JP2001244400A - Lead frame and copper alloy for lead frame - Google Patents

Lead frame and copper alloy for lead frame

Info

Publication number
JP2001244400A
JP2001244400A JP2000053968A JP2000053968A JP2001244400A JP 2001244400 A JP2001244400 A JP 2001244400A JP 2000053968 A JP2000053968 A JP 2000053968A JP 2000053968 A JP2000053968 A JP 2000053968A JP 2001244400 A JP2001244400 A JP 2001244400A
Authority
JP
Japan
Prior art keywords
copper alloy
lead frame
peak intensity
unavoidable impurities
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000053968A
Other languages
Japanese (ja)
Other versions
JP3318309B2 (en
Inventor
Yasuo Tomioka
靖夫 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2000053968A priority Critical patent/JP3318309B2/en
Priority to KR10-2001-0008417A priority patent/KR100380214B1/en
Priority to TW090104583A priority patent/TW541677B/en
Priority to CNB011119454A priority patent/CN1199262C/en
Publication of JP2001244400A publication Critical patent/JP2001244400A/en
Priority to HK02102708.7A priority patent/HK1041106B/en
Application granted granted Critical
Publication of JP3318309B2 publication Critical patent/JP3318309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To prevent the problems of a package and crack by improving oxide adhesion of copper alloy which is used for a lead frame of a resin sealed semiconductor package. SOLUTION: The copper alloy has a 100} peak intensity ratio less than 0.04 against 111} peak intensity of the copper alloy crystal which consists of top layer. The top layer is of base metal of the copper alloy lead frame that is evaluated by XRD thin film law.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【従来の技術】本発明は、いわゆる樹脂封止型半導体パ
ッケージの銅合金リードフレーム、および新規な表面層
構造を有する銅合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy lead frame for a so-called resin-sealed semiconductor package and a copper alloy having a novel surface layer structure.

【0002】[0002]

【発明の属する技術分野】半導体デバイスのプラスチッ
クパッケージは熱硬化性樹脂によって半導体チップを封
止するパッケージが、経済性と量産性に優れることか
ら、主流となっている。プラスチックパッケージの構造
としては、以前はリード装入実装デバイスであるDIP
(デュアルインラインパッケージ)が主流であった。現
在は、実装密度の向上の要求から、表面実装デバイスで
あるSOP(スモールアウトラインパッケージ)、QF
P(クワッドフラットパッケージ)等が次第に主流とな
り、特に入出力信号の増加に対応可能なQFPが多用さ
れている。さらに、最近の電子部品の小型化の要求に伴
って厚さ1mmのTSOP(シンスモールアウトライン
パッケージ)やTQFP(シンクワッドフラットパッケ
ージ)、厚さ0.5mmのUSOP(ウルトラスモール
アウトラインパッケージ)といった薄型のパッケージも
登場している。
BACKGROUND OF THE INVENTION Plastic packages for semiconductor devices have become the mainstream packages in which a semiconductor chip is sealed with a thermosetting resin because of their excellent economy and mass productivity. For the structure of the plastic package, DIP, which was previously a lead mounting device
(Dual inline package) was the mainstream. At present, SOP (Small Outline Package), QF
P (quad flat package) and the like gradually become mainstream, and QFPs, which can cope with an increase in input / output signals in particular, are frequently used. Furthermore, with the recent demand for miniaturization of electronic components, thin type such as 1 mm thick TSOP (Thin Small Outline Package) and TQFP (Think Quad Flat Package) and 0.5 mm thick USOP (Ultra Small Outline Package) Packages have also appeared.

【0003】これらのパッケージの組み立てにおいて、
リードフレームに半導体チップをAgペーストなどを用
いて加熱接着するか、あるいはAu,Agなどのめっき
層を介してはんだ付けもしくはAgろう付けし、その後
樹脂封止を行い、樹脂封止を行ったあとに、アウターリ
ードに電気めっきによる外装を行うのが一般的である。
外装めっきの目的は、リードの耐食性を向上させるた
め、および後の実装工程において基板実装を容易にする
ためである。外装電気めっきを行うための前処理として
は、化学研磨が行われる。この目的は、前工程で封止樹
脂をキュアした際にアウターリードが加熱されて生じた
酸化層を除去するためであり、化学研磨により除去する
厚さは数μm程度である。外装めっき用材料としては、
半田濡れ性の良好な半田が用いられる。半田は63質量
%Sn−37質量%Pb付近の共晶組成において融点が
183℃と最も低くなり濡れ性も良好となるが、続くト
リミング工程でアウターリードがしごかれた際に半田く
ずが発生しないように硬度を上げる必要があり、Sn濃度
を80〜90wt%とするのが一般的である。
In assembling these packages,
After bonding the semiconductor chip to the lead frame by using an Ag paste or the like, or by soldering or Ag brazing through a plating layer of Au, Ag, and the like, and then performing resin sealing and resin sealing In general, the outer leads are generally covered by electroplating.
The purpose of the exterior plating is to improve the corrosion resistance of the leads and to facilitate the mounting of the substrate in a later mounting step. As a pretreatment for performing exterior electroplating, chemical polishing is performed. The purpose of this is to remove the oxide layer generated by heating the outer leads when the sealing resin is cured in the previous step, and the thickness to be removed by chemical polishing is about several μm. As a material for exterior plating,
Solder with good solder wettability is used. The solder has the lowest melting point of 183 ° C. and good wettability in the eutectic composition around 63% by mass Sn-37% by mass Pb, but solder scraps are generated when the outer leads are squeezed in the subsequent trimming process. It is necessary to increase the hardness so as not to cause the problem, and the Sn concentration is generally set to 80 to 90 wt%.

【0004】これらのパッケージの信頼性に関する最大
の課題は、表面実装時に発生するパッケージ・クラック
や剥離の問題である。パッケージの剥離のメカニズム
は、半導体パッケージを組み立てた後、樹脂とダイパッ
ド(リードフレームの半導体チップを載せる部分)との
密着性が低い場合、後の熱処理時の熱応力によって生じ
るものである。パッケージクラックの発生メカニズムは
以下のとおりである。半導体パッケージを組み立てた
後、モールド樹脂が大気より吸湿するため、後の表面実
装での加熱において水分が気化し、パッケージ内部にク
ラックがあると、剥離面に水蒸気が印加されて内圧とし
て作用する。この内圧によりパッケージに膨れを生じた
り、樹脂が内圧に耐えられずクラックを生じたりする。
表面実装後のパッケージにクラックが発生すると水分や
不純物が侵入しチップを腐食させるため半導体としての
機能を害する。また、パッケージが膨れることで外観不
良となり商品価値が失われる。このようなパッケージク
ラックや剥離の問題は、近年パッケージの薄型の進展に
伴って顕著となっている。
[0004] The biggest problem concerning the reliability of these packages is the problem of package cracking and peeling occurring during surface mounting. The mechanism of the package separation is caused by thermal stress at the time of heat treatment when the adhesiveness between the resin and the die pad (the portion on which the semiconductor chip of the lead frame is mounted) is low after the semiconductor package is assembled. The mechanism of occurrence of package cracks is as follows. After assembling the semiconductor package, since the mold resin absorbs moisture from the atmosphere, moisture evaporates during heating in surface mounting later, and if there is a crack inside the package, water vapor is applied to the peeled surface to act as an internal pressure. The package may swell due to the internal pressure, or the resin may not withstand the internal pressure and crack.
If cracks occur in the package after surface mounting, moisture and impurities penetrate and corrode the chip, impairing the function as a semiconductor. In addition, when the package swells, the appearance becomes poor and the commercial value is lost. Such problems of package cracking and peeling have become remarkable in recent years as packages have become thinner.

【0005】ここで、パッケージクラックや剥離の問題
は樹脂とダイパットとの密着性不良に起因するが、樹脂
とダイパットとの密着性に最も大きな影響を及ぼしてい
るのが、リードフレーム母材が種々の加熱工程を経てい
るため、Agなどのめっき前に母材の表面に数十〜数百
nmの厚さに形成された酸化膜である。したがってダイ
パット表面で酸化膜を介して銅合金と樹脂が接している
ため、この酸化膜がリードフレーム母材への樹脂と密着
性に重大な影響を及ぼす。
[0005] The problem of package cracking and peeling is caused by poor adhesion between the resin and the die pad. The most significant effect on the adhesion between the resin and the die pad is that various types of lead frame base materials are used. Is a oxide film formed to a thickness of several tens to several hundreds nm on the surface of the base material before plating with Ag or the like. Therefore, since the copper alloy and the resin are in contact with each other via the oxide film on the die pad surface, the oxide film has a significant effect on the adhesiveness between the resin and the lead frame base material.

【0006】ところでリードフレーム用素材としては、
42%Ni−Fe合金を代表とするFe−Ni系合金
と、銅合金が使われている。42%Ni−Fe合金はセ
ラミクスと熱膨張係数が近似するためセラミクスパッケ
ージ用素材として従来より用いられ、プラスチックパッ
ケージにおいても高信頼性リードフレーム素材として用
いられてきた。しかし、Fe−Ni系合金はCu合金に
比べて導電率が低いという欠点があり、近年のパッケー
ジへの要求である高熱放散化や信号伝達の高速化への対
応には不利である。この点、高い導電性をもつ銅合金は
熱放散や高速信号伝達において有利であり、より高性能
なパッケージの設計が可能である。
By the way, as a material for a lead frame,
Fe-Ni alloys represented by a 42% Ni-Fe alloy and copper alloys are used. The 42% Ni-Fe alloy has been conventionally used as a material for ceramic packages because of its thermal expansion coefficient being close to that of ceramics, and has also been used as a highly reliable lead frame material in plastic packages. However, Fe-Ni-based alloys have a drawback that their electrical conductivity is lower than that of Cu alloys, and are disadvantageous in responding to recent demands on packages for high heat dissipation and high-speed signal transmission. In this regard, a copper alloy having high conductivity is advantageous in heat dissipation and high-speed signal transmission, and a higher-performance package can be designed.

【0007】銅合金圧延の結晶方位に関しては、(11
0)[112]が主たる圧延方位であることが古くから
知られており、(Progress in Metal Physics, 1. By B
ruceChalmers,1949、 第297頁)。近年のより精密
な測定ではという表現も見られる(H.Huand S. Goo
dman: Trans. AIME, 227 (1963),(62
7)。これらの測定ではX線が表面から数十μmまで侵
入して得られたもので、バルクのほぼ平均的性質をとら
えているが、表面1μm程度の極表層の結晶方位の研
究、またこの方位と酸化膜密着性との関係の研究および
表層の結晶方位についてはこれまで知見はなかった。
Regarding the crystal orientation of copper alloy rolling, (11)
0) It has long been known that [112] is the main rolling direction, and it is known from (Progress in Metal Physics, 1. By B
ruceChalmers, 1949, p. 297). In recent years, more precise measurements have been expressed (H. Huand S. Goo
dman: Trans. AIME, 227 (1963), (62
7). In these measurements, X-rays were obtained by penetrating from the surface to several tens of μm, and almost the average properties of the bulk were captured. However, the crystal orientation of the surface layer of about 1 μm on the surface was studied. There has been no study on the relationship with the oxide film adhesion and the crystal orientation of the surface layer.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、銅合金
は前述の酸化膜密着性においてFe−Ni合金に比べて
劣るため樹脂とダイパッドの間に剥離を生じやすく、パ
ッケージクラックや剥離といった問題が発生しやすかっ
た。したがって信頼性の高いパッケージを製造するため
の酸化膜密着性の高い銅合金の開発が必要とされてい
た。
However, the copper alloy is inferior to the Fe-Ni alloy in the adhesiveness of the oxide film as described above, so that the copper alloy is apt to peel off between the resin and the die pad, causing problems such as package cracking and peeling. It was easy. Therefore, development of a copper alloy having high adhesion to an oxide film for manufacturing a highly reliable package has been required.

【0009】また、上述以外に、リードフレーム材には
次のような性能が要求される。まず、パッケージの薄型
化の要求からは、リードフレーム材を薄くする必要があ
り、その結果、板厚は、最近では0.15mm、0.1
25mmといった薄い材料が主流となっている。このよ
うなリードフレームの薄型化、狭小化はフレーム全体や
リードの剛性を低下させ、アセンブリ工程内でのインナ
ーリードの変形やデバイス実装時のアウターリードの変
形を引き起こす。このようなトラブルを防止するために
は、使用されるリードフレーム材料に対し、より高い強
度が要求される。さらに、リードフレームのパターン形
成時に必要な優れたエッチング性およびプレス加工性を
有し、さらに実装後の半田接合部の信頼性が高いことな
ど多岐多様な特性が要求される。
[0009] In addition to the above, the following performance is required for the lead frame material. First, in order to reduce the thickness of the package, it is necessary to reduce the thickness of the lead frame material.
A thin material such as 25 mm is mainly used. Such thinning and narrowing of the lead frame lowers the rigidity of the entire frame and the leads, and causes deformation of the inner leads during the assembly process and deformation of the outer leads during device mounting. To prevent such troubles, higher strength is required for the lead frame material used. Further, a variety of characteristics are required, such as having excellent etching properties and press workability required for forming a lead frame pattern, and high reliability of a solder joint after mounting.

【0010】本発明は、パッケージクラックや剥離の問
題に対処するために酸化膜密着性を向上させ、しかもパ
ッケージの熱放散性や動作速度を高めた銅合金リードフ
レーム、および新規な極表層構造を有する銅合金を提供
することを目的としている。
SUMMARY OF THE INVENTION The present invention provides a copper alloy lead frame having improved oxide film adhesion and improved heat dissipation and operation speed of a package, and a novel extreme surface layer structure in order to address the problem of package cracking and peeling. It is intended to provide a copper alloy having the same.

【0011】[0011]

【課題を解決するための手段】本発明者らは、特に研磨
などによる酸化膜除去処理が施されない銅合金の酸化膜
密着性と母材の極表面の結晶配向との関係について鋭意
研究を行ったところ、驚くべきことには、銅合金極表層
の結晶配向を制御することで酸化膜密着性を向上させる
ことが可能であることを見出した。以下にその具体的方
法について述べる。
Means for Solving the Problems The inventors of the present invention have made intensive studies on the relationship between the adhesion of an oxide film of a copper alloy which is not subjected to an oxide film removal treatment such as polishing and the crystal orientation of the extreme surface of a base material. As a result, it has been surprisingly found that it is possible to improve the oxide film adhesion by controlling the crystal orientation of the copper alloy extreme surface layer. The specific method is described below.

【0012】本発明の銅合金リードフレームは、XRD
の薄膜法にて評価される極表面の結晶配向において、
{111}ピーク強度に対する{100}ピーク強度比
を0.04以下としたことによって酸化膜密着性を向上
させたことを特徴とする。このリードフレームは樹脂封
止されるあらゆるリードフレームであってよいが、特
に、樹脂封止前に半導体チップとの接着面に貴金属やニ
ッケルなどのめっきが施されるリードフレームが好まし
い。
[0012] The copper alloy lead frame of the present invention is preferably made of XRD.
In the crystal orientation of the extreme surface evaluated by the thin film method of
The oxide film adhesion is improved by setting the ratio of the {100} peak intensity to the {111} peak intensity to 0.04 or less. The lead frame may be any lead frame that is resin-sealed, but is particularly preferably a lead frame in which the surface to be bonded to the semiconductor chip is plated with a noble metal or nickel before resin sealing.

【0013】また銅合金は、リードフレーム用のあらゆ
る銅合金であってよく、特に、本発明が特徴とする結晶
配向は、粒子分散型や析出硬化型などの各種成分系の銅
合金にて実現される。しかしながら、特に好ましい銅合
金は、質量割合にて、Cr:0.04〜0.4%、Z
r:0.03%〜0.25%、およびZn:0.06〜
2.0%を含有し、残部をCuおよび不可避的不純物か
らなる(以下、残部については同じ)銅合金、Cr:
0.04〜0.4%、Zr:0.03%〜0.25%、
およびZn:0.06〜2.0%を含有し、さらに、N
i,Sn,In,Mn,P,MgおよびSiからなる群
より選択される1種または2種以上を総量で0.01〜
1.0%を含有する銅合金、Cr:0.04〜0.4
%、Zr:0.03%〜0.25%、Zn:0.06〜
2.0%、Fe:0.1〜1.8%および、Ti:0.
1〜0.8%を含有する銅合金、および、Cr:0.0
4〜0.4%、Zr:0.03%〜0.25%、Zn:
0.06〜2.0%、Fe:0.1〜1.8%、Ti:
0.1〜0.8%を含有し、さらに、Ni,Sn,I
n,Mn,P,MgおよびSiからなる群より選択され
る1種または2種以上を総量で0.01〜1.0%を含
有する銅合金が好ましい。
The copper alloy may be any copper alloy for a lead frame. In particular, the crystal orientation characteristic of the present invention is realized by a copper alloy of various components such as a particle dispersion type and a precipitation hardening type. Is done. However, particularly preferred copper alloys are: Cr: 0.04-0.4%, Z:
r: 0.03% to 0.25%, and Zn: 0.06 to
Copper alloy containing 2.0%, the balance being Cu and unavoidable impurities (hereinafter the same applies to the remainder), Cr:
0.04 to 0.4%, Zr: 0.03% to 0.25%,
And Zn: 0.06 to 2.0%.
one or more selected from the group consisting of i, Sn, In, Mn, P, Mg and Si in a total amount of 0.01 to
Copper alloy containing 1.0%, Cr: 0.04 to 0.4
%, Zr: 0.03% to 0.25%, Zn: 0.06 to
2.0%, Fe: 0.1 to 1.8%, and Ti: 0.
Copper alloy containing 1 to 0.8% and Cr: 0.0
4 to 0.4%, Zr: 0.03% to 0.25%, Zn:
0.06 to 2.0%, Fe: 0.1 to 1.8%, Ti:
0.1-0.8%, and Ni, Sn, I
A copper alloy containing one or more selected from the group consisting of n, Mn, P, Mg and Si in a total amount of 0.01 to 1.0% is preferred.

【0014】なお、XRD(X-ray diffraction)による
リードフレームの極表層の結晶配向とは、例えば、理学
電気(株)製X線回折装置RINT2000においてC
o管球を用い、2θ走査面が試料に垂直で圧延方向(R
D)を含み、かつX線の入射角(α)を、試料面に対し
て5°の角度となるように入射させ(図1)、2θ走査
で検出される{111}面の積分強度と{200}面か
らの回折線のピークの積分強度をそれぞれ求め、これら
の比を算出して評価するものである。通常のX線回折測
定法においては、図2に示すように試料面に対してX線
の入射角と反射角が等しくなる関係を保つ。このため、
実際の装置では、X線発生源である管球が固定され、試
料面が入射線に対しθの角度にあるとき、計数管が入射
線に対し2θとなるように試料面と計数管が回転する。
このとき、通常法においては、測定対象面は、常に試料
面に平行な面となる。薄膜法の場合、入射角は固定であ
るため、θと区別するため、αとの表示が用いられ、2
θについては、入射線に対する計数管の位置という意味
において、通常法と同じであるので同じ表示をしてい
る。ただし、この場合通常法と異なるのは、図3に示す
ように測定対象面は試料面ではなく、2θとともに変化
することになる。極表層では、圧延ロールからの摩擦を
強く受けるため、内部とは異なる結晶配向を持つ、この
ため、極表層の結晶配向を評価するためには上述の薄膜
法によるX線回折が必要である。
Incidentally, the crystal orientation of the extreme surface layer of the lead frame by XRD (X-ray diffraction) means that the crystal orientation is, for example, an X-ray diffractometer RINT2000 manufactured by Rigaku Corporation.
o Using a bulb, the 2θ scanning plane is perpendicular to the sample, and the rolling direction (R
D), and the incident angle (α) of the X-rays is made to be incident at an angle of 5 ° to the sample surface (FIG. 1). The integrated intensity of the peak of the diffraction line from the {200} plane is obtained, and these ratios are calculated and evaluated. In a normal X-ray diffraction measurement method, as shown in FIG. 2, a relationship is maintained in which the incident angle and the reflection angle of the X-ray are equal to the sample surface. For this reason,
In an actual device, when the tube as an X-ray source is fixed and the sample surface is at an angle of θ to the incident line, the sample surface and the counter tube rotate so that the counter tube is at 2θ to the incident line. I do.
At this time, in the usual method, the measurement target surface is always a surface parallel to the sample surface. In the case of the thin-film method, the angle of incidence is fixed, so that it is denoted by α to distinguish it from θ.
Since θ is the same as the ordinary method in terms of the position of the counter tube with respect to the incident line, the same indication is given. However, in this case, the difference from the normal method is that the surface to be measured is not the sample surface but changes with 2θ as shown in FIG. Since the extreme surface layer is strongly affected by the friction from the rolling roll, it has a different crystal orientation from that of the inside. Therefore, to evaluate the crystal orientation of the extreme surface layer, X-ray diffraction by the above-mentioned thin film method is necessary.

【0015】また、上述の結晶配向を得るためには、一
般に20~80%加工程で行う最終冷間圧延の圧延条件
をコントロールすればよいことがわかった。すなわち、
ロールと材料との間に導入される圧延油の油膜厚さが厚
くなった場合に{100}ピーク強度が低くなることが
判明した。このための圧延条件としては、冷間圧延の最
終パスのロール径を100mm以上、圧延速度を200
m/min以上、圧延油の粘度を5cSt以上、すなわ
ち0.05cm2/s以上とすれば{111}ピーク強
度に対する{100}ピーク強度の比が0.04以下と
なることがわかった。以上、主として半導体パッケージ
のリードフレームとしての用途につき説明したが、母材
研磨などの処理を省略して直接表面保護膜を施して使用
する他の用途にも本発明合金を使用することができる。
以下、本発明の好ましい銅合金組成を説明する。ここで
百分率は質量%である。
In addition, it has been found that the above-mentioned crystal orientation can be obtained by controlling the rolling conditions of the final cold rolling generally performed in a 20-80% processing step. That is,
It has been found that the {100} peak strength decreases when the oil film thickness of the rolling oil introduced between the roll and the material increases. As rolling conditions for this, the roll diameter of the last pass of the cold rolling is 100 mm or more, and the rolling speed is 200
When the rolling oil viscosity was 5 cSt or more, that is, 0.05 cm 2 / s or more, the ratio of {100} peak intensity to {111} peak intensity was 0.04 or less when the viscosity of the rolling oil was not less than m / min. As described above, mainly the use as a lead frame of a semiconductor package has been described, but the alloy of the present invention can also be used in other uses in which a surface protection film is directly applied without using a process such as polishing of a base material.
Hereinafter, preferred copper alloy compositions of the present invention will be described. Here, the percentage is% by mass.

【0016】Crは、合金を溶体化処理後、時効処理を
行うことにより母材中に析出して強度を向上させる作用
をするが、その含有量が0.04%未満ではこの作用に
よる所望の効果が得られず、一方、0.4%を超えて含
有させると製品化後に粗大なCrが母材中に残留する。
その結果、エッチング性が劣化する。以上の理由により
Cr含有量は0.04〜0.4%が好ましい。
[0016] Cr is subjected to aging treatment after solution treatment of the alloy to precipitate in the base material to improve the strength. If the content is less than 0.04%, the desired effect due to this effect is obtained. No effect is obtained, while if it exceeds 0.4%, coarse Cr remains in the base material after commercialization.
As a result, the etching properties deteriorate. For the above reasons, the Cr content is preferably 0.04 to 0.4%.

【0017】Zrには、時効処理によりCuと化合物を
形成して母材中に析出しこれを強化する作用があるが、
その含有量が0.03%未満では前記作用による所望の
効果が得られない。一方、0.25%を超えてZrを含
有させると、溶体化処理後に粗大な未固溶Zrが母材料
中に残留するようになってエッチング性の低下を招くこ
ととなる。したがって、Zr含有量は0.03〜0.2
5%が好ましい。
Zr has a function of forming a compound with Cu by aging treatment and precipitating in the base material to strengthen it.
If the content is less than 0.03%, the desired effect cannot be obtained by the above operation. On the other hand, if Zr is contained in excess of 0.25%, coarse undissolved Zr will remain in the base material after the solution treatment, resulting in a decrease in etching properties. Therefore, the Zr content is 0.03-0.2.
5% is preferred.

【0018】Znは半田の耐熱剥離性および酸化膜の密
着性を向上させる作用をしているために添加される成分
であるが、その含有量が0.06%未満では、前記作用
による所望の効果が得られない、一方、2.0%を超え
てZnを添加させると導電率が低下することになる。し
たがって、Zn含有量は、0.06〜2.0%が好まし
い。
Zn is a component to be added because it has an effect of improving the heat-peeling resistance of the solder and the adhesion of the oxide film. No effect can be obtained. On the other hand, if Zn is added in excess of 2.0%, the electrical conductivity will be reduced. Therefore, the Zn content is preferably 0.06 to 2.0%.

【0019】TiおよびFeは、合金を時効処理した時
の母材中にTiとFeとの金属間化合物を形成し、その
結果として合金強度をさらに向上させる作用を発揮する
ため必要に応じて添加させるが、これらの含有量がそれ
ぞれ0.01%未満では上記作用による所望の強度が得
られない。一方、Ti含有量が0.8%を超えたりFe
含有量が1.80%を超える場合には、TiとFeを主
成分とする粗大な介在物が残存し、エッチング性を著し
く阻害する。したがって、Ti含有量は0.01〜0.
8%、Fe含有量を0.01〜0.18%が好ましい。
Ti and Fe are added as necessary to form an intermetallic compound of Ti and Fe in the base material when the alloy is aged, and to exert an effect of further improving the alloy strength as a result. However, if the content of each of them is less than 0.01%, the desired strength cannot be obtained by the above action. On the other hand, if the Ti content exceeds 0.8% or Fe
If the content exceeds 1.80%, coarse inclusions containing Ti and Fe as main components remain, which significantly impairs the etching property. Therefore, the Ti content is 0.01 to 0.1.
8% and the Fe content are preferably 0.01 to 0.18%.

【0020】Ni,Sn,In,Mn,P,Mgおよび
Siは以下のように作用する。これらの成分は、いずれ
も合金の導電性を大きく低下させずに主として固溶強化
により強度を向上させる作用を有しており、したがって
必要により1種または2種以上の添加がなされるが、そ
の含有量が総量で0.01%未満であると前記作用によ
る所望の効果が得られず、一方、総量で1.0%を超え
る場合には合金の導電率が著しく低下する。このため、
単独添加または2種以上の複合添加がなされるNi,S
n,In,Mn,P,MgおよびSiの含有量は総量で
0.01〜1.0%が好ましい。
Ni, Sn, In, Mn, P, Mg and Si act as follows. All of these components have the effect of improving the strength mainly by solid solution strengthening without significantly lowering the conductivity of the alloy. Therefore, one or more of these components are added as necessary. If the total content is less than 0.01%, the desired effect cannot be obtained by the above-mentioned action, while if the total content exceeds 1.0%, the conductivity of the alloy is significantly reduced. For this reason,
Ni, S added alone or in combination of two or more
The total content of n, In, Mn, P, Mg and Si is preferably 0.01 to 1.0%.

【0021】[0021]

【実施例】次に、本発明の効果を、好ましい組成範囲を
示す実施例により具体的に説明する。まず、電気銅(C
u)あるいは無酸素銅(Cu)を主原料とし、銅クロム
母合金、銅ジルコニウム母合金、亜鉛、チタン、軟鋼、
ニッケル、スズ、インジウム、マンガン、マグネシウ
ム、シリコン、銅リン母合金を副原料とし、高周波溶解
炉にて表1,3に示す各種成分組成の銅合金を真空中ま
たはAr雰囲気中で溶製し、厚さ30mmのインゴット
に鋳造した。次に、これらの各インゴットに熱間加工お
よび溶体化処理、1回目の冷間圧延、時効処理、表1,
3に示す条件の最終冷間圧延(加工度50%)、歪取焼
鈍の順に処理を施し、厚さ0.15mmの板とした。
EXAMPLES Next, the effects of the present invention will be specifically described with reference to examples showing preferred composition ranges. First, electrolytic copper (C
u) or oxygen-free copper (Cu) as the main raw material, copper chromium mother alloy, copper zirconium mother alloy, zinc, titanium, mild steel,
Nickel, tin, indium, manganese, magnesium, silicon, and copper phosphorus mother alloys were used as auxiliary raw materials, and copper alloys of various component compositions shown in Tables 1 and 3 were melted in a high-frequency melting furnace in a vacuum or in an Ar atmosphere. It was cast into an ingot having a thickness of 30 mm. Next, each of these ingots was subjected to hot working and solution treatment, first cold rolling, aging treatment, Table 1,
The final cold rolling (deformation ratio: 50%) under the conditions shown in No. 3 was performed in the order of annealing and strain relief annealing to obtain a plate having a thickness of 0.15 mm.

【0022】以下に評価方法を述べる。まず、作製した
各板材の結晶配向をX線回折装置を用いて上述の方法で
評価した。次に、酸化膜密着性をテープピーリング試験
により評価した。各板材から20×50mmの試験片を
切出し、大気中所定温度で5分間加熱した後、酸化膜の
生成した試験片表面に市販のテープ(商品名:スリーエ
ム#851)を張り付け、引き剥がした。この時、加熱
温度を20℃刻みで変化させた時、酸化膜の剥離の生じ
る最も低い温度を求め、酸化膜剥離温度とした。また、
強度は引張試験で引張強さを測定することで、導電性は
導電率を求めることにより行った。
The evaluation method will be described below. First, the crystal orientation of each of the prepared plate materials was evaluated by the above-described method using an X-ray diffractometer. Next, the oxide film adhesion was evaluated by a tape peeling test. A test piece of 20 × 50 mm was cut out from each plate material, heated at a predetermined temperature in the atmosphere for 5 minutes, then a commercially available tape (trade name: 3M # 851) was attached to the surface of the test piece on which the oxide film was formed, and peeled off. At this time, when the heating temperature was changed in steps of 20 ° C., the lowest temperature at which the oxide film was peeled off was determined and defined as the oxide film peeling temperature. Also,
The strength was determined by measuring the tensile strength in a tensile test, and the conductivity was determined by determining the conductivity.

【0023】表3,4に評価結果を示す。本実施例につ
いては、良好な酸化膜密着性が得られた。一方、各比較
例は圧延条件が適当でないために極表層の{100}配
向が適正範囲を外れ、酸化膜密着性が劣る例である。
Tables 3 and 4 show the evaluation results. In this example, good oxide film adhesion was obtained. On the other hand, in each of the comparative examples, the {100} orientation of the extreme surface layer was out of the proper range due to inappropriate rolling conditions, and the adhesion of the oxide film was poor.

【0024】[0024]

【発明の効果】以上説明したように、本発明の銅合金に
よって、42合金に比べて半導体パッケージの熱放散性
や高速動作を飛躍的に高め、さらに酸化膜の密着性を高
めることでパッケージの信頼性の低下も抑えることがで
きる。
As described above, the copper alloy of the present invention dramatically improves the heat dissipation and high-speed operation of the semiconductor package as compared with the 42 alloy, and further enhances the adhesion of the oxide film by improving the adhesion of the oxide film. A decrease in reliability can also be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 極表層の評価方法の説明図である。FIG. 1 is an explanatory diagram of an evaluation method of an extreme surface layer.

【図2】 通常法によるX線回折法の説明図である。FIG. 2 is an explanatory diagram of an X-ray diffraction method by a normal method.

【図3】 薄膜法によるX線回折法の説明図である。FIG. 3 is an explanatory diagram of an X-ray diffraction method using a thin film method.

【図4】 実施例1〜4及び比較例1〜4の合金組成、
最終圧延条件および極表層の結晶配向を示す図表(表
1)である。
FIG. 4 shows alloy compositions of Examples 1 to 4 and Comparative Examples 1 to 4,
A chart showing the final rolling conditions and the crystal orientation of the extreme surface layer (Table
1).

【図5】 表1の引張強さ、導電性および酸化膜密着性
を示す図表(表2)である。
FIG. 5 is a table (Table 2) showing the tensile strength, conductivity and oxide film adhesion of Table 1.

【図6】 実施例5〜17及び比較例5〜7の合金組
成、最終圧延条件および極表層の結晶配向を示す図表
(表3)である。
FIG. 6 is a table (Table 3) showing alloy compositions, final rolling conditions, and crystal orientation of an extreme surface layer of Examples 5 to 17 and Comparative Examples 5 to 7.

【図7】 表3の引張強さ、導電性および酸化膜密着性
を示す図表(表4)である。
FIG. 7 is a table (Table 4) showing the tensile strength, conductivity and oxide film adhesion of Table 3.

【手続補正書】[Procedure amendment]

【提出日】平成12年3月3日(2000.3.3)[Submission Date] March 3, 2000 (200.3.3)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 ─────────────────────────────────────────────────────
FIG. 2 ────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年5月30日(2000.5.3
0)
[Submission date] May 30, 2000 (2005.3
0)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】ここで、パッケージクラックや剥離の問題
は樹脂とダイパットとの密着性不良に起因するが、樹脂
とダイパットとの密着性に最も大きな影響を及ぼしてい
るのが、リードフレーム母材がパッケージ種組立工程中
のダイボンディングやワイヤボンディングといった加熱
工程を経ているため、Agなどのめっき前に母材の表面
に数十〜数百nmの厚さに形成された酸化膜である。し
たがってダイパット表面で酸化膜を介して銅合金と樹脂
が接しているため、この酸化膜がリードフレーム母材へ
の樹脂と密着性に重大な影響を及ぼす。
[0005] Here, the problem of package cracking and peeling is caused by poor adhesion between the resin and the die pad. The most significant effect on the adhesion between the resin and the die pad is that the lead frame base material is formed of a package. The oxide film is formed on the surface of the base material to a thickness of several tens to several hundreds of nm before plating with Ag or the like because it has undergone a heating step such as die bonding or wire bonding during the seed assembling step. Therefore, since the copper alloy and the resin are in contact with each other via the oxide film on the die pad surface, the oxide film has a significant effect on the adhesiveness between the resin and the lead frame base material.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】銅合金圧延の結晶方位に関しては、(11
0)[112]が主たる圧延方位であることが古くから
知られており、(Progress in Metal Physics, 1. By B
ruceChalmers,1949、 第297頁)。近年のより精密
な測定では という表現も見られる(H.Huand S. Goodman: Tran
s. AIME, 227 (1963),627)。これらの
測定ではX線が表面から数十μmまで侵入して得られた
もので、バルクのほぼ平均的性質をとらえているが、表
面1μm程度の極表層の結晶方位の研究、またこの方位
と酸化膜密着性との関係の研究および表層の結晶方位に
ついてはこれまで知見はなかった。
Regarding the crystal orientation of copper alloy rolling, (11)
0) It has long been known that [112] is the main rolling direction, and it is known from (Progress in Metal Physics, 1. By B
ruceChalmers, 1949, p. 297). With more precise measurements in recent years, (H. Huand S. Goodman: Tran
s. AIME, 227 (1963), 627). In these measurements, X-rays were obtained by penetrating from the surface to several tens of μm, and almost the average properties of the bulk were captured. However, the crystal orientation of the surface layer of about 1 μm on the surface was studied. There has been no study on the relationship with the oxide film adhesion and the crystal orientation of the surface layer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 9/10 C22C 9/10 H01L 23/48 H01L 23/48 V ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C22C 9/10 C22C 9/10 H01L 23/48 H01L 23/48 V

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 銅合金リードフレーム母材極表層をXR
D薄膜法にて評価して求めた、該極表層を構成する銅合
金結晶の{111}ピーク強度に対する{100}ピー
ク強度比が0.04以下であり、かつ樹脂封止される銅
合金リードフレーム。
1. A copper alloy lead frame base material having an XR
A copper alloy lead having a {100} peak intensity ratio to a {111} peak intensity of the copper alloy crystal constituting the extreme surface layer, which is 0.04 or less, which is evaluated and evaluated by a D thin film method. flame.
【請求項2】 樹脂封止部分と金属めっきされたアウタ
ーリード部とを含んでなる銅合金リードフレームにおい
て、樹脂封止部の母材極表層が前記0.04以下のピー
ク強度比を有する請求項1記載の銅合金リードフレー
ム。
2. A copper alloy lead frame including a resin-sealed portion and a metal-plated outer lead portion, wherein a base material surface layer of the resin-sealed portion has a peak intensity ratio of 0.04 or less. Item 6. A copper alloy lead frame according to Item 1.
【請求項3】 前記銅合金が、質量割合にて、Cr:
0.04〜0.4%、Zr:0.03〜0.25%、お
よびZn:0.06〜2.0%を含有し、残部Cuおよ
び不可避的不純物からなる請求項1または2記載の銅合
金リードフレーム。
3. The method according to claim 1, wherein the copper alloy contains Cr:
3. The method according to claim 1, comprising 0.04 to 0.4%, Zr: 0.03 to 0.25%, and Zn: 0.06 to 2.0%, the balance being Cu and unavoidable impurities. Copper alloy lead frame.
【請求項4】 前記銅合金が、質量割合にて、Cr:
0.04〜0.4%、Zr:0.03〜0.25%、お
よびZn:0.06〜2.0%を含有し、さらに、N
i,Sn,In,Mn,P,MgおよびSiからなる群
より選択される1種または2種以上を総量で0.01〜
1.0%含有し、残部がCuおよび不可避的不純物から
なる請求項1または2記載の銅合金リードフレーム。
4. The method according to claim 1, wherein the copper alloy contains Cr:
0.04 to 0.4%, Zr: 0.03 to 0.25%, and Zn: 0.06 to 2.0%.
one or more selected from the group consisting of i, Sn, In, Mn, P, Mg and Si in a total amount of 0.01 to
3. The copper alloy lead frame according to claim 1, which contains 1.0% and the balance consists of Cu and unavoidable impurities.
【請求項5】 前記銅合金が、質量割合にて、Cr:
0.04〜0.4%、Zr:0.03〜0.25%、Z
n:0.06〜2.0%、Fe:0.1〜1.8%およ
び、Ti:0.1〜0.8%を含有し、残部がCuおよ
び不可避的不純物からなる請求項1または2に記載銅合
金リードフレーム。
5. The method according to claim 1, wherein the copper alloy contains Cr:
0.04 to 0.4%, Zr: 0.03 to 0.25%, Z
The composition according to claim 1, wherein n: 0.06 to 2.0%, Fe: 0.1 to 1.8%, and Ti: 0.1 to 0.8%, with the balance being Cu and unavoidable impurities. 2. The copper alloy lead frame according to 2.
【請求項6】 前記銅合金が、質量割合にて、Cr:
0.04〜0.4%、Zr:0.03〜0.25%、Z
n:0.06〜2.0%、Fe:0.1〜1.8%、T
i:0.1〜0.8%を含有し、さらに、Ni,Sn,
In,Mn,P,MgおよびSiからなる群より選択さ
れる1種または2種以上を総量で0.01〜1.0%を
含有し、残部がCuおよび不可避的不純物からなる請求
項1または2記載の銅合金リードフレーム。
6. The copper alloy according to claim 1, wherein the mass ratio of Cr:
0.04 to 0.4%, Zr: 0.03 to 0.25%, Z
n: 0.06 to 2.0%, Fe: 0.1 to 1.8%, T
i: contains 0.1 to 0.8%, and further contains Ni, Sn,
The method according to claim 1, wherein one or more selected from the group consisting of In, Mn, P, Mg and Si contains 0.01 to 1.0% in total, and the balance consists of Cu and unavoidable impurities. 2. The copper alloy lead frame according to 2.
【請求項7】 質量割合にて、Cr:0.04〜0.4
%、Zr:0.03〜0.25%、およびZn:0.0
6〜2.0%を含有し、残部がCuおよび不可避的不純
物からなり、XRD薄膜法にて評価して求めた、圧延面
極表層を構成する銅合金結晶の{111}ピーク強度に
対する{100}ピーク強度比が0.04以下であるこ
とを特徴とする銅合金。
7. Cr: 0.04 to 0.4 in mass ratio.
%, Zr: 0.03 to 0.25%, and Zn: 0.0
6 to 2.0%, with the balance being Cu and unavoidable impurities, and {100} with respect to the {111} peak intensity of the copper alloy crystal constituting the surface layer of the rolled surface, evaluated and evaluated by the XRD thin film method.銅 A copper alloy having a peak intensity ratio of 0.04 or less.
【請求項8】 質量割合にて、Cr:0.04〜0.4
%、Zr:0.03〜0.25%、およびZn:0.0
6〜2.0%を含有し、さらに、Ni,Sn,In,M
n,P,MgおよびSiからなる群より選択される1種
または2種以上を総量で0.01〜1.0%を含有し、
残部がCuおよび不可避的不純物からなり、XRD薄膜
法にて評価して求めた圧延面極表層を構成する銅合金結
晶の{111}ピーク強度に対する{100}ピーク強
度比が0.04以下であることを特徴とする銅合金。
8. Cr: 0.04 to 0.4 by mass ratio.
%, Zr: 0.03 to 0.25%, and Zn: 0.0
6 to 2.0%, and further contains Ni, Sn, In, M
one or more selected from the group consisting of n, P, Mg and Si, in a total amount of 0.01 to 1.0%,
The balance consists of Cu and unavoidable impurities, and the ratio of the {100} peak intensity to the {111} peak intensity of the copper alloy crystal constituting the pole surface of the rolled surface determined by the XRD thin film method is 0.04 or less. A copper alloy, characterized in that:
【請求項9】 質量割合にて、Cr:0.04〜0.4
%、Zr:0.03〜0.25%、Zn:0.06〜
2.0%、Fe:0.1〜1.8%および、Ti:0.
1〜0.8%を含有し、残部がCuおよび不可避的不純
物からなり、XRD薄膜法にて評価して求めた圧延面極
表層を構成する銅合金結晶の{111}ピーク強度に対
する{100}ピーク強度比が0.04以下であること
を特徴とする銅合金。
9. Cr: 0.04 to 0.4 by mass ratio.
%, Zr: 0.03 to 0.25%, Zn: 0.06 to
2.0%, Fe: 0.1 to 1.8%, and Ti: 0.
{100} with respect to the {111} peak intensity of the copper alloy crystal constituting the surface layer of the rolled surface determined by the XRD thin film method, containing 1 to 0.8% with the balance being Cu and inevitable impurities. A copper alloy having a peak intensity ratio of 0.04 or less.
【請求項10】 質量割合にて、Cr:0.04〜0.
4%、Zr:0.03〜0.25%、Zn:0.06〜
2.0%、Fe:0.1〜1.8%、Ti:0.1〜
0.8%を含有し、さらに、Ni,Sn,In,Mn,
P,MgおよびSiからなる群より選択される1種また
は2種以上を総量で0.01〜1.0%を含有し、残部
がCuおよび不可避的不純物からなり、XRD薄膜法に
て評価して求めた圧延面極表層を構成する銅合金結晶の
{111}ピーク強度に対する{100}ピーク強度比
が0.04以下であることを特徴とする銅合金。
10. Cr: 0.04 to 0.1 in mass ratio.
4%, Zr: 0.03 to 0.25%, Zn: 0.06 to
2.0%, Fe: 0.1 to 1.8%, Ti: 0.1 to
0.8%, Ni, Sn, In, Mn,
One or more selected from the group consisting of P, Mg and Si contains 0.01 to 1.0% in total, and the balance consists of Cu and unavoidable impurities, and was evaluated by the XRD thin film method. A copper alloy having a {100} peak intensity ratio to a {111} peak intensity of 0.04 or less, which is determined by the above method.
【請求項11】 前記銅合金がリードフレームに使用さ
れることを特徴とする請求項5から10までの何れか1
項記載の銅合金。
11. The method according to claim 5, wherein the copper alloy is used for a lead frame.
Copper alloy described in the item.
【請求項12】 最終パスのロール径が100mm以
上、圧延速度が200m/min以上、圧延油の粘度が
0.05cm2/s以上の条件で最終冷間圧延されたこ
とを特徴とする請求項7から11までの何れか1項に記
載の銅合金。
12. The final cold rolling under the condition that the roll diameter of the final pass is 100 mm or more, the rolling speed is 200 m / min or more, and the viscosity of the rolling oil is 0.05 cm 2 / s or more. 12. The copper alloy according to any one of 7 to 11.
JP2000053968A 2000-02-29 2000-02-29 Lead frame and copper alloy for lead frame Expired - Fee Related JP3318309B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000053968A JP3318309B2 (en) 2000-02-29 2000-02-29 Lead frame and copper alloy for lead frame
KR10-2001-0008417A KR100380214B1 (en) 2000-02-29 2001-02-20 Lead frame and copper alloy to be used for lead frame
TW090104583A TW541677B (en) 2000-02-29 2001-02-27 Lead frame and copper alloy to be used for lead frame
CNB011119454A CN1199262C (en) 2000-02-29 2001-02-28 Lead frame and copper alloy for lead frame
HK02102708.7A HK1041106B (en) 2000-02-29 2002-04-10 Lead frame and copper alloy to be used for lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000053968A JP3318309B2 (en) 2000-02-29 2000-02-29 Lead frame and copper alloy for lead frame

Publications (2)

Publication Number Publication Date
JP2001244400A true JP2001244400A (en) 2001-09-07
JP3318309B2 JP3318309B2 (en) 2002-08-26

Family

ID=18575285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000053968A Expired - Fee Related JP3318309B2 (en) 2000-02-29 2000-02-29 Lead frame and copper alloy for lead frame

Country Status (5)

Country Link
JP (1) JP3318309B2 (en)
KR (1) KR100380214B1 (en)
CN (1) CN1199262C (en)
HK (1) HK1041106B (en)
TW (1) TW541677B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063431A (en) * 2004-08-30 2006-03-09 Dowa Mining Co Ltd Copper alloy and its production method
WO2007148712A1 (en) * 2006-06-23 2007-12-27 Ngk Insulators, Ltd. Copper-based rolled alloy and method for producing the same
WO2008010378A1 (en) 2006-07-21 2008-01-24 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheets for electrical/electronic part
WO2008041584A1 (en) 2006-10-02 2008-04-10 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate for electrical and electronic components
WO2010113749A1 (en) * 2009-04-01 2010-10-07 日鉱金属株式会社 Cu-Zn-Sn ALLOY PLATE AND TIN-PLATED Cu-Zn-Sn ALLOY STRIP
JP2010222618A (en) * 2009-03-23 2010-10-07 Nippon Mining & Metals Co Ltd Cu-Ni-Si BASED COPPER ALLOY ROLLED SHEET AND ELECTRIC PART USING THE SAME
WO2011096632A2 (en) 2010-02-08 2011-08-11 주식회사 풍산 Copper alloy having high strength and high conductivity, and preparation method thereof
WO2014157248A1 (en) * 2013-03-25 2014-10-02 Jx日鉱日石金属株式会社 Copper alloy sheet having outstanding electro-conductivity and
JP2018060908A (en) * 2016-10-05 2018-04-12 ローム株式会社 Semiconductor device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063431A (en) * 2004-08-30 2006-03-09 Dowa Mining Co Ltd Copper alloy and its production method
JP4524471B2 (en) * 2004-08-30 2010-08-18 Dowaメタルテック株式会社 Copper alloy foil and manufacturing method thereof
JP5263525B2 (en) * 2006-06-23 2013-08-14 日本碍子株式会社 Method for producing copper-based rolled alloy
WO2007148712A1 (en) * 2006-06-23 2007-12-27 Ngk Insulators, Ltd. Copper-based rolled alloy and method for producing the same
EP2042613A4 (en) * 2006-06-23 2013-03-13 Ngk Insulators Ltd Copper-based rolled alloy and method for producing the same
EP2042613A1 (en) * 2006-06-23 2009-04-01 NGK Insulators, Ltd. Copper-based rolled alloy and method for producing the same
US8211249B2 (en) 2006-06-23 2012-07-03 Ngk Insulators, Ltd. Copper base rolled alloy and manufacturing method therefor
US9631260B2 (en) 2006-07-21 2017-04-25 Kobe Steel, Ltd. Copper alloy sheets for electrical/electronic part
EP2339038A3 (en) * 2006-07-21 2014-01-22 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet for electric and electronic part
EP2339039A2 (en) 2006-07-21 2011-06-29 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet for electric and electronic part
EP2339038A2 (en) 2006-07-21 2011-06-29 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet for electric and electronic part
EP2339039A3 (en) * 2006-07-21 2014-01-22 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet for electric and electronic part
US9644250B2 (en) 2006-07-21 2017-05-09 Kobe Steel, Ltd. Copper alloy sheet for electric and electronic part
WO2008010378A1 (en) 2006-07-21 2008-01-24 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheets for electrical/electronic part
US8063471B2 (en) 2006-10-02 2011-11-22 Kobe Steel, Ltd. Copper alloy sheet for electric and electronic parts
EP2388348A1 (en) 2006-10-02 2011-11-23 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy sheet for electric and electronic parts
EP2388347A1 (en) 2006-10-02 2011-11-23 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy sheet for electric and electronic parts
EP2388349A1 (en) 2006-10-02 2011-11-23 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy sheet for electric and electronic parts
WO2008041584A1 (en) 2006-10-02 2008-04-10 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate for electrical and electronic components
JP2010222618A (en) * 2009-03-23 2010-10-07 Nippon Mining & Metals Co Ltd Cu-Ni-Si BASED COPPER ALLOY ROLLED SHEET AND ELECTRIC PART USING THE SAME
JP2010242121A (en) * 2009-04-01 2010-10-28 Nippon Mining & Metals Co Ltd Cu-Zn-Sn ALLOY PLATE AND TIN-PLATED Cu-Zn-Sn ALLOY STRIP
WO2010113749A1 (en) * 2009-04-01 2010-10-07 日鉱金属株式会社 Cu-Zn-Sn ALLOY PLATE AND TIN-PLATED Cu-Zn-Sn ALLOY STRIP
WO2011096632A2 (en) 2010-02-08 2011-08-11 주식회사 풍산 Copper alloy having high strength and high conductivity, and preparation method thereof
WO2014157248A1 (en) * 2013-03-25 2014-10-02 Jx日鉱日石金属株式会社 Copper alloy sheet having outstanding electro-conductivity and
JP2014208858A (en) * 2013-03-25 2014-11-06 Jx日鉱日石金属株式会社 Copper alloy sheet having excellent conductivity and bending deflection coefficient
CN104334759A (en) * 2013-03-25 2015-02-04 Jx日矿日石金属株式会社 Copper Alloy Sheet Having Outstanding Electro-Conductivity And
JP2018060908A (en) * 2016-10-05 2018-04-12 ローム株式会社 Semiconductor device

Also Published As

Publication number Publication date
KR100380214B1 (en) 2003-04-18
CN1199262C (en) 2005-04-27
HK1041106A1 (en) 2002-06-28
TW541677B (en) 2003-07-11
CN1317828A (en) 2001-10-17
HK1041106B (en) 2005-12-09
JP3318309B2 (en) 2002-08-26
KR20010085422A (en) 2001-09-07

Similar Documents

Publication Publication Date Title
US4498121A (en) Copper alloys for suppressing growth of Cu-Al intermetallic compounds
US4632806A (en) Copper alloy having high resistance to oxidation for use in leads on semiconductor devices
CN101525702B (en) Copper alloy sheet superior in dicing workability for use in QFN package and QFC package
JP3318309B2 (en) Lead frame and copper alloy for lead frame
US4732733A (en) Copper-base alloys for leadframes
KR950013290B1 (en) Material for conductive parts of electronic and electric appliances
JP3344924B2 (en) Copper alloy for lead frames with high oxide film adhesion
JP2714560B2 (en) Copper alloy with good direct bonding properties
JPH09296237A (en) Metallic substrate material for semiconductor packaging
JPH10180480A (en) Lead-free soldering material and electronic parts using the material
JP2797846B2 (en) Cu alloy lead frame material for resin-encapsulated semiconductor devices
JPH11243171A (en) Lead frame copper alloy
US20120177945A1 (en) Whisker-Free Coating Structure and Method for Fabricating the Same
JPH10183274A (en) Copper alloy for electronic equipment
JP2001127076A (en) Alloy member for die bonding
JPH06172896A (en) High-strength and high-conductivity copper alloy
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JPH02170932A (en) Copper alloy having superior direct bonding property
JPH06184666A (en) High strength and high electric conductivity copper alloy
JP3080892B2 (en) Reliable thin plastic semiconductor package using copper lead frame
JPH01291435A (en) Extrafine copper alloy wire for semiconductor device and semiconductor device
JPH06184676A (en) High strength and high electric conductivity copper alloy
JPH06235035A (en) High tensile strength and high conductivity copper alloy
JP2519400B2 (en) Lead terminal for electronic parts
JPH02170936A (en) Copper alloy having superior direct bonding property

Legal Events

Date Code Title Description
R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees