JP2001217195A - 基板処理装置 - Google Patents

基板処理装置

Info

Publication number
JP2001217195A
JP2001217195A JP2000027935A JP2000027935A JP2001217195A JP 2001217195 A JP2001217195 A JP 2001217195A JP 2000027935 A JP2000027935 A JP 2000027935A JP 2000027935 A JP2000027935 A JP 2000027935A JP 2001217195 A JP2001217195 A JP 2001217195A
Authority
JP
Japan
Prior art keywords
susceptor
pressure
substrate
peripheral
central
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000027935A
Other languages
English (en)
Inventor
Kazumasa Makiguchi
一誠 巻口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2000027935A priority Critical patent/JP2001217195A/ja
Publication of JP2001217195A publication Critical patent/JP2001217195A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

(57)【要約】 【課題】基板処理装置に於いて、簡単な構造で而も温度
均一性が容易に得られるサセプタを提供する。 【解決手段】被処理基板16を載置するサセプタ20
と、該サセプタが載設され該サセプタを加熱するパネル
ヒータ6とを具備し、減圧状態でプラズマを生成して基
板処理する基板処理装置に於いて、前記サセプタの厚み
方向の熱伝達率を周辺部については大きく、中心部につ
いては小さくした。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は半導体素子製造に於
いて、被処理基板であるシリコンウェーハに薄膜を生成
し、或は薄膜をエッチングする基板処理装置に関するも
のである。
【0002】
【従来の技術】図7、図8に於いて、従来の基板処理装
置、特に枚葉式の基板処理装置について説明する。
【0003】気密な真空チャンバ1の天井部にはカソー
ド電極(上部電極)2が設けられ、該カソード電極2に
対向し、前記真空チャンバ1の底部にはアノード電極
(下部電極)4が設けられ、前記カソード電極2と真空
チャンバ1とは絶縁体3により絶縁され、前記アノード
電極4と真空チャンバ1とは絶縁体5により絶縁されて
いる。
【0004】前記アノード電極4は被処理基板16を受
載するサセプタを兼ねており、前記アノード電極4はア
ルミニウム等の金属から成るパネルヒータ6上に密着し
て設けられている。
【0005】該パネルヒータ6内には棒状の発熱体がリ
ング状に形成された外環発熱体7及び内環発熱体9が同
心に埋設されており、前記外環発熱体7は電源13に接
続され、前記内環発熱体9は電源14に接続され、前記
電源13、電源14はそれぞれ制御部15に接続されて
いる。
【0006】前記外環発熱体7の発熱状態を検出する
為、該外環発熱体7の近傍に熱電対8を埋設し、同様に
前記内環発熱体9の近傍に熱電対10を埋設する。前記
熱電対8の温度に起因する検出電圧は電圧計11により
検出され、又前記熱電対10の検出電圧は電圧計12に
より検出され、前記電圧計11の検出結果、前記電圧計
12の検出結果はそれぞれ前記制御部15に入力され
る。
【0007】前記被処理基板16が処理される場合は、
図示しない搬送機により前記真空チャンバ1内に前記被
処理基板16が搬入され、前記アノード電極4即ちサセ
プタ4に乗置され、前記アノード電極4により均一に加
熱される。
【0008】前記真空チャンバ1内に反応ガスが供給さ
れつつ、前記カソード電極2とサセプタ4間に高周波電
力が印加され、該カソード電極2、サセプタ4間にプラ
ズマが発生され、高温、減圧下で活性化した原子によ
り、前記被処理基板16に薄膜が形成され、或は形成さ
れた薄膜にエッチングが成される。
【0009】薄膜の生成、或はエッチングに於いて、被
処理基板の温度の均一性は基板処理性能に大きな影響を
及す。従って、前記サセプタ4の表面の均熱性は極めて
重要である。
【0010】一般的に、円板を加熱した場合、周辺部か
らの熱の拡散量が大きい。その為サセプタに於いても、
外周部は中央部に比べて温度が低くなる傾向がある。従
って、サセプタ4の表面温度を均一とするには、周辺部
への熱の供給を多くする必要がある。
【0011】従来、サセプタ4表面の均熱性を確保する
為、周辺部を加熱する様に前記外環発熱体7を前記サセ
プタ4の周辺部に埋設し、又中央部を加熱する様に内環
発熱体9を前記サセプタ4の中央部に埋設し、前記外環
発熱体7及び内環発熱体9それぞれを独立して温度制御
可能としている。
【0012】前記外環発熱体7の発熱状態は前記電圧計
11により前記制御部15にフィードバックされ、又前
記内環発熱体9の発熱状態は前記電圧計12により、前
記制御部15にフィードバックされ、前記パネルヒータ
6の表面が所定温度で且つ均一となる様、前記電源13
から前記外環発熱体7への供給電力及び前記電源14か
ら前記内環発熱体9への供給電力を前記制御部15が制
御している。
【0013】
【発明が解決しようとする課題】従来のサセプタ4は高
温での強度を確保する為、50mm程度の大きな厚みを必
要としている。この為、半径方向の熱移動量が大きくな
り、前記外環発熱体7と内環発熱体9の発熱量を制御し
たとしても、ゾーン温度制御に反映されない状態となっ
ている。この為、前記サセプタ4の上面での温度の均一
性を得ることが、困難となっていた。
【0014】更に、前記サセプタ4に2つの発熱体を埋
設し、個々に温度制御する等構造が複雑になり、2ゾー
ン温度制御方式のサセプタ4を製作することは高価であ
り、又改良、再制作が困難であるという問題があった。
【0015】本発明は斯かる実情に鑑み、簡単な構造で
而も温度均一性が容易に得られるサセプタを提供するも
のである。
【0016】
【課題を解決するための手段】本発明は、被処理基板を
載置するサセプタと、該サセプタが載設され該サセプタ
を加熱するパネルヒータとを具備し、減圧状態でプラズ
マを生成して基板処理する基板処理装置に於いて、前記
サセプタの厚み方向の熱伝達率を周辺部については大き
く、中心部については小さくした基板処理装置に係り、
又サセプタ内の中心部に中央部空隙を形成し、該中央部
空隙と同心に周辺部空隙を形成し、前記中央部空隙、周
辺部空隙にガスを封入すると共に周辺部空隙に封入する
ガスの圧力を中央部空隙に封入するガスの圧力より高く
した基板処理装置に係るものである。
【0017】
【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態を説明する。
【0018】図1〜図3は第1の実施の形態を示してお
り、図中、図7、図8中で示したものと同等のものには
同符号を付してある。
【0019】気密な真空チャンバ1の天井部にはカソー
ド電極(上部電極)2が設けられ、該カソード電極2に
対向し、前記真空チャンバ1の底部にはアノード電極
(下部電極)即ちサセプタ20が設けられ、前記カソー
ド電極2と真空チャンバ1とは絶縁体3により絶縁さ
れ、前記サセプタ20と真空チャンバ1とは絶縁体5に
より絶縁されている。前記カソード電極2と前記サセプ
タ20間には高周波電源により高周波電力が印加される
様になっている。
【0020】アルミナ(Al2 O3 )、窒化アルミ(A
lN)、SiC若しくはそれぞれの複合物等から成る前
記サセプタ20はパネルヒータ6上に密着して設けら
れ、該パネルヒータ6には図3で示される様に、一本の
外環発熱体7が埋設され、該外環発熱体7は電源13に
接続され、該電源13は制御部15によって電力供給が
制御されている。又、前記外環発熱体7による加熱状態
は、前記パネルヒータ6に埋設された熱電対8、電圧計
11により検出され、検出結果は該電圧計11から前記
制御部15に入力される様になっている。
【0021】前記サセプタ20について説明する。
【0022】該サセプタ20は図2に示される様に、内
部中央部に円盤状の中央部空隙22が形成され、該中央
部空隙22と同心にドーナツ盤状の周辺部空隙21が形
成されている。
【0023】前記周辺部空隙21に圧力制御ライン23
を接続し、該圧力制御ライン23を圧力源29に接続す
ると共に前記圧力制御ライン23に圧力制御弁25を設
け、該圧力制御弁25より周辺部空隙21側の位置に圧
力検出器27を設ける。該圧力検出器27の検出結果は
前記制御部15に入力され、該制御部15は前記圧力検
出器27の検出結果を基に圧力制御器31を介し前記圧
力制御弁25を制御する。
【0024】前記中央部空隙22に圧力制御ライン24
を接続し、該圧力制御ライン24を前記圧力源29に接
続すると共に前記圧力制御ライン24に圧力制御弁26
を設け、該圧力制御弁26より前記中央部空隙22側の
位置に圧力検出器28を設ける。該圧力検出器28の検
出結果は前記制御部15に入力され、該制御部15は前
記圧力検出器28の検出結果を基に圧力制御器32を介
し前記圧力制御弁26を制御する。
【0025】前記周辺部空隙21、中央部空隙22にガ
ス(好ましくは熱伝導率の高いヘリウムガス)を封入
し、前記周辺部空隙21の圧力を前記中央部空隙22の
圧力よりも高く設定する。該周辺部空隙21の設定圧
力、中央部空隙22の設定圧力は前記制御部15で設定
管理され、該制御部15が前記圧力制御弁25、圧力制
御弁26を制御することで得られる。
【0026】前記被処理基板16を加熱した場合、パネ
ルヒータ6からの熱は前記サセプタ20の下面、前記周
辺部空隙21、中央部空隙22に封入されたガスを介し
て前記サセプタ20の上面に伝達される。
【0027】気体の熱伝導率κは気体の分子密度、即ち
気圧に比例することが分かっており、封入ガスの圧力高
低により、前記サセプタ20の下面から上面への熱伝達
量の大小が決定される。
【0028】上記した様に、該サセプタ20の放出熱量
は周辺部の方が中央部より大きい。従って、前記封入ガ
スの圧力を前記周辺部空隙21に於いて高く、前記中央
部空隙22に於いて低く設定することで、周辺部の熱伝
達量を大きくすることができ、周辺部の放出熱量を補っ
て前記サセプタ20上面での均熱性を得ることができ
る。
【0029】又該サセプタ20は前記パネルヒータ6と
比べ厚みが少なく、例えば該パネルヒータ6の厚みが5
0mmであるとすると、前記サセプタ20の厚みは10mm
程度と薄くてよく、半径方向の熱移動量は小さく、前記
サセプタ20のゾーン温度制御は効果的に行える。又、
前記周辺部空隙21、中央部空隙22を形成することで
前記被処理基板16への熱伝達に寄与する前記サセプタ
20の上面での半径方向の熱移動量は更に小さくなり、
該サセプタ20の厚み方向の熱移動が支配的になり、該
サセプタ20のゾーン温度制御は一層効果的となる。
尚、該サセプタ20のゾーン温度制御を効果的にする
為、前記外環発熱体7の内側に内環発熱体9を埋設し、
前記外環発熱体7と内環発熱体9との発熱を独立して制
御する様にしてもよい。
【0030】封入ガスの圧力制御は、予め実験等により
中央部、周辺部での圧力と熱伝達率、温度分布等のデー
タを取っておき、前記制御部15により前記圧力制御弁
25、圧力制御弁26を所定目標値に初期設定する。加
熱状態となった場合は、前記熱電対8からの検出結果を
基に前記サセプタ20の中央部、周辺部が所定温度とな
る様に、前記圧力制御弁25、圧力制御弁26を制御
し、前記周辺部空隙21、中央部空隙22の封入圧力を
制御する。
【0031】尚、前記サセプタ20と、パネルヒータ6
との境界に前記周辺部空隙21、中央部空隙22を形成
し、ガスを封入してもよい。又、前記周辺部空隙21、
中央部空隙22のいずれか一方のみを設けてもよい。
【0032】図4により、第2の実施の形態について説
明する。
【0033】該第2の実施の形態では、上記した第1の
実施の形態の圧力制御を簡略化したものであり、封入ガ
スの圧力に関し、正確な熱伝達、サセプタ20表面の温
度分布についてのデータが得られれば、所要の温度分布
にする為には一度所定圧にガスを封入すればよい。
【0034】圧力制御ライン23に圧力設定弁38、ス
トップ弁36を設け、圧力設定弁38とストップ弁36
との間に排気ライン35を連通し、該排気ライン35に
ストップ弁37を設ける。前記圧力制御ライン24に圧
力設定弁42、ストップ弁40を設け、圧力設定弁42
とストップ弁40との間に排気ライン39を連通し、該
排気ライン39にストップ弁41を設ける。
【0035】而して、前記圧力設定弁38の設定圧は前
記圧力設定弁42の設定圧より高く、各設定圧は実験等
で得られたデータに基づく。
【0036】前記ストップ弁37を閉じ、前記ストップ
弁36を開く。前記圧力設定弁38は供給圧を検知し、
該圧力設定弁38が開かれ、前記周辺部空隙21にガス
が供給される。前記周辺部空隙21が所定圧力となった
状態で、前記ストップ弁36を閉じ、前記ストップ弁3
7を開く。前記圧力設定弁38に対する供給圧がなくな
り、前記圧力設定弁38が自閉し、前記周辺部空隙21
にガスを所定圧で封入する。
【0037】前記中央部空隙22についても同様に前記
ストップ弁40と、前記ストップ弁41の操作により、
ガスを所定圧に封入する。
【0038】図5により、第3の実施の形態について説
明する。
【0039】本発明はサセプタ20に於ける熱移動につ
いて、厚み方向の熱移動を支配的にし、半径方向の熱移
動の影響を少なくし、半径方向に関するゾーン温度制御
を可能にするものである。前記サセプタ20は前記パネ
ルヒータ6に対して厚みが小さいので、半径方向の熱移
動の影響を少なくすることができる。
【0040】図5に示す第3の実施の形態ではサセプタ
20の厚み方向に関し、周辺から中心部に向って熱抵抗
を大きくしたものである。即ち、円環状の空隙44a,
44b,44c,44dを同心多重に形成し、該空隙4
4a,44b,44c,44dの半径方向の幅を中心に
向かって大きくし、更に/或は半径方向のピッチを中心
に向かって大きくし、下面から上面に向かう伝熱面積を
中心に向かうほど小さくし、熱抵抗を増大させたもので
ある。
【0041】而して、周辺部に至る方が熱移動量が大き
くなり、前記サセプタ20上面の均熱性が向上する。
尚、前記パネルヒータ6には1つの外環発熱体7を埋設
し、或は該外環発熱体7と内環発熱体9を埋設し、外環
発熱体7、或は外環発熱体7、内環発熱体9により前記
サセプタ20を加熱する。
【0042】第3の実施の形態の場合、前記空隙44
a,44b,44c,44dには熱伝達性向上の為のガ
スを封入する必要はなく、寧ろ熱伝達性の悪いものを封
入するのが好ましい。勿論、真空としてもよい。
【0043】図6は第3の実施の形態の応用であり、サ
セプタ20の下面に円環状の溝45a,45b,45
c,45dを同心多重に形成し、該溝45a,45b,
45c,45dの半径方向の幅を中心に向かって大きく
し、更に/或は半径方向のピッチを中心に向かって大き
くし、前記サセプタ20と前記パネルヒータ6間の接触
面積を中心に向かうほど小さくし、中心に向かって熱抵
抗を増大させたものである。
【0044】
【発明の効果】以上述べた如く本発明によれば、前記サ
セプタの厚み方向の熱伝達率を周辺部については大き
く、中心部については小さくしたので、又サセプタの厚
み方向と半径方向との熱伝達に於いて、厚み方向の熱伝
達を支配的とし、サセプタ下面から上面に至る熱移動量
を周辺で大きく、中心部で小さくなる様にしたので、サ
セプタ周辺部の放熱量が補われ、サセプタ上面の均熱性
が向上し、更に、サセプタ内の中心部に中央部空隙を形
成し、該中央部空隙と同心に周辺部空隙を形成し、前記
中央部空隙、周辺部空隙にガスを封入すると共に周辺部
空隙に封入するガスの圧力を中央部空隙に封入するガス
の圧力より高くしたので、機器構成が簡略で製造コスト
の低減が図れるという優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す概略構成図で
ある。
【図2】該実施の形態でのサセプタの断面斜視図であ
る。
【図3】該実施の形態でのパネルヒータの断面斜視図で
ある。
【図4】本発明の第2の実施の形態を示す概略構成図で
ある。
【図5】本発明の第3の実施の形態を示す要部断面図で
ある。
【図6】本発明の第3の実施の形態の応用例を示す要部
断面図である。
【図7】従来例を示す概略構成図である。
【図8】該従来例に於けるパネルヒータの断面斜視図で
ある。
【符号の説明】
1 真空チャンバ 2 カソード電極 6 パネルヒータ 7 外環発熱体 8 熱電対 15 制御部 16 被処理基板 20 サセプタ 21 周辺部空隙 22 中央部空隙 25 圧力制御弁 26 圧力制御弁 31 圧力制御器 32 圧力制御器 44 空隙 45 溝

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 被処理基板を載置するサセプタと、該サ
    セプタが載設され該サセプタを加熱するパネルヒータと
    を具備し、減圧状態でプラズマを生成して基板処理する
    基板処理装置に於いて、前記サセプタの厚み方向の熱伝
    達率を周辺部については大きく、中心部については小さ
    くしたことを特徴とする基板処理装置。
  2. 【請求項2】 サセプタ内の中心部に中央部空隙を形成
    し、該中央部空隙と同心に周辺部空隙を形成し、前記中
    央部空隙、周辺部空隙にガスを封入すると共に周辺部空
    隙に封入するガスの圧力を中央部空隙に封入するガスの
    圧力より高くした請求項1の基板処理装置。
JP2000027935A 2000-02-04 2000-02-04 基板処理装置 Pending JP2001217195A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000027935A JP2001217195A (ja) 2000-02-04 2000-02-04 基板処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000027935A JP2001217195A (ja) 2000-02-04 2000-02-04 基板処理装置

Publications (1)

Publication Number Publication Date
JP2001217195A true JP2001217195A (ja) 2001-08-10

Family

ID=18553433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000027935A Pending JP2001217195A (ja) 2000-02-04 2000-02-04 基板処理装置

Country Status (1)

Country Link
JP (1) JP2001217195A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103972130A (zh) * 2013-02-01 2014-08-06 株式会社日立高新技术 等离子处理装置以及试料台
JP2019533309A (ja) * 2016-09-30 2019-11-14 モメンティブ パフォーマンス マテリアルズ インコーポレイテッドMomentive Performance Materials Inc. 熱接触が制御された加熱装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103972130A (zh) * 2013-02-01 2014-08-06 株式会社日立高新技术 等离子处理装置以及试料台
US10141165B2 (en) * 2013-02-01 2018-11-27 Hitachi High-Technologies Corporation Plasma processing apparatus and sample stage thereof
US20190057846A1 (en) * 2013-02-01 2019-02-21 Hitachi High-Technologies Corporation Plasma processing apparatus and sample stage thereof
US10796890B2 (en) 2013-02-01 2020-10-06 Hitachi High-Tech Corporation Plasma processing apparatus and sample stage thereof
JP2019533309A (ja) * 2016-09-30 2019-11-14 モメンティブ パフォーマンス マテリアルズ インコーポレイテッドMomentive Performance Materials Inc. 熱接触が制御された加熱装置

Similar Documents

Publication Publication Date Title
CN106469666B (zh) 基座及基质加工设备
JP2619862B2 (ja) プラズマ増強化学蒸着のためのプラズマ装置
US7846254B2 (en) Heat transfer assembly
US7544251B2 (en) Method and apparatus for controlling temperature of a substrate
KR101004222B1 (ko) 성막 장치
KR102305541B1 (ko) 최소의 크로스토크를 갖는 열적으로 격리된 구역들을 갖는 정전 척
EP1073096B1 (en) Semiconductor workpiece processing apparatus
KR100696028B1 (ko) 고온 다층 합금 히터 어셈블리 및 관련 방법
KR101135242B1 (ko) 정전기 척 조립체
JP2625109B2 (ja) プラズマ増強化学蒸着のためのプラズマ装置
US20150060013A1 (en) Tunable temperature controlled electrostatic chuck assembly
WO2000026960A1 (fr) Dispositif de traitement sous vide
JPH10144614A (ja) Cvdプラズマリアクタにおける面板サーマルチョーク
US5248370A (en) Apparatus for heating and cooling semiconductor wafers in semiconductor wafer processing equipment
JPH10149899A (ja) 円錐形ドームを有する誘電結合平行平板型プラズマリアクター
EP1680529A2 (en) Substrate heater assembly
US5443997A (en) Method for transferring heat to or from a semiconductor wafer using a portion of a process gas
JPH10223621A (ja) 真空処理装置
KR20020063189A (ko) 반도체 제조방법 및 제조장치
JP2022511063A (ja) 温度の影響を受けやすいプロセスのための改善された熱的結合を有する静電チャック
JPH09219369A (ja) 半導体装置の製造装置および製造方法
JP2625108B2 (ja) プラズマ増強化学蒸着のためのプラズマ装置
JP2001217195A (ja) 基板処理装置
US20220262643A1 (en) Methods, systems, and apparatus for processing substrates using one or more amorphous carbon hardmask layers
JP2000164588A (ja) 基板加熱方法及び装置