JP2010242121A - Cu-Zn-Sn ALLOY PLATE AND TIN-PLATED Cu-Zn-Sn ALLOY STRIP - Google Patents

Cu-Zn-Sn ALLOY PLATE AND TIN-PLATED Cu-Zn-Sn ALLOY STRIP Download PDF

Info

Publication number
JP2010242121A
JP2010242121A JP2009089343A JP2009089343A JP2010242121A JP 2010242121 A JP2010242121 A JP 2010242121A JP 2009089343 A JP2009089343 A JP 2009089343A JP 2009089343 A JP2009089343 A JP 2009089343A JP 2010242121 A JP2010242121 A JP 2010242121A
Authority
JP
Japan
Prior art keywords
alloy
mass
texture
plate
alloy plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009089343A
Other languages
Japanese (ja)
Other versions
JP5339995B2 (en
Inventor
Naofumi Maeda
直文 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2009089343A priority Critical patent/JP5339995B2/en
Priority to PCT/JP2010/055194 priority patent/WO2010113749A1/en
Priority to KR1020117019424A priority patent/KR101338792B1/en
Priority to CN2010800077130A priority patent/CN102317483A/en
Priority to TW099110084A priority patent/TWI424072B/en
Publication of JP2010242121A publication Critical patent/JP2010242121A/en
Application granted granted Critical
Publication of JP5339995B2 publication Critical patent/JP5339995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Cu-Zn-Sn alloy plate and a tin-plated Cu-Zn-Sn alloy strip having not only excellent pressing processability, but also excellent strength, electrical conductivity, and bending processability. <P>SOLUTION: The Cu-Zn-Sn alloy plate contains 2-12 mass% of Zn, 0.1-1.0 mass% of Sn, and Cu and unavoidable impurities as the remainder, wherein, when the crystal orientation is measured to a depth of 5 μm from the surface of the plate by an X-ray diffraction method, the pole density of shear texture corresponding to a region of α=0±10° (α: an axis perpendicular to the rotation axis of a diffraction goniometer defined in the Schultz method) in a ä111} pole figure is 2-8. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えばコネクタ、端子、リレ−、スイッチ等の導電性ばね材に好適なCu−Zn−Sn系合金板及びCu−Zn−Sn系合金Snめっき条に関する。   The present invention relates to a Cu—Zn—Sn alloy plate and a Cu—Zn—Sn alloy Sn plating strip suitable for conductive spring materials such as connectors, terminals, relays, and switches.

端子、コネクタ等はCu系合金板をプレス加工して所望の形状に成形されるが、電子部品の小型化に伴い、打抜き後の寸法精度が従来以上に重要となっている。プレス加工では打抜き回数の増加に伴って金型磨耗が進行し、バリが高くなるため、部品の精度が高まるにつれて金型のメンテナンス頻度が増加する。このようなダレやバリは従来、金型調整で対応する事が多かったが、寸法精度の向上に伴い、ダレが小さくバリが低いCu系材料が求められている。
このような背景から、Cu系材料の集合組織や表面構造の調整、微細化合物の均一分散等の方法によってプレス加工性を改善した技術が開発されている。例えば、Sn、Ni、P、Zn、Si、Fe、Co、Mg、Ti、Cr、Zr、Alから選ばれる少なくとも1種の元素を0.01〜30wt%含有した銅基合金で、所定の加工率Z%で冷間圧延し、次いで再結晶温度未満の温度で低温焼鈍を行い、表面のX線強度比SNDをSND=I{220}÷I{200}≧10に調整する技術が開示されている。(特許文献1)
又、材料断面のX線回折強度で{111}と{222}の回折強度の合計を、{200}回折強度の2倍以上とする銅基合金が開示されている(特許文献2)。さらに、Znを5〜35wt%、Snを0.1〜3wt%含む銅合金部材上にPdを層状に形成した半導体装置用リードフレームが開示されている(特許文献3)。
Terminals, connectors, and the like are formed into a desired shape by pressing a Cu-based alloy plate, but with the miniaturization of electronic components, dimensional accuracy after punching becomes more important than ever. In press working, die wear progresses as the number of punches increases, and burrs increase, so that the maintenance frequency of the die increases as the accuracy of parts increases. Conventionally, such sagging and burrs have often been dealt with by mold adjustment. However, with improvement in dimensional accuracy, a Cu-based material with small sagging and low burrs is required.
Against this background, techniques have been developed that improve press workability by methods such as adjusting the texture and surface structure of Cu-based materials and uniformly dispersing fine compounds. For example, a predetermined processing with a copper-based alloy containing 0.01 to 30 wt% of at least one element selected from Sn, Ni, P, Zn, Si, Fe, Co, Mg, Ti, Cr, Zr, and Al. Disclosed is a technique for cold rolling at a rate of Z% and then performing low temperature annealing at a temperature lower than the recrystallization temperature to adjust the surface X-ray intensity ratio SND to SND = I {220} ÷ I {200} ≧ 10 ing. (Patent Document 1)
Further, a copper-based alloy is disclosed in which the sum of the diffraction intensities of {111} and {222} in the X-ray diffraction intensity of the material cross section is at least twice the {200} diffraction intensity (Patent Document 2). Furthermore, a lead frame for a semiconductor device is disclosed in which Pd is formed in a layer on a copper alloy member containing 5-35 wt% Zn and 0.1-3 wt% Sn (Patent Document 3).

特開2002−180165号公報JP 2002-180165 A 特開2001−152303号公報JP 2001-152303 A 特開平11−36027号公報JP 11-36027 A

しかしながら、プレス加工性の改善を目的として集合組織や表面構造を過度に調整すると、強度、導電率や曲げ加工性といった材料特性が低下する。
従って、本発明は上記の課題を解決するためになされたものであり、プレス加工性だけでなく、強度及び曲げ加工性にも優れたCu−Zn−Sn系合金板及びCu−Zn−Sn系合金Snめっき条の提供を目的とする。
However, if the texture or surface structure is excessively adjusted for the purpose of improving press workability, material properties such as strength, conductivity, and bending workability are deteriorated.
Accordingly, the present invention has been made to solve the above-described problems, and has a Cu-Zn-Sn alloy plate and a Cu-Zn-Sn system that are excellent not only in press workability but also in strength and bending workability. The purpose is to provide an alloy Sn plating strip.

上記の目的を達成するために、本発明のCu−Zn−Sn系合金板は、2〜12質量%のZn及び0.1〜1.0質量%のSnを含有し、残部がCu及び不可避不純物からなり、X線回折法により板表面から5μmの深さまでの結晶方位を測定したとき、{111}正極点図上のα=0±10°(但し、α:シュルツ法に規定する回折用ゴニオメータの回転軸に垂直な軸)の領域に相当するせん断集合組織の極密度が2〜8である。   In order to achieve the above object, the Cu—Zn—Sn alloy plate of the present invention contains 2 to 12% by mass of Zn and 0.1 to 1.0% by mass of Sn, with the balance being Cu and inevitable. It consists of impurities, and when the crystal orientation from the plate surface to a depth of 5 μm is measured by X-ray diffraction method, α = 0 ± 10 ° on the {111} positive pole figure (where α: for diffraction specified in the Schulz method) The pole density of the shear texture corresponding to the region of the axis perpendicular to the rotation axis of the goniometer is 2-8.

酸素濃度1質量%以上の表面酸化層の厚みが0.5μm以下であることが好ましい。
さらにNi、Mg、Fe、P、Mn及びCrの群から選ばれる少なくとも一種以上を合計で0.005〜0.5質量%含有することが好ましい。
The thickness of the surface oxide layer having an oxygen concentration of 1% by mass or more is preferably 0.5 μm or less.
Furthermore, it is preferable to contain 0.005-0.5 mass% in total of at least 1 type or more chosen from the group of Ni, Mg, Fe, P, Mn, and Cr.

本発明のCu−Zn−Sn系合金Snめっき条は、前記Cu−Zn−Sn系合金板の表面に0.3〜2μm厚のSnめっきを施したものであるが、これに限定されるものではない。例えば、前記Cu−Zn−Sn系合金板にCu層、Cu−Sn合金層及びSn層の各めっき層がこの順に形成されているSnめっき材、さらに前記Cu−Zn−Sn系合金板にNi層、Cu−Sn合金層、Sn層の各めっき層がこの順に形成されているSnめっき材も含まれる。   The Cu-Zn-Sn-based alloy Sn plating strip of the present invention is obtained by subjecting the surface of the Cu-Zn-Sn-based alloy plate to Sn plating having a thickness of 0.3 to 2 μm, but is not limited thereto. is not. For example, the Cu-Zn-Sn alloy plate has a Cu layer, a Cu-Sn alloy layer and a Sn layer formed in this order on a Sn plating material, and the Cu-Zn-Sn alloy plate has a Ni layer. The Sn plating material in which each plating layer of a layer, a Cu-Sn alloy layer, and a Sn layer is formed in this order is also included.

本発明によれば、プレス加工性だけでなく、強度及び曲げ加工性にも優れたCu−Zn−Sn系合金板及びCu−Zn−Sn系合金Snめっき条が得られる。   According to the present invention, a Cu—Zn—Sn alloy plate and a Cu—Zn—Sn alloy Sn plating strip excellent not only in press workability but also in strength and bending workability can be obtained.

本発明の銅合金板と従来の銅合金圧延板のせん断集合組織の極密度を示す模式図である。It is a schematic diagram which shows the extreme density of the shear texture of the copper alloy plate of this invention and the conventional copper alloy rolling plate.

以下、本発明の実施の形態に係るCu−Zn−Sn系合金板について説明する。   Hereinafter, a Cu—Zn—Sn alloy plate according to an embodiment of the present invention will be described.

(組成)
[Zn及びSn]
合金板中のZnの濃度を2〜12質量%とし、Snの濃度を0.1〜1.0質量%とする。Znは合金板の強度を向上させ、Snめっきの加熱下での剥離度合を減少させる。また、Snは圧延の際の加工硬化を促進する作用を持つ。
Znが2%未満の場合、合金板の硬さが低下する。Znが12%を超えると、合金板表面の酸化膜のZn成分が多くなり(Znリッチ)、合金板をオス端子に加工し、プリント基板のスルーホールに実装する際、鉛フリーはんだの濡れ上がり性が劣化する。Snが0.1%未満の場合、所望の加工硬化特性が得られず、Snが1.0%を超えると曲げ加工性および導電性が低下する。
[他の添加元素]
合金板中に、強度、耐熱性、耐応力緩和性等を改善する目的で、さらにNi、Mg、P、Fe、Mn及びCrの群から選ばれる少なくとも一種以上を合計で0.005〜0.5質量%含有してもよい。これらの元素の合計量が0.005%未満の場合、所望の特性が得られず、合計量が0.5質量%を超えると所望の特性は得られるものの、導電性や曲げ加工性が低下することがある。
(composition)
[Zn and Sn]
The concentration of Zn in the alloy plate is 2 to 12% by mass, and the concentration of Sn is 0.1 to 1.0% by mass. Zn improves the strength of the alloy plate and decreases the degree of delamination under Sn plating heating. Moreover, Sn has the effect | action which accelerates | stimulates the work hardening in the case of rolling.
When Zn is less than 2%, the hardness of the alloy plate decreases. If Zn exceeds 12%, the Zn content of the oxide film on the surface of the alloy plate increases (Zn rich), and when the alloy plate is processed into a male terminal and mounted in the through hole of the printed circuit board, lead-free solder wets up Deteriorates. When Sn is less than 0.1%, desired work-hardening characteristics cannot be obtained, and when Sn exceeds 1.0%, bending workability and conductivity are deteriorated.
[Other additive elements]
In order to improve the strength, heat resistance, stress relaxation resistance, etc. in the alloy plate, at least one selected from the group of Ni, Mg, P, Fe, Mn and Cr is added in a total amount of 0.005 to 0.00. You may contain 5 mass%. If the total amount of these elements is less than 0.005%, the desired properties cannot be obtained. If the total amount exceeds 0.5% by mass, the desired properties can be obtained, but the conductivity and bending workability are reduced. There are things to do.

(せん断集合組織の極密度)
通常、冷間圧延において、材料の塑性変形に伴って結晶格子回転が進行し、集合組織が形成されるが、圧延時にロールと接する材料の表層領域と材料中央部では形成される集合組織に差異があることが知られている(上城ら、日本金属学会誌、p33、36巻,1972年,五弓勇雄編、「金属塑性加工の進歩」、p499、コロナ社、1978年)。これは、材料中央部では、板厚方向の圧縮応力と圧延方向の引張応力とが組み合わさった二軸応力により材料が変形されるのに対して、材料表層部では、ロールとの摩擦力の影響で材料がせん断変形されるためであり、これを表面集合組織(せん断集合組織)と呼んで、圧延集合組織と区別している。上記文献によれば、例えばAl板では最適条件下で、板の両面から板厚の30%ずつに表面集合組織が形成され、薄い遷移層によって急激に内部組織に変わることが判明している。
(Extreme density of shear texture)
Normally, in cold rolling, crystal lattice rotation proceeds with plastic deformation of the material and a texture is formed, but there is a difference in the texture formed in the surface layer region of the material in contact with the roll and the center of the material during rolling. (Jojo et al., Journal of the Japan Institute of Metals, p33, 36, 1972, edited by Isao Gokyu, “Advances in Metal Plastic Processing”, p499, Corona, 1978). This is because the material is deformed by the biaxial stress that combines the compressive stress in the plate thickness direction and the tensile stress in the rolling direction at the center of the material, whereas the frictional force with the roll is at the material surface layer. This is because the material undergoes shear deformation due to the influence, which is called a surface texture (shear texture) and is distinguished from a rolling texture. According to the above-mentioned document, it has been found that, for example, in an Al plate, a surface texture is formed on both sides of the plate by 30% of the plate thickness under optimum conditions, and the internal structure is rapidly changed by a thin transition layer.

本発明者らは、Cu−Zn−Sn系合金板において表面集合組織(せん断集合組織)を積極的に導入させた結果、従来のCu系合金板に比べて、バリが低くプレス加工性が良好になることを見出した。表面集合組織は{111}方位を主成分とする集合組織であり、通常の圧延集合組織は{110}方位を主成分とする集合組織である。単結晶の単軸引張試験では、{111}方位は{110}方位に比べて破断伸びが小さいことが知られており、プレス加工時に表面に形成されるバリの低下は、合金板表面における破断伸びに各方位で差があることが影響すると考えられる。
又、本発明者らはCu−Zn−Sn系合金板に表面集合組織(せん断集合組織)を積極的に導入する方法として、最終冷間圧延時の圧延条件を変化させ、表面集合組織と圧延条件の相関を調査した。その結果、圧延速度及び圧延油の粘性を制御することで、従来は表面近傍にのみ形成される表面集合組織を、板厚の10〜20%程度の深さまで形成させることに成功した。
As a result of positively introducing a surface texture (shear texture) in the Cu—Zn—Sn alloy plate, the present inventors have lower burrs and better press workability than conventional Cu alloy plates. I found out that The surface texture is a texture having a {111} orientation as a main component, and a normal rolling texture is a texture having a {110} orientation as a main component. In the uniaxial tensile test of a single crystal, it is known that the {111} orientation has a smaller elongation at break than the {110} orientation. It is considered that there is a difference in elongation in each direction.
In addition, as a method of positively introducing a surface texture (shear texture) into a Cu—Zn—Sn alloy sheet, the present inventors changed the rolling conditions at the time of final cold rolling, and changed the surface texture and rolling. The correlation of conditions was investigated. As a result, by controlling the rolling speed and the viscosity of the rolling oil, a surface texture that has been conventionally formed only in the vicinity of the surface has been successfully formed to a depth of about 10 to 20% of the plate thickness.

本発明において、X線回折法により板表面から5μmの深さまでの結晶方位を測定したとき、{111}正極点図上のα=0±10°(但し、α:シュルツ法に規定する回折用ゴニオメータの回転軸に垂直な軸)の領域に相当する、せん断集合組織の極密度を2〜8に制御する。
ここで、板表面から5μmの深さまでを対象とする理由は、本発明のCu−Zn−Sn系銅合金圧延板を用いて表面集合組織とプレス加工性の関係を調査したところ、5μm以上の表面集合組織が形成されるとプレス加工性に有意な差異が生じた事から、この深さまでを測定対象とした。
又、本発明の銅合金のせん断集合組織に相当する{111}方位は、{111}正極点図におけるα=0±10°の領域となるため、この領域を極密度の測定対象とした。
In the present invention, when the crystal orientation from the plate surface to a depth of 5 μm is measured by the X-ray diffraction method, α = 0 ± 10 ° on the {111} positive pole figure (where α: for diffraction specified in the Schulz method) The pole density of the shear texture corresponding to the region of the axis perpendicular to the rotation axis of the goniometer is controlled to 2-8.
Here, the reason from the surface of the plate to a depth of 5 μm is that when the relationship between the surface texture and press workability was investigated using the Cu—Zn—Sn-based copper alloy rolled plate of the present invention, it was 5 μm or more. Since a significant difference occurred in press workability when the surface texture was formed, this depth was used as the measurement target.
Further, since the {111} orientation corresponding to the shear texture of the copper alloy of the present invention is a region of α = 0 ± 10 ° in the {111} positive electrode diagram, this region was used as an object for measuring the extreme density.

以上のようにして、せん断集合組織の極密度が測定される。そして、せん断集合組織の極密度が2〜8である圧延板を打抜きプレス加工すると、打抜き後に発生するバリが従来材に比べて少ないことが判明した。
板表面から5μmの深さのせん断集合組織の極密度が2未満であると、せん断集合組織が十分に形成されていないため、バリが高くなり、プレス加工性が向上しない。一方、せん断集合組織の極密度が8を超えることは工業的に困難であり極密度の上限を8と設定した。
なお、極密度が2以上3以下の範囲では、せん断集合組織の極密度が増加するのに応じてプレス加工性は向上する(バリは低くなる)が、極密度が3を超えるとプレス加工性の改善の度合いは鈍化し、極密度が5を超えると、プレス加工性に差異が見られなくなる。又、5を超える高い極密度を得るためには、粘度の高い圧延油の使用や圧延速度の高速化が必要であり、材料の表面粗さが大きくなる傾向にある。一方、極密度が4.5を超えると、曲げ加工部にしわが発生するようになる。このようなことから、極密度は2.2以上5以下とするのが好ましく、より好ましくは2.5以上4.5以下とする。
As described above, the extreme density of the shear texture is measured. And when the rolled plate whose shear texture has an extreme density of 2 to 8 is punched and pressed, it has been found that fewer burrs are generated after punching than the conventional material.
If the extreme density of the shear texture having a depth of 5 μm from the plate surface is less than 2, the shear texture is not sufficiently formed, so that the burr becomes high and the press workability is not improved. On the other hand, it is industrially difficult for the polar density of the shear texture to exceed 8, and the upper limit of the polar density was set to 8.
In addition, when the pole density is in the range of 2 or more and 3 or less, the press workability improves as the pole texture of the shear texture increases (the burr decreases), but when the pole density exceeds 3, the press workability is increased. The degree of improvement is slowed down, and when the pole density exceeds 5, no difference in press workability is observed. Further, in order to obtain a high pole density exceeding 5, it is necessary to use a rolling oil having a high viscosity and increase the rolling speed, and the surface roughness of the material tends to increase. On the other hand, when the pole density exceeds 4.5, wrinkles are generated in the bent portion. Therefore, the pole density is preferably 2.2 or more and 5 or less, and more preferably 2.5 or more and 4.5 or less.

なお、従来の銅合金圧延板の場合、せん断集合組織の極密度が高い部分は、板の極表面に限られるので、プレス加工性が十分とはいえない。図1は、本発明の銅合金板と従来の銅合金板のせん断集合組織の極密度を模式的に示す。従来の銅合金圧延においても、板の極表面のせん断集合組織の極密度は2以上となるが、内部になるにつれて極密度が急激に低下し、板表面から5μmの深さでは極密度が2未満となる。   In the case of a conventional rolled copper alloy plate, the portion having a high extreme density of the shear texture is limited to the extreme surface of the plate, so that press workability is not sufficient. FIG. 1 schematically shows the extreme density of the shear texture of the copper alloy plate of the present invention and a conventional copper alloy plate. Also in conventional copper alloy rolling, the pole density of the shear texture on the pole surface of the plate is 2 or more, but the pole density rapidly decreases as it goes inside, and the pole density is 2 at a depth of 5 μm from the plate surface. Less than.

板表面から5μmの深さまでのせん断集合組織の極密度を、2〜8に制御する方法としては、合金組成に応じた焼鈍温度で再結晶焼鈍を行い、最終冷間圧延時のロールと銅合金圧延素材との間の摩擦力を高める方法が挙げられる。具体的には最終冷間圧延時の、1)圧延油の粘度を高くする、2)圧延ロールの粗度を高くする、3)圧延速度を高くする(ロール径を小さくする)、ことが挙げられる。
通常、冷間圧延時の圧延油の粘度は0.03〜0.06cm/s程度であり、最終冷間圧延時の圧延油の粘度を0.06cm/s以上とすることで、せん断集合組織の極密度を2〜8にすることができる。
As a method of controlling the extreme density of the shear texture from the plate surface to a depth of 5 μm to 2 to 8, recrystallization annealing is performed at an annealing temperature according to the alloy composition, and the roll and copper alloy at the time of final cold rolling A method for increasing the frictional force with the rolling material is mentioned. Specifically, at the time of final cold rolling, 1) increase the viscosity of the rolling oil, 2) increase the roughness of the rolling roll, and 3) increase the rolling speed (reducing the roll diameter). It is done.
Usually, the viscosity of the rolling oil at the time of cold rolling is about 0.03 to 0.06 cm 2 / s, and the viscosity of the rolling oil at the time of the final cold rolling is set to 0.06 cm 2 / s or more, thereby shearing The extreme density of the texture can be 2-8.

(表面酸化層)
本発明の銅合金板において、酸素濃度1質量%以上の表面酸化層の厚みが0.5μm以下であることが好ましい。通常、母相の酸素濃度は0.001〜0.01質量%程度であり、酸素濃度が1質量%以上の部分は酸素が十分に含まれ、プレス加工性に影響を与える層として機能するからである。
本発明者らは、同一圧延条件で作製した試料でもプレス加工性に差異を生じる現象について検討した結果、試料を板や条に加工するまでに実施する焼鈍にて形成される表面酸化層が厚くなると、プレス加工性が劣化する知見を得た。そして、焼鈍時の雰囲気、温度、時間を制御することで表面酸化層の厚みを最適化し、プレス加工性の改善に至った。
酸素濃度1質量%以上の表面酸化層の厚みが0.5μmを超えると、金型が磨耗してクリアランスが大きくなり、バリが増えてプレス加工性が低下する場合がある。これは、表面酸化層がCu母材に比べ硬く、金型の磨耗要因となるためと考えられ、表面酸化層が薄いほど、材料打抜き時の金型鋼と酸化層間で摩擦が生じる頻度が少なくなり、プレス加工性が良好となる。
なお、焼鈍雰囲気中の酸素濃度が0.2%以下であると、表面酸化層の厚みが薄くなるので好ましい。
(Surface oxide layer)
In the copper alloy sheet of the present invention, the thickness of the surface oxide layer having an oxygen concentration of 1% by mass or more is preferably 0.5 μm or less. Usually, the oxygen concentration of the parent phase is about 0.001 to 0.01% by mass, and the portion where the oxygen concentration is 1% by mass or more contains sufficient oxygen and functions as a layer that affects press workability. It is.
As a result of examining the phenomenon that causes a difference in press workability even in a sample produced under the same rolling conditions, the inventors have found that the surface oxide layer formed by annealing performed before the sample is processed into a plate or a strip is thick. Then, the knowledge that press workability deteriorates was obtained. And by controlling the atmosphere, temperature, and time during annealing, the thickness of the surface oxide layer was optimized, and the press workability was improved.
If the thickness of the surface oxide layer having an oxygen concentration of 1% by mass or more exceeds 0.5 μm, the mold may be worn to increase the clearance, increase the burrs, and decrease the press workability. This is thought to be because the surface oxide layer is harder than the Cu base material and causes wear of the mold. The thinner the surface oxide layer, the less frequent the friction between the mold steel and the oxide layer during material punching. , The press workability is improved.
In addition, it is preferable that the oxygen concentration in the annealing atmosphere is 0.2% or less because the thickness of the surface oxide layer is reduced.

(製造)
本発明の銅合金板は、例えば以下のようにして製造することができる。まず、電気銅又は無酸素銅を主原料とし、上記化学成分その他を添加した組成を溶解炉にて溶解し、インゴットを作製する。インゴットを例えば均質化焼鈍、熱間圧延、面削、冷間圧延、再結晶焼鈍、最終冷間圧延の順に加工し、圧延板が得られる。Snめっきを行う場合、圧延板に付着した圧延油を電解脱脂で除去後、例えば10%硫酸水溶液にて酸洗しSnめっきを行う。
(Manufacturing)
The copper alloy plate of the present invention can be produced, for example, as follows. First, an ingot is prepared by melting a composition in which electrolytic copper or oxygen-free copper is used as a main raw material and adding the above chemical components and the like in a melting furnace. For example, the ingot is processed in the order of homogenization annealing, hot rolling, face milling, cold rolling, recrystallization annealing, and final cold rolling to obtain a rolled sheet. When performing Sn plating, after removing the rolling oil adhering to a rolled sheet by electrolytic degreasing, it pickles with, for example, 10% sulfuric acid aqueous solution, and Sn plating is performed.

本発明の銅合金板は、条、箔等の種々の形態とすることができる。本発明の銅合金条を加工することで、コネクタ、ピン、端子、リレー、スイッチ等の電気部品に適用可能である。コネクタとしては、公知のあらゆる形態、構造のものに適用できるが、通常はオス(ジャック、プラグ)とメス(ソケット、レセプタクル)から構成されるコネクタのオス端子として使用される。   The copper alloy plate of the present invention can be in various forms such as strips and foils. By processing the copper alloy strip of the present invention, it can be applied to electrical parts such as connectors, pins, terminals, relays and switches. The connector can be applied to all known forms and structures, but is usually used as a male terminal of a connector composed of a male (jack, plug) and a female (socket, receptacle).

<実施例>
次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
<Example>
EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.

1.試料の作製
高周波誘導炉で電気銅を溶解し、溶湯表面を木炭被覆した後、Zn(3質量%)及びSn(0.2質量%)を添加し所望の合金組成に溶湯を調整した。その後、鋳込温度1200℃で鋳造を行い、得られたインゴットを850℃で3時間加熱後、板厚8mmまで熱間圧延し、表面に生じた酸化スケールを面削にて除去した。その後、冷間圧延、再結晶焼鈍、冷間圧延の順で加工を進め、最終的に0.64mmの圧延板に仕上げた。再結晶焼鈍はアンモニア分解ガス中で行い、焼鈍時間は30分とした。再結晶焼鈍の条件、最終冷間圧延の条件(圧延速度及び圧延油の粘度)、及び得られた材料特性を表1に示す。再結晶条件と最終冷間圧延の条件を変化させて、せん断集合組織の極密度を調整した。
1. Preparation of Sample After melting electrolytic copper in a high frequency induction furnace and coating the surface of the molten metal with charcoal, Zn (3 mass%) and Sn (0.2 mass%) were added to adjust the molten metal to a desired alloy composition. Thereafter, casting was performed at a casting temperature of 1200 ° C., and the obtained ingot was heated at 850 ° C. for 3 hours, and then hot-rolled to a plate thickness of 8 mm, and the oxide scale generated on the surface was removed by chamfering. Thereafter, the processing proceeded in the order of cold rolling, recrystallization annealing, and cold rolling, and finally finished into a 0.64 mm rolled plate. Recrystallization annealing was performed in ammonia decomposition gas, and the annealing time was 30 minutes. Table 1 shows recrystallization annealing conditions, final cold rolling conditions (rolling speed and rolling oil viscosity), and obtained material properties. The extreme density of the shear texture was adjusted by changing the recrystallization conditions and the final cold rolling conditions.

2.せん断集合組織の極密度の測定
X線ディフラクトメータ(株式会社リガク製 RINT2500)により、各試料の{111}正極点測定を反射法で行い、{111}正極点図を作製した。但し、反射法では、試料面に対するX線の入射角が浅くなると測定が困難になるため、実際に測定できる角度範囲は正極点図上で0°≦α≦75°、0°≦β≦360°(但し、α:シュルツ法に規定する回折用ゴニオメータの回転軸に垂直な軸、β:前記回転軸に平行な軸)となる。
測定では、αとβの回転間隔Δα、Δβを5°として上記した角度範囲内を走査し、16×73=1168点のX線強度を測定した。この際、集合組織を有しない状態(すなわち結晶方位がランダムである状態)を1として正極点図上の集合組織の強度を規格化した。結晶方位がランダムである状態として、銅粉末試料の{111}正極点測定を行い、これを1とした。
なお、X線照射条件として、Co管球を使用し、管電圧30kV、管電流100mAとし、板表面から5μmの深さまでX線が浸透するよう、条件を設定した。
以上のようにして、せん断集合組織に相当する{111}正極点図上のα=0°±10°の範囲の結晶方位の極密度を測定し、この範囲内における極密度の最大値を、せん断集合組織の極密度と定義した。
2. Measurement of polar density of shear texture Using an X-ray diffractometer (RINT2500, manufactured by Rigaku Corporation), {111} positive electrode points of each sample were measured by a reflection method to produce {111} positive electrode dot diagrams. However, in the reflection method, measurement becomes difficult when the incident angle of the X-ray with respect to the sample surface becomes shallow. Therefore, the angle ranges that can be actually measured are 0 ° ≦ α ≦ 75 ° and 0 ° ≦ β ≦ 360 on the positive electrode diagram. ° (where α is an axis perpendicular to the rotational axis of the diffraction goniometer defined in the Schulz method, β is an axis parallel to the rotational axis).
In the measurement, the X-ray intensity at 16 × 73 = 1168 points was measured by scanning the angle range described above with α and β rotation intervals Δα and Δβ set to 5 °. At this time, the strength of the texture on the positive point diagram was normalized by assuming that the texture has no texture (that is, the crystal orientation is random) as 1. Assuming that the crystal orientation was random, {111} positive electrode point measurement of a copper powder sample was performed, and this was set to 1.
As the X-ray irradiation conditions, a Co tube was used, the tube voltage was set to 30 kV, the tube current was set to 100 mA, and the conditions were set so that the X-rays penetrated to a depth of 5 μm from the plate surface.
As described above, the polar density of the crystal orientation in the range of α = 0 ° ± 10 ° on the {111} positive electrode diagram corresponding to the shear texture is measured, and the maximum value of the polar density in this range is It was defined as the extreme density of the shear texture.

3.バリの高さ
各試料について、金型クリアランスを10%とし、250spmの打抜き速度で、長さ30mm、幅0.5mmのリードを打抜き、コンフォーカル顕微鏡で打ち抜き材の断面を撮影した。撮影画像のうち、打ち抜き終了面側の最も高さの高い部分と、最も高さの低い部分との高度差を、バリの高さとみなした。
バリの高さが15μm以下であれば、バリが低く良好と判定した。
3. Burr Height For each sample, a die clearance was set to 10%, a lead having a length of 30 mm and a width of 0.5 mm was punched at a punching speed of 250 spm, and a cross section of the punched material was photographed with a confocal microscope. In the photographed image, the height difference between the highest part on the punching end surface side and the lowest part was regarded as the burr height.
If the burr height was 15 μm or less, it was judged that the burr was low and good.

4.曲げ加工性
日本伸銅協会(JBMA)技術標準 T307(1999年)に従って、各試料の曲げ加工性を評価した。曲げ半径はr=0.3とし、Good Way曲げを実施した。
同技術標準の5段階の評価A〜Eに対応し、以下のような基準で評価した。
○:同技術標準のA(良好)なもの
△:同技術標準のB(しわ小)及びC(しわ大)
×:同技術標準のD(割れ小)及びE(割れ大)
4). Bending workability The bending workability of each sample was evaluated according to the Japan Copper and Brass Association (JBMA) technical standard T307 (1999). The bending radius was r = 0.3, and Good Way bending was performed.
Corresponding to the five grades A to E of the technical standard, the following criteria were used.
○: A (good) of the technical standard △: B (small wrinkle) and C (large wrinkle) of the technical standard
×: D (small crack) and E (large crack) of the same technical standard

5.引張強さ
各試料について、圧延方向に平行な方向に、JISZ2241に準拠して引張試験を行い、引張強さを求めた。引張強さが450MPa以上であれば、ばね材として良好である。
5). Tensile strength Each sample was subjected to a tensile test in accordance with JISZ2241 in a direction parallel to the rolling direction to determine the tensile strength. If the tensile strength is 450 MPa or more, it is good as a spring material.

得られた結果を表1に示す。   The obtained results are shown in Table 1.

Figure 2010242121
Figure 2010242121

表1から明らかなように、発明例1〜9の場合、プレス加工によるバリが低く、曲げ加工性も良好であった。このため、プレス加工性に優れ、さらに引張強さも高いものとなった。但し、酸素濃度1質量%以上の表面酸化層の厚みが0.5μmを超えた発明例9の場合、他の発明例に比べてバリが高くなったが実用上は問題なかった。
一方、最終冷間圧延時の圧延速度が170mpm未満である比較例1の場合、せん断集合組織の極密度が2未満となり、バリが高く、プレス加工性が劣化した。
又、最終冷間圧延時の圧延油の粘度が0.06cm/s未満である比較例2の場合も、せん断集合組織の極密度が2未満となり、バリが高く、プレス加工性が劣化した。
As is clear from Table 1, in Invention Examples 1 to 9, burrs due to press working were low and bending workability was good. Therefore, the press workability was excellent and the tensile strength was high. However, in the case of Invention Example 9 in which the thickness of the surface oxide layer having an oxygen concentration of 1% by mass or more exceeded 0.5 μm, the burrs were higher than those of the other Invention Examples, but there was no practical problem.
On the other hand, in the case of Comparative Example 1 in which the rolling speed during the final cold rolling was less than 170 mpm, the extreme density of the shear texture was less than 2, the burr was high, and the press workability was deteriorated.
Also in the case of Comparative Example 2 in which the viscosity of the rolling oil at the time of final cold rolling is less than 0.06 cm 2 / s, the extreme density of the shear texture is less than 2, the burr is high, and the press workability is deteriorated. .

再結晶焼鈍温度が380℃未満の比較例3の場合も、せん断集合組織の極密度が2未満となり、バリが高く、プレス加工性が劣化した。これは、再結晶焼鈍温度が低いため、十分な再結晶が起こらず、再結晶焼鈍以前に形成された圧延集合組織の影響により、所望のせん断集合組織が得られないことが原因である。
再結晶焼鈍温度が430℃を超えた比較例4の場合は、せん断集合組織の極密度は2以上となったが、再結晶焼鈍温度が高過ぎたため、結晶粒径が粗大化し、引張強さが低下した。
なお、適正な再結晶温度の範囲は、銅合金板の組成によって変動し、発明例に適用された380〜430℃の温度域に限定されるものではない。
In Comparative Example 3 where the recrystallization annealing temperature was less than 380 ° C., the extreme density of the shear texture was less than 2, the burr was high, and the press workability was deteriorated. This is because, since the recrystallization annealing temperature is low, sufficient recrystallization does not occur, and a desired shear texture cannot be obtained due to the influence of the rolling texture formed before the recrystallization annealing.
In the case of Comparative Example 4 in which the recrystallization annealing temperature exceeded 430 ° C., the extreme density of the shear texture was 2 or more, but the recrystallization annealing temperature was too high, so that the crystal grain size was coarsened and the tensile strength was increased. Decreased.
The appropriate recrystallization temperature range varies depending on the composition of the copper alloy plate, and is not limited to the temperature range of 380 to 430 ° C. applied to the inventive examples.

高周波誘導炉で電気銅を溶解し、溶湯表面を木炭被覆した後、表2の組成となるように合金元素を添加し、所望の合金組成に溶湯を調整した。その後、鋳込温度1200℃で鋳造を行い、得られたインゴットを850℃で3時間加熱後、板厚8mmまで熱間圧延し、表面に生じた酸化スケールを面削にて除去した。その後、冷間圧延、再結晶焼鈍、冷間圧延の順で加工を進め、最終的に0.64mmの圧延板に仕上げた。再結晶焼鈍はアンモニア分解ガス中で行い、酸素濃度を0.1%とし、表3に示す焼鈍温度で30分行った。仕上げ圧延の圧延速度は200mpmとし、粘度0.1cm/sの圧延油を用いた。 After electrolytic copper was melted in a high frequency induction furnace and the surface of the molten metal was coated with charcoal, an alloy element was added so as to have the composition shown in Table 2, and the molten metal was adjusted to a desired alloy composition. Thereafter, casting was performed at a casting temperature of 1200 ° C., and the obtained ingot was heated at 850 ° C. for 3 hours, and then hot-rolled to a plate thickness of 8 mm, and the oxide scale generated on the surface was removed by chamfering. Thereafter, the processing proceeded in the order of cold rolling, recrystallization annealing, and cold rolling, and finally finished into a 0.64 mm rolled plate. The recrystallization annealing was performed in ammonia decomposition gas, the oxygen concentration was 0.1%, and the annealing temperature shown in Table 3 was performed for 30 minutes. The rolling speed of finish rolling was 200 mpm, and rolling oil having a viscosity of 0.1 cm 2 / s was used.

得られた試料につき、実施例1と同様の評価を行い、さらに、以下のはんだ濡れ上がり性の評価を行った。
<はんだ濡れ上がり性>
プリント基盤のスルーホールに端子を実装した際の鉛フリーはんだのはんだ濡れ上がり性を、以下の試験で模擬した。
まず、実施例2で得られた各銅圧延板に1.2μmのSnめっきを施した後、板幅が0.64mm、長さ30mmの短冊状にプレスし、端面にプレス破面を生じさせた後、相対湿度85%、温度85℃の雰囲気に24h曝露させた(エージング処理)。次に、この短冊板を、250℃の鉛フリーはんだ(Sn−3%Ag−0.5%Cu)に所定深さに10秒間浸漬した後、引き上げた。試料を鉛フリーはんだに浸漬すると、はんだが試料と濡れることにより、浸漬界面から上にはんだが昇ってくる。従って、以下の式により、はんだ濡れ面積率(S)を計算することができる。
S(%)=(浸漬後のはんだ付着部の総面積)/(浸漬時のはんだ浸漬部の初期面積)×100
Sが100%を超える場合は、はんだの濡れ上がり現象が発生している事を示し、Sが110%以上となるとき、前述のはんだ濡れ上がり性が良好となる。従って、以下の基準ではんだ濡れ上がり性を評価した。
○:S≧110%
×:S<110%
About the obtained sample, evaluation similar to Example 1 was performed, and also the following solder wettability evaluation was performed.
<Solder wetting>
The following test simulated the solder wetting of lead-free solder when terminals were mounted in through holes on the printed circuit board.
First, each copper rolled plate obtained in Example 2 was subjected to Sn plating of 1.2 μm, and then pressed into a strip shape having a plate width of 0.64 mm and a length of 30 mm, and a press fracture surface was generated on the end surface. After that, it was exposed to an atmosphere having a relative humidity of 85% and a temperature of 85 ° C. for 24 hours (aging treatment). Next, the strip plate was dipped in a lead-free solder (Sn-3% Ag-0.5% Cu) at 250 ° C. for 10 seconds and then pulled up. When the sample is immersed in lead-free solder, the solder rises from the immersion interface as the solder gets wet with the sample. Therefore, the solder wet area ratio (S) can be calculated by the following formula.
S (%) = (total area of the solder adhesion part after immersion) / (initial area of the solder immersion part during immersion) × 100
When S exceeds 100%, it indicates that a solder wetting phenomenon has occurred. When S is 110% or more, the above-mentioned solder wetting property is improved. Therefore, the solder wettability was evaluated according to the following criteria.
○: S ≧ 110%
X: S <110%

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 2010242121
Figure 2010242121

Figure 2010242121
Figure 2010242121

表3に示す通り、発明例10〜25の場合、プレス加工性に優れ、引張強さが高く、さらに半田濡れ上がり性も良好であった。
一方、Zn濃度が2質量%未満である比較例5の場合、引張強さが低下した。Zn濃度が12質量%を超えた比較例6の場合、プレス加工性、強度ともに良好であったが、半田濡れ上がり性が劣化した。Sn濃度が0.1質量%未満である比較例7の場合、圧延時の加工硬化が不十分となり、引張強さが低下した。Sn濃度が1.0質量%を超えた比較例8の場合、曲げ加工性が低下した。
As shown in Table 3, in Invention Examples 10 to 25, the press workability was excellent, the tensile strength was high, and the solder wettability was also good.
On the other hand, in the case of the comparative example 5 whose Zn density | concentration is less than 2 mass%, tensile strength fell. In the case of Comparative Example 6 in which the Zn concentration exceeded 12% by mass, both the press workability and the strength were good, but the solder wettability deteriorated. In the case of Comparative Example 7 in which the Sn concentration was less than 0.1% by mass, the work hardening during rolling was insufficient, and the tensile strength was reduced. In the case of Comparative Example 8 in which the Sn concentration exceeded 1.0 mass%, the bending workability was lowered.

Claims (4)

2〜12質量%のZn及び0.1〜1.0質量%のSnを含有し、残部がCu及び不可避不純物からなり、X線回折法により板表面から5μmの深さまでの結晶方位を測定したとき、{111}正極点図上のα=0±10°(但し、α:シュルツ法に規定する回折用ゴニオメータの回転軸に垂直な軸)の領域に相当するせん断集合組織の極密度が2〜8であるCu−Zn−Sn系合金板。 It contains 2 to 12% by mass of Zn and 0.1 to 1.0% by mass of Sn, the balance is made of Cu and inevitable impurities, and the crystal orientation from the plate surface to a depth of 5 μm is measured by X-ray diffraction method. Then, the polar density of the shear texture corresponding to the region of α = 0 ± 10 ° (where α is an axis perpendicular to the rotational axis of the diffraction goniometer defined in the Schulz method) on the {111} positive electrode diagram is 2 Cu-Zn-Sn alloy plate which is ~ 8. 酸素濃度1質量%以上の表面酸化層の厚みが0.5μm以下である請求項1に記載のCu−Zn−Sn系合金板。 The Cu-Zn-Sn alloy plate according to claim 1, wherein the thickness of the surface oxide layer having an oxygen concentration of 1% by mass or more is 0.5 µm or less. さらにNi、Mg、Fe、P、Mn及びCrの群から選ばれる少なくとも一種以上を合計で0.005〜0.5質量%含有する請求項1又は2に記載のCu−Zn−Sn系合金板。 The Cu-Zn-Sn alloy plate according to claim 1 or 2, further comprising 0.005 to 0.5 mass% in total of at least one selected from the group consisting of Ni, Mg, Fe, P, Mn and Cr. . 請求項1〜3のいずれかに記載のCu−Zn−Sn合金板の表面に0.3〜2μm厚のSnめっきを施したCu−Zn−Sn系合金Snめっき条。 A Cu-Zn-Sn-based alloy Sn-plated strip obtained by performing Sn plating with a thickness of 0.3 to 2 µm on the surface of the Cu-Zn-Sn alloy plate according to any one of claims 1 to 3.
JP2009089343A 2009-04-01 2009-04-01 Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip Active JP5339995B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009089343A JP5339995B2 (en) 2009-04-01 2009-04-01 Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip
PCT/JP2010/055194 WO2010113749A1 (en) 2009-04-01 2010-03-25 Cu-Zn-Sn ALLOY PLATE AND TIN-PLATED Cu-Zn-Sn ALLOY STRIP
KR1020117019424A KR101338792B1 (en) 2009-04-01 2010-03-25 Cu-Zn-Sn ALLOY PLATE AND TIN-PLATED Cu-Zn-Sn ALLOY STRIP
CN2010800077130A CN102317483A (en) 2009-04-01 2010-03-25 Cu-Zn-Sn alloy plate and tin-plated Cu-Zn-Sn alloy strip
TW099110084A TWI424072B (en) 2009-04-01 2010-04-01 Copper - zinc - tin alloy plate and copper - zinc - tin alloy tin - plated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009089343A JP5339995B2 (en) 2009-04-01 2009-04-01 Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip

Publications (2)

Publication Number Publication Date
JP2010242121A true JP2010242121A (en) 2010-10-28
JP5339995B2 JP5339995B2 (en) 2013-11-13

Family

ID=42828042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089343A Active JP5339995B2 (en) 2009-04-01 2009-04-01 Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip

Country Status (5)

Country Link
JP (1) JP5339995B2 (en)
KR (1) KR101338792B1 (en)
CN (1) CN102317483A (en)
TW (1) TWI424072B (en)
WO (1) WO2010113749A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128150A1 (en) * 2011-03-18 2012-09-27 Jx日鉱日石金属株式会社 Copper alloy bar used for battery tab material for charging
JP2013213236A (en) * 2012-03-30 2013-10-17 Jx Nippon Mining & Metals Corp Cu-Zn-Sn-Ni-P-BASED ALLOY
US11473172B2 (en) 2017-03-24 2022-10-18 Ihi Corporation Wear-resistant copper-zinc alloy and mechanical device using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130406B1 (en) * 2012-03-29 2013-01-30 Jx日鉱日石金属株式会社 Cu-Zn-Sn copper alloy strip
CN109943792B (en) * 2019-04-10 2021-02-02 湖南科技大学 Processing method of reinforced magnesium alloy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296901A (en) * 1986-06-17 1987-12-24 Nippon Mining Co Ltd Production of metallic stock for surface treatment
JPH07258777A (en) * 1994-03-18 1995-10-09 Dowa Mining Co Ltd Copper-based alloy for connector and its production
JP2001244400A (en) * 2000-02-29 2001-09-07 Nippon Mining & Metals Co Ltd Lead frame and copper alloy for lead frame
JP2007092135A (en) * 2005-09-29 2007-04-12 Nikko Kinzoku Kk Cu-Ni-Si-BASED ALLOY HAVING EXCELLENT STRENGTH AND BENDING WORKABILITY
JP2007262523A (en) * 2006-03-29 2007-10-11 Nikko Kinzoku Kk Cu-Zn-Sn BASED ALLOY TIN-PLATED STRIP
JP2007270214A (en) * 2006-03-30 2007-10-18 Nikko Kinzoku Kk Cu-Zn-Sn-BASED ALLOY THREAD EXCELLENT IN BENDING WORKABILITY

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4444245B2 (en) * 2005-07-15 2010-03-31 日鉱金属株式会社 Cu-Zn-Sn alloy for electrical and electronic equipment
KR100792653B1 (en) * 2005-07-15 2008-01-09 닛코킨조쿠 가부시키가이샤 Copper alloy for electronic and electric machinery and tools, and manufacturing method thereof
KR100902201B1 (en) * 2005-09-30 2009-06-11 후루카와 덴키 고교 가부시키가이샤 Copper alloy for electrical connecting device
JP2007314859A (en) * 2006-05-29 2007-12-06 Nikko Kinzoku Kk Cu-Zn ALLOY STRIP WITH EXCELLENT RESISTANCE TO THERMAL PEELING OF Sn PLATING, AND Sn-PLATED STRIP THEREOF

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296901A (en) * 1986-06-17 1987-12-24 Nippon Mining Co Ltd Production of metallic stock for surface treatment
JPH07258777A (en) * 1994-03-18 1995-10-09 Dowa Mining Co Ltd Copper-based alloy for connector and its production
JP2001244400A (en) * 2000-02-29 2001-09-07 Nippon Mining & Metals Co Ltd Lead frame and copper alloy for lead frame
JP2007092135A (en) * 2005-09-29 2007-04-12 Nikko Kinzoku Kk Cu-Ni-Si-BASED ALLOY HAVING EXCELLENT STRENGTH AND BENDING WORKABILITY
JP2007262523A (en) * 2006-03-29 2007-10-11 Nikko Kinzoku Kk Cu-Zn-Sn BASED ALLOY TIN-PLATED STRIP
JP2007270214A (en) * 2006-03-30 2007-10-18 Nikko Kinzoku Kk Cu-Zn-Sn-BASED ALLOY THREAD EXCELLENT IN BENDING WORKABILITY

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128150A1 (en) * 2011-03-18 2012-09-27 Jx日鉱日石金属株式会社 Copper alloy bar used for battery tab material for charging
JP2013213236A (en) * 2012-03-30 2013-10-17 Jx Nippon Mining & Metals Corp Cu-Zn-Sn-Ni-P-BASED ALLOY
US11473172B2 (en) 2017-03-24 2022-10-18 Ihi Corporation Wear-resistant copper-zinc alloy and mechanical device using same

Also Published As

Publication number Publication date
JP5339995B2 (en) 2013-11-13
WO2010113749A1 (en) 2010-10-07
TW201042061A (en) 2010-12-01
TWI424072B (en) 2014-01-21
KR101338792B1 (en) 2013-12-06
CN102317483A (en) 2012-01-11
KR20110106460A (en) 2011-09-28

Similar Documents

Publication Publication Date Title
TWI330202B (en) Copper alloy sheet material for electric and electronic parts
JP4601085B1 (en) Cu-Co-Si-based copper alloy rolled plate and electrical component using the same
KR101613914B1 (en) Cu-Mg-P-BASED COPPER ALLOY SHEET HAVING EXCELLENT FATIGUE RESISTANCE CHARACTERISTIC AND METHOD OF PRODUCING THE SAME
JP4444245B2 (en) Cu-Zn-Sn alloy for electrical and electronic equipment
JP6696769B2 (en) Copper alloy plate and connector
JP5189708B1 (en) Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same
JP2006083465A (en) Copper alloy sheet for electric and electronic parts having bendability
JP5144814B2 (en) Copper alloy material for electrical and electronic parts
JP5339995B2 (en) Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip
JP2010138461A (en) Ni-Si-Co BASE COPPER ALLOY, AND METHOD FOR PRODUCING THE SAME
WO2015099098A1 (en) Copper alloy sheet material, connector, and production method for copper alloy sheet material
JP4781145B2 (en) Terminal, connector or relay using Cu-Zn-Sn alloy and Cu-Zn-Sn alloy strip
JP2007254803A (en) Titanium-copper
JP2010222618A (en) Cu-Ni-Si BASED COPPER ALLOY ROLLED SHEET AND ELECTRIC PART USING THE SAME
JP4538424B2 (en) Cu-Zn-Sn alloy tin-plated strip
JP2005113180A (en) Copper alloy for electronic equipment, and its production method
JP5827530B2 (en) Cu-Ni-Si based copper alloy sheet with excellent spring limit and stress relaxation resistance and good shear workability
JP4987155B1 (en) Cu-Ni-Si alloy and method for producing the same
JP5986822B2 (en) Cu-Ni-Si-based copper alloy Sn plated plate and method for producing the same
JP5988745B2 (en) Cu-Ni-Si based copper alloy plate with Sn plating and method for producing the same
KR102345805B1 (en) Cu-Ni-Si-BASED ALLOY STRIP EXCELLENT IN STRENGTH AND BENDING WORKABILITY IN ROLLING PARALLEL DIRECTION AND ROLLING ORTHOGONAL DIRECTION
KR20210117252A (en) Copper alloy plate and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130806

R150 Certificate of patent or registration of utility model

Ref document number: 5339995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250