JP2001162676A - Polylactic acid molding and its molding method - Google Patents

Polylactic acid molding and its molding method

Info

Publication number
JP2001162676A
JP2001162676A JP34890999A JP34890999A JP2001162676A JP 2001162676 A JP2001162676 A JP 2001162676A JP 34890999 A JP34890999 A JP 34890999A JP 34890999 A JP34890999 A JP 34890999A JP 2001162676 A JP2001162676 A JP 2001162676A
Authority
JP
Japan
Prior art keywords
polylactic acid
based polymer
temperature
sheet
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34890999A
Other languages
Japanese (ja)
Other versions
JP3866465B2 (en
Inventor
Norio Yoshiga
法夫 吉賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP34890999A priority Critical patent/JP3866465B2/en
Publication of JP2001162676A publication Critical patent/JP2001162676A/en
Application granted granted Critical
Publication of JP3866465B2 publication Critical patent/JP3866465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a biodegradable molding excellent in heat resistance and impact resistance. SOLUTION: A polylactic acid molding is molded by a method in which a polylactic acid sheet having a degree of surface orientation (ΔP) of 3.0×10-3 to 30×10-3 is heated in advance to a temperature between the glass transition temperature (Tg) of the polymer and Tg+50 deg.C and then is molded and heat- treated at a temperature between the crystallization temperature (Tc) of the polymer -20 deg.C and the melting point (Tm) of the polymer -20 deg.C while being kept in contact with a heating mold and cooled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱性に優れた生
分解性容器や成形体およびその成形方法に関する。
[0001] The present invention relates to a biodegradable container and a molded article having excellent heat resistance and a method for molding the same.

【0002】[0002]

【従来の技術】各種商品等の展示包装用に用いられるブ
リスター加工品や納豆などの各種食品を入れる容器に
は、ディスプレイのため、中の商品等を透視できるよう
に透明性に優れている材料や、輸送時や保管時の環境に
より変形しない耐熱性に優れている材料が求められる。
そのため、ブリスター加工品用の材料としてはポリ塩化
ビニル系、ポリエチレンテレフタレート系、ポリスチレ
ン系、ポリプロピレン系、ポリカーボネート系などのシ
ートがその用途に応じて用いられてきた。ところが、こ
れらのシートは化学的に安定で、また生分解性がないた
め、自然環境下に放置した場合、ほとんど分解されるこ
となく残留、蓄積される。そのため、これらは自然環境
中に散乱して動植物の生活環境を汚染するだけでなく、
ゴミとして埋設処理してもほとんど分解されずに地中に
残り、ゴミ処理用地の能力をすぐに飽和させてしまうと
いう問題がある。そこで、かかる問題を生じない生分解
性の材料が要求され、多くの研究や開発が行われてい
る。その生分解性材料の一つとしてポリ乳酸が知られて
いる。特開平6−122148号には、L−乳酸系ポリ
マーの含有量が75%以上の透明なL−乳酸系ポリマー
シートを用いて真空吸引、圧空又は真空圧空によって透
明性および成形性に優れたL−乳酸系ポリマー成形物を
得る方法が開示されている。しかし、従来のポリ乳酸系
ポリマーからなる成形物はその強度、耐衝撃性能が不十
分であり、取扱いの際に穴があく等の問題があった。ま
た、耐湿熱性能が不十分であり、成形物の輸送、保管、
使用の際に高温高湿環境下におかれると、成形物が変形
したり、透明な成形物が白色化するという、いわゆる白
化が生じた。特開平9−25345号には、面配向度
(△P)が3.0×10−3〜30×10−3であり、
シートを昇温したときの結晶融解熱量(△Hm)と昇温
中の結晶化により発生する結晶化熱量(△Hc)との差
(△Hm−△Hc)が20J/g以上で、かつ{(△H
m−△Hc)/△Hm}が0.75以上である配向ポリ
乳酸系シートを熱成形して得られる、耐衝撃性、透明性
に優れた成形体が開示されているが、これらは耐熱性の
点で未だ満足のいくものではなかった。
2. Description of the Related Art Containers containing various foods such as blister products and natto, which are used for display packaging of various products, etc., are made of a material having excellent transparency so that the products inside can be seen through for display purposes. In addition, a material having excellent heat resistance that does not deform due to the environment during transportation or storage is required.
Therefore, as a material for a blister product, a sheet of polyvinyl chloride, polyethylene terephthalate, polystyrene, polypropylene, polycarbonate, or the like has been used according to the intended use. However, since these sheets are chemically stable and have no biodegradability, when left in a natural environment, they remain and accumulate without being substantially decomposed. Therefore, they not only scatter in the natural environment and pollute the living environment of animals and plants,
There is a problem that even if buried as garbage, it is hardly decomposed and remains in the ground, immediately saturating the capacity of the garbage disposal site. Therefore, a biodegradable material that does not cause such a problem is required, and much research and development has been performed. Polylactic acid is known as one of the biodegradable materials. Japanese Patent Application Laid-Open No. 6-122148 discloses that L which is excellent in transparency and moldability by vacuum suction, pressurized air or vacuum pressurized air using a transparent L-lactic acid-based polymer sheet having an L-lactic acid-based polymer content of 75% or more. -A method for obtaining a lactic acid-based polymer molded article is disclosed. However, a molded article made of a conventional polylactic acid-based polymer has insufficient strength and impact resistance, and has problems such as holes during handling. In addition, the moisture and heat resistance is insufficient, and the transportation, storage,
When placed in a high-temperature, high-humidity environment at the time of use, a so-called whitening occurs in which the molded product is deformed or the transparent molded product is whitened. JP-A-9-25345 discloses that the degree of plane orientation (ΔP) is 3.0 × 10 −3 to 30 × 10 −3 ,
The difference (ΔHm−ΔHc) between the heat of crystal fusion (ΔHm) when the sheet is heated and the heat of crystallization (ΔHc) generated by crystallization during the temperature rise is 20 J / g or more; (△ H
Molded articles having excellent impact resistance and transparency obtained by thermoforming an oriented polylactic acid-based sheet having m- {Hc) / {Hm} of 0.75 or more are disclosed. It was not yet satisfactory in terms of gender.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記問題点を
解決すべくなされたものであり、耐衝撃性および耐熱性
に優れた生分解性成形体、特にブリスターパック用容器
や食品等の容器を得ることを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above problems, and is a biodegradable molded article excellent in impact resistance and heat resistance, particularly a container for a blister pack and a container for foods. The purpose is to obtain.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記問題
点を解決すべく鋭意検討した結果、本発明を完成するに
至った。すなわち本発明のポリ乳酸系重合体の成形方法
の一態様は、面配向度(△P)が3.0×10−3〜3
0×10−3であるポリ乳酸系重合体のシートを、該ポ
リ乳酸系重合体のガラス転移温度(Tg)以上、(Tg
+50℃)以下の範囲の温度になるまで予め加熱した
後、加熱型と接触させたまま{該ポリ乳酸系重合体の結
晶化温度(Tc)−20℃}以上、{該ポリ乳酸系重合
体の融点(Tm)−20℃}以下の範囲の温度で成形及
び熱処理を行い、その後、冷却することを特徴とする。
本発明のポリ乳酸系重合体の成型方法の別の態様は、面
配向度(△P)が3.0×10−3〜30×10−3
あるポリ乳酸系重合体のシートを、該ポリ乳酸系重合体
のガラス転移温度(Tg)以上、(Tg+50℃)以下
の範囲の温度になるまで予め加熱した後、圧空により加
熱型に沿わせて成形し、得られた成形品を加熱型と接触
させたまま{該ポリ乳酸系重合体の結晶化温度(Tc)
−20℃}以上、{該ポリ乳酸系重合体の融点(Tm)
−20℃}以下の範囲の温度で熱処理を行い、その後加
熱型に略対応する形状を有する冷却型に嵌合させた後、
加熱型側から圧空を吹き込んで成形品を冷却型に移し沿
わせて、冷却型と接触させつつ冷却することを特徴とす
る。本発明のポリ乳酸系重合体の成形体は、耐衝撃性が
80kgf・mm以上であり、かつ、耐熱性は80℃で
20分間熱風乾燥器中で乾燥させたときの体積収縮率が
5%以下であることを特徴とする。本発明のポリ乳酸系
重合体の成型体は、上記成形方法を用いて製造されるこ
とを特徴とする。ここで、ポリ乳酸系重合体の成形体
は、ポリ乳酸系重合体の食品用容器として用いることが
できる。
Means for Solving the Problems The present inventors have made intensive studies to solve the above problems, and as a result, completed the present invention. That is, in one embodiment of the method for molding a polylactic acid-based polymer of the present invention, the degree of plane orientation (ΔP) is 3.0 × 10 −3 to 3 × 3.
A sheet of a polylactic acid-based polymer having a particle size of 0 × 10 −3 and a glass transition temperature (Tg) of the polylactic acid-based polymer equal to or higher than (Tg)
+ 50 ° C.) or less, and then kept in contact with a heating mold {the crystallization temperature (Tc) of the polylactic acid-based polymer −20 ° C.) or more, {the polylactic acid-based polymer The molding and the heat treatment are performed at a temperature in the range of not more than the melting point (Tm) of −20 ° C., and thereafter, cooling is performed.
In another embodiment of the method for molding a polylactic acid polymer of the present invention, a sheet of a polylactic acid polymer having a degree of plane orientation (ΔP) of 3.0 × 10 −3 to 30 × 10 −3 is used. After preheating the polylactic acid-based polymer to a temperature in the range of not less than the glass transition temperature (Tg) and not more than (Tg + 50 ° C.), it is molded along a heating mold by pressurized air, and the obtained molded article is heated. Crystallization temperature of the polylactic acid-based polymer (Tc)
−20 ° C. or higher, melting point (Tm) of the polylactic acid-based polymer
After performing heat treatment at a temperature in the range of −20 ° C. or less, and then fitting the cooling mold having a shape substantially corresponding to the heating mold,
It is characterized in that the molded article is transferred to the cooling mold by blowing compressed air from the heating mold side and cooled while contacting the cooling mold. The molded article of the polylactic acid-based polymer of the present invention has an impact resistance of 80 kgf · mm or more and a heat resistance of 5% in volume shrinkage when dried in a hot air drier at 80 ° C. for 20 minutes. It is characterized by the following. A molded article of the polylactic acid-based polymer of the present invention is produced by using the above-mentioned molding method. Here, the molded article of the polylactic acid-based polymer can be used as a food container of the polylactic acid-based polymer.

【0005】[0005]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明の成形方法は、ポリ乳酸系重合体のシート
を予熱して所定温度にし、次いで加熱型(例えば雌型)
に該シートを例えば圧空により接触させ、加熱成形およ
び熱処理を施し、その後、冷却して成形する。冷却の方
法については特に制限はないが、例えば、加熱成形およ
び加熱処理後、加熱型に該シートを介して対応する冷却
型(例えば雄型)を嵌合させた後、シートを冷却型に移
し沿わせて冷却成形することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. In the molding method of the present invention, the sheet of the polylactic acid-based polymer is preheated to a predetermined temperature, and then heated (for example, female).
The sheet is brought into contact with, for example, compressed air, subjected to heat molding and heat treatment, and then cooled and molded. The cooling method is not particularly limited. For example, after heat molding and heat treatment, a corresponding cooling mold (for example, a male mold) is fitted to the heating mold via the sheet, and then the sheet is transferred to the cooling mold. It can be cooled and molded along.

【0006】本発明に用いられるポリ乳酸系重合体は、
ポリ乳酸または乳酸と他のヒドロキシカルボン酸との共
重合体、もしくはこれらの重合体の混合物であり、本発
明の効果を阻害しない範囲で他の高分子材料を混入する
ことができる。また、成形加工性、シートや成形体の物
性を調整する目的で可塑剤、滑剤、無機フィラー、紫外
線吸収剤などの添加剤、改質剤等を添加することもでき
る。乳酸としてはL−乳酸、D−乳酸またはそれらの混
合物等が挙げられ、他のヒドロキシカルボン酸として
は、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキ
シ酪酸、3−ヒドロキシ吉草酸、4−ヒドロキシ吉草
酸、6−ヒドロキシカプロン酸などが代表的なものとし
て挙げられる。
The polylactic acid-based polymer used in the present invention is:
It is a polylactic acid or a copolymer of lactic acid and another hydroxycarboxylic acid, or a mixture of these polymers, and may be mixed with other polymer materials as long as the effects of the present invention are not impaired. In addition, additives such as plasticizers, lubricants, inorganic fillers, ultraviolet absorbers and the like, modifiers and the like can be added for the purpose of adjusting the moldability and the physical properties of sheets and molded articles. Lactic acid includes L-lactic acid, D-lactic acid or a mixture thereof, and other hydroxycarboxylic acids include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, and 4-hydroxyvaleric acid. Representative examples include folic acid and 6-hydroxycaproic acid.

【0007】これらの重合法としては、縮合重合法、開
環重合法など公知のいずれの方法を採用することも可能
であり、さらに、分子量を増大させる目的で少量の鎖延
長剤、例えば、ジイソシアネート化合物、エポキシ化合
物、酸無水物などの鎖延長剤を使用することができる。
ポリ乳酸系重合体の重量平均分子量(Mw)は、50,
000〜1,000,000の範囲が好ましい。重量平
均分子量が50,000以上であれば実用可能なレベル
の物性を発現することができ、重量平均分子量が1,0
00,000以下であれば熱成形時にシート強度を保持
できないなどの問題を生じることもなく、また、溶融粘
度が高くなりすぎ成形加工性に劣ることもない。
As these polymerization methods, any known methods such as a condensation polymerization method and a ring-opening polymerization method can be employed, and a small amount of a chain extender such as diisocyanate is used for the purpose of increasing the molecular weight. Chain extenders such as compounds, epoxy compounds and acid anhydrides can be used.
The weight average molecular weight (Mw) of the polylactic acid-based polymer is 50,
The range of 000 to 1,000,000 is preferred. When the weight average molecular weight is 50,000 or more, practically usable physical properties can be exhibited.
If it is not more than 000, no problems such as the sheet strength being unable to be maintained during thermoforming will not occur, and the melt viscosity will not be too high and the molding processability will not be inferior.

【0008】本発明に使用されるポリ乳酸系重合体のシ
ートは、ポリ乳酸系重合体を十分に乾燥して水分を除去
した後、押出法、カレンダー法、プレス法などの一般的
な溶融成形法によりシート状に成形し、次いで、急冷す
ることにより得られる。実用的には、シート状に溶融押
出成形された重合体を、回転するキャスティングドラム
(冷却ドラム)に接触させて急冷することが好ましい。
キャスティングドラムの温度は60℃以下が適当であ
る。キャスティングドラムの温度が60℃より高いとポ
リ乳酸系重合体のシートがキャスティングドラムに粘着
し、シートの巻き取りが困難になり、また結晶化が促進
されて球晶が発達し透明性が低下するとともに熱成形加
工も困難になる。従って、60℃以下のキャスティング
ドラムに接触させてシートを急冷することにより、実質
上非晶質のシートとすることが好ましい。
The polylactic acid-based polymer sheet used in the present invention is obtained by drying the polylactic acid-based polymer sufficiently to remove water, and then subjecting the sheet to general melt molding such as extrusion, calendering, and pressing. It is obtained by forming into a sheet by the method and then quenching. Practically, it is preferable that the polymer melt-extruded into a sheet is rapidly cooled by contact with a rotating casting drum (cooling drum).
The temperature of the casting drum is suitably 60 ° C. or less. If the temperature of the casting drum is higher than 60 ° C., the polylactic acid-based polymer sheet sticks to the casting drum, making it difficult to wind up the sheet, and promotes crystallization to develop spherulites and reduce transparency. At the same time, thermoforming becomes difficult. Accordingly, it is preferable that the sheet is rapidly cooled by being brought into contact with a casting drum at a temperature of 60 ° C. or lower, so that a substantially amorphous sheet is obtained.

【0009】本発明においては、ポリ乳酸系重合体が本
来的に有する脆性を大幅に改良して成形品の耐衝撃性を
向上させるために、ポリ乳酸系重合体のシートの面配向
度(△P)を3.0×10−3〜30×10−3に調整
する。面配向度(△P)は、シートの厚み方向に対する
面方向の配向度を表わし、通常直交3軸方向の屈折率
(α,β,γ)を測定して後述する所定の式に従って算
出される。面配向度(△P)を3.0×10−3以上と
することにより、耐衝撃性が顕著に改良されるととも
に、無配向シートが高温高湿雰囲気下にさらされた時に
生じる、主に球晶成長に起因する脆化や白化を防止する
ことができる。なお、面配向度(△P)の上限は実際上
30×10−3程度であり、これより面配向度(△P)
を高めようとすると、延伸が不安定ないし不可能にな
る。たとえ、延伸できたとしても、シートの熱成形が困
難となる。面配向度(△P)は結晶化度や結晶配向にも
依存するが、シート面内の分子配向に大きく依存する。
したがって△Pの調節は、シート面内、特にシートの流
れ方向および/またはそれと直交する方向の、1または
2方向に対し、分子配向を増大させることにより、無配
向シートでは1.0×10−3以下である面配向度(△
P)を、3.0×10−3以上に増大させることができ
る。本発明においては、面配向度(△P)を増大させる
ために、既知のあらゆる延伸法を採用することができ、
その他にも、電場や磁場を利用した分子配向法を採用す
ることもできる。通常はTダイ、Iダイ、丸ダイ等から
溶融押し出しを行ったシート状物または円筒状物を冷却
キャストロールや水、圧空等により急冷し非晶質に近い
状態で固化させた後、ロール法、テンター法、チューブ
ラー法等により一軸または二軸に延伸する方法が、工業
的に望ましく採用される。未延伸ポリ乳酸系重合体のシ
ートを延伸する条件は、延伸温度50〜100℃、延伸
倍率1.5倍〜5倍、延伸速度100%/分〜10,0
00%/分が一般的ではあるが、延伸条件の適正範囲は
重合体の組成や、未延伸シートの熱履歴によって異なっ
てくるので、面配向度(△P)の値を見ながら適宜決定
することができる。
In the present invention, in order to greatly improve the inherent brittleness of the polylactic acid-based polymer and improve the impact resistance of the molded article, the degree of plane orientation of the sheet of the polylactic acid-based polymer (△ P) is adjusted to 3.0 × 10 −3 to 30 × 10 −3 . The plane orientation degree (△ P) represents the degree of orientation in the plane direction with respect to the thickness direction of the sheet, and is usually calculated by measuring the refractive indices (α, β, γ) in orthogonal three-axis directions and according to a predetermined formula described later. . By setting the plane orientation degree (ΔP) to 3.0 × 10 −3 or more, the impact resistance is remarkably improved, and the non-oriented sheet is mainly generated when exposed to a high-temperature and high-humidity atmosphere. Embrittlement and whitening caused by spherulite growth can be prevented. Note that the upper limit of the plane orientation degree (実 際 P) is practically about 30 × 10 −3.
If the ratio is increased, stretching becomes unstable or impossible. Even if stretching is possible, thermoforming of the sheet becomes difficult. Although the degree of plane orientation (ΔP) also depends on the degree of crystallinity and crystal orientation, it largely depends on the molecular orientation in the sheet plane.
Therefore, adjustment of ΔP can be achieved by increasing the molecular orientation in the sheet plane, particularly in one or two directions, ie, in the direction of sheet flow and / or in the direction perpendicular thereto, to 1.0 × 10 for non-oriented sheets. The degree of plane orientation of 3 or less (△
P) can be increased to 3.0 × 10 −3 or more. In the present invention, any known stretching method can be adopted to increase the degree of plane orientation (ΔP).
In addition, a molecular orientation method using an electric field or a magnetic field can be employed. Normally, a sheet or cylindrical material that has been melt-extruded from a T-die, I-die, round die, etc., is quenched by a cooling cast roll, water, pressurized air, etc., and solidified in an amorphous state, and then rolled. A method of uniaxially or biaxially stretching by a tenter method, a tubular method, or the like is desirably employed industrially. The conditions for stretching the unstretched polylactic acid-based polymer sheet are as follows: a stretching temperature of 50 to 100 ° C., a stretching ratio of 1.5 to 5 times, and a stretching speed of 100% / min to 10,000.
Although it is generally 00% / min, the appropriate range of the stretching conditions varies depending on the composition of the polymer and the heat history of the unstretched sheet. Therefore, the appropriate range is appropriately determined while checking the value of the degree of plane orientation (ΔP). be able to.

【0010】本発明においては、以上のようにして作ら
れたポリ乳酸系重合体のシートを熱成形して、成形体を
得る。熱成形に適したシートの厚さは、特に限定される
ものではないが、用途上からは0.05mm〜2mmの
範囲内のものが好ましい。
In the present invention, the polylactic acid-based polymer sheet produced as described above is thermoformed to obtain a molded article. The thickness of the sheet suitable for thermoforming is not particularly limited, but is preferably in the range of 0.05 mm to 2 mm from the application.

【0011】本発明の成形体は、80kgf・mm以上
の高い耐衝撃性を有するが、100kgf・mm以上の
耐衝撃性を有することがさらに好ましい。また、本発明
の成形体は、高い耐熱性を有し、80℃で20分間熱風
乾燥器中で乾燥させた後の体積収縮率が5%以下であ
る。
The molded article of the present invention has high impact resistance of 80 kgf · mm or more, and more preferably 100 kgf · mm or more. The molded article of the present invention has high heat resistance, and has a volume shrinkage of 5% or less after drying in a hot air dryer at 80 ° C. for 20 minutes.

【0012】以下に本発明に使用する成形装置と成形方
法について図面を用いて説明する。図1は、本発明に用
いられる成形装置の一態様を模式的に示す縦断面図であ
る。本発明においては、ポリ乳酸系重合体のシート1
を、加熱装置2で予め所定温度まで加熱した後、加熱型
3の下方で圧空チャンバー4の上面に載置する。かかる
載置の方法としては、特に制限はなく、例えば、所定の
大きさのシートを予熱後、該シートを圧空チャンバー4
の上面の所定場所まで移動してもよいし、一枚の連続し
たシートを用いて、一枚のシートを連続的に加熱装置2
の間を通過させて予熱し、圧空チャンバー4の上に移
送、載置してもよい。なお、加熱装置2には適当な加熱
手段が設けられている。載置した後、加熱型3を下降せ
しめてシート1を圧空チャンバー4との間に固定し、次
いで圧空チャンバー4側の圧空孔5から圧空を吹き込ん
でシート1を加熱型3に接触するように沿わせて成形す
る。圧空孔5から吹き込まれる圧空をそのまま維持して
所定時間加熱型3と接触させ、熱処理を行う。加熱型3
には電気ヒーター6が接続されていて、所定温度が保持
できるようになっている。次いで、加熱型(雌型)3と
対応する形状の冷却型(雄型)7を圧空チャンバー4内
で軸8により上昇せしめて加熱型3と嵌合させ、しかる
後に今度は加熱型3側の圧空孔5’から圧空を吹き込む
とともに圧空チャンバー4側の圧空孔5から空気を排出
することにより熱処理後の成形品を冷却型7に強制的に
移し沿わせて接触せしめ冷却する。冷却型3は冷却液管
10から冷却型3内に水等が循環されて冷却温度を保持
することができるようになっている。このようにして成
形された成形体は、加熱型3を軸9により上昇させ、冷
却型7を圧空チャンバー4内で軸8により下降させた状
態、すなわち図1に示す状態に戻してから取り出され
る。図1においては、加熱型が雌型、冷却型が雄型の態
様を示したが、これらに限定されるものではない。な
お、本発明に用いられる成形装置については、特公平1
−27850号公報に詳しく開示されている。
A molding apparatus and a molding method used in the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view schematically showing one embodiment of a molding device used in the present invention. In the present invention, the polylactic acid polymer sheet 1
Is heated to a predetermined temperature in advance by the heating device 2 and then placed on the upper surface of the compressed air chamber 4 below the heating mold 3. There is no particular limitation on the method of placing the sheet. For example, after a sheet having a predetermined size is preheated, the sheet is placed in the compressed air chamber 4.
May be moved to a predetermined position on the upper surface of the sheet, or one sheet may be continuously heated using one continuous sheet.
, And may be preheated, transferred and placed on the compressed air chamber 4. The heating device 2 is provided with a suitable heating means. After the mounting, the heating mold 3 is lowered to fix the sheet 1 between the heating mold 3 and the compressed air chamber 4, and then the sheet 1 is brought into contact with the heating mold 3 by blowing compressed air from the compressed air holes 5 on the compressed air chamber 4 side. Form along. The compressed air blown from the compressed air holes 5 is maintained as it is, and is brought into contact with the heating mold 3 for a predetermined time to perform heat treatment. Heating type 3
Is connected to an electric heater 6 so that a predetermined temperature can be maintained. Next, the cooling mold (male mold) 7 having a shape corresponding to the heating mold (female mold) 3 is raised by the shaft 8 in the pressurized air chamber 4 to be fitted with the heating mold 3. By blowing compressed air from the compressed air holes 5 ′ and discharging air from the compressed air holes 5 on the compressed air chamber 4 side, the heat-treated molded product is forcibly transferred to the cooling mold 7 and brought into contact with the cooling mold 7 to be cooled. In the cooling mold 3, water or the like is circulated from the cooling liquid pipe 10 into the cooling mold 3 so that the cooling temperature can be maintained. The molded body thus formed is taken out after returning the heating mold 3 to the state shown in FIG. 1 by raising the heating mold 3 by the shaft 9 and lowering the cooling mold 7 by the shaft 8 in the compressed air chamber 4. . FIG. 1 shows an embodiment in which the heating type is a female type and the cooling type is a male type, but the present invention is not limited to these. The molding apparatus used in the present invention is described in
-27850 discloses this in detail.

【0013】本発明においては、ポリ乳酸系重合体のシ
ートは(Tg)〜(Tg+50℃)の範囲の温度となる
ように、予め加熱されていることが必要である。ここで
Tgとは、該ポリ乳酸系重合体のガラス転移温度を表
す。シートの予熱温度がガラス転移温度(Tg)より低
いと軟化不充分であり、一方、(Tg+50℃)を超え
るとシートの配向が崩れ、耐衝撃性、透明性に劣ること
となる。また、シートの成形および熱処理は、(Tc−
20℃)〜(Tm−20℃)の範囲の温度で行うことが
必要である。ここで、Tcとは、ポリ乳酸系重合体の結
晶化温度を表し、Tmとはポリ乳酸系重合体の融点を表
す。加熱型3は、電気ヒーター9を用いて、(Tc−2
0℃)〜(Tm−20℃)の範囲の温度になるように予
め加熱しておくことが必要である。(Tc−20℃)よ
り低いと、シートの結晶化が短時間では充分に進まなく
て所望の耐熱性が得られず、(Tm−20)より高い
と、配向が崩れるため耐衝撃性に劣ることとなる。本発
明のように所定温度まで加熱された加熱型に沿わせて成
形することにより、シートの温度が低下してシートの張
力が大きくなることを防ぐことができるので、成形に要
する圧空圧力を低くおさえることができる効果もある。
成形圧力は、装置の耐圧構造などの点から実用的には、
40kgf/cm以下の範囲で適宜選択することが好
ましい。
In the present invention, the polylactic acid-based polymer sheet needs to be heated in advance so that the temperature is in the range of (Tg) to (Tg + 50 ° C.). Here, Tg represents the glass transition temperature of the polylactic acid-based polymer. If the preheating temperature of the sheet is lower than the glass transition temperature (Tg), softening is insufficient, while if it exceeds (Tg + 50 ° C.), the orientation of the sheet is lost, resulting in poor impact resistance and transparency. In addition, sheet forming and heat treatment are performed using (Tc−
(20 ° C.) to (Tm−20 ° C.). Here, Tc represents the crystallization temperature of the polylactic acid-based polymer, and Tm represents the melting point of the polylactic acid-based polymer. The heating mold 3 uses the electric heater 9 and (Tc-2
It is necessary to heat in advance to a temperature in the range of 0 ° C to (Tm-20 ° C). If the temperature is lower than (Tc-20 ° C.), the crystallization of the sheet does not proceed sufficiently in a short time, and the desired heat resistance cannot be obtained. If the temperature is higher than (Tm-20), the orientation is lost and the impact resistance is poor. It will be. By molding along a heating mold heated to a predetermined temperature as in the present invention, it is possible to prevent the sheet temperature from decreasing and the sheet tension from increasing, so that the compressed air pressure required for molding is reduced. There is also an effect that can be suppressed.
The molding pressure is practical in terms of the pressure-resistant structure of the device.
It is preferable to select an appropriate value within a range of 40 kgf / cm 2 or less.

【0014】成形され、熱処理により結晶化された成形
体を加熱型から取り出すには、余熱により成形体が収縮
変形しないように充分に冷却してから取り出す必要があ
る。本発明においては、加熱型3に冷却型7を嵌合し、
両型の間に挟み込んだ成形品に加熱型3側から圧空を吹
き込んで成形体を強制的に冷却型に移し沿わせて冷却す
ることにより、迅速に移しかえができ、収縮変形するこ
となく型に忠実な成形体を得ることが出来る。
In order to remove the molded body that has been molded and crystallized by the heat treatment from the heating mold, it is necessary to sufficiently remove the molded body so that the molded body does not shrink and deform due to residual heat. In the present invention, the cooling mold 7 is fitted to the heating mold 3,
By blowing compressed air from the heating mold 3 side to the molded product sandwiched between the two molds and forcibly transferring the molded body to the cooling mold and cooling it along, the mold can be quickly transferred and the mold can be shrunk without shrinkage deformation. A molded article faithful to the above can be obtained.

【0015】得られた成形体は、例えば食品用容器やブ
リスターパック用容器、展示用包装体として好適に用い
られるが、これらに限定されるものではない。本発明の
成形体は、大きさや形状を適宜選択することにより、種
々の用途に適応することができる。なお、ここでブリス
ターパック用容器とは、内容物を収納し、底部または蓋
部をヒートシール製シート等で密封する、いわゆるブリ
スターパックに用いられる容器をいう。
The obtained molded article is suitably used as, for example, a food container, a blister pack container, and a display package, but is not limited thereto. The molded article of the present invention can be adapted to various uses by appropriately selecting the size and shape. Here, the blister pack container refers to a container used for a so-called blister pack in which the contents are stored and the bottom or the lid is sealed with a heat-sealed sheet or the like.

【0016】[0016]

【実施例】以下に実施例を示すが、本発明はこれらに限
定されるものではない。なお、実施例中に示す測定値は
下記に示すような条件で測定し、算出した。 (1)面配向度(△P) アッペ屈折計によってシートの直交3軸方向の屈折率
(α,β,γ)を測定し、次式で算出した。 △P={(γ+β)/2)}−α (α<β<
γ) γ:シート面内の最大屈折率 β:シート面内におけるγの方向と直交する方向の屈折
率 α:シート厚さ方向の屈折率 (2)ガラス転移温度(Tg),結晶化温度(Tc),
融点(Tm) 示差走査熱量計「DSC−7」(パーキンエルマー製)
を用いて、JIS−K7122に基づきポリ乳酸系重合
体のガラス転移温度(Tg)、結晶化温度(Tc)、融
点(Tm)を測定した。ただし、ガラス転移温度(T
g)、融点(Tm)についてはペレット状態で測定し、
結晶化温度(Tc)についてはシートの状態で測定し
た。 (3)耐衝撃性 ハイドロショット高速衝撃試験機「HTM−1型」
((株)島津製作所製)を用いて耐衝撃性を測定した。
成形体底部より100mm×100mmの大きさのサン
プルを切り出し、サンプルの中央に錘を落して衝撃を与
えて、サンプルが破壊した時の破壊エネルギーを読みと
った。ただし、測定温度は23℃、錘の落下速度は3m
/秒である。サンプルが破壊した時の最大荷重およびエ
ネルギーが小さいほど耐衝撃性に劣り、脆い。 (4)耐熱性(加熱時の安定性) 温度80℃の熱風乾燥機中に成形体を20分間放置した
後の容積(Vt)を測定し、放置前の容積(V)と放
置後の容積〈Vt)とから次式により容積変化率(△
V)を求め、この値を耐熱性とした。容積変化率(△
V)の数値が小さいほど耐熱性が良好である。 △V=[(Vo−Vt)/Vo]×100(%)
EXAMPLES Examples are shown below, but the present invention is not limited to these examples. The measured values shown in the examples were measured and calculated under the following conditions. (1) Degree of plane orientation (ΔP) The refractive index (α, β, γ) of the sheet in three orthogonal directions was measured by an Appe refractometer and calculated by the following equation. ΔP = {(γ + β) / 2)} − α (α <β <
γ) γ: maximum refractive index in the sheet plane β: refractive index in the direction orthogonal to the direction of γ in the sheet plane α: refractive index in the sheet thickness direction (2) glass transition temperature (Tg), crystallization temperature ( Tc),
Melting point (Tm) Differential scanning calorimeter "DSC-7" (manufactured by PerkinElmer)
Was used to measure the glass transition temperature (Tg), crystallization temperature (Tc), and melting point (Tm) of the polylactic acid-based polymer based on JIS-K7122. However, the glass transition temperature (T
g), melting point (Tm) is measured in a pellet state,
The crystallization temperature (Tc) was measured in a sheet state. (3) Impact resistance Hydroshot high-speed impact tester “HTM-1”
The impact resistance was measured using (manufactured by Shimadzu Corporation).
A sample having a size of 100 mm × 100 mm was cut out from the bottom of the molded body, a weight was dropped at the center of the sample to give an impact, and the breaking energy when the sample was broken was read. However, the measurement temperature is 23 ° C and the falling speed of the weight is 3 m
/ Sec. The smaller the maximum load and the energy when the sample breaks, the lower the impact resistance and the brittleness. (4) Heat resistance (stability during heating) The volume (Vt) of the molded body after standing for 20 minutes in a hot air dryer at a temperature of 80 ° C. was measured, and the volume (V 0 ) before leaving and the volume after standing were measured. From the volume <Vt), the volume change rate (△
V) was determined, and this value was regarded as heat resistance. Volume change rate (△
The smaller the value of V), the better the heat resistance. ΔV = [(Vo−Vt) / Vo] × 100 (%)

【0017】(実施例1)L−乳酸とD−乳酸との組成
比がおよそ99.5:0.5で、ガラス転移温度(T
g)60℃、融点(Tm)174℃、重量平均分子量2
0万のポリ乳酸)を90mmφの単軸エクストルーダー
を用い、200℃で押し出して、幅300mm、延伸後
の厚みが0.3mmのポリ乳酸系重合体の未延伸シート
を作製した。得られた未延伸シートを表1に示す条件の
下、逐次二軸延伸機を用いて延伸し、ポリ乳酸系重合体
の延伸シートを得た。得られたポリ乳酸系重合体の延伸
シートの面配向度(△P)を求めたところ、9.1×1
−3であった。得られたポリ乳酸系重合体の延伸シー
トから図1に示す圧空成形装置を用いて長さ130m
m、幅130mm、深さ30mmの箱状の成形体を成形
した。ただし、加熱装置の温度(シート加熱温度)、圧
空孔からの圧空圧力および加熱型の温度(熱処理温度)
は表1に示すようにして成形を行った。得られた成形体
について、成形性の評価、および耐衝撃性と耐熱性の測
定を行った。それらの結果を表1に示す。成形性の評価
基準は、成形できるものを「○」、成形できなかったも
のを「×」で示した。また、耐衝撃性および耐熱性の結
果を考慮して総合評価を行った。ただし、使用に耐えな
いレベルのもの又は成形できないものを「×」、実用レ
ベル以上のものを「○」、非常に優れているものを
「◎」で表した。
Example 1 The composition ratio of L-lactic acid to D-lactic acid was about 99.5: 0.5, and the glass transition temperature (T
g) 60 ° C, melting point (Tm) 174 ° C, weight average molecular weight 2
(0000,000 polylactic acid) was extruded at 200 ° C. using a 90 mmφ uniaxial extruder to prepare an unstretched sheet of a polylactic acid-based polymer having a width of 300 mm and a thickness of 0.3 mm after stretching. The obtained unstretched sheet was stretched using a sequential biaxial stretching machine under the conditions shown in Table 1 to obtain a stretched sheet of a polylactic acid-based polymer. The plane orientation degree (ΔP) of the obtained stretched sheet of polylactic acid-based polymer was determined to be 9.1 × 1
0 was -3. The obtained stretched sheet of polylactic acid-based polymer was 130 m in length using a pressure forming apparatus shown in FIG.
m, a width of 130 mm and a depth of 30 mm were molded into a box-shaped molded body. However, the temperature of the heating device (sheet heating temperature), the compressed air pressure from the compressed air holes, and the temperature of the heating mold (heat treatment temperature)
Was molded as shown in Table 1. About the obtained molded object, evaluation of moldability and measurement of impact resistance and heat resistance were performed. Table 1 shows the results. The evaluation criteria for moldability were indicated by “○” for those that could be molded, and “X” for those that could not be molded. In addition, a comprehensive evaluation was performed in consideration of the results of impact resistance and heat resistance. However, those which were not usable or those which could not be formed were indicated by "x", those which were at or above the practical level were indicated by "o", and those which were extremely excellent were indicated by "o".

【0018】(実施例2〜4)実施例1と同様にして未
延伸シートを作製した。次いで、得られた未延伸シート
の延伸条件を表1に示すように変更した以外は実施例1
と同様にして、ポリ乳酸系重合体の延伸シートを作製し
た。次いで、得られたポリ乳酸系重合体の延伸シートを
用いて、シート加熱温度、圧空圧力、熱処理温度を表1
に示すように変更した以外は実施例1と同様にして、成
形体を得た。△P、結晶化温度(Tc)、成形性の評
価、耐衝撃性、耐熱性(△V)を実施例1と同様にして
求めた。その結果を表1に示す。
(Examples 2 to 4) Unstretched sheets were produced in the same manner as in Example 1. Then, Example 1 was repeated except that the stretching conditions of the obtained unstretched sheet were changed as shown in Table 1.
In the same manner as in the above, a stretched sheet of a polylactic acid-based polymer was produced. Next, using the obtained stretched sheet of polylactic acid-based polymer, the sheet heating temperature, the pneumatic pressure, and the heat treatment temperature are shown in Table 1.
A molded article was obtained in the same manner as in Example 1 except that the composition was changed as shown in (1). ΔP, crystallization temperature (Tc), evaluation of moldability, impact resistance and heat resistance (ΔV) were determined in the same manner as in Example 1. Table 1 shows the results.

【0019】(比較例1〜6)実施例1と同様にして未
延伸シートを作製した。次いで、比較例1〜4,6につ
いては、延伸条件を表1に示すように変更した以外は実
施例1と同様にして延伸シートを作製した。次いで、得
られた延伸シートを用いて、シート加熱温度、圧空圧
力、熱処理温度を表1に示すように変更した以外は実施
例1と同様にして、成形体を得た。ただし、比較例5に
ついては未延伸シートのまま上記と同様にして成形体を
作製した。
(Comparative Examples 1 to 6) Unstretched sheets were produced in the same manner as in Example 1. Then, for Comparative Examples 1 to 4, and 6, a stretched sheet was produced in the same manner as in Example 1 except that the stretching conditions were changed as shown in Table 1. Next, using the obtained stretched sheet, a molded article was obtained in the same manner as in Example 1 except that the sheet heating temperature, the air pressure, and the heat treatment temperature were changed as shown in Table 1. However, for Comparative Example 5, a molded article was produced in the same manner as described above with the unstretched sheet.

【0020】[0020]

【表1】 [Table 1]

【0021】表1から明らかなように、実施例1〜4の
成形体はいずれも耐衝撃性が80kgf・mm以上、か
つ耐熱性(△V)が5%以下であり、総合評価「◎」の
非常に優れた成形体であることが分かった。一方、比較
例1はシート加熱温度が低いので、成形できず、比較例
2はシート加熱温度が高すぎ、耐衝撃性、耐熱性に劣っ
たものであった。比較例3は熱処理温度が低いので、耐
熱性が劣り、比較例4では熱処理温度が高すぎるので、
耐衝撃性に劣っていた。比較例5は△Pが小さいので、
耐衝撃性に劣り、比較例6は面配向度(△P)が大きす
ぎて、成形することができなかった。なお、得られた成
形体は用途に応じて形状等を適宜選択することができ、
適当な形状を選択して食品用容器およびブリスターパッ
ク用容器を作製したところ、これらは耐衝撃性および耐
熱性に優れた、生分解性の容器であることが分かった。
As is clear from Table 1, all of the molded articles of Examples 1 to 4 have an impact resistance of 80 kgf · mm or more and a heat resistance (ΔV) of 5% or less. It was found to be a very excellent molded article. On the other hand, in Comparative Example 1, since the sheet heating temperature was low, molding was not possible, and in Comparative Example 2, the sheet heating temperature was too high, and the impact resistance and heat resistance were poor. In Comparative Example 3, the heat treatment temperature was low, so the heat resistance was poor. In Comparative Example 4, the heat treatment temperature was too high.
Poor impact resistance. Comparative Example 5 has a small ΔP.
Inferior in impact resistance, Comparative Example 6 was too large in plane orientation (ΔP) and could not be molded. The shape of the obtained molded body can be appropriately selected depending on the application,
Appropriate shapes were selected to produce food containers and blister pack containers, which were found to be biodegradable containers having excellent impact resistance and heat resistance.

【0022】[0022]

【発明の効果】以上詳しく説明したように、本発明のポ
リ乳酸系重合体のシートから得られる生分解性の成形体
は、耐衝撃性、耐湿熱性に優れており、広い分野での使
用が可能となる。
As described in detail above, the biodegradable molded article obtained from the polylactic acid-based polymer sheet of the present invention has excellent impact resistance and wet heat resistance, and can be used in a wide range of fields. It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いられる成形装置の一態様を模式的
に示す縦断面図である。
FIG. 1 is a longitudinal sectional view schematically showing one embodiment of a molding apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

1 シート 2 加熱装置 3 加熱型 4 圧空チャンバー 5 圧空孔 5’ 圧空孔 6 電気ヒーター 7 冷却型 8 軸 9 軸 10 冷却液管 DESCRIPTION OF SYMBOLS 1 Sheet 2 Heating device 3 Heating type 4 Compressed air chamber 5 Compressed air hole 5 'Compressed air hole 6 Electric heater 7 Cooling type 8 axis 9 axis 10 Coolant pipe

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 面配向度(△P)が3.0×10−3
30×10−3であるポリ乳酸系重合体のシートを、該
ポリ乳酸系重合体のガラス転移温度(Tg)以上、(T
g+50℃)以下の範囲の温度になるまで予め加熱した
後、加熱型と接触させたまま{該ポリ乳酸系重合体の結
晶化温度(Tc)−20℃}以上、{該ポリ乳酸系重合
体の融点(Tm)−20℃}以下の範囲の温度で成形及
び熱処理を行い、その後、冷却することを特徴とするポ
リ乳酸系重合体の成形方法。
1. A plane orientation degree (ΔP) of 3.0 × 10 −3 or more.
A sheet of a polylactic acid-based polymer having a size of 30 × 10 −3 is subjected to a temperature equal to or higher than the glass transition temperature (Tg) of the polylactic acid-based polymer (Tg).
g + 50 ° C.) or less, and then kept in contact with a heating mold {the crystallization temperature (Tc) of the polylactic acid-based polymer −20 ° C.) or more, {the polylactic acid-based polymer Molding method and heat treatment at a temperature in the range of -20 ° C. or lower, followed by cooling.
【請求項2】 面配向度(△P)が3.0×10−3
30×10−3であるポリ乳酸系重合体のシートを、該
ポリ乳酸系重合体のガラス転移温度(Tg)以上、(T
g+50℃)以下の範囲の温度になるまで予め加熱した
後、圧空により加熱型に沿わせて成形し、得られた成形
品を加熱型と接触させたまま{該ポリ乳酸系重合体の結
晶化温度(Tc)−20℃}以上、{該ポリ乳酸系重合
体の融点(Tm)−20℃}以下の範囲の温度で熱処理
を行い、その後加熱型に略対応する形状を有する冷却型
に嵌合させた後、加熱型側から圧空を吹き込んで成形品
を冷却型に移し沿わせて、冷却型と接触させつつ冷却す
ることを特徴とするポリ乳酸系重合体の成形方法。
2. The degree of plane orientation (ΔP) is 3.0 × 10 −3 or more.
A sheet of a polylactic acid-based polymer having a size of 30 × 10 −3 is subjected to a temperature equal to or higher than the glass transition temperature (Tg) of the polylactic acid-based polymer (Tg).
(g + 50 ° C.) or less before heating to a temperature in the range of not more than the following range, followed by molding along a heating mold with compressed air, and keeping the obtained molded article in contact with the heating mold. [Crystallization of the polylactic acid-based polymer] A heat treatment is performed at a temperature in a range of not less than a temperature (Tc) -20 ° C and not more than a melting point (Tm) of the polylactic acid-based polymer -20 ° C}, and then fitted into a cooling mold having a shape substantially corresponding to a heating mold. A method of molding a polylactic acid-based polymer, comprising blowing compressed air from the heating mold side, transferring the molded article to the cooling mold, and cooling while contacting the cooling mold.
【請求項3】 耐衝撃性が80kgf・mm以上であ
り、かつ、耐熱性は80℃で20分間熱風乾燥器中で乾
燥させたときの体積収縮率が5%以下であることを特徴
とするポリ乳酸系重合体の成形体。
3. The impact resistance is 80 kgf · mm or more, and the heat resistance is 5% or less in volume shrinkage when dried in a hot air dryer at 80 ° C. for 20 minutes. A molded article of a polylactic acid-based polymer.
【請求項4】 請求項1の成形方法を用いて製造され
た、ポリ乳酸系重合体の成形体。
4. A molded article of a polylactic acid-based polymer produced by using the molding method of claim 1.
【請求項5】 請求項1の成形方法を用いて製造され
た、ポリ乳酸系重合体の食品用容器。
5. A food container made of a polylactic acid-based polymer, produced by using the molding method according to claim 1.
JP34890999A 1999-12-08 1999-12-08 Molded product of polylactic acid polymer and molding method thereof Expired - Fee Related JP3866465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34890999A JP3866465B2 (en) 1999-12-08 1999-12-08 Molded product of polylactic acid polymer and molding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34890999A JP3866465B2 (en) 1999-12-08 1999-12-08 Molded product of polylactic acid polymer and molding method thereof

Publications (2)

Publication Number Publication Date
JP2001162676A true JP2001162676A (en) 2001-06-19
JP3866465B2 JP3866465B2 (en) 2007-01-10

Family

ID=18400210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34890999A Expired - Fee Related JP3866465B2 (en) 1999-12-08 1999-12-08 Molded product of polylactic acid polymer and molding method thereof

Country Status (1)

Country Link
JP (1) JP3866465B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008178A1 (en) * 2001-07-19 2003-01-30 Toyo Seikan Kaisha, Ltd. Molded object obtained through stretching and thermal fixing and process for producing the same
JP2003276078A (en) * 2002-03-22 2003-09-30 Yoshimura Kasei Kk Thermoforming method for polylactic acid biodegradable resin sheet
JP2004190026A (en) * 2002-11-29 2004-07-08 Toray Ind Inc Resin composition and molded article made thereof
JP2005255839A (en) * 2004-03-11 2005-09-22 Daiwa Can Co Ltd Container made of polylactic acid polymer excellent in impact resistance and heat resistance, and method for forming the same
JP2006124662A (en) * 2004-09-29 2006-05-18 Toray Ind Inc Biaxially oriented polylactic acid film, molding composed of the same and substrate
WO2007142106A1 (en) 2006-06-02 2007-12-13 Unitika Ltd. Polylactic acid heat-resistant sheet
JP2008308693A (en) * 2002-09-06 2008-12-25 Mitsubishi Plastics Inc Flame-retardant resin composition and flame-retardant injection molding
JP2009068021A (en) * 2009-01-06 2009-04-02 Jsp Corp Polylactic acid-based resin foam
JP2017071111A (en) * 2015-10-06 2017-04-13 花王株式会社 Manufacturing method of resin molded article
CN113286692A (en) * 2019-01-09 2021-08-20 普拉克生化公司 Thermoforming of PLA-based articles

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517516A (en) * 1978-07-24 1980-02-07 Mitsubishi Plastics Ind Ltd Molding method of polyester sheet
JPS5638215A (en) * 1979-09-07 1981-04-13 Mitsubishi Plastics Ind Ltd Thermoforming method for plastic sheet
JPS57146616A (en) * 1981-03-05 1982-09-10 Mitsubishi Plastics Ind Ltd Forming method of polyester sheet by differential pressure process
JPS57146617A (en) * 1981-03-05 1982-09-10 Mitsubishi Plastics Ind Ltd Thermal forming method of polyester sheet
JPH03261535A (en) * 1990-03-12 1991-11-21 Toppan Printing Co Ltd Manufacture of container having barrier property
JPH0668817U (en) * 1993-03-18 1994-09-27 ニッポー株式会社 Polyester moldings
JPH0925345A (en) * 1995-07-10 1997-01-28 Mitsubishi Plastics Ind Ltd Polylactic acid molding
JPH10315312A (en) * 1997-05-20 1998-12-02 Mitsubishi Chem Corp Thermoformed product made of polyester sheet and its manufacture
JPH11106625A (en) * 1997-10-07 1999-04-20 Toyobo Co Ltd Polyester-based sheet and polyester-based molded article having impact resistance at low temperature and heat resistance by using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517516A (en) * 1978-07-24 1980-02-07 Mitsubishi Plastics Ind Ltd Molding method of polyester sheet
JPS5638215A (en) * 1979-09-07 1981-04-13 Mitsubishi Plastics Ind Ltd Thermoforming method for plastic sheet
JPS57146616A (en) * 1981-03-05 1982-09-10 Mitsubishi Plastics Ind Ltd Forming method of polyester sheet by differential pressure process
JPS57146617A (en) * 1981-03-05 1982-09-10 Mitsubishi Plastics Ind Ltd Thermal forming method of polyester sheet
JPH03261535A (en) * 1990-03-12 1991-11-21 Toppan Printing Co Ltd Manufacture of container having barrier property
JPH0668817U (en) * 1993-03-18 1994-09-27 ニッポー株式会社 Polyester moldings
JPH0925345A (en) * 1995-07-10 1997-01-28 Mitsubishi Plastics Ind Ltd Polylactic acid molding
JPH10315312A (en) * 1997-05-20 1998-12-02 Mitsubishi Chem Corp Thermoformed product made of polyester sheet and its manufacture
JPH11106625A (en) * 1997-10-07 1999-04-20 Toyobo Co Ltd Polyester-based sheet and polyester-based molded article having impact resistance at low temperature and heat resistance by using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390543B2 (en) 2001-07-19 2008-06-24 Toyo Seikan Kaisha Ltd. Molded object obtained through stretching and thermal fixing and process for producing the same
WO2003008178A1 (en) * 2001-07-19 2003-01-30 Toyo Seikan Kaisha, Ltd. Molded object obtained through stretching and thermal fixing and process for producing the same
JP2003276078A (en) * 2002-03-22 2003-09-30 Yoshimura Kasei Kk Thermoforming method for polylactic acid biodegradable resin sheet
JP4708457B2 (en) * 2002-09-06 2011-06-22 三菱樹脂株式会社 Flame retardant resin composition and flame retardant injection molded article
JP2008308693A (en) * 2002-09-06 2008-12-25 Mitsubishi Plastics Inc Flame-retardant resin composition and flame-retardant injection molding
JP2004190026A (en) * 2002-11-29 2004-07-08 Toray Ind Inc Resin composition and molded article made thereof
JP2005255839A (en) * 2004-03-11 2005-09-22 Daiwa Can Co Ltd Container made of polylactic acid polymer excellent in impact resistance and heat resistance, and method for forming the same
JP2006124662A (en) * 2004-09-29 2006-05-18 Toray Ind Inc Biaxially oriented polylactic acid film, molding composed of the same and substrate
WO2007142106A1 (en) 2006-06-02 2007-12-13 Unitika Ltd. Polylactic acid heat-resistant sheet
JP2009068021A (en) * 2009-01-06 2009-04-02 Jsp Corp Polylactic acid-based resin foam
JP2017071111A (en) * 2015-10-06 2017-04-13 花王株式会社 Manufacturing method of resin molded article
CN113286692A (en) * 2019-01-09 2021-08-20 普拉克生化公司 Thermoforming of PLA-based articles
JP2022516927A (en) * 2019-01-09 2022-03-03 ピュラック バイオケム ビー. ブイ. Thermoforming of PLA-based articles
JP7212787B2 (en) 2019-01-09 2023-01-25 ピュラック バイオケム ビー. ブイ. Thermoforming of PLA-based articles
CN113286692B (en) * 2019-01-09 2023-12-26 普拉克生化公司 Thermoforming of PLA-based articles

Also Published As

Publication number Publication date
JP3866465B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
JP3217240B2 (en) Polylactic acid based molded body
US8362157B2 (en) Polylactic acid composition and molding comprising the composition
JP2007204727A (en) Polylactic acid composition and molded product composed of the composition
JP3866465B2 (en) Molded product of polylactic acid polymer and molding method thereof
JP3391593B2 (en) Oriented polylactic acid-based films and sheets and methods for producing them
JP3328418B2 (en) Heat-shrinkable polylactic acid film
JP3670913B2 (en) Polylactic acid-based shrink film or sheet
AU781686B2 (en) Biodegradable oriented aromatic polyester film and method of manufacture
JP2001114912A (en) Stretched aromatic polyester film and preparation method thereof
JP3592799B2 (en)   Method for molding polylactic acid-based polymer, polylactic acid-based molded article, and polylactic acid-based molded article
JP3563436B2 (en) Thermoformed product of polylactic acid polymer
JP4117083B2 (en) Polylactic acid-based shrinkable sheet material, and packaging material or shrinkable label material using the same
JP2003276080A (en) Thermoforming material of polyethylene terephthalate resin and method for producing thermoformed molding of polyethylene terephthalate resin
JP3670912B2 (en) Polylactic acid-based shrink film or sheet
JP3662141B2 (en) Polylactic acid-based shrinkable sheet material, and packaging material or shrinkable label material using the same
JP3662197B2 (en) Polylactic acid-based thermoformed products
JP2001150531A (en) Molding of polylactic acid-based polymer and method for molding thereof
JPH02204020A (en) Biaxially stretched polyester film for forming, formed-transferring film and formed container
JP2004059845A (en) Biodegradable blown film and its manufacturing method
JP3459585B2 (en) Easy tear polylactic acid based biaxially stretched film
JPH09174674A (en) Blister molding method for biaxially oriented lactic acid polymer film
JPH0977124A (en) Packing bag composed of polylactic acid polymer
JP2001199007A (en) Biodegradable laminated sheetlike article
JPH0931216A (en) Poly(lactic acid) sheet
JP2692310B2 (en) Biaxially oriented polyester film for molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees