029B2 (en) 2001-10-23 2001-10-23 Piezoelectric ceramics, piezoelectric element, and multilayer piezoelectric element

Country Status (1)

Country Link
JP (1) JP4039029B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349423A (en) * 2003-05-21 2004-12-09 Ngk Insulators Ltd Multilayer piezoelectric/electrostrictive element
US7352113B2 (en) 2004-09-13 2008-04-01 Denso Corporation Piezoelectric actuator
US7443085B2 (en) 2004-09-13 2008-10-28 Denso Corporation Piezoelectric actuator
JP2010120835A (en) * 2008-10-20 2010-06-03 Tdk Corp Piezoelectric ceramic, vibrator and ultrasonic motor
JP2010150060A (en) * 2008-12-24 2010-07-08 Nihon Ceratec Co Ltd Lead-free piezoelectric ceramics, laminated piezoelectric device and method for producing lead-free piezoelectric ceramics
EP2296200A1 (en) * 2009-09-15 2011-03-16 Seiko Epson Corporation Liquid ejecting head, liquid ejecting apparatus, and piezoelectric element
JP2011132121A (en) * 2009-11-30 2011-07-07 Canon Inc Piezoelectric ceramic, method for manufacturing the same, piezoelectric element, liquid discharge head, and ultrasonic motor
JP2012254912A (en) * 2011-05-19 2012-12-27 Nec Tokin Corp Piezoelectric ceramic, and stacked piezoelectric device
JP2013227212A (en) * 2012-03-30 2013-11-07 Canon Inc Piezoelectric ceramic, piezoelectric element, liquid ejection head, ultrasonic motor, and dust removing device
JP2013241326A (en) * 2012-04-24 2013-12-05 Canon Inc Piezoelectric ceramic, piezoelectric element, ultrasonic motor, and dust removing device
JP2014129215A (en) * 2012-11-30 2014-07-10 Kyocera Corp Piezoelectric ceramic and piezoelectric element using the same
JP2014172799A (en) * 2013-03-11 2014-09-22 Ricoh Co Ltd Piezoelectric material, manufacturing method of piezoelectric material, piezoelectric actuator, manufacturing method of piezoelectric actuator
KR101448512B1 (en) 2013-04-29 2014-10-13 경원산업 주식회사 Piezoelectric ceramics composition and method for manufacturing thereof
JP2015134707A (en) * 2013-12-18 2015-07-27 キヤノン株式会社 Piezoelectric material, piezoelectric element, and electronic apparatus
US9806251B2 (en) 2013-12-18 2017-10-31 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, and electronic apparatus
JP2018107251A (en) * 2016-12-26 2018-07-05 京セラ株式会社 Piezoelectric element and piezoelectric actuator including the same
JP2019176514A (en) * 2012-03-16 2019-10-10 キヤノン株式会社 Dust removal device and imaging apparatus
US10632751B2 (en) 2018-03-30 2020-04-28 Brother Kogyo Kabushiki Kaisha Liquid discharge head
US10811592B2 (en) 2017-05-30 2020-10-20 Canon Kabushiki Kaisha Piezoelectric element, vibrator, vibration wave motor, optical device, and electronic device
US11515468B2 (en) 2018-02-07 2022-11-29 Canon Kabushiki Kaisha Piezoelectric ceramics, manufacturing method for piezoelectric ceramics, piezoelectric element, vibration device, and electronic device
JP7406876B2 (en) 2018-10-17 2023-12-28 キヤノン株式会社 Piezoelectric transformers and electronic equipment

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2897796B1 (en) 2012-11-02 2018-08-22 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, and electronic equipment
EP2749550B1 (en) 2012-12-28 2017-05-17 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, and electronic apparatus
EP2824091B1 (en) 2013-07-12 2020-02-19 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, and electronic equipment
JP6381294B2 (en) 2013-07-12 2018-08-29 キヤノン株式会社 Piezoelectric material, piezoelectric element, and electronic device
JP2015135957A (en) 2013-12-18 2015-07-27 キヤノン株式会社 Piezoelectric element, multilayered piezoelectric element, liquid discharge apparatus, and ultrasonic motor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349423A (en) * 2003-05-21 2004-12-09 Ngk Insulators Ltd Multilayer piezoelectric/electrostrictive element
US7352113B2 (en) 2004-09-13 2008-04-01 Denso Corporation Piezoelectric actuator
US7443085B2 (en) 2004-09-13 2008-10-28 Denso Corporation Piezoelectric actuator
DE112005002182T5 (en) 2004-09-13 2009-03-12 Denso Corp., Kariya-shi Piezoelectric actuator
JP2010120835A (en) * 2008-10-20 2010-06-03 Tdk Corp Piezoelectric ceramic, vibrator and ultrasonic motor
JP2010150060A (en) * 2008-12-24 2010-07-08 Nihon Ceratec Co Ltd Lead-free piezoelectric ceramics, laminated piezoelectric device and method for producing lead-free piezoelectric ceramics
EP2296200A1 (en) * 2009-09-15 2011-03-16 Seiko Epson Corporation Liquid ejecting head, liquid ejecting apparatus, and piezoelectric element
US8506058B2 (en) 2009-09-15 2013-08-13 Seiko Epson Corporation Liquid ejecting head, liquid ejecting apparatus, and piezoelectric element
JP2011132121A (en) * 2009-11-30 2011-07-07 Canon Inc Piezoelectric ceramic, method for manufacturing the same, piezoelectric element, liquid discharge head, and ultrasonic motor
JP2012254912A (en) * 2011-05-19 2012-12-27 Nec Tokin Corp Piezoelectric ceramic, and stacked piezoelectric device
JP2019176514A (en) * 2012-03-16 2019-10-10 キヤノン株式会社 Dust removal device and imaging apparatus
JP2013227212A (en) * 2012-03-30 2013-11-07 Canon Inc Piezoelectric ceramic, piezoelectric element, liquid ejection head, ultrasonic motor, and dust removing device
JP2013241326A (en) * 2012-04-24 2013-12-05 Canon Inc Piezoelectric ceramic, piezoelectric element, ultrasonic motor, and dust removing device
JP2014129215A (en) * 2012-11-30 2014-07-10 Kyocera Corp Piezoelectric ceramic and piezoelectric element using the same
JP2014172799A (en) * 2013-03-11 2014-09-22 Ricoh Co Ltd Piezoelectric material, manufacturing method of piezoelectric material, piezoelectric actuator, manufacturing method of piezoelectric actuator
KR101448512B1 (en) 2013-04-29 2014-10-13 경원산업 주식회사 Piezoelectric ceramics composition and method for manufacturing thereof
JP2015134707A (en) * 2013-12-18 2015-07-27 キヤノン株式会社 Piezoelectric material, piezoelectric element, and electronic apparatus
US9806251B2 (en) 2013-12-18 2017-10-31 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, and electronic apparatus
US9954161B2 (en) 2013-12-18 2018-04-24 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, and electronic apparatus
JP2018107251A (en) * 2016-12-26 2018-07-05 京セラ株式会社 Piezoelectric element and piezoelectric actuator including the same
US10811592B2 (en) 2017-05-30 2020-10-20 Canon Kabushiki Kaisha Piezoelectric element, vibrator, vibration wave motor, optical device, and electronic device
US11515468B2 (en) 2018-02-07 2022-11-29 Canon Kabushiki Kaisha Piezoelectric ceramics, manufacturing method for piezoelectric ceramics, piezoelectric element, vibration device, and electronic device
US10632751B2 (en) 2018-03-30 2020-04-28 Brother Kogyo Kabushiki Kaisha Liquid discharge head
JP7406876B2 (en) 2018-10-17 2023-12-28 キヤノン株式会社 Piezoelectric transformers and electronic equipment

Also Published As

Publication number Publication date
JP4039029B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
JP4039029B2 (en) Piezoelectric ceramics, piezoelectric element, and multilayer piezoelectric element
EP1857425B1 (en) Piezoelectric ceramic composition and method for producing same
EP2104152B1 (en) Piezoelectric ceramic and piezoelectric element employing it
US8022604B2 (en) (Li, Na, K)(Nb, Ta)O3 type piezoelectric/electrostrictive ceramic composition containing 30-50 mol% Ta and piezoelectric/electrorestrictive device containing the same
EP1835554B1 (en) Piezoelectric ceramic device and method of manufacturing the same
KR20130111610A (en) Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
WO2010134604A1 (en) Piezoelectric porcelain composition and piezoelectric element
JP5651452B2 (en) Piezoelectric / electrostrictive ceramics sintered body
JP5021452B2 (en) Piezoelectric / electrostrictive porcelain composition and piezoelectric / electrostrictive element
EP1679751A2 (en) Piezoelectric/electrostrictive porcelain composition, piezoelectric/electrostrictive device, and method of manufacturing a piezoelectric/electrostrictive device
JP2019054101A (en) Piezoelectric material, piezoelectric element, and electronic apparatus
JP5506731B2 (en) Method for manufacturing piezoelectric element
JP4748291B2 (en) Laminate displacement element
JP7297456B2 (en) Piezoelectric ceramics, manufacturing method of piezoelectric ceramics, piezoelectric element, vibration device, and electronic device
JP5129067B2 (en) Piezoelectric / electrostrictive porcelain composition and piezoelectric / electrostrictive element
JP2011032157A (en) Piezo-electric/electrostrictive ceramics sintered body
JP2005247619A (en) Piezoelectric/electrostrictive ceramic composition, piezoelectric/electrostrictive substance, and piezoelectric/electrostrictive membrane type element
JP5774824B2 (en) Piezoelectric / electrostrictive porcelain composition
JP5662197B2 (en) Piezoelectric / electrostrictive sintered body and piezoelectric / electrostrictive element
JP2003128459A (en) Piezoelectric ceramics, piezoelectric element and laminated piezoelectric element
JP4804709B2 (en) PZT composition capable of low-temperature sintering and piezoelectric ceramic device using the same
JP5021595B2 (en) Piezoelectric / electrostrictive porcelain composition and piezoelectric / electrostrictive element
JP3106365B2 (en) Functionally graded piezoelectric
CN112203999A (en) Piezoelectric ceramic, ceramic electronic component, and method for producing piezoelectric ceramic
JP5651453B2 (en) Piezoelectric / electrostrictive ceramics sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees